Appendices Sespe Consulting, Inc.



# AIR QUALITY, HEALTH RISK AND GREENHOUSE GAS IMPACT ASSESSMENT

# Omya Butterfield and Sentinel Quarries Expansion San Bernardino National Forest

October 25, 2017

Prepared for: U.S. Forest Service

41374 North Shore Drive Fawnskin, California 92333

Prepared by: Sespe Consulting, Inc.

374 Poli Street, Suite 200 Ventura, California 93001

(805) 275-1515



374 Poli Street, Suite 200 • Ventura, CA 93001 Office (805) 275-1515 • Fax (805) 667-8104

# AIR QUALITY, HEALTH RISK AND GREENHOUSE GAS IMPACT ASSESSMENT

# Omya Butterfield and Sentinel Quarries Expansion San Bernardino National Forest

## October 25, 2017

#### **TABLE OF CONTENTS**

| 1.0 Introduction |                         |                                                   |    |  |  |  |  |  |  |
|------------------|-------------------------|---------------------------------------------------|----|--|--|--|--|--|--|
| 2.0              | Envir                   | Environmental Setting                             |    |  |  |  |  |  |  |
|                  | 2.1                     | Existing Sources and Receptors                    | 2  |  |  |  |  |  |  |
|                  | 2.2                     | Meteorology and Topography                        |    |  |  |  |  |  |  |
|                  | 2.3                     | Ambient Air Quality                               |    |  |  |  |  |  |  |
|                  | 2.4                     | Ambient Health Risk                               |    |  |  |  |  |  |  |
|                  | 2.5                     | Effects of Greenhouse Gases                       |    |  |  |  |  |  |  |
|                  | 2.6                     | Class I and Class II Wilderness Areas             | 6  |  |  |  |  |  |  |
| 3.0              | Regu                    | latory Setting                                    | 8  |  |  |  |  |  |  |
|                  | 3.1                     | Air Quality Regulatory Framework                  | 8  |  |  |  |  |  |  |
|                  | 3.2                     | Conformity                                        | 14 |  |  |  |  |  |  |
|                  | 3.3                     | Federal Land Managers' Air Quality Related Values | 14 |  |  |  |  |  |  |
|                  | 3.4                     | Health Risk                                       |    |  |  |  |  |  |  |
|                  | 3.5                     |                                                   |    |  |  |  |  |  |  |
|                  |                         | 3.5.1 Federal                                     | 16 |  |  |  |  |  |  |
|                  |                         | 3.5.2 California                                  | 17 |  |  |  |  |  |  |
|                  |                         | 3.5.3 San Bernardino County                       | 20 |  |  |  |  |  |  |
| 4.0              | Significance Thresholds |                                                   |    |  |  |  |  |  |  |
|                  | 4.1                     | Air Quality                                       | 21 |  |  |  |  |  |  |
|                  | 4.2                     | Climate Change                                    | 23 |  |  |  |  |  |  |
| 5.0              | Asses                   | ssment Methodology                                | 23 |  |  |  |  |  |  |
|                  | 5.1                     | Baseline Activity Levels                          | 23 |  |  |  |  |  |  |
|                  |                         | 5.1.1 Vehicles                                    | 24 |  |  |  |  |  |  |
|                  |                         | 5.1.2 Crushing                                    |    |  |  |  |  |  |  |
|                  |                         | 5.1.3 Roads                                       |    |  |  |  |  |  |  |
|                  |                         | 5.1.4 Mining Activities                           |    |  |  |  |  |  |  |
|                  | 5.2                     | Baseline Emissions                                |    |  |  |  |  |  |  |
|                  | 5.3                     | Proposed Activity Levels and Emissions            | 33 |  |  |  |  |  |  |
|                  | 5.4                     | Dispersion Modeling                               | 37 |  |  |  |  |  |  |
|                  |                         | 5.4.1 Sources                                     | 37 |  |  |  |  |  |  |

|                |       | 5.4.2 Terrain                                                             | 37       |
|----------------|-------|---------------------------------------------------------------------------|----------|
|                |       | 5.4.3 Meteorological Data                                                 | 38       |
|                |       | 5.4.4 Receptors                                                           | 41       |
|                | 5.5   | Health Risk Assessment                                                    | 43       |
|                |       | 5.5.1 Inhalation Pathway                                                  | 43       |
|                |       | 5.5.2 Ingestion Pathway                                                   | 44       |
|                |       | 5.5.3 Dermal Pathway                                                      | 45       |
|                |       | 5.5.4 Mother's Milk Pathway                                               | 46       |
| 6.0            | Proje | ct Impacts                                                                | 46       |
|                | 6.1   | Regional Air Quality Impacts                                              | 46       |
|                | 6.2   | Localized Criteria Pollutant Impacts                                      | 47       |
|                | 6.3   | Federal Conformity                                                        | 49       |
|                | 6.4   | Class I Wilderness Area Impacts                                           | 49       |
|                | 6.5   | Greenhouse Gas Emissions Impact                                           | 51       |
| 7.0            | Prop  | osed Mitigations and Residual Impacts                                     | 51       |
|                | 7.1   | Mitigated Mass-Based Criteria Pollutant Impacts                           | 51       |
|                | 7.2   | Health Risk Impacts                                                       |          |
| 8.0            | Alter | natives                                                                   | 53       |
|                | 8.1   | Alternative 1: No Action/Mining under Current Entitlements                | 53       |
|                | 8.2   | Alternative 2: Proposed Project                                           |          |
|                | 8.3   | Alternative 3: Partial Implementation – Butterfield Quarry Expansion Only |          |
|                | 8.4   | Alternative 4: Combined Production with the White Knob Quarry             |          |
| 9.0            | Refer | rences                                                                    | 56       |
|                |       |                                                                           |          |
| TABLE          |       |                                                                           | ,        |
| Table          |       | Ambient Pollutant Concentrations                                          |          |
| Table          |       | Ambient Air Quality Standards                                             |          |
| Table          |       | MDAQMD Attainment Status                                                  |          |
| Table          |       | MDAQMD Attainment Plans                                                   |          |
| Table          |       | Significant Emissions Thresholds                                          |          |
| Table          |       | Baseline Activity Levels                                                  |          |
| Table          |       | Baseline Vehicle Activity                                                 |          |
| Table          |       | Baseline Stationary Source Throughputs                                    |          |
| Table          |       | Baseline Activity on Roads                                                |          |
| Table          |       | Vehicle Emissions Factors                                                 |          |
| Table          |       | Baseline Vehicle Emissions                                                |          |
| Table<br>Table |       | Baseline Vehicle Emissions by Location                                    |          |
| Table          |       | Baseline Emissions on Roads                                               |          |
| Table          |       | Baseline Mining and Processing Combustion Emissions                       |          |
| Table          |       | Baseline Mining and Processing Combustion Emissions                       |          |
| Table          |       | Project Vehicle Emissions by Location                                     | 33<br>34 |
| 101111         | . /   | FICHELL VEHICLE FILINNICHS DV LOCAHOU.                                    |          |

| Table 25                  | Comparison of Project Emissions with Major Modification Thresholds                                | 50 |
|---------------------------|---------------------------------------------------------------------------------------------------|----|
|                           |                                                                                                   |    |
| Table 29                  |                                                                                                   |    |
| Table 28<br>Determination | PM <sub>10</sub> and PM <sub>2.5</sub> Concentrations at Point of Maximum Impact and Significance |    |
| Table 27                  | Project Emissions and Significance Determination                                                  | 46 |
| Table 26                  | Annual Dermal Loading Point Estimates by Age Group                                                |    |
|                           |                                                                                                   |    |
| Table 25                  | Soil Ingestion Rate Point Estimates by Age Group                                                  |    |
| Table 24                  | Point Estimates of Residential Daily Breathing Rates by Age Group                                 |    |
| Table 23                  | Deposition Parameters                                                                             |    |
| Table 21<br>Table 22      | Incremental Change in Emissions from Project                                                      |    |
| Table 20                  | Project Mining and Processing Combustion Emissions                                                |    |
| Table 19                  | Proposed Particulate Matter                                                                       |    |
| Table 18                  | Proposed Emissions on Roads                                                                       |    |

Figure 1: Site Location

Figure 2: Site Plan

Figure 3: SCAQMD MATES IV Risk Map

Figure 4: Wind Rose

Figure 5: Wind Speed Frequency Distribution Figure 6: MM5 Modeling System Flow Chart Figure 7: Discrete Receptors in HRA Model Figure 8: Boundary Receptors in PM Model

Figure 9: Grid Receptors in HRA Model

Figure 10: Grid Receptors in Deposition Model

Figure 11: Annual Deposition Figure 12: Daily Deposition

Figure 13: Cancer Risk at Sensitive Receptors – Project Increment

Figure 14: Chronic Risk at Sensitive Receptors – Project Increment

Figure 15: Cancer Risk at Worker Receptors – Project Increment

Figure 16: Chronic Risk at Worker Receptors – Project Increment

Figure 17: Acute Risk – Project Increment

Figure 18: Cancer Risk at Sensitive Receptors – Alternative 4

Figure 19: Chronic Risk at Sensitive Receptors – Alternative 4

Figure 20: Cancer Risk at Worker Receptors – Alternative 4

Figure 21: Chronic Risk at Worker Receptors – Alternative 4

Figure 22: Acute Risk – Alternative 4

Figure 23: Elevation Profile

#### **APPENDICES**

Appendix A: Figures

Appendix B: Health Effects of Air Pollutants
Appendix C: Ambient Pollutant Concentrations

Appendix D: San Gorgonio Wilderness Area Description
Appendix E: MDAQMD Rule Development Calendar

Appendix F: MDAQMD Mineral Industry Emissions Inventory Guidelines

Appendix G: Baseline Data from Omya

Appendix H: Baseline Emissions Calculations

Appendix I: Project Emissions

Appendix J: Meteorological Data Used in Modeling

Appendix K: Mitigated Emissions
Appendix L: Alternative 4 Emissions

Appendix M: Modeling Files on Electronic Media

Appendix N: Excerpt from Air Quality Study for Proposed South Quarry Project



#### AIR QUALITY, HEALTH RISK AND GREENHOUSE GAS IMPACT ASSESSMENT

Omya Butterfield and Sentinel Quarries Expansion County of San Bernardino, California

October 25, 2017

#### 1.0 INTRODUCTION

This Air Quality, Health Risk and Greenhouse Gas Impact Assessment (AQIA) report has been prepared for the Omya Butterfield and Sentinel Quarries Expansion project ("Project"). The Project is located in the San Bernardino National Forest (SBNF) approximately 7.5 miles south of the intersection of State Route 18 and State Route 247 in the Lucerne Valley. The Project involves the expansion of two quarries and related fill areas which are located on Crystal Creek Road before the intersection with Forest Road 3N16. Primary crushing occurs near the quarries and ore is hauled north down the mountains to the Lucerne Valley Processing Plant (LVPP) located near the intersection of Crystal Creek Road and Powerline Road.

Omya operates one other quarry in the area. The White Knob Quarry is located approximately 4.2 miles west-southwest of the LVPP. Ore from the White Knob Quarry is hauled to the LVPP. White Knob Quarry completed a separate CEQA evaluation for proposed expansions on 8/6/2015 when PC approved the Project and the certified EIR. Cloudy and Claudia Quarries are located near the terminus of Crystal Creek Road south of Forest Road 3N16. Cloudy and Claudia Quarries are inactive and currently being reclaimed.

The combined production from all the operating quarries (Butterfield, Sentinel, and White Knob) is limited by the LVPP maximum production rate. The Project would allow up to the maximum production rate of 680,000 tons per year of finished ore to be extracted exclusively from the Butterfield and Sentinel quarries. This would result in no material being quarried at White Knob which is an indirect effect of the Project that necessitates calculation of White Knob emissions in the air quality baseline. Moreover, vehicular activity data provided by Omya does not distinguish which units operate in each quarry. Thus, the emissions from vehicles are calculated for the fleet and apportioned to quarries based on throughput amount and to units operating on roads by vehicle miles traveled (VMT).

Impacts from alternatives to the Project are assessed in this report and described in 7.2.0. The alternatives include:

- Alternative 1: No Action
- Alternative 2: Proposed Project
- Alternative 3: Partial Implementation Butterfield Expansion only; and
- Alternative 4: Mixed Production with White Knob.

Alternative 4 represents a scenario where the maximum amount of ore can be quarried from Butterfield and Sentinel without exceeding the tons per year significance thresholds identified in Section 4.0.

#### 2.0 ENVIRONMENTAL SETTING

Air pollutants are regulated in order to protect public health and welfare. Health effects of common air pollutants are presented in Appendix B. Effects of pollutants on public welfare include visibility impairment; and impacts to animals, crops, vegetation, and buildings.

