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Disclaimer  
 
The contents of this report reflect the views of the authors, who are responsible for the facts and the 
accuracy of the information presented herein. The contents do not necessarily reflect the official views or 
policies of the Center for Transportation, Environment, and Community Health (CTECH) and other project 
sponsors or the Federal Highway Administration. This report does not constitute a standard, specification 
or regulation. This document is disseminated under the sponsorship of the Department of Transportation, 
University Transportation Centers Program, in the interest of information exchange. The U.S. Government 
[and other project sponsors] assume[s] no liability for the contents or use thereof. 
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Air quality implications of COVID-19 in California 
 

Abstract 

The COVID-19 pandemic has significantly affected human health and the economy. The 
implementation of social distancing practices to combat the virus spread, however, has led to a notable 
improvement in air quality. This study compared the surface air quality monitoring data from the United 
States Environmental Protection Agency (U.S. EPA)’s AirNow network during the period 20 March–5 
May in 2020 to those in 2015–2019 from the Air Quality System (AQS) network over the state of 
California. The results indicated changes in fine particulate matter (PM2.5) of −2.04 ± 1.57 μg m−3 and 
ozone of −3.07 ± 2.86 ppb. If the air quality improvements persist over a year, it could potentially lead 
to 3970–8900 prevented premature deaths annually (note: the estimates of prevented premature deaths 
have large uncertainties). Public transit demand showed dramatic declines (~80%). The pandemic 
provides an opportunity to exhibit how substantially human behavior could impact on air quality. To 
address both the pandemic and climate change issues, better strategies are needed to affect behavior, 
such as ensuring safer shared mobility, the higher adoption of telecommuting, automation in the freight 
sector, and cleaner energy transition. 

Keywords: COVID-19; air quality; shared mobility; telecommuting; climate change 

1. Introduction 

Estimating transportation The COVID-19 pandemic has caused enormous adverse impacts on 
human health and economy. To combat the virus spread, many regional and national governments have 
issued the stay-at-home orders in order to improve social distancing and minimize person-to-person 
contact. The implementation of such practices (including telecommuting), however, has led to notable 
improvements in air quality. Several studies have assessed the impacts of the stay-at-home orders on air 
quality in worldwide regions [1–5]. Generally, they reported reductions in concentrations of nitrogen 
dioxide (NO2) and fine particulate matter (PM2.5), and in some cases an increase in the ground-level 
ozone (O3) [1,5]. The satellite NO2 decreased by 40% over Chinese cities and 20–38% in Western 
Europe and the northeastern United States [2]. Elevated concentrations of air pollutants (e.g., PM2.5 and 
O3) can cause respiratory and cardiovascular problems, and even premature death [6–11]. Hence, a 
change in air quality due to the pandemic may potentially affect health outcomes. 

To date, no similar detailed quantitative analysis has been conducted for the state of California. 
In California, the Greater Los Angeles Area (LA) and San Joaquin Valley (SJV) are classified as 
“Moderate” nonattainment areas for PM2.5, by the United States Environmental Protection Agency (U.S. 
EPA). Additionally, the LA, SJV, and San Francisco Bay Area (SF) are, respectively, classified as 
“Extreme”, ”Extreme”, and “Marginal” nonattainment areas for O3 [12]. Thus, air quality issues are still 
a major concern in these areas. On 19 March 2020, the statewide stay-at-home order was implemented 
in California [13,14]. Since then, millions of residents have adjusted their travel behavior in accordance 



 

5 
 

with the order. This creates a valuable opportunity to evaluate the impact of changing travel behavior or 
lockdown on air quality and the associated health effects. In this study, we investigate the change in air 
quality using measurements from surface monitoring stations operated by the U.S. EPA’s AirNow [15] 
and Air Quality System (AQS) networks [16]. The AirNow network stores near-real-time air quality 
measurements, while AQS contains historical data that have undergone quality assurance and quality 
control. This study aims to answer the following questions: 

(1) What are the magnitudes of changes in the regional PM2.5 and O3 concentrations during the 
pandemic time period?  