#### 2.1 Existing Sources and Receptors

The Omya LVPP receives ore from the Butterfield, Sentinel and White Knob Quarries. Omya provided information on historical activity levels and equipment that was used to develop a baseline for the Project. In general, the quarries and LVPP consist of operations and equipment that emit fugitive dust and diesel exhaust. Detailed discussion of how the baseline emissions were quantified is presented in Section 5.0.

# 2.2 Meteorology and Topography

The MDAQMD Guidelines (2011) state:

The Mojave Desert Air Basin (MDAB) is an assemblage of mountain ranges interspersed with long broad valleys that often contain dry lakes. Many of the lower mountains which dot the vast terrain rise from 1,000 to 4,000 feet above the valley floor. Prevailing winds in the MDAB are out of the west and southwest. These prevailing winds are due to the proximity of the MDAB to coastal and central regions and the blocking nature of the Sierra Nevada mountains to the north; air masses pushed onshore in southern California by differential heating are channeled through the MDAB. The MDAB is separated from the southern California coastal and central California valley regions by mountains (highest elevation approximately 10,000 feet), whose passes form the main channels for these air masses. The Antelope Valley is bordered in the northwest by the Tehachapi Mountains, separated from the Sierra Nevadas in the north by the Tehachapi Pass (3,800 ft elevation). The Antelope Valley is bordered in the south by the San Gabriel Mountains, bisected by Soledad Canyon (3,300 ft). The Mojave Desert is bordered in the southwest by the San Bernardino Mountains, separated from the San Gabriels by the Cajon Pass (4,200 ft). A lesser channel lies between the San Bernardino Mountains and the Little San Bernardino Mountains (the Morongo Valley).

During the summer the MDAB is generally influenced by a Pacific Subtropical High cell that sits off the coast, inhibiting cloud formation and encouraging daytime solar heating. The MDAB is rarely influenced by cold air masses moving south from Canada and Alaska, as these frontal systems are weak and diffuse by the time the reach the desert. Most desert moisture arrives from infrequent warm, moist and unstable air masses from the south. The MDAB averages between three and seven inches of precipitation per year (from 16 to 30 days with at least 0.01 inches of precipitation). The MDAB is classified as a dry-hot desert climate (BWh), with portions classified as dry-very hot desert (BWhh), to indicate at least three months have maximum average temperatures over 100.4° F.

#### 2.3 Ambient Air Quality

Appendix C contains the airborne pollutant concentration data and number of days exceeding each Ambient Air Quality Standard (AAQS). Table 1 summarizes the maximum short term and annual average ambient concentrations measured during the last five years (2010 to 2014).

The closest air monitoring station to the Project is located at the Lucerne Valley Middle School and measures only  $PM_{10}$ .  $PM_{10}$  has standards with 24-hour (state and federal) and annual (state) averaging periods. Maximum concentrations at this station were less than both state and federal 24-hour standards in four of the last five years with 2013 exceeding both standards due to an exceptional event (e.g., forest fire). 24-hour concentrations were in the range of 30 to  $50\,\mu\text{g/m}^3$  with exception of 2013 which is reported to be 143  $\mu\text{g/m}^3$ . Annual average concentrations for the last five years were in the range of 14 to 17  $\mu\text{g/m}^3$ . There was insufficient data available to determine the number of days exceeding the 24-hour standard in three (state) and four (federal) of the last five years but maximum 24-hour concentrations and the number of measurements made (i.e., Year Coverage column in Appendix C) indicate that there were few, if any, days exceeding the  $PM_{10}$  standards.

The Hesperia-Olive Street monitoring station is the closest location where ozone is monitored. Ozone has standards with 1-hour (state) and 8-hour (state and federal) averaging periods. Maximum concentrations at this station exceeded the state 1-hour and both 8-hour standards in each of the last five years with 1-hour concentrations ranging from 0.100 to 0.132 ppm and 8-hour concentrations ranging from 0.085 to 0.114 ppm. Ozone concentrations exceeded the state 1-hour standard between 1 and 24 days per year. The state 8-hour standard was exceeded between 35 and 101 days per year and the federal 8-hour standard was exceeded between 12 and 67 days per year (Appendix C).

The Victorville monitoring station collects a full suite of pollutants and is the closest station to monitor for CO,  $NO_2$  and  $SO_2$ . CO has 1-hour and 8-hour standards (state and federal) while  $NO_2$  has 1-hour and annual average standards (state and federal) and  $SO_2$  has 1-hour, 24-hour (state and federal), and annual average. There was insufficient data to determine the maximum 1-hour carbon monoxide concentration at any monitoring station in the County. 8-hour carbon monoxide concentrations ranged from 1.51 ppm to 5.17 ppm with insufficient data in 2013 and 2014 to determine the maximum 8-hour concentration. Maximum 1-hour  $NO_2$  concentrations ranged from 0.050 to 0.065 ppm and annual average  $NO_2$  concentrations ranged from 0.013 to 0.015 ppm. Neither CO nor  $NO_2$  exceeded a standard on any day in the last five years which is consistent with the fact that the entire state is in attainment for the two pollutants.

The South Coast AQMD (SCAQMD) operates a PM $_{2.5}$  monitoring station in the City of Big Bear Lake. PM $_{2.5}$  has state and federal 24-hour and annual average standards. Maximum 24-hour concentrations for PM $_{2.5}$  ranged from 24.2 to 36.4  $\mu$ g/m $^3$  and annual average concentrations ranged from 8.4 to 9.7  $\mu$ g/m $^3$ . Three of the five most recent years had insufficient data to produce an annual average value (Appendix C). Resources available reported estimates for the number of days exceeding the 2006 PM $_{2.5}$  24-hour standard which was updated in 2012. Three of the last five years had insufficient data to determine the number days exceeding the 2006 standard and the two years where data was sufficient to have an estimate were no days in 2011 and 6 days in 2013. The maximum 24-hour concentrations were slightly above the 35  $\mu$ g/m $^3$  standard (federal) while the annual average concentration was approximately one-quarter of the maximum day concentration which indicates that most days did not exceed the standard. Annual average concentrations were consistently less than the standards (federal and state) for years that had data.

Table 1 Ambient Pollutant Concentrations

| Pollutant                                       | Averaging Time                         | 2010  | 2011  | 2012  | 2013   | 2014   |
|-------------------------------------------------|----------------------------------------|-------|-------|-------|--------|--------|
| 0-000 (0000)                                    | 1-hr<br>(Maximum)                      | 0.119 | 0.132 | 0.116 | 0.100  | 0.121  |
| Ozone (ppm)                                     | 8-hr<br>(Maximum –State)               | 0.102 | 0.114 | 0.097 | 0.085  | 0.094  |
| Carbon                                          | 1-hr<br>(Maximum)                      | *     | *     | *     | *      | *      |
| Monoxide (ppm)                                  | 8-hr<br>(Maximum)                      | 5.17  | 1.51  | 1.83  | *      | *      |
| Nitrogen Dioxide                                | 1-hr<br>(98 <sup>th</sup> Percentile)  | 0.065 | 0.060 | 0.050 | 0.0557 | 0.0527 |
| (ppm)                                           | Annual                                 | 0.015 | 0.015 | 0.013 | 0.014  | 0.013  |
| Respirable<br>Particulate                       | 24-hr<br>(98 <sup>th</sup> Percentile) | 43    | 33    | 30    | 160.2  | 49.8   |
| Matter (PM <sub>10</sub> ) $(\mu g/m^3)$        | Annual                                 | 14.6  | 13.8  | 13.9  | 18.5   | 16.7   |
| Fine Particulate<br>Matter (PM <sub>2.5</sub> ) | High 24-hr                             | 35.4  | 30.7  | 36.4  | 35.5   | 24.2   |
| $(\mu g/m^3)$                                   | Annual                                 | *     | 8.4   | *     | 9.7    | *      |
|                                                 | 1-hr                                   | 52    | 13    | *     | *      | *      |
| SO <sub>2</sub> (ppb)                           | 24-hr                                  | 7     | 7     | 3     | 2      | *      |
| lotos: *Thorowas insu                           | Annual                                 | 0.92  | 1.44  | 0.95  | 1.12   | 1.12   |

Notes:

Ozone concentrations are from Hesperia Monitoring Station operated by MDAQMD.

NO<sub>2</sub>, CO, and SO<sub>2</sub> concentrations are from Victorville Monitoring Station operated by MDAQMD.

PM<sub>10</sub> concentrations are from Lucerne Valley Middle School Monitoring Station operated by MDAQMD.

 $PM_{2.5}\,concentrations\,are\,from\,Big\,Bear\,City\,Monitoring\,Station\,operated\,by\,South\,Coast\,AQMD.$ 

#### 2.4 Ambient Health Risk

The MDAQMD does not publish health risk estimates for areas within its jurisdiction. The Project is near the boundary of Mojave Desert and South Coast Air Basins. Thus, the SCAQMD Multiple Air Toxics Exposure Study (MATES) IV risk maps modeled using the most recent OEHHA new methodology (3/2015), show total cancer risk of approximately 152 excess cancer cases per one million people exposed in the Big Bear Lake area is considered representative of conditions in the area of the Project as documented on Figure 3 (Appendix A).

It should be noted that the SCAQMD's MATES Program consists of multiple years of data collection (1986 to present) summarized in most recent report (MATES IV, May 2015). MATES risk estimates are based on ambient air quality monitoring data from several monitoring stations in the South Coast Air Basin. The MATES studies include fixed monitoring sites (where data is collected over multiple years) and microscale

<sup>\*</sup>There was insufficient (or no) data available to determine the value.

or temporary sites where monitoring occurred for a limited time period (six to ten weeks). The nearest fixed air monitoring site to the Project vicinity is the Inland Valley San Bernardino station located at 14360 Arrow Highway in Fontana, CA which is over sixty (60) miles southwest of the Project. The MATES IV study acknowledges "several uncertainties in estimating air toxics risks. These include uncertainties of the cancer potency of the substances, in estimating of population exposure, and in estimating the level of diesel particulate" (MATES-IV, May 2015). The ambient health risk identified in Figure 3 (Appendix A) includes projection of risk levels from locations that were monitored to those that were not. This report overlooks these details and considers the risk map published by SCAQMD at face value such that it represents existing conditions at the project site.

Diesel particulate matter (DPM) is identified as a TAC and currently accounts for roughly 68% of the cancer risk from air pollution in urban areas where on-road sources dominate the inventory. Diesel engines are a ubiquitous source and thus it is not surprising that stationary source TAC effects "are generally much lower than region-wide risk levels, region-wide risks tend to overwhelm any potential local 'hot spots.'" (SCAQMD Mates II Study, Section 7.3).

#### 2.5 Effects of Greenhouse Gases

The effect of greenhouse gas emission regulations are potentially far reaching. On December 7, 2009, United States Environmental Protection Agency (US EPA) Administrator Lisa Jackson signed a final action, under Section 202(a) of the Clean Air Act, finding that six key well-mixed greenhouse gases constitute a threat to public health and welfare, and that the combined emissions from motor vehicles cause and contribute to the climate change problem. The "endangerment finding" allows the US EPA to begin regulating the six GHGs that are identified.

Key effects that US EPA claims support the determination that GHGs endanger public health include:

"Temperature. There is evidence that the number of extremely hot days is already increasing. Severe heat waves are projected to intensify, which can increase heat-related mortality and sickness. Fewer deaths from exposure to extreme cold is a possible benefit of moderate temperature increases. Recent evidence suggests, however, that the net impact on mortality is more likely to be a danger because heat is already the leading cause of weather-related deaths in the United States.

**Air Quality**. Climate change is expected to worsen regional ground-level ozone pollution. Exposure to ground-level ozone has been linked to respiratory health problems ranging from decreased lung function and aggravated asthma to increased emergency department visits, hospital admissions, and even premature death. The impact on particulate matter remains less certain.

Climate-Sensitive Diseases and Aeroallergens. • Potential ranges of certain diseases affected by temperature and precipitation changes, including tick-borne diseases and food and water-borne pathogens, are expected to increase. • Climate change could impact the production, distribution, dispersion and allergenicity of aeroallergens and the growth and distribution of weeds, grasses, and trees that produce them. These changes in aeroallergens and subsequent human exposures could affect the prevalence and severity of allergy symptoms.

**Vulnerable Populations and Environmental Justice.** • Certain parts of the population may be especially vulnerable to climate impacts, including the poor, the elderly, those already in poor health, the disabled, those living alone, and/or indigenous populations dependent on one or a few resources. • Environmental justice issues are clearly raised through examples such as warmer temperatures in urban areas having a more direct impact on those without air-conditioning.

**Extreme Events**. Storm impacts are likely to be more severe, especially along the Gulf and Atlantic coasts. Heavy rainfall events are expected to increase, increasing the risk of flooding, greater runoff and erosion, and thus the potential for adverse water quality effects. These projected trends can increase the number of people at risk from suffering disease and injury due to floods, storms, droughts and fires." (EPA's Endangerment Finding - Health Effects Fact Sheet, US EPA).

#### 2.6 Class I and Class II Wilderness Areas

Class I Wilderness Areas are areas designated in the Clean Air Act (42 USC 7472) including:

- International parks;
- National wilderness areas which exceed 5,000 acres in size;
- National memorial parks which exceed 5,000 acres in size; and
- National parks which exceed 6,000 acres in size.

The Project is within 100 kilometers of the following Class I Wilderness Areas:

- San Gorgonio 18 km.
- San Jacinto 51 km.
- Joshua Tree National Park 53 km.
- Cucamonga 57 km.
- San Gabriel 83 km.

Class I areas are protected from impacts on visibility, ozone phytotoxicity, and deposition of nitrates and sulfates which can acidify water bodies. In addition, the deposition of fugitive dust onto plants is a concern particularly for protected species, such as the carbonaceous plants found near the quarries. The remainder of the SBNF is considered Class II Wilderness.

Good visibility is essential to the enjoyment of national parks and scenic areas. Across the United States, regional haze has decreased the visual range in these pristine areas from 140 miles to 35-90 miles in the West, and from 90 miles to 15-25 miles in the East. This haze is composed of small particles that absorb and scatter light, affecting the clarity and color of what humans see in a vista. The pollutants that create haze (also called haze species) are measurable as sulfates, nitrates, organic carbon, elemental carbon, fine soil, sea salt, and coarse mass. Anthropogenic sources of haze include industry, motor vehicles, agricultural and forestry burning, and dust from soils disturbed by human activities. Pollutants from these sources, in concentrations much lower than those which affect public health, can impair visibility anywhere. Natural forest fires, biological emissions, sea salt and other natural events also contribute to haze species concentrations. Visibility-reducing particles can be transported long distances from where they are generated, thereby producing regional haze. When they are transported to and occur in national parks and wilderness areas, the reduced visibility impairs the quality and the value of the wilderness experience.

Conditions in the San Gorgonio Wilderness Area would be of primary concern for this Project because it is closest and other areas would experience less severe impacts. The environmental setting for each Class I Wilderness Area within California is found in the California Regional Haze Plan. The San Gorgonio Wilderness Area description from this Plan is provided in Appendix D.

The Project is bounded on the south, west, and north by mountainous undeveloped Forest Lands and to the east by patented open space with an active limestone mine called Furnace Canyon Quarry about 0.75 to 1 mile to the northeast. Other than mining, which has historically been active in the area, land use in the rugged mountainous area has been limited to occasional use by hikers and hunters. Off highway vehicle use and fuel wood cutting have increased as more access roads were built.

The "Land Management Plan, Part 2 San Bernardino National Forest Strategy" (USDA, September 2005) defines the project area as the "Desert Rim." The Desert Rim is described as "a high desert, remote, rugged landscape formed by complex geological faulting. Today, the majority of the land is valued in the production of large quantities of high quality, limestone mineral deposits used in the production of pharmaceuticals and cement. These carbonate deposits are also valuable habitat supporting four species of threatened and endangered plants found nowhere else in the world." An intensive collaborative effort led to the development of the Carbonate Habitat Management Strategy (CHMS) in 2003. The CHMS is designed to provide long-term protection for the carbonate endemic plants and also provide for continued long-term mining. Portions of the carbonate habitats are protected from mining impacts in perpetuity within the carbonate habitat reserves dedicated and managed as described in the CHMS.

#### 3.0 REGULATORY SETTING

Regulations that affect air quality consist primarily of those promulgated under federal and state clean air acts as discussed in Section 3.1. Other regulations that affect air quality include those related to federal conformity (Section 3.2), impacts on Class I and Class II Wilderness Areas (Section 3.3), impacts on health risk (Section 3.4), and greenhouse gases (Section 3.5).

#### 3.1 Air Quality Regulatory Framework

The Federal Clean Air Act and the California Clean Air Act each contain comprehensive frameworks for air quality planning and regulation. Title 40 of the Code of Federal Regulations and Title 17 of the California Code of Regulations contain requirements that have been promulgated under authority granted to US EPA and California Air Resource Board (CARB) by the Acts.

Criteria air pollutants include sulfur oxides (SOx), nitrogen oxides (NOx), particulate matter (PM), carbon monoxide (CO), lead (Pb), and ground-level ozone ( $O_3$ ). AAQS are developed by US EPA and CARB for each of the criteria pollutants. Primary AAQS are designed to protect human health, with an adequate margin of safety, including sensitive populations such as children, the elderly, and individuals suffering from respiratory disease. Secondary AAQS are designed to protect public welfare from any known or anticipated adverse effects of a pollutant (e.g. building facade degradation, reduced visibility, and damage to crops and domestic animals).

AAQS and related monitoring programs are among the many devices established by air quality regulations (40 CFR 50 - 51). Geographic areas called "attainment areas" are classified by US EPA and CARB based on whether the ambient air in the area meets the AAQSs. An "attainment area" is an area in which pollutant concentrations are less than or equal to the AAQS while "non-attainment areas" have pollution levels above the AAQS. State and federal AAQS are shown in Table 2.

In order to make progress towards attainment with the AAQS, each state and air district containing federal non-attainment areas is required to develop a written plan improving air quality in those areas. These plans are called State Implementation Plans (SIP) and Attainment Plans. California's SIP contains mobile source and consumer product emission control strategies proposed by CARB and a compilation of stationary and area source strategies that have been developed by local air districts under CARB supervision. Through these plans, the state and local air districts outline efforts that they will take to reduce air pollutant concentrations to levels below the standards. Federal and State attainment status designations assigned by US EPA and CARB for the Project area are summarized in Table 3.

California Ambient Air Quality Standards (CAAQS) are generally more stringent than the National Ambient Air Quality Standard (NAAQS). Existing law requires district plans for attaining CAAQS to assess the cost-effectiveness of available and proposed emission control measures. Proposed emission control measures in the Attainment Plans are typically developed into air district rules.

The MDAQMD assists CARB in preparing the State Implementation Plan by preparing Attainment Plans that demonstrate how the Ambient Air Quality Standards will be achieved. The Attainment Plans contain control measures and associated emissions reduction estimates that are to be considered for implementation by adopting rules and other means (e.g., incentive and education programs) by which the MDAQMD will manage the emissions within the jurisdiction. MDAQMD Attainment Plans are listed in Table 3.

**Table 2 Ambient Air Quality Standards** 

| De Heste est                                           | Averaging                      | California Star                   | National Standards <sup>2</sup>                                    |                                             |                             |                                          |  |
|--------------------------------------------------------|--------------------------------|-----------------------------------|--------------------------------------------------------------------|---------------------------------------------|-----------------------------|------------------------------------------|--|
| Pollutant                                              | Time                           | Concentration <sup>3</sup>        | Method⁴                                                            | Primary <sup>3,5</sup>                      | Secondary <sup>3,6</sup>    | Method <sup>7</sup>                      |  |
|                                                        | 1 Hour                         | 0.09 ppm (180 μg/m <sup>3</sup> ) | Ultraviolet                                                        | _                                           | Same as Primary             | Ultraviolet                              |  |
| Ozone (O₃) <sup>8</sup>                                | 8 Hour                         | 0.070 ppm (137 μg/m³)             | Photometry                                                         | 0.070 ppm<br>(137 μg/ m³)                   | Standard                    | Photometry                               |  |
| Respirable                                             | 24 Hour                        | 50 μg/m³                          | Gravimetric or                                                     | 150 μg/m <sup>3</sup>                       | Same as Primary             | Inertial Separation                      |  |
| Particulate<br>Matter (PM <sub>10</sub> ) <sup>9</sup> | AAM                            | 20 μg/m³                          | Beta Attenuation                                                   | _                                           | Standard                    | and Gravimetric<br>Analysis              |  |
| Fine Particulate                                       | 24 Hour                        | -                                 | _                                                                  | 35 μg/m³                                    | Same as Primary<br>Standard | Inertial Separation and Gravimetric      |  |
| Matter (PM <sub>2.5</sub> ) <sup>9</sup>               | AAM                            | 12 μg/m³                          | Gravimetric or<br>Beta Attenuation                                 | 12 μg/m³                                    |                             | Analysis                                 |  |
|                                                        | 1 Hour                         | 20 ppm (23 mg/m <sup>3</sup> )    | Non Dispossivo                                                     | 35 ppm (40 mg/m <sup>3</sup> )              | _                           |                                          |  |
| Carbon                                                 | 8 Hour                         | 9.0 ppm (10 mg/m <sup>3</sup> )   | Non-Dispersive<br>Infrared                                         | 9 ppm (10 mg/m <sup>3</sup> )               | _                           | Non-Dispersive                           |  |
| Monoxide (CO)                                          | 8 Hour<br>(Lake<br>Tahoe)      | 6 ppm (7 mg/m³)                   | Photometry<br>(NDIR)                                               | _                                           | _                           | Infrared<br>Photometry (NDIR)            |  |
| Nitrogen Dioxide                                       | 1 Hour                         | 0.18 ppm (339 μg/m <sup>3</sup> ) | Gas Phase Chemi-                                                   | 100 ppb (188 μg/m³)                         | _                           | Gas Phase Chemi-                         |  |
| (NO <sub>2</sub> ) <sup>10</sup>                       | MAA                            | 0.030 ppm (57 μg/m³)              | luminescence                                                       | 0.053 ppm<br>(100 μg/m³)                    | Same as Primary<br>Standard | luminescence                             |  |
|                                                        | 1 Hour                         | 0.25 ppm (655 μg/m <sup>3</sup> ) |                                                                    | 75 ppb (196 μg/m³)                          | _                           |                                          |  |
| Sulfur Dioxide                                         | 3 Hour                         | _                                 | Ultraviolet                                                        | _                                           | 0.5 ppm<br>(1300 μg/m³)     | Ultraviolet<br>Flourescence;<br>Spectro- |  |
| (SO <sub>2</sub> ) <sup>11</sup>                       | 24 Hour                        | 0.04 ppm (105 μg/m³)              | Fluorescence                                                       | 0.14 ppm (for certain areas) <sup>10</sup>  | _                           | photometry<br>(Pararosaniline            |  |
|                                                        | AAM                            | _                                 |                                                                    | 0.030 ppm (for certain areas) <sup>10</sup> | _                           | Method)                                  |  |
|                                                        | 30 Day<br>Average              | 1.5 μg/m³                         |                                                                    | _                                           | _                           |                                          |  |
| Lead <sup>12,13</sup>                                  | Calendar<br>Quarter            | _                                 | Atomic<br>Absorption                                               | 1.5 μg/m³ (for certain areas) <sup>10</sup> | Same as Primary             | High Volume<br>Sampler and               |  |
|                                                        | Rolling 3-<br>Month<br>Average | 1                                 |                                                                    | 0.15 μg/m³                                  | Standard                    | Atomic Absorption                        |  |
| Visibility<br>Reducing<br>Particles <sup>14</sup>      | 8 Hour                         | See footnote 13                   | Beta Attenuation<br>and<br>Transmittance<br>through Filter<br>Tape |                                             |                             |                                          |  |
| Sulfates                                               | 24 Hour                        | 25 μg/m³                          | Ion<br>Chromatography                                              | No                                          | National Standard           | ds                                       |  |
| Hydrogen Sulfide                                       | 1 Hour                         | 0.03 ppm (42 μg/m³)               | Ultraviolet<br>Fluorescence                                        |                                             |                             |                                          |  |
| Vinyl Chloride <sup>12</sup>                           | 24 Hour                        | 0.01 ppm (26 μg/m³)               | Gas<br>Chromatography                                              |                                             |                             |                                          |  |

Source: CARB (10/1/2015). Notes: See footnotes on next page. AAM = Annual Arithmetic Mean.