(2) What are the magnitudes of PM2.5- and O3-induced premature mortality? How could health 
outcomes vary across regions in California?  

(3) How could transportation activity change due to the pandemic? What are the opportunities in 
attaining air quality improvement in the post-pandemic period? 

2. Materials and Methods 

2.1. PM2.5 and O3 Air Quality Measurements and Episode Selection 

We obtained hourly surface air quality monitoring data in 2020 from the AirNow network [15], 
and those from five historical years (2015–2019) from the AQS network [16]. The AirNow 
observational data are collected using federal reference or equivalent monitoring methods approved by 
the U.S. EPA. Although the AirNow data have undergone preliminary data quality assessments, they are 
not subjected to the full validation required by AQS, the U.S. EPA’s regulatory database. In order to 
ensure the data quality and consistency, we utilized measurement data from monitors that were reported 
in both AQS and AirNow. Chai et al. [17] compared the O3 measurements that were reported in both 
AQS and AirNow, and they showed a good agreement, with a correlation of more than 0.99. A 
comprehensive literature review of recent publications on the performance of low-cost air sensors was 
provided by the U.S. EPA [18]. 

In this study, the following episodes were considered: 

(1) 20 March–5 May, hereafter called Episode 1, or E1. E1 2020 was the time period when a state-
wide lockdown was implemented in California. E1 2015–2019 was the corresponding historical 
time period with normal air quality conditions. 

(2) 1 February–5 March, hereafter called Episode 2, or E2. The air quality in E2 2020 reflected the 
normal conditions in this year, before the lockdown was initiated. E2 2015–2019 represents the 
historical normal.  

In California, there are 50 sites of PM2.5 measurements and ~130 sites of O3 measurements, 
reported in both AirNow and AQS. The exact same time periods, 20 March–5 May and 1 February–5 
March, are used for all the years considered. We calculated the episode-average concentrations of PM2.5, 
the maximum daily 8 h average (MDA8) O3 for each study time period, and the difference (in both 
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absolute value and percentage) between the 2020 average and the (2015–2019) historical average for 
each episode. The change in air quality during the lockdown time period (i.e., Episode 1) between 2020 
and 2015–2019 could not be solely attributed to COVID-19. There are other potential contributing 
factors, such as meteorological variations and long-term emission changes. Thus, Episode 2, the pre-
lockdown time period, can be used as a control and an uncertainty estimate. The change in air quality 
during Episode 2 could represent the variability between the normal conditions in this year and the 
averaged historical normal—that is, how much departure from average conditions one might expect in 
this year (although weather and its impact on air quality could be different between pre-lockdown and 
lockdown in 2020). 

2.2. Air Quality Associated Health Impact Assessment 

To assess the potential air quality-associated health impact, we used the U.S. EPA 
Environmental Benefits Mapping and Analysis Program (BenMAP) Community Edition version 1.3 
[19–21]. The concentration-response (C-R) functions are usually utilized to characterize the 
relationships between air pollution and human health; an increase in adverse health effects would 
coincide with an exacerbation of ambient air pollution concentrations. We used the log-linear format C-
R functions: 

∆𝑦𝑦  = (1 − 𝑒𝑒 −𝛽𝛽 ∙∆𝑥𝑥 ) × 𝑦𝑦 0 × 

where ∆𝑦𝑦 represents the change in the incidence of adverse health effects, 𝛽𝛽 is the C-R coefficient, ∆𝑥𝑥 is 
the change in air quality, 𝑦𝑦0 is the baseline incidence rate, and 𝑃𝑃𝑃𝑃𝑃𝑃 is the affected population. The C-R 
relationships (i.e., 𝛽𝛽) are usually assessed in epidemiological studies. In this study, we mainly adopted 
the C-R relationships from Krewski et al. [6], Lepeule et al. [7], and Woodruff et al. [8] for the PM2.5-
attributed mortality, and Bell et al. [9], Levy et al. [10], and Zanobetti and Schwartz [11] for the O3-
attributed mortality, as recommended by the U.S. EPA [22,23]. More details about the C-R coefficients 
in epidemiological studies are listed in Table 1, as well as described in Pan et al. [24,25]. The stationary 
air quality measurements were interpolated to spatial fields using the Voronoi neighborhood averaging 
(VNA) method [23]. 