#### Footnotes for Table 2 Ambient Air Quality Standards:

- California standards for ozone, carbon monoxide (except 8-hour Lake Tahoe), sulfur dioxide (1 and 24 hour), nitrogen dioxide, and particulate matter (PM<sub>10</sub>, PM<sub>2.5</sub>, and visibility reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.
- 2. National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM<sub>10</sub>, the 24 hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 μg/m³ is equal to or less than one. For PM<sub>2.5</sub>, the 24 hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current national policies.
- 3. Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25°C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
- 4. Any equivalent measurement method which can be shown to the satisfaction of the ARB to give equivalent results at or near the level of the air quality standard may be used.
- 5. National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health
- 6. National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
- 7. Reference method as described by the U.S. EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the U.S. EPA.
- 8. On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
- 9. On December 14, 2012, the national annual  $PM_{2.5}$  primary standard was lowered from 15  $\mu g/m^3$  to 12.0  $\mu g/m^3$ . The existing national 24- hour  $PM_{2.5}$  standards (primary and secondary) were retained at 35  $\mu g/m^3$ , as was the annual secondary standard of 15  $\mu g/m^3$ . The existing 24-hour  $PM_{10}$  standards (primary and secondary) of 150  $\mu g/m^3$  also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
- 10. To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.
- 11. On June 2, 2010, a new 1-hour SO<sub>2</sub> standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO<sub>2</sub> national standards (24-hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved.
  - Note that the 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.
- 12. The ARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
- 13. The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard (1.5  $\mu g/m^3$  as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
- 14. In 1989, the ARB converted both the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are "extinction of 0.23 per kilometer" and "extinction of 0.07 per kilometer" for the statewide and Lake Tahoe Air Basin standards, respectively

Table 3 MDAQMD Attainment Status

| Standard                                    | MDAQMD Attainment Status                                                                                                                             |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| One-hour Ozone (Federal, standard revoked). | Non-attainment; classified Severe-17 (portion of MDAQMD outside of Southeast Desert Modified Air Quality Management Area is unclassified/attainment) |
| Eight-hour Ozone (Federal 75 ppb)           | Non-attainment; classified Severe-15                                                                                                                 |
| Eight-hour Ozone (Federal 70 ppb)           | Non-attainment is expected. USEPA will designate in 2017 based on conditions in years 2014 through 2016.                                             |
| Ozone (State)                               | Non-attainment; classified Moderate                                                                                                                  |
| PM <sub>10</sub> (Federal)                  | Non-attainment; classified Moderate (portion of MDAQMD in Riverside County is unclassified)                                                          |
| PM <sub>2.5</sub> (Federal)                 | Unclassified/attainment                                                                                                                              |
| PM <sub>2.5</sub> (State)                   | Non-attainment (portion of MDAQMD outside of Western Mojave Desert Ozone Non- attainment Area is unclassified/attainment)                            |
| PM <sub>10</sub> (State)                    | Non-attainment                                                                                                                                       |
| Carbon Monoxide (State and Federal)         | Attainment                                                                                                                                           |
| Nitrogen Dioxide (State and Federal)        | Attainment/unclassified                                                                                                                              |
| Sulfur Dioxide (State and Federal)          | Attainment/unclassified                                                                                                                              |
| Lead (State and Federal)                    | Attainment                                                                                                                                           |
| Particulate Sulfate (State)                 | Attainment                                                                                                                                           |
| Hydrogen Sulfide (State)                    | Unclassified (Searles Valley Planning Area is non-attainment)                                                                                        |
| Visibility Reducing Particles (State)       | Unclassified                                                                                                                                         |

Sources: MDAQMD CEQA Guidelines (August 2011), USEPA Green Book (as of October 1, 2015), and CARB Area Designation Maps (June 2013).

Table 4 MDAQMD Attainment Plans

| Name of Plan              | Date of   | Standard(s)      | Applicable Area  | Pollutant(s)        | Attainment |
|---------------------------|-----------|------------------|------------------|---------------------|------------|
|                           | Adoption  | Targeted         |                  | Targeted            | Date*      |
| Federal 8-Hour Ozone      | 9-Jun-08  | Federal eight    | Western Mojave   | NO <sub>X</sub> and | 2021       |
| Attainment Plan (Western  |           | hour ozone (84   | Desert Non-      | VOC                 |            |
| Mojave Desert Non-        |           | ppb)             | attainment Area  |                     |            |
| attainment Area)          |           |                  | (MDAQMD portion) |                     |            |
| 2004 Ozone Attainment     | 26-Apr-04 | Federal one      | Entire District  | NO <sub>X</sub> and | 2007       |
| Plan (State and Federal)  |           | hour ozone       |                  | VOC                 |            |
| Triennial Revision to the | 22-Jan-96 | State one hour   | Entire District  | NO <sub>X</sub> and | 2005       |
| 1991 Air Quality          |           | ozone            |                  | VOC                 |            |
| Attainment Plan           |           |                  |                  |                     |            |
| Mojave Desert Planning    | 31-Jul-95 | Federal daily    | Mojave Desert    | PM <sub>10</sub>    | 2000       |
| Area Federal Particulate  |           | and annual       | Planning Area    |                     |            |
| Matter Attainment Plan    |           | PM <sub>10</sub> |                  |                     |            |
| 1991 Air Quality          | 26-Aug-91 | State one hour   | San Bernardino   | NOx and             | 1994       |
| Attainment Plan           |           | ozone            | County portion   | VOC                 |            |

<sup>\*</sup> A historical attainment date given in an attainment plan does not necessarily mean that the affected area has been redesignated to attainment.

The MDAQMD Attainment Plans contain the rules proposed for adoption. As this document was being prepared the MDAQMD Rule Development Calendar had last been updated on 5/7/2015 (Appendix E). Current MDAQMD rules that apply to Project sources include:

- **Rule 201 Permits to Construct** applies to the construction of air emissions sources that are not otherwise exempt under Rule 219.
- Rule 203 Permit to Operate requires air emissions sources that are not exempted by Rule 219 to obtain operating permit.
- **Rule 204 Requirements** contains rule language describing New Source Review including Best Available Control Technology (BACT) and emissions offset requirements for stationary sources.
- **Rule 401 Visible Emissions** limits visibility of fugitive dust to less than No. 1 on the Ringlemann Chart (i.e. 20% opacity).
- Rule 402 Nuisance applies when complaints from the public are received by the District.
- Rule 403 Fugitive Dust prohibits visible dust beyond the property line of the emission source, requires "every reasonable precaution" to minimize fugitive dust emissions and prevent trackout of materials onto public roadways, and prohibits greater than 100 μg/m³ difference between upwind and downwind particulate concentrations.
- Rule 403.2 Fugitive Dust Control for the Mojave Desert Planning Area (MDPA) contains the following requirements applicable to limestone processing facilities:
  - a. Stabilize industrial unpaved roads carrying more than ten vehicle trips per day with the majority of those vehicles weighing 30 tons or more;
  - b. Enclose exterior belt conveyors sufficiently to cover the top and sides of the bulk material being transferred, or employ an alternate dust suppression system sufficient to prevent visible fugitive dust.
  - c. Manage or treat bulk material open storage piles sufficiently to prevent visible fugitive dust emissions. For purposes of this Rule, active watering during visible dusting episodes shall be sufficient to maintain compliance;
  - d. Cover loaded bulk material haul vehicles while traveling upon publicly maintained paved surfaces;
  - e. Employ a dust suppression system at bulk material transfer points sufficient to prevent visible fugitive dust;
  - f. Stabilize or eliminate bulk material open storage piles that have been or are expected to be inactive for at least one year;
  - g. Stabilize as much unpaved operations area as is feasible;
  - h. Vacuum sweep bulk material spills on paved surfaces weekly or more often, as needed;
  - i. Prevent facility-related bulk material trackout on publicly maintained paved surfaces;
  - j. Clean up facility-related bulk material trackout and spills on publicly maintained roads within twenty-four hours; and
  - k. Employ belt cleaners and/or conveyor return scrapers to minimize conveyor spillage.

OM01\_SB-AQHRCCIA\_fnl.docx 12 Sespe Consulting, Inc.

- **Rule 404 Particulate Matter Concentration** sets concentration limits based upon the flow rate of the discharge. The concentration limits would apply to discharge from a stack (e.g. baghouse).
- Rule 405 Solid Particulate Matter Weight limits emissions based upon the weight of material processed.
- Regulation IX Standards of Performance for New Stationary Sources (NSPS) incorporates Federal regulation (40 CFR 60) which affects the construction of emissions units. Requirements may or may not apply depending upon the size, construction and manufacture date of equipment that will be used. Specifically, NSPS OOO (40 CFR 60.670) applies to equipment in non-metallic mineral processing plants.
- **Regulation XIII New Source Review** contains a number of rules that are applied to new and modified sources.
- **Rule 1160 Internal Combustion Engines** limits emissions of NOx, CO, and VOC from stationary engines.
- Rule 1520 Control of Toxic Air Contaminants from Existing Sources implements AB 2588 Air Toxics Hot Spots requirements.
- **Rule 2002 General Federal Actions Conformity** requires federal actions to conform to the applicable implementation plan.

In addition to the adopted rules and regulations listed above, MDAQMD has proposed amendments to Rule 1160 and the Rule Development Calendar (Appendix D) contains several of the above listed rules that are scheduled to be amended (i.e., 401, 403, and 403.2). Each potential rule change is described briefly as follows:

- Rule 401 Visible Emissions would be amended to exempt sandblasters and pile drivers pursuant
  to be consistent with state law and would incorporate references to EPA Test Methods 9 and 22
  (i.e., visual emissions evaluation). The SIP would be updated with the amended Rule and South
  Coast AQMD Rule 401 references in Riverside County SIP would be removed.
- Rule 403 Fugitive Dust control measures would be analyzed for cost effectiveness and the Rule amended if necessary. The SIP would be updated with the amended Rule and South Coast AQMD Rules 403 and 403.1 references in Riverside County SIP would be removed.
- Rule 403.2 Fugitive Dust Control for the Mojave Desert Planning control measures would be analyzed for cost effectiveness and the Rule amended to reflect findings and conform with PM Attainment Plan requirements. The SIP would be updated with the amended Rule and South Coast AQMD Rules 403 and 403.1 references in Riverside County SIP would be removed.
- Rule 1160 Internal Combustion Engines is proposed to be amended as needed to address federal reasonably available control technology (RACT) and may expand scope to include engines between 50 and 500 hp. Particulate matter control measures would be assessed for cost effectiveness and the Rule updated to conform with state and federal rules that apply to affected sources (i.e., ATCM, NESHAP and NSPS). The SIP would be updated with the amended Rule and South Coast AQMD Rules 1110, 1110.1, 1110.2 references in Riverside County SIP would be removed.

OM01\_SB-AQHRCCIA\_fnl.docx 13 Sespe Consulting, Inc.

#### 3.2 Conformity

A project is conforming if it complies with all applicable District rules and regulations, complies with all proposed control measures that are not yet adopted from the applicable plan(s), and is consistent with the growth forecasts in the applicable plan(s) (or is directly included in the applicable plan). A project is non-conforming if it conflicts with or delays implementation of any applicable attainment or maintenance plan. Conformity with growth forecasts can be established by demonstrating that the project is consistent with the land use plan that was used to generate the growth forecast. An example of a non-conforming project would be one that increases the gross number of dwelling units, increases the number of trips, and/or increases the overall vehicle miles traveled in an affected area (relative to the applicable land use plan).

Federal Conformity regulation (40CFR93) and MDAQMD Rule 2002 which mirrors the federal regulation were adopted in order to ensure that federal actions conform to the applicable implementation plan. Federal actions where the total of direct and indirect emissions in a nonattainment or maintenance area is less than specified rates would screen out of conformity analysis. As presented in Table 3, the western area of the MDAQMD where the Project is located is severe non-attainment for federal ozone, and moderate non-attainment for federal PM<sub>10</sub>. On the basis of those attainment designations, the Project would screen-out of conformity analysis if:

- NOx and VOC emissions are less than 25 tons per year each;
- PM<sub>10</sub> emissions are less than 100 tons per year; and
- Emissions are less than 10% of the non-attainment area emissions inventory.

#### 3.3 Federal Land Managers' Air Quality Related Values

The Federal Land Manager (FLM) and the Federal official with direct responsibility for management of Federal Class I parks and wilderness areas (i.e., Park Superintendent, Refuge Manager, Forest Supervisor) have an affirmative responsibility to protect the Air Quality Related Values (AQRVs) (including visibility) of such lands, and to consider whether a proposed project with emissions exceeding the "major" source thresholds will have an adverse impact on such values. The FLM's decision regarding whether there is an adverse impact is then conveyed to the permitting authority for consideration in its determinations regarding the permit. The permitting authority's determinations generally consider a wide range of factors, including the potential impact of the new source or major modification on the AQRVs of Class I areas, if applicable.

At the request of both State permitting agencies and permit applicants, the FLMs formed the Federal Land Managers' Air Quality Related Values Work Group (FLAG) to provide better consistency pertaining to their role in the review of new source permit applications near Federal Class I areas. The purpose of FLAG is twofold: (1) to develop a more consistent and objective approach for the FLMs to evaluate air pollution effects on public AQRVs in Class I areas, including a process to identify those resources and any potential adverse impacts, and (2) to provide state permitting authorities and potential permit applicants consistency on how to assess the impacts of new and existing sources on AQRVs in Class I areas.

The FLMs are also concerned about resources in Class II parks and wilderness areas because they have other mandates to protect those areas as well. The information and procedures outlined in the FLAG Report are generally applicable to evaluating the effect of new or modified sources on the AQRVs in both Class I areas, including the evaluation of effects as part of Environmental Assessments (EA)

and/or Environmental Impact Statements (EIS) under the National Environmental Policy Act (NEPA). However, FLAG does not preclude more refined or regional analyses being performed under NEPA or other programs.

The FLAG 2010 Phase I Report update recommends how to evaluate visibility, ozone phytotoxicity, and deposition impacts from new or modified sources. The FLAG Phase I Report recommends that an applicant apply the "Q/D test" for proposed sources greater than 50 km from a Class I area to determine whether or not any further analysis is necessary. The Q/D test sums emissions of  $SO_2$ , NOx,  $PM_{10}$ , and  $H_2SO_4$  (i.e. Q in tons per year) and then divides that total by the distance between the source and receptor (D in kilometers). Results equal to or less than 10 do not require further assessment (i.e.  $Q/D \le 10$ ).

#### 3.4 Health Risk

Toxic air contaminants (TACs) are pollutants listed by the State of California that pose acute, chronic, and/or cancer health risks to exposed individuals. Hazardous air pollutants (HAP) are pollutants listed by US EPA that pose acute, chronic, and/or cancer health risks to exposed individuals. The TACs list includes all HAPs plus California specific air toxics constituents.

The California Office of Environmental Health Hazard Assessment (OEHHA) is responsible for developing the scientific basis for listing and evaluation of health risk from TACs. CARB is responsible for quantifying TAC emissions and controlling TACs by promulgation and enforcement of air toxic control measures (ATCM). Assembly Bill 1807 (AB1807) passed in 1983 requires the state of California to identify and control TACs. TACs are formally identified through a detailed process which starts when a chemical's risk to human health and the environment is above certain criteria. Once TACs are identified, the emission sources, controls, technologies and costs are reviewed to determine if regulation is needed to reduce emissions. In 1993, AB 1807 was amended by passage of Assembly Bill 2728 (AB 2728) which requires the State to list the 189 federal HAPs in the TAC list.

In 1987, the AB 2588 air toxics "hot spots" program was established. This program requires subject facilities to report their air toxics emissions, determine localized health risks, and notify nearby residents for whom risk may exceed the notification level.<sup>1</sup> The program was amended in 1992 to require facilities to reduce high risks (e.g. in the Mojave Desert AQMD, high risks are greater than 100 in 1 million cancer risk; or 10 hazard index) through the development of a risk management plan. The Hotspots Analysis and Reporting Program (HARP) is a software program that calculates TAC emission inventories and performs health risk assessments for use in the AB 2588 Program.

In 2015, after preparation of numerous technical support documents and to address the mandate of the Children's Environmental Health Protection Act of 1999; new versions of the Air Toxics Hot Spots Program Guidance Manual (HRA Guidelines) and HARP software (i.e., HARP 2) were released. These resources were used in preparation of the health risk assessment for this Project which is discussed in Section 5.5.

The Off-Road Vehicle Regulation (13 CCR 2449) was adopted by the CARB in 2007 to reduce diesel particulate matter (PM) and oxides of nitrogen (NOx) emissions from in-use off-road heavy-duty diesel vehicles in California. The regulation was amended by the CARB in December 2010. Prior to that time, the regulation phased in from 2010 to 2020; but the December 2010 rulemaking pushed the start date back to 2014 and the date of final implementation back to 2024. In addition, until CARB receives a waiver

OM01\_SB-AQHRCCIA\_fnl.docx 15 Sespe Consulting, Inc.

<sup>&</sup>lt;sup>1</sup> http://www.arb.ca.gov/ab2588/district\_levels.htm

from US EPA to regulate in-use off-road engines, the provisions that require further control are not enforceable. Registering fleets through the Diesel Off-road On-line Reporting System (DOORS), labeling equipment, idling limits and sale notification are requirements of the Off-Road Regulation that are still in effect. Regulatory Advisory 10-414 describes the enforcement delay and was last updated in May 2011.

The On-Road Heavy Duty Diesel Vehicle (In-Use) Regulation (13 CCR 2025) was adopted in December 2010. The regulation requires diesel trucks and buses that operate in California to be upgraded to reduce emissions. Heavier trucks must be retrofitted with PM filters beginning January 1, 2012, and older trucks must be replaced starting January 1, 2015. By January 1, 2023, nearly all trucks and buses will need to have 2010 model year engines or equivalent. The regulation applies to nearly all privately and federally owned diesel fueled trucks and buses and to privately and publicly owned school buses with a gross vehicle weight rating (GVWR) greater than 14,000 pounds.

Portable engines are regulated by an air toxic control measure (17 CCR 93116) that limits diesel particulate matter and may also be regulated by the Portable Equipment Registration Program (PERP) or local air district permit. In-use portable engines regulated by the ATCM begin phasing in controls to meet emissions reductions criteria on January 1 of 2013, 2017, and 2020. By 2020, in-use portable engines will have Tier 4 particulate emissions characteristics. The PERP program requires applications for new registrations are accepted only for engines that emit less than the interim Tier 4 standards.

#### 3.5 Greenhouse Gas Regulations

#### 3.5.1 Federal

On May 13, 2010 US EPA finalized the GHG Tailoring Rule (75 FR 31514, June 3, 2010). The Tailoring Rule set major source emissions thresholds that defined when federal operating permits under Prevention Significant Deterioration (PSD) or Title V would be required. Then, on June 23, 2014, the U.S. Supreme Court issued its decision in Utility Air Regulatory Group v. EPA, 134 S.Ct. 2427 (2014) ("UARG"). The Court held that EPA may not treat GHGs as an air pollutant for purposes of determining whether a source is a major source required to obtain a PSD or Title V permit. The Court also held that PSD permits that are otherwise required (based on emissions of other pollutants) may continue to require limitations on GHG emissions based on the application of Best Available Control Technology (BACT). In accordance with the Supreme Court decision, on April 10, 2015, the D.C. Circuit issued an amended judgment in Coalition for Responsible Regulation, Inc. v. Environmental Protection Agency, Nos. 09-1322, 10-073, 10-1092 and 10-1167 (D.C. Cir. April 10, 2015), which, among other things, vacated the PSD and title V regulations under review in that case to the extent that they require a stationary source to obtain a PSD or title V permit solely because the source emits or has the potential to emit GHGs above the applicable major source thresholds. The D.C. Circuit also directed EPA to consider whether any further revisions to its regulations are appropriate in light of UARG, and if so, to make such revisions. In response to the Supreme Court decision and the D.C. Circuit's amended judgment, the EPA will likely conduct future rulemaking action to make appropriate revisions to the PSD and operating permit rules.

On August 3, 2015, EPA announced the Clean Power Plan. The Clean Air Act – under section 111(d) – creates a partnership between EPA, states, tribes and U.S. territories – with EPA setting a goal and states and tribes choosing how they will meet it. The Clean Power Plan follows that approach. EPA is established interim and final carbon dioxide (CO<sub>2</sub>) emission performance rates for two subcategories of fossil fuel-fired electric generating units (EGUs): fossil fuel-fired electric steam generating units (generally, coal- and oil-fired power plants); and natural gas-fired combined cycle generating units. To maximize the range of choices available to states in implementing the standards and to utilities in meeting them, EPA is established interim and final statewide goals in three forms:

- A rate-based state goal measured in pounds per megawatt hour (lb/MWh);
- A mass-based state goal measured in total short tons of CO2; and
- A mass-based state goal with a new source complement measured in total short tons of CO2.

States are expected to develop and implement plans to ensure that power plants in their state – either individually, together or in combination with other measures – achieve the interim  $CO_2$  emissions performance rates over the period of 2022 to 2029 and the final  $CO_2$  emission performance rates, ratebased goals or mass-based goals by 2030.

#### 3.5.2 California

CARB approved the AB 32 Scoping Plan at the Board hearing on December 12, 2008. The Scoping Plan contains the main strategies that California will use to reduce GHGs as required by AB 32. On August 24, 2011, the CARB Board approved the Final Supplement to the AB 32 Scoping Plan Functionally Equivalent Document which accounted for progress already made towards reducing statewide GHG emissions and the effect of the severe and prolonged economic downturn that occurred after 2006.

Control measures contained in the Scoping Plan that may affect Project emissions include, but are not limited to:

- **Transportation Measures**. These measures propose to reduce GHG's from vehicles by making vehicles more efficient, reducing the carbon content of the fuels, and reducing the vehicle miles traveled. Thus, vehicles would emit less GHG emissions in the future.
  - a. Light Duty Vehicle GHG Standard (T-1). This measure implements AB 1493 (Pavley) standards and planned second phase of the program. Align zero-emission vehicle, and alternative and renewable fuel and vehicle technology programs with long-term climate change goals.
  - b. Low Carbon Fuel Standard (T-2). This measure will reduce the carbon intensity of California's transportation fuels by at least ten percent (10%) by 2020. CARB had previously identified this measure as a Discrete Early Action item which will be implemented through a rulemaking by 2010.
  - c. Vehicle Efficiency Measures (T-4). This includes measures such as sustainable tire practices, properly inflating vehicle's tires, and possibly fuel-efficient tire standards.
- **Energy Measures**. These measures propose that utility operators replace some fossil fuel electricity generation capacity with renewable sources and reinforces incentives that are offered by local governments to encourage the placement of solar panels on new and existing structures. The Renewables Portfolio Standard (RPS) increases renewables from 12% in the baseline year(s)

to 20% in 2020. The Renewable Electricity Standard (RES) is a separate measure that requires 33% renewables by 2020. The RES is implemented by the California Energy and Public Utilities Commissions under SBX1-2, signed by Governor Brown in April 2011.

The First Update to the Climate Change Scoping Plan was adopted on May 22, 2014. The First Update identifies opportunities to leverage existing and new funds to further drive GHG emission reductions through strategic planning and targeted low carbon investments. The First Update defines ARB's climate change priorities for the next five years, and also sets the groundwork to reach long-term goals set forth in Executive Orders S-3-05 and B-16-2012. It highlights California's progress toward meeting the "nearterm" 2020 GHG emission reduction goals defined in the initial Scoping Plan. It also evaluates how to align the State's "longer-term" GHG reduction strategies with other State policy priorities for water, waste, natural resources, clean energy, transportation, and land use. The First Update covers a range of topics but does not assign specific emission reductions to control measures. The First Update includes:

- An update of the latest scientific findings related to climate change and its impacts, including short-lived climate pollutants.
- A review of progress-to-date, including an update of Scoping Plan measures and other state, federal, and local efforts to reduce GHG emissions in California.
- Potential technologically feasible and cost-effective actions to further reduce GHG emissions by 2020.
- Recommendations for establishing a mid-term emissions limit that aligns with the State's longterm goal of an emissions limit 80 percent below 1990 levels by 2050.
- Sector-specific discussions covering issues, technologies, needs, and ongoing State activities to significantly reduce emissions throughout California's economy through 2050.
- Priorities and recommendations for investment to support market and technology development and necessary infrastructure in key areas.
- A discussion of the ongoing work and continuing need for improved methods and tools to assess economic, public health, and environmental justice impacts.

On April 29, 2015, the Governor issued Executive Order B-30-15 establishing a mid-term GHG reduction target for California of 40 percent below 1990 levels by 2030. All state agencies with jurisdiction over sources of GHG emissions were directed to implement measures to achieve reductions of GHG emissions to meet the 2030 and 2050 targets. ARB was directed to update the AB 32 Scoping Plan to reflect the 2030 target.

On October 1, 2015, CARB held the Kickoff Public Workshop for the next Scoping Plan update that will reflect the 2030 Target of reducing GHG emissions to 40% below 1990 levels by 2030. Achieving the 2030 target will be done by the continuation of programs established to reach the previously set 2020 GHG emissions reduction target. At the Workshop CARB staff gave slide presentation that indicates achieving the 2030 Target will be accomplished by "continuation of programs established to reach the 2020 GHG emissions reduction target" including:

- Cap-and-Trade Program;
- Low Carbon Fuel Standard;
- Renewable Portfolio Standard;
- Advanced Clean Cars Program;
- Zero Emission Vehicles (ZEV) Program;

- Sustainable Freight Strategy;
- Short-Lived Climate Pollutant Strategy; and
- SB 375 Sustainable Communities Strategy.

Measures that will be developed to reduce GHG emissions are planned for development as follows:

- Governor's Office pillars framework including:
  - Reduce petroleum use;
  - Increase renewable electricity;
  - Increase building energy efficiency;
  - Reduce short-lived climate pollutants; and
  - Ensure natural/working lands are carbon sink.
- Sector oriented measures.
- Maximize GHG reductions across all areas and realize co-benefits at large industrial sources.
- Multi-agency collaborative process.
- Stakeholder input through public workshops with formal and informal comment periods.