Table 1. The concentration-response functions for the PM2.5- and O3-induced premature mortality used 
in this study. 

Species Epidemiological Reference Risk Estimate, β Age Range Derived Locations 
PM2.5 Krewski et al. [6] 0.00583 30-99 116 U.S. cities 
PM2.5 Lepeule et al. [7] 0.01310 25-99 6 Eastern Cities 
PM2.5 Woodruff et al. [8] 0.00392 0; infants 86 cities 
Ozone Bell et al. [9] 0.00079 0-99 US and non-US 
Ozone Levy et al. [10] 0.00112 0-99 US and non-US 
Ozone Zanobetti and Schwartz [11] 0.00051 0-99 48 cities 
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2.3. Miscellaneous Data: Public Transit Demand, Telecommuting Status, and Energy Mix 

We collected several datasets related to meteorology, passenger travel, transportation emissions, 
and energy use. Meteorological factors, temperature and wind speed, were obtained from the Automated 
Surface Observing System (ASOS) network (https://mesonet.agron.iastate.edu/ASOS/). Public transit 
demand data at two Californian metropolitan areas were obtained from one smartphone app—Transit 
app [26]. The commuting/telecommuting status data were from the 2018 American Community Survey 
(ACS) 5-year Estimates, Tables DP03 (selected economic characteristics) and B08126 (means of 
transportation to work by industry) [27]. The electricity generation resource mix data were from the 
Emissions and Generation Resource Integrated Database (eGRID), version from 2018 [28]. 

3. Results and Discussion 

3.1. Change in Air Quality during the “Stay-at-Home Order” Time Period 

Figure 1 plots the E1 (20 March–5 May) episode-average surface concentrations of PM2.5 and 
MDA8 O3. Compared to the E1 2015–2019 historical conditions in Figure 1a, the PM2.5 concentrations 
exhibit notable domain-wide reductions in E1 2020 in Figure 1b; the changes are −2.04 ± 1.57 μg m−3 in 
Figure 1c and −27.25 ± 23.88% in Figure 1d. There is an increase in PM2.5 in the east bay in Figure 1c,d, 
and the cause is not clear. The results for MDA8 O3 indicate widespread reductions between the five-
year historical average in Figure 1e and the 2020 lockdown average in Figure 1f; the changes are −3.07 
± 2.86 ppb in Figure 1g and −8.08 ± 7.93% in Figure 1h. One exception is that the O3 increases in urban 
Los Angeles; this is to be expected, as the area has significant nitrogen oxide (NOx) emissions from 
transportation sources, and it is NOx-saturated. Reductions in the NOx emissions due to the 
pandemic/lockdown could lead to a decreasing NOx saturation (and hence O3 increase). 
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Figure 1. The Episode 1 (20 March–5 May) episode-average surface concentrations of PM2.5 and 
MDA8 O3: (a) historical PM2.5, (b) lockdown PM2.5, (c) lockdown minus historical PM2.5, (d) similar to 
(c) but in percentage, (e) historical MDA8 O3, (f) lockdown MDA8 O3, (g) lockdown minus historical 
MDA8 O3, (h) similar to (g) but in percentage. In each panel, the number of sites, mean, and standard 
deviation (Std) were provided. 