On September 30, 2015, CARB posted the Draft Short-Lived Climate Pollutant Reduction Strategy. The Strategy states:

The only practical way to rapidly reduce the impacts of climate change is to employ strategies built on the tremendous body of science. The science unequivocally underscores the need to immediately reduce emissions of Short-Lived Climate Pollutants (SLCPs), which include black carbon (soot), methane (CH<sub>4</sub>), and fluorinated gases (F-gases, including hydrofluorocarbons, or HFCs). They are powerful climate forcers and dangerous air pollutants that remain in the atmosphere for a much shorter period of time than longer-lived climate pollutants, such as CO<sub>2</sub>, and are estimated to be responsible for about 40 percent of current net climate forcing. While the climate impacts of CO<sub>2</sub> reductions take decades or more to materialize, cutting emissions of SLCPs can immediately slow global warming and reduce the impacts of climate change.

Control measures included in the Draft SLCP Reduction Strategy are as follows:

- Carbon black (non-forest) measures:
  - Residential fireplace and woodstove conversion.
  - Sustainable freight strategy State Implementation Plans clean energy goals.
- Methane reduction measures:
  - Dairy manure management.
  - Dairy and livestock enteric fermentation.
  - Landfill gas management.
  - Oil and gas production, processing and storage.
  - Wastewater, industrial and other sources.
- Fluorinated gas reduction measures:
  - Financial incentive for low-GWP refrigeration early adoption.
  - HFC supply phasedown.
  - Sales ban of very-high GWP refrigerants.
  - Prohibition on new equipment with high-GWP compounds.

**Senate Bill 375 (SB 375)** "Transportation planning: travel demand models: sustainable communities strategy: environmental review" was signed by the Governor on September 30, 2008. SB 375 is most concerned with automobile and light truck traffic, but the goal of reducing GHGs covers all transportation sources based on the need for sustainable communities.

"each transportation planning agency ... shall prepare and adopt a regional transportation plan directed at achieving a coordinated and balanced regional transportation system, including, but not limited to, mass transportation, highway, railroad, maritime, bicycle, pedestrian, goods movement, and aviation facilities and services." (Section 65080(a), underline added.)

The regional transportation plan is to be an internally consistent document and include a sustainable communities strategy (SCS).

"The sustainable communities strategy shall ...(v) gather and consider the best practically available scientific information regarding <u>resource areas</u> and farmland in the region ...." (Section 65080(b)(2)(B)(v), underline added.)

Resource areas include: "areas of the state designated by the State Mining and Geology Board as areas of statewide or regional significance pursuant to Section 2790 of the Public Resources Code, and lands under Williamson Act contracts." (Section 65080.01(a)(4).)

Thus, SB 375 recognizes the limestone deposits as a regionally significant resource that requires special consideration in transportation and land use planning efforts.

#### 3.5.3 San Bernardino County

The County of San Bernardino has prepared a Climate Action Plan (CAP, 2011) that excludes sources which would be considered part of the Project. The CAP assesses "GHG emissions in two distinct ways: (1) through the exercise of its land use authority it can affect community/external emissions; (2) through its management of County government and facilities it can affect municipal/internal emissions. The External Inventory includes GHG emissions from land uses within the County's unincorporated areas where the County has jurisdictional land use authority." (CAP, Page 2-1). The CAP does not affect emissions from projects that are in within incorporated cities, within the National Forest, or on lands held by the Department of Defense. Thus, the CAP is not applicable to the Project. Moreover, the CAP does not propose reducing emissions from stationary sources like the Project. (CAP Table 4-1, Page 4-2). Lastly, the CAP was prepared before the 2011 Scoping Plan Update was published which lowered the amount of GHG reductions needed by 2020 from 31% to 16%. The County of San Bernardino updated the Development Review Processes (3/2015) which are applied to discretionary projects that are within the above scope of applicability. If the CAP were applicable to the Project, then the commercial/industrial performance standards listed below would need to be implemented:

- Waste stream reduction by providing tenants and employees County-approved informational materials.
- Vehicle trip reduction by providing tenants and employees County-approved informational materials.
- Other educational materials.
- Landscape equipment would be at least 20% electric-powered.

- Construction standards ranging from use of approved architectural coatings, low-GHG equipment, training on job efficiency for equipment operators, idling limits consistent with existing state law, non-peak hour truck activity, limited queuing of trucks, waste reduction, contractor support for ridesharing and transit.
- Building design standards including compliance with Title 24 energy efficiency requirements; low flow plumbing fixtures; insulated hot water plumbing and energy efficient boilers; lighting design that incorporates natural light, compact fluorescent light bulbs or equivalent, multi-zone programmable dimming systems, and solar panels providing a minimum of 2.5% of the on-site electricity needs; orientation of building to best utilize natural cooling/heating, reflective roofing materials, low maintenance building materials, at least 75% oval or round air ducting with testing showing that system sealed, Energy Star appliances, and building automation system; landscaping with drought tolerant and smog tolerant vegetation with shade trees around buildings; computerized irrigation systems that adjusts for weather conditions; exterior storage areas for recyclables and green waste; transportation demand management that reduces trips 20% by inclusion of bicycle parking, carpool/vanpool spaces, and mass-transit facilities (if available).

#### 4.0 SIGNIFICANCE THRESHOLDS

Significance thresholds for evaluating potential air quality impacts associated with the Project were developed from Environmental Checklist Form (State CEQA Guidelines, Appendix G), the MDAQMD CEQA and Federal Conformity Guidelines, and the San Bernardino County GHG Reduction Plan.

#### 4.1 Air Quality

The Environmental Checklist Form (State CEQA Guidelines, Appendix G) contains the following guidance for air quality impacts assessment:

Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:

- a) Conflict with or obstruct implementation of the applicable air quality plan?
- b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?
- c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?
- d) Expose sensitive receptors to substantial pollutant concentrations?
- e) Create objectionable odors affecting a substantial number of people?

MDAQMD CEQA and Federal Conformity Guidelines provide the following text which describes the significance criteria that have been established by that agency:

Any project is significant if it triggers or exceeds the most appropriate evaluation criteria. The District will clarify upon request which threshold is most appropriate for a given project; in general, the emissions comparison (criteria number 1) is sufficient:

- 1. Generates total emissions (direct and indirect) in excess of the thresholds given in [Table 5]:
- 2. Generates a violation of any ambient air quality standard when added to the local background;
- Does not conform with the applicable attainment or maintenance plan(s);
- 4. Exposes sensitive receptors to substantial pollutant concentrations, including those resulting in a cancer risk greater than or equal to 10 in a million and/or a Hazard Index (HI) (non-cancerous) greater than or equal to 1.

A significant project must incorporate mitigation sufficient to reduce its impact to a level that is not significant. A project that cannot be mitigated to a level that is not significant must incorporate all feasible mitigation. Note that the emission thresholds are given as a daily value and an annual value, so that multi-phased project (such as project with a construction phase and a separate operational phase) with phases shorter than one year can be compared to the daily value.

Table 5 Significant Emissions Thresholds

| Criteria Pollutant                      | Annual Threshold<br>(tons) | Daily Threshold<br>(pounds) |
|-----------------------------------------|----------------------------|-----------------------------|
| Carbon Monoxide (CO)                    | 100                        | 548                         |
| Oxides of Nitrogen (NO <sub>X</sub> )   | 25                         | 137                         |
| Volatile Organic Compounds (VOC)        | 25                         | 137                         |
| Oxides of Sulfur (SO <sub>X</sub> )     | 25                         | 137                         |
| Particulate Matter (PM <sub>10</sub> )  | 15                         | 82                          |
| Particulate Matter (PM <sub>2.5</sub> ) | 15                         | 82                          |
| Hydrogen Sulfide (H <sub>2</sub> S)     | 10                         | 54                          |
| Lead (Pb)                               | 0.6                        | 3                           |

Source: MDAQMD CEQA Guidelines (August 2011) modified by removal of GHG significance criteria which is presented in Section 4.2 below.

As discussed in Section 3.2, a project is non-conforming if it conflicts with or delays implementation of any applicable attainment or maintenance plan. A project is conforming if it complies with all applicable District rules and regulations, complies with all proposed control measures that are not yet adopted from the applicable plan(s), and is consistent with the growth forecasts in the applicable plan(s) (or is directly included in the applicable plan). These criteria are used to assess Project impact and address the Environmental Checklist Form Item a) above.

MDAQMD states that, in general, emissions less than those listed in Table 5 will result in less than significant impact on air quality. Thus, regional impacts from a project that adds emissions to the air basin in quantities which are less than those listed in Table 5 would be less than cumulatively considerable. Consideration of thresholds in Table 5 addresses Items b) and c) from the Environmental Checklist Form.

Localized impacts from stationary sources are not addressed by the values in Table 5. The project's modeled concentration of pollutants may not exceed the increment between the AAQS and background concentrations. For pollutants where background already exceeds the AAQS, Significant Impact Levels

OM01\_SB-AQHRCCIA\_fnl.docx 22 Sespe Consulting, Inc.

(SILs) published by USEPA and neatly summarized by SJVAPCD in Attachment B to their Policy for District Rule 2201 AAQA Modeling (APR 1925, April 14, 2014) are used to evaluate the cumulative impact. Specifically, the SJVAPCD Policy contains separate SILs for point and fugitive sources of  $PM_{10}$  and  $PM_{2.5}$ . SILs are normally used in the context of PSD permitting and represent a de minimis threshold in attainment areas. In non-attainment areas, any additional degradation could be significant and so this AQIA applies the SILs (i.e. de minimis level) as significance thresholds.

The increment and SIL methodologies address the Project impact as well as the cumulative impact on local concentrations satisfying Item b) and partially addressing Item d) in the Environmental Checklist Form. Health risk assessment is required to determine whether risk levels exceed the MDAQMD criteria (see Item 4 in the excerpt above) and address the remaining requirements of Item d) in the Environmental Checklist Form. Lastly, the Project does not emit objectionable odors and so no threshold has been chosen to address Item e) in the Environmental Checklist Form.

#### 4.2 Climate Change

The MDAQMD significance criteria for GHGs (100,000 tons/yr), while higher than other screening criteria (i.e. SCAQMD 10,000 MTCO<sub>2</sub>e/yr; San Bernardino GHG Plan 3,000 MTCO<sub>2</sub>e/yr), is applied because it is supported by substantial evidence and most directly applicable to the Project. As discussed previously, the San Bernardino GHG Plan does not apply to the Project because it is located in the National Forest and also because the GHG Plan excludes stationary sources subject to air district permitting.

#### 5.0 ASSESSMENT METHODOLOGY

Emissions were estimated using methods and parameters from the Mineral Industry Emissions Inventory Guidance (Appendix F), AP-42, EMFAC2011, OFFROAD2011, and CalEEMod. Air dispersion/deposition modeling and health risk assessment were then performed to determine the potential for the Project to result in significant localized impacts.

As discussed in Section 1.0, the Project is limited to expanding the Butterfield and Sentinel Quarries areas but overall combined production from all quarries is limited by the LVPP maximum production rate. The Project would allow up to the maximum production rate to be extracted exclusively from the Butterfield and Sentinel Quarries. This would result in no material being quarried at White Knob Quarry which is an indirect effect of the Project that necessitates calculation of White Knob emissions in the baseline.

#### 5.1 Baseline Activity Levels

Appendix F contains information that was provided by Omya. Table 6 presents baseline tonnages for the years 2004 through 2006 that were averaged in order to determine the annual baseline production and throughput. Daily and hourly ore fed to the primary crushers (i.e. Sentinel and White knob) is based on the maximum throughput in each crusher system's permit to operate. Other daily and hourly throughputs are based upon ratio of annual tonnages (i.e. if 20% is waste annually, then 20% daily and hourly is assumed).