Figure 2 plots the E2 (1 February–5 March) episode-average surface concentrations. The PM2.5 

in E2 2015–2019 in Figure 2a and E2 2020 in Figure 2b show similar distribution patterns; the 
differences indicate a mixing of increase and decrease in Figure 2c,d. The differences for MDA8 O3, 
however, indicate widespread increases in Figure 2g,h. The differences in the PM2.5 and O3 in Figure 2 
could be potentially driven by the meteorological variations and long-term emission changes. Figure 3 
plots the mean for each episode for temperature, wind speed, PM2.5, and O3. The meteorological factors 
in 2020 are generally within the spread of the past years’ variability. In Figure 3b,c, the PM2.5 and wind 
speed are clearly inversely correlated during 2015–2020 in Episode 2 (blue dots), suggesting that 
meteorology is possibly one of the contributing factors to the changes in PM2.5. A similar inverse 
correlated pattern (with much smaller variability) during 2015–2019 is shown in Episode 1, while the 
PM2.5 in 2020 exhibits a notable further decrease. This further decrease could result from emission 
reductions from the COVID-19 lockdown. The O3 and meteorological factors show less association. 

 

Figure 2. The Episode 2 (1 February–5 March) episode-average surface concentrations of PM2.5 and 
MDA8 O3: (a) historical PM2.5, (b) normal PM2.5, (c) normal minus historical PM2.5, (d) similar to (c) 
but in percentage, (e) historical MDA8 O3, (f) normal MDA8 O3, (g) normal minus historical MDA8 O3, 
(h) similar to (g) but in percentage. 
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Figure 3. The mean for each episode: (a) air temperature, (b) wind speed, (c) PM2.5, and (d) O3. 

3.2. Potential Health Impacts Resulting from the Change in Air Quality 

As depicted in Table 2, if the PM2.5 reductions during the lockdown could persist over a year, it 
could lead to a substantial prevented premature mortality annually, ranging from 3820 (95% CI: 2590–
5040) cases to 8570 (95% CI: 4310–12700) cases, depending on which C-R relationship was being used 
to obtain the estimates. Predominant MDA8 O3 reductions during the lockdown could lead to 150 (95% 
CI: 81–220) cases to 332 (95% CI: 227–435) cases of prevented premature mortality. Assuming that the 
PM2.5 changes during the Episode 2 persist over a year, however, it could generally lead to increased 
numbers of premature deaths. The numbers range from 1480 (95% CI: 1000–1970) cases to 3390 (95% 
CI: 1680–5110) cases of additional premature deaths attributable to PM2.5. The estimates attributable to 
O3 are from 121 (95% CI: 65–177) cases to 267 (95% CI: 183–351) cases. The PM2.5-attributable health 
impact results in Episode 1 have a greater magnitude than those in Episode 2, while the O3-attributable 
results are comparable and opposite in magnitude between Episode 1 and Episode 2. 
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Similarly, Figure 4 depicts the estimations of prevented premature mortality attributable to PM2.5 

and O3 during each episode, but at two large metropolitan areas and San Joaquin Valley. The health 
impact estimates vary largely across different regions or time periods. For instance, during the lockdown 
time period, the PM2.5 -attributable prevented premature deaths in LA (2119 cases) are notably larger 
than those in SF (455 cases), resulting from larger reductions in the PM2.5 concentrations and the bigger 
population size in LA. During the normal time period, however, the difference in the PM2.5-attributable 
health impact estimates between LA and SF (533 and 368 cases) becomes much smaller, as the PM2.5 in 
both areas exhibits a mixed change in increase and decrease. Additionally, the magnitudes of the PM2.5-
attributable health impact results are clearly larger in Episode 1 than Episode 2 in the LA and SJV areas; 
the magnitudes of the O3-attributable results are close to equal in Episode 1 and Episode 2. Based on the 
analyses, COVID-19′s air quality impact is most significant for PM2.5, and greater in the LA and SJV 
areas; COVID-19′s impact on O3 is very uncertain. 

Table 2. Estimates of the prevented premature mortality attributable to the changes in the concentrations 
of PM2.5 and MDA8 O3 in California. 