Table 6 Baseline Activity Levels

|                                 | 2004    | 2005          | 2006      | Baseline<br>(tpy) | Baseline<br>(tpd) | Baseline<br>(tph) |  |  |  |  |
|---------------------------------|---------|---------------|-----------|-------------------|-------------------|-------------------|--|--|--|--|
| Ore to Primary Crusher          |         |               |           |                   |                   |                   |  |  |  |  |
| Sentinel                        | 386,835 | 467,520       | 309,880   | 388,078           | 5,000             | 600               |  |  |  |  |
| Butterfield                     | 0       | 41,701        | 128,948   | 56,883            | 3,000             | 000               |  |  |  |  |
| Subtotal - Sentinel-Butterfield | 386,835 | 509,221       | 438,828   | 444,962           | 5,000             | 600               |  |  |  |  |
| White Knob                      | 309,168 | 311,999       | 350,895   | 324,021           | 4,000             | 400               |  |  |  |  |
| Total                           | 696,004 | 821,220       | 789,724   | 768,982           | 9,000             | 1,000             |  |  |  |  |
|                                 | C       | re Hauled to  | Plant     |                   |                   |                   |  |  |  |  |
| Sentinel                        | 328,810 | 397,392       | 263,398   | 329,867           | 4.250             | 510               |  |  |  |  |
| Butterfield                     | 0       | 35,446        | 109,606   | 48,351            | 4,250             | 310               |  |  |  |  |
| Subtotal - Sentinel-Butterfield | 328,810 | 432,838       | 373,004   | 378,217           | 4,250             | 510               |  |  |  |  |
| White Knob                      | 262,793 | 265,199       | 298,261   | 275,418           | 3,400             | 340               |  |  |  |  |
| Total                           | 591,603 | 698,037       | 671,265   | 653,635           | 7,650             | 850               |  |  |  |  |
|                                 |         | Waste Tot     | al        |                   |                   |                   |  |  |  |  |
| Sentinel                        | 204,702 | 184,440       | 207,780   | 198,974           | 2,822             | 339               |  |  |  |  |
| Butterfield                     | 0       | 59,376        | 81,624    | 47,000            | 2,022             | 333               |  |  |  |  |
| Subtotal - Sentinel-Butterfield | 204,702 | 243,816       | 289,404   | 245,974           | 2,822             | 339               |  |  |  |  |
| White Knob                      | 151,860 | 281,698       | 130,590   | 188,049           | 2,258             | 226               |  |  |  |  |
| Total                           | 356,562 | 525,514       | 419,994   | 434,023           | 5,080             | 564               |  |  |  |  |
|                                 | W       | /aste Crusher | Fines     |                   |                   |                   |  |  |  |  |
| Sentinel                        | 58,025  | 70,128        | 46,482    | 58,212            | 750               | 90                |  |  |  |  |
| Butterfield                     | 0       | 6,255         | 19,342    | 8,532             | 730               | 90                |  |  |  |  |
| Subtotal - Sentinel-Butterfield | 58,025  | 76,383        | 65,824    | 66,744            | 750               | 90                |  |  |  |  |
| White Knob                      | 46,375  | 46,800        | 52,634    | 48,603            | 600               | 60                |  |  |  |  |
| Total                           | 104,401 | 123,183       | 118,459   | 115,347           | 1,350             | 150               |  |  |  |  |
| TOTAL EXCAVATED                 | 948,165 | 1,223,551     | 1,091,259 | 1,087,658         | 12,730            | 1,414             |  |  |  |  |

Note: The Project baseline is for Butterfield and Sentinel Quarries only and 378,217 tons per year as shown in this table.

The indirect effect of the Project on the LVPP production is relative to the baseline year activity level for the LVPP of 653,635 tons per year shown in this table. The LVPP is physically limited to less than 680,000 tons per year which is the maximum that may be delivered from the Project and doing so would necessitate cessation of operation in the White Knob Quarry which is an indirect effect that is incorporated into this impact assessment.

#### 5.1.1 Vehicles

Vehicle engine size, model year, and hours of operation are presented in Table 7. Some vehicles have no activity. This may be because the equipment was purchased after the baseline years or because the vehicle did not operate in the baseline. Other vehicles were active during the baseline years but have since been retired.

Table 7 Baseline Vehicle Activity

| EQUIP#       | DOORS<br># | Туре        | hp  | Engine<br>Year | 2006<br>(hr) | 2005<br>(hr) | 2004<br>(hr) | Average<br>(hr) | Avg. (hp-<br>hr) |
|--------------|------------|-------------|-----|----------------|--------------|--------------|--------------|-----------------|------------------|
| 330600       | 3306       | Bobcat      | 50  | 1983           | 184.0        | 109.0        | 110.0        | 134.3           | 6,717            |
| 330700       | 3307       | Bobcat      | 50  | 1983           | 177.0        | 82.0         | 51.0         | 103.3           | 5,167            |
| 293301       | retired    | Bobcat      | 50  | 1987           | 0            | 0            | 0            | 0               | 0                |
| 299100       | retired    | Bobcat      | 50  | 2001           | 17.0         | 0            | 0            | 5.7             | 283              |
| 205300       | retired    | Crane       | 150 | 1977           | 0.0          | 55.0         | 46.0         | 33.7            | 5,050            |
| 333018       | 3418       | Dozer       | 250 | 1977           | 31.0         | 14.0         | 23.0         | 22.7            | 5,667            |
| 333062       | 3462       | Dozer       | 370 | 1990           | 30.0         | 66.0         | 218.0        | 104.7           | 38,727           |
| 333064       | 3464       | Excavator   | 195 | 1995           | 278.0        | 342.0        | 261.0        | 293.7           | 57,265           |
| 825400       | 8254       | Forklift    | 52  | 1992           | 129.0        | 73.0         | 129.0        | 110.3           | 5,737            |
| 826800       | 8268       | Forklift    | 52  | 2000           | 1975.0       | 2279.0       | 2955.0       | 2403.0          | 124,956          |
| 826900       | 8269       | Forklift    | 47  | 2001           | 3775.0       | 3294.0       | 3913.0       | 3660.7          | 172,051          |
| 827000       | 8270       | Forklift    | 52  | 2003           | 4316.0       | 4138.0       | 4998.9       | 4484.3          | 233,184          |
| 827200       | 8272       | Forklift    | 57  | 2004           | 2693.0       | 2192.0       | 1387.0       | 2090.7          | 119,168          |
| 208252       | retired    | Forklift    | 50  | 1986           | 0            | 124.0        | 91.0         | 71.7            | 3,583            |
| 213400       | retired    | Forklift    | 50  | 1989           | 78.0         | 55.0         | 105.0        | 79.3            | 3,967            |
| 825700       | Retired    | Forklift    | 50  | 1990           | 0            | 0            | 126.0        | 42.0            | 2,100            |
| 825900       | Retired    | Forklift    | 50  | 1992           | 0            | 0            | 0            | 0               | 0                |
| 826100       | Retired    | Forklift    | 50  | 1993           | 0            | 15.0         | 244.0        | 86.3            | 4,317            |
| 826300       | Retired    | Forklift    | 50  | 1994           | 348.0        | 351.0        | 650.0        | 449.7           | 22,483           |
| 826400       | Retired    | Forklift    | 50  | 1994           | 564.0        | 242.0        | 207.0        | 337.7           | 16,883           |
| 826500       | Retired    | Forklift    | 50  | 1996           | 1127.0       | 1337.0       | 1008.6       | 1157.5          | 57,877           |
| 826600       | Retired    | Forklift    | 50  | 1997           | 1594.0       | 1010.0       | 225.6        | 943.2           | 47,160           |
| 826700       | Retired    | Forklift    | 50  | 1998           | 1312.0       | 1683.0       | 1445.4       | 1480.1          | 74,007           |
| 6100110<br>2 | Retired    | Generator   | 890 | 1992           | 499.0        | 470.0        | 1887.0       | 952.0           | 847,280          |
| 333410       | 3410       | Grader      | 275 | 1987           | 537.0        | 725.0        | 575.0        | 612.3           | 168,392          |
| 330100       | 3301       | Loader      | 375 | 1985           | 84.0         | 0.0          | 0            | 28.0            | 10,500           |
| 330200       | 3302       | Loader      | 690 | 2004           | 998.0        | 870.0        | 554.0        | 807.3           | 557,060          |
| 298600       | 3303       | Loader      | 235 | 1992           | 239.0        | 278.0        | 259.0        | 258.7           | 60,787           |
| 330500       | 3305       | Loader      | 690 | 2004           | 796.0        | 715.0        | 612.0        | 707.7           | 488,290          |
| 330800       | 3308       | Loader      | 690 | 1985           | 1535.0       | 834.0        | 639.0        | 1002.7          | 691,840          |
| 333046       | 3346       | Loader      | 690 | 1995           | 1225.0       | 1450.0       | 1392.0       | 1355.7          | 935,410          |
| 333060       | 3360       | Loader      | 690 | 1994           | 1107.0       | 1373.0       | 1300.0       | 1260.0          | 869,400          |
| 331200       | Retired    | Loader      | 500 | 1985           | 0            | 7.0          | 1.0          | 2.7             | 1,333            |
| 207500       | Retired    | Manlift     | 150 | 1999           | 87.0         | 0.0          | 0.0          | 29.0            | 4,350            |
| 299000       | On-road    | Dump Truck  | 300 | 1988           | 785.1        | 731.7        | 137.5        | 551.4           | 165,430          |
| 332102       | On-road    | GreaseTruck | 300 | 1969           | 25.0         | 27.0         | 31.7         | 27.9            | 8,370            |

| EQUIP# | DOORS<br># | Type       | hp   | Engine<br>Year | 2006<br>(hr) | 2005<br>(hr) | 2004<br>(hr) | Average<br>(hr) | Avg. (hp-<br>hr) |
|--------|------------|------------|------|----------------|--------------|--------------|--------------|-----------------|------------------|
| 332132 | On-road    | Lube Van   | 300  | 1987           | 199.0        | 330.0        | 320.0        | 283.0           | 84,900           |
| 332136 | On-road    | Fuel Truck | 300  | 1973           | 82.0         | 108.0        | 65.0         | 85.0            | 25,500           |
| 293413 | 5134       | Sweeper    | 150  | 1983           | 0.0          | 0.0          | 1.0          | 0.3             | 50               |
| 826000 | Retired    | Sweeper    | 150  | 1992           | 0.0          | 6.0          | 67.0         | 24.3            | 3,650            |
| 827100 | Retired    | Sweeper    | 150  | 2002           | 227.0        | 911.0        | 201.0        | 446.3           | 66,950           |
| -      | 2202       | Lube Truck | 215  | 1985           | 0            | 0            | 0            | 0.0             | 0                |
| -      | 2232       | Lube Truck | 322  | 1988           | 0            | 0            | 0            | 0.0             | 0                |
| -      | 2237       | Fuel Truck | 370  | 1994           | 0            | 0            | 0            | 0.0             | 0                |
| -      | 2271       | Guzzler    | 322  | 2001           | 0            | 0            | 0            | 0.0             | 0                |
| -      | 2290       | Dump Truck | 425  | 1989           | 0            | 0            | 0            | 0.0             | 0                |
| -      | 5171       | Sweeper    | 52   | 2003           | 0            | 0            | 0            | 0.0             | 0                |
| 330900 | 3209       | Truck      | 1050 | 1991           | 1310.0       | 1220.0       | 1386.0       | 1305.3          | 1,370,600        |
| 333411 | 3211       | Truck      | 635  | 2006           | 739.0        | 600.0        | 477.0        | 605.3           | 384,387          |
| 331600 | 3216       | Truck      | 938  | 2000           | 0            | 0            | 0            | 0.0             | 0                |
| 333251 | 3251       | Truck      | 1050 | 1982           | 2435.0       | 2472.0       | 2367.0       | 2424.7          | 2,545,900        |
| 333252 | 3252       | Truck      | 1050 | 2002           | 2466.0       | 2914.0       | 2666.0       | 2682.0          | 2,816,100        |
| 333053 | 3253       | Truck      | 635  | 2004           | 597.0        | 1123.0       | 471.0        | 730.3           | 463,762          |
| 333254 | 3254       | Truck      | 1050 | 2004           | 2380.0       | 2837.0       | 2059.0       | 2425.3          | 2,546,600        |
| 333255 | 3255       | Truck      | 1050 | 2004           | 2549.0       | 3281.0       | 2357.0       | 2729.0          | 2,865,450        |
| 333256 | 3256       | Truck      | 1050 | 1997           | 2768.0       | 1715.0       | 1334.0       | 1939.0          | 2,035,950        |
| 333257 | 3257       | Truck      | 760  | 2000           | 1143.0       | 629.0        | 510.8        | 760.9           | 578,309          |
| 333091 | 3291       | Truck      | 635  | 1992           | 984.0        | 1186.0       | 904.0        | 1024.7          | 650,663          |
| 333098 | 3298       | Truck      | 635  | 1990           | 638.0        | 1063.0       | 418.0        | 706.3           | 448,522          |

### 5.1.2 Crushing

Primary crushing systems are operated in the Butterfield and Sentinel Quarries area (electrified) and in the White Knob Quarry area (diesel generator, see Table 7). Table 8 presents baseline throughputs for each crushing system and the LVPP. Maximum daily and hourly rates are limited by MDAQMD permits to operate (Appendix G). It is assumed that the crushing systems and LVPP were operated at the maximum permitted daily and hourly rates during the baseline.

**Table 8** Baseline Stationary Source Throughputs

| Source                     | kW-hr / ton | Tons / Year | Tons / Day | Tons / Hour |
|----------------------------|-------------|-------------|------------|-------------|
| Sentinel Crushing System   | 0.33        | 444,962     | 5,000      | 600         |
| White Knob Crushing System | 0.0         | 324,021     | 4,000      | 400         |
| LVPP                       | 40          | 653,635     | 7,650      | 850         |

Note: Daily and hourly rates for the crushing systems are based upon permit condition limitations. LVPP daily and hourly rates assume the fraction of waste rock produced annually applies on a daily and hourly basis.