Species Epidemiological 
Reference 

Prevented Premature Mortality 
 

Episode 1 (E1, Mar 20 – May 5) 
Baseline: E1 2015-2019 Historical 

Control: E1 2020 Lockdown 

Prevented Premature Mortality 
 

Episode 2 (E2, Feb 1 – Mar 5) 
Baseline: E2 2015-2019 Historical 

Control: E2 2020 Normal 

PM2.5 Krewski et al. (6) 3820 
(2590, 5040) 

-1480 
(-1000, -1970) 

PM2.5 Lepeule et al. (7) 8570 
(4310, 12700) 

-3390 
(-1680, -5110) 

PM2.5 Woodruff et al. (8) 22 
(8, 35) 

-8 
(-3, -12) 

Ozone Bell et al. (9) 235 
(112, 358) 

-189 
(-90, -288) 

Ozone Levy et al. (10) 332 
(227, 435) 

-267 
(-183, -351) 

Ozone Zanobetti and 
Schwartz (11) 

150 
(81, 220) 

-121 
(-65, -177) 

Notation: In the 3rd and 4th columns, (1) the numbers in parentheses represent 95% confidence 
intervals, which result from a full Monte–Carlo analysis performed by BenMAP, by randomly sampling 
an uncertainty distribution around the C-R coefficients; (2) positive values indicate the number of 
premature deaths prevented because of air quality improvement, while the negative values indicate an 
increase in the number of premature deaths due to air quality exacerbation. 
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Figure 4. (a) Map of the locations of two metropolitan areas and San Joaquin Valley, and (b) estimates 
of the prevented premature mortality resulting from the changes in concentrations of PM2.5 and MDA8 
O3. 

3.3. Dramatic Declines in Public Transit Demand 

One of primary sources of anthropogenic emissions is transportation in large urban areas. 
Dramatic declines in public transit demand allow us to assume a significant reduction in the vehicle 
miles traveled and emissions. Figure 5 depicts the change in public transit demand in different selective 
days. In both LA and SF, the demand on a typical normal Monday exhibits clearly morning and 
afternoon peaks (i.e., “rush hour”). On 9 March, before the stay-at-home order was implemented, the 
demand was slightly lower than the normal condition. While, on 23 March, when the lockdown was 
applied, the demand showed dramatic declines, at ~80% and ~90% lower than the peak demand on a 
normal Monday in LA and SF, respectively. These substantial declines in demand could partly result 
from reduced public transit service time, frequency, and lines; another cause could be that less people 
choose public transit out of fear of the virus spreading. 

Figure 5. Change in public transit demand in two metropolitan areas. Data source: Transit app [26]. 
Note: “public transit demand” here refers to the frequency of Transit app opens; it does not represent 
transit ridership. This could become a potential limitation. Normal usage is defined as the projected use 
of the app based on last year’s numbers (adjusted for annual growth) [26]. 
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3.4. Implications of the Air Quality Change on Future Passenger Travel, Freight, and Energy Use 

The traffic reductions and air quality improvements come from a way no one would like, and the 
changes are not sustainable. Nevertheless, the pandemic provides an opportunity to exhibit how 
substantially human behavior can impact on air quality. The lockdown and changing behavior bring 
down not only the emissions of air pollutants but also of greenhouse gases (GHGs). Thus, to address 
both the pandemic and climate change issues, better strategies are needed to affect human behavior. 
There are several implications can be drawn from the analyses in this study: 

(1) Ensuring safer shared mobility. Restricted use of public transit has been applied during the 
pandemic to comply with the social distancing guidelines. In the post-pandemic period, people 
may have less confidence on public transportation, and shift to private car use. However, single-
driver private car use is not a sustainable transportation mode. As depicted in Figure 6, single-
driver travels represent more than 70% of commuting travels. In 2018, California set a goal of 
adopting five million zero-emission cars by 2030 [29]. However, the increased numbers of 
electric vehicles on the road may still lead to congestion and increase the emissions from 
conventional vehicles with internal combustion engines (ICE) [30,31]. Shared mobility, 
including both public transit and carpooling, is needed to greatly reduce the number of vehicles 
and carbon emissions [32]. Hence, it is important to ensure safer and healthier shared travel to 
improve consumers’ confidence on return to sharing. Shared mobility is also essential to 
underserved populations or those experiencing economic hardship due to the pandemic. A survey 
of 25,000 individuals still riding public transit during COVID-19 suggests that the riders are 
mostly female, people of color, and low-income workers [33]. Thus, addressing the equity issues 
and allocating funds to build better public transit are critically important.  

(2) Increased adoption of telecommuting. The adoption rate of telecommuting is ~5% during the 
normal time, as depicted in Figure 6. The rate is expected to substantially increase during the 
pandemic, and the air quality improvement (in Figure 1) should in part result from the adoption 
of telecommuting and the associated travel reduction. Telecommuting, which eliminate a 
commute, can lower energy and fuel use, reduce emissions and congestion, and bring about time 
and travel cost savings. It also gives the employees more flexibility in balancing work and 
personal obligations, and saves office expenses for employers. There could be certain downsides 
of working from home; some people may easily get distracted or feel a bit isolated. Thus, it is 
important to weigh the pros and cons when considering a telecommuting job. Figure 7 shows the 
telecommuting status by industry (data available only for the U.S.). Some industries may 
consider increasing the adoption of telecommuting, such as professionals, sales, marketing, and 
information technology jobs. 
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Figure 6. Means of commuting to work in the U.S. and California. Data source: 2018 American 
Community Survey (ACS) 5-year estimates [27]. 

(3) Automation in the freight sector. Due to the pandemic, more people may shift from shopping at 
malls/stores to teleshopping in the future. The truck activity in California was down only ~8% in 
April (i.e., the lockdown time period), compared to the normal demand in February and early 
March this year [34]. Hence, the future shifting to teleshopping may increase freight logistics and 
delivery. Freight trucks account for only small portion of the vehicle miles traveled (VMT), 
however, they make up ~25% of the PM2.5 emissions and ~50% of the NOx emissions, as 
depicted in Figure 8 [35–37]. Automation in the freight sector can help to improve the efficiency, 
reduce emissions, and reduce human contact. In addition, electrifying trucks or autonomous 
trucks is needed to further reduce energy use and emissions. 
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Figure 7. Telecommuting status by industry for the U.S. employees. Data source: 2018 American 
Community Survey (ACS), 5-year Estimates [27]. 

 

Figure 8. Mobile source contributions to emissions of NOx and PM2.5 in California. Data source: U.S. 
EPA 2014 National Emission Inventory (NEI) [35]. 

(4) Cleaner energy transition. In addition to the adoption of five million electric cars [29], California 
set plan to accelerate zero-emission truck markets [38]. Instead of burning gasoline or diesel, 
these new cars and trucks would run on electricity, which should be largely generated from 
renewable sources such as solar, wind, geo-thermal, and hydropower. As depicted in Figure 9, 
California is ahead of the nation in adopting cleaner energy. Coal has been almost phased out, 
and solar and geo-thermal contribute to 13.8% and 6% of the total generation in California (vis-
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à-vis 1.5% and 0.4% for the national average). Emission rates for GHGs from electricity 
generation in California are less than half of the national average, as shown in Figure 10. Thus, 
in order to maximize the air quality improvement and mitigate climate change, the electrification 
of passenger travel and freight sectors in the future also require the continuing strong de-
carbonization of the power sector.  

 

Figure 9. Electricity generation resource mix in the U.S. and California. Data source: U.S. EPA 
Emissions and Generation Resource Integrated Database (eGRID2018) [28]. 

 
Figure 10. Total output emission rates from electricity generation in the U.S. and California. Data 
source: U.S. EPA Emissions and Generation Resource Integrated Database (eGRID2018) [28]. 
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Future studies can be conducted to investigate the air quality and health impacts of the 
environmental initiatives mentioned above. We have performed several assessments of similar control 
strategies for transportation emissions. For instance, electrifying ~95% of passenger vehicles would lead 
to 1950 prevented early deaths annually in California [39]; fleet turnover with maintaining stringent 
emission standards for heavy-duty trucks would lead to 1120 prevented early deaths [25]. In this study, 
air quality improvements during the lockdown would lead to 3820 prevented early deaths if they 
persisted for a whole year (note: the estimation could not be solely attributable to COVID-19). It is not 
clear how COVID-19 could accelerate or hinder the initiatives. On 25 June 2020, California regulators 
approved a first-of-its-kind rule on electric trucks and vans, requiring at least 40% of tractor trailers, 55% 
of smaller trucks, and 75% of delivery trucks and vans sold in California to be zero-emission by 2035; 
the rule would not take effect until 2024 [38,40]. It might be reasonable that corporations may find it 
harder to comply with more stringent emission control policies, due to the temporary economic 
downturn tied to the viral outbreak. Part of the emergency funding (e.g., the Coronavirus Aid, Relief, 
and Economic Security (CARES) Act) can be used to build more sustainable transportation 
infrastructure. 

Promoting the adoption of zero-emission cars and freight trucks represent California’s efforts in 
curbing emissions and air pollution from the technology and policy perspectives, whether by choosing 
public transit, ride sharing, or telecommuting—these are more related to human behavior. The 
technology, policy, and behavior impacting pathways are interrelated, and future substantial reductions 
in emissions require a combination of the different impacting pathways. 

3.5. Uncertainties and Limitations 

The air quality analyses in this study indicate clear reductions in PM2.5 and O3, and we have seen 
large reductions in passenger travel and a slight decrease of trucking freight. However, the exact source 
contributions to the air quality reductions require further data collection from each emission source 
sector. The accurate characterization of the emission changes would be not easy, because the changes 
are not only from total emission amounts but also the daily variation profiles (e.g., in Figure 5). Future 
studies can be performed to better explain the air quality changes by combining improved emission 
inventories and chemical transport model [1]. Another technical limitation is that the direct comparison 
of air quality during the COVID-19 with previous years (2015–2019) (e.g., Episode 1 in Figure 1) 
cannot exclude influences from long-term trends in air quality changes. As shown in Figures 2 and 3, 
there is a long-term trend in air quality in Episode 2 (February–5 March), which could be due to 
meteorological variations and long-term emission changes. This is particularly concerning for O3, which 
has an overall increasing trend in Episode 2, suggesting that not accounting for the long-term trend in air 
quality could mainly bias the estimated air quality changes due to COVID-19. 

It should be noted that the health impact estimates in this study have significant uncertainties. 
First, for PM2.5, the epidemiological studies adopted here include assessment for long-term exposure, 
which is mainly estimated based on the annual average levels and may not be suitable enough for health 
impact assessment of short-term exposure. Hence, the estimated 3820–8570 prevented premature deaths 
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in California are resulted from 1–3 μg m−3 reductions in PM2.5 persisting over a year, not the short 
period of about 45 days. For O3, the C-R functions used here are for short-term exposure (or acute 
effects), since the cited epidemiological studies all estimated effects based on times-series analyses of 
daily O3 exposures. Second, the health impact attributable to air quality changes is strongly affected by 
the spatial distributions of both population density and ambient pollutant concentrations, while human 
behaviors changed significantly during the lockdown period. Supposedly, people spend more time at 
home than usual, and they reduce the time spent in commuting, recreation, and office places. This issue 
would raise another significant limitation using the previous C-R functions. Third, the air monitoring 
stations are mostly concentrated in the southwestern part of California. The VNA method may not be 
able to ensure the representativeness of data in areas with only a few observations. Four, the pandemic 
could impact on many other aspects of human health, such as placing stress on people’s lives and on the 
health care system [41,42]. These impacts are more difficult to quantify. 
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