#### 5.1.3 Roads

Dust from paved roads occurs only off-site because on-site roads are unpaved. The average distance from the LVPP to Omya's customers is 110 miles. The baseline production amount (653,635 tons/year) is assumed to be placed in 25 ton capacity trucks. Dust from unpaved roads occurs only on-site because off-site roads are paved. The amount of travel on each unpaved road segment presented in Table 9 is calculated based upon the average truck capacity of 75 tons and the tonnages moved on each road segment in the baseline. Figure 2 (Appendix A) shows the location of each road segment.

Table 9 Baseline Activity on Roads

| Road Segment                | Length (ft) | VMT/yr  | Annual | VMT/day | Daily | VMT/hr | Hourly |
|-----------------------------|-------------|---------|--------|---------|-------|--------|--------|
| A - Butterfield Pit         | 3,360       | 1,618   | 1.2%   | 15      | 0.99% | 1.8    | 1.1%   |
| B - Waste Pile              | 775         | 963     | 0.72%  | 11      | 0.71% | 1.3    | 0.8%   |
| C - West Road               | 1,015       | 1,355   | 1.0%   | 16      | 1.1%  | 2.0    | 1.1%   |
| D – Not Used                | 0           | 0       | 0.0%   | 0       | 0.00% | 0      | 0.00%  |
| E - Sentinel Pit            | 3,000       | 8,013   | 6.0%   | 93      | 6.0%  | 11     | 6.4%   |
| F – Not Used                | 0           | 0       | 0.0%   | 0       | 0.00% | 0      | 0.00%  |
| G - Sentinel/Butterfield to |             |         |        |         |       |        |        |
| Plant                       | 38,000      | 72,587  | 54%    | 816     | 52%   | 98     | 56%    |
| H - White Ridge to Plant    | 24,260      | 33,746  | 25%    | 417     | 27%   | 42     | 24%    |
| I - Plant Feed              | 365         | 1,205   | 0.90%  | 14      | 0.91% | 1.6    | 0.9%   |
| J - White Knob Pit          | 3,725       | 8,719   | 6.5%   | 106     | 6.8%  | 11     | 6.1%   |
| K - On-Road Trucks*         | 6,186       | 20,421  | *      | 239     | *     | 27     | *      |
| L - Crusher to White Ridge  | 2,300       | 5,384   | 4.0%   | 66      | 4.2%  | 6.6    | 3.8%   |
| M - White Ridge Pit         | 1,300       | 0       | 0.0%   | 0       | 0.00% | 0      | 0.00%  |
| TOTAL*                      |             | 154,011 | 100%   | 1,794   | 100%  | 201    | 100%   |

Note: Segment K is used for purposes of modeling only and is not included in the total length of roads on-site.

#### 5.1.4 Mining Activities

Mining emissions consist mainly of dust emissions from various sources (e.g. blasting, bulldozing, wind, etc.) and other criteria pollutant emissions from explosives used in blasting (i.e. NOx and CO). Excavated tons from each quarry that were reported in 2008 (Appendix G) and in the baseline were used to create scale factors. Emissions from the 2008 report were then scaled to determine the baseline emissions in

2004 – 2006. The following changes to the 2008 report and assumptions were used in the process of calculating emissions for mining sources:

- Bulldozing reported for the White Knob Quarry was used to scale Sentinel Quarry bulldozing activity because the Sentinel Quarry reported unusually low bulldozing emissions in 2008 and the White Knob bulldozing was judged to be more reflective of typical conditions. The higher activity level is assessed in both the baseline and project scenarios so that the baseline is not inflated for this source.
- Vehicular exhaust and road dust emissions are calculated from scratch except for road dust in the LVPP area that was scaled based on the 2008 emissions.
- Surface areas used for calculation of windblown dust emissions are assigned a scale factor of 1.0 because the size of active areas does not change.
- Control efficiency assigned for chemical dust suppressants on windblown dust from roads was increased from 75% to 90% because the suppressants should be at least as effective as watering which is assigned 90% in the 2008 report.

#### 5.2 Baseline Emissions

Emissions factors presented in Table 10 were calculated for each diesel engine using the methods described in Appendix H. On-road engines were quantified using offroad factors because there are few on-road vehicles and offroad methods result in greater emissions for the same model year engine (i.e. new on-road engines were controlled by regulation before new offroad engines). Vehicles that retired before 2012 were excluded so that the emissions characteristics represent the fleet as it existed at the time the Notice of Preparation was published.

Table 10 Vehicle Emissions Factors

| EQUIP# | DOORS<br># | Туре      | hp  | Engine<br>Year | HC EF<br>(g/hp-<br>hr) | NOx EF<br>(g/hp-<br>hr) | PM EF<br>(g/hp-<br>hr) | CO EF<br>(g/hp-<br>hr) | SO <sub>2</sub> EF<br>(g/hp-<br>hr) | Load<br>Factor |
|--------|------------|-----------|-----|----------------|------------------------|-------------------------|------------------------|------------------------|-------------------------------------|----------------|
| 330600 | 3306       | Bobcat    | 50  | 1983           | 2.39                   | 7.13                    | 0.81                   | 8.23                   | 0.00028                             | 0.3685         |
| 330700 | 3307       | Bobcat    | 50  | 1983           | 2.39                   | 7.13                    | 0.81                   | 8.23                   | 0.00028                             | 0.3685         |
| 293301 | Retired    | Bobcat    | 50  | 1987           | -                      | -                       | -                      | -                      | -                                   | -              |
| 299100 | Retired    | Bobcat    | 50  | 2001           | -                      | -                       | -                      | -                      | -                                   | -              |
| 205300 | Retired    | Crane     | 150 | 1977           | -                      | -                       | -                      | -                      | -                                   | -              |
| 333018 | Retired    | Dozer     | 250 | 1977           | -                      | -                       | -                      | -                      | -                                   | -              |
| 333062 | 3462       | Dozer     | 370 | 1990           | 0.67                   | 8.95                    | 0.43                   | 12.78                  | 0.00028                             | 0.4288         |
| 333064 | 3464       | Excavator | 195 | 1995           | 0.71                   | 9.28                    | 0.46                   | 3.38                   | 0.00028                             | 0.3819         |
| 825400 | 8254       | Forklift  | 52  | 1992           | 1.11                   | 10.39                   | 0.93                   | 6.32                   | 0.00028                             | 0.201          |
| 826800 | 8268       | Forklift  | 52  | 2000           | 1.01                   | 7.90                    | 0.91                   | 4.32                   | 0.00028                             | 0.201          |
| 826900 | 8269       | Forklift  | 47  | 2001           | 2.15                   | 6.07                    | 0.79                   | 4.25                   | 0.00028                             | 0.201          |
| 827000 | 8270       | Forklift  | 52  | 2003           | 0.94                   | 7.59                    | 0.83                   | 4.13                   | 0.00028                             | 0.201          |
| 827200 | 8272       | Forklift  | 57  | 2004           | 0.48                   | 5.95                    | 0.45                   | 4.06                   | 0.00028                             | 0.201          |

| EQUIP#       | DOORS<br>#   | Туре            | hp  | Engine<br>Year | HC EF<br>(g/hp-<br>hr) | NOx EF<br>(g/hp-<br>hr) | PM EF<br>(g/hp-<br>hr) | CO EF<br>(g/hp-<br>hr) | SO <sub>2</sub> EF<br>(g/hp-<br>hr) | Load<br>Factor |
|--------------|--------------|-----------------|-----|----------------|------------------------|-------------------------|------------------------|------------------------|-------------------------------------|----------------|
| 208252       | Retired      | Forklift        | 50  | 1986           | -                      | -                       | -                      | -                      | -                                   | -              |
| 213400       | Retired      | Forklift        | 50  | 1989           | -                      | -                       | -                      | -                      | -                                   | -              |
| 825700       | Retired      | Forklift        | 50  | 1990           | -                      | -                       | -                      | -                      | -                                   | -              |
| 825900       | Retired      | Forklift        | 50  | 1992           | -                      | -                       | -                      | -                      | -                                   | -              |
| 826100       | Retired      | Forklift        | 50  | 1993           | -                      | -                       | -                      | -                      | -                                   | -              |
| 826300       | Retired      | Forklift        | 50  | 1994           | -                      | -                       | -                      | -                      | -                                   | -              |
| 826400       | Retired      | Forklift        | 50  | 1994           | -                      | -                       | -                      | -                      | -                                   | -              |
| 826500       | Retired      | Forklift        | 50  | 1996           | -                      | -                       | -                      | -                      | -                                   | -              |
| 826600       | Retired      | Forklift        | 50  | 1997           | -                      | -                       | -                      | -                      | -                                   | -              |
| 826700       | Retired      | Forklift        | 50  | 1998           | -                      | -                       | -                      | -                      | -                                   | -              |
| 610011<br>02 | Retired<br>* | Generator       | 890 | 1992           | 0.59                   | 9.12                    | 0.29                   | 13.84                  | 0.00028                             | 0.525          |
| 333410       | 3410         | Grader          | 275 | 1987           | 0.86                   | 12.27                   | 0.62                   | 13.84                  | 0.00028                             | 0.4087         |
| 330100       | 3301         | Loader          | 375 | 1985           | 0.86                   | 12.27                   | 0.62                   | 14.18                  | 0.00028                             | 0.3618         |
| 330200       | 3302         | Loader          | 690 | 2004           | 0.26                   | 4.64                    | 0.14                   | 1.11                   | 0.00028                             | 0.3618         |
| 298600       | 3303         | Loader          | 235 | 1992           | 0.76                   | 9.71                    | 0.51                   | 5.53                   | 0.00028                             | 0.3618         |
| 330500       | 3305         | Loader          | 690 | 2004           | 0.26                   | 4.64                    | 0.14                   | 1.11                   | 0.00028                             | 0.3618         |
| 330800       | 3308         | Loader          | 690 | 1985           | 0.86                   | 12.27                   | 0.62                   | 14.18                  | 0.00028                             | 0.3618         |
| 333046       | 3346         | Loader          | 690 | 1995           | 0.69                   | 9.12                    | 0.45                   | 3.34                   | 0.00028                             | 0.3618         |
| 333060       | Retired      | Loader          | 690 | 1994           | -                      | -                       | -                      | -                      | -                                   | -              |
| 331200       | Retired      | Loader          | 500 | 1985           | -                      | -                       | -                      | -                      | -                                   | -              |
| 207500       | Retired      | Manlift         | 150 | 1999           | -                      | -                       | -                      | -                      | -                                   | -              |
| 299000       | Retired      | Dump<br>Truck   | 300 | 1988           | -                      | -                       | -                      | -                      | -                                   | -              |
| 332102       | Retired      | GreaseTru<br>ck | 300 | 1969           | -                      | -                       | -                      | -                      | -                                   | -              |
| 332132       | Retired      | Lube Van        | 300 | 1987           | -                      | -                       | -                      | -                      | -                                   | -              |
| 332136       | Retired      | Fuel Truck      | 300 | 1973           | -                      | -                       | -                      | -                      | -                                   | -              |
| 293413       | 5134         | Sweeper         | 150 | 1983           | 1.05                   | 13.06                   | 0.74                   | 5.79                   | 0.00028                             | 0.4556         |
| 826000       | Retired      | Sweeper         | 150 | 1992           | -                      | -                       | -                      | -                      | -                                   | -              |
| 827100       | Retired      | Sweeper         | 150 | 2002           | -                      | -                       | -                      | -                      | -                                   | -              |
|              | 2202         | Lube<br>Truck   | 215 | 1985           | 0.99                   | 13.06                   | 0.74                   | 5.67                   | 0.00028                             | 0.3417         |
| _            | 2232         | Lube<br>Truck   | 322 | 1988           | 0.69                   | 9.13                    | 0.45                   | 13.84                  | 0.00028                             | 0.3417         |
|              | 2237         | Fuel Truck      | 370 | 1994           | 0.69                   | 9.12                    | 0.45                   | 13.84                  | 0.00028                             | 0.3417         |
|              | 2271         | Guzzler         | 322 | 2001           | 0.22                   | 5.10                    | 0.13                   | 1.03                   | 0.00028                             | 0.3417         |

| EQUIP# | DOORS<br># | Туре    | hp   | Engine<br>Year | HC EF<br>(g/hp-<br>hr) | NOx EF<br>(g/hp-<br>hr) | PM EF<br>(g/hp-<br>hr) | CO EF<br>(g/hp-<br>hr) | SO <sub>2</sub> EF<br>(g/hp-<br>hr) | Load<br>Factor |
|--------|------------|---------|------|----------------|------------------------|-------------------------|------------------------|------------------------|-------------------------------------|----------------|
|        |            | Dump    |      |                |                        |                         |                        |                        |                                     |                |
| _      | 2290       | Truck   | 425  | 1989           | 0.69                   | 9.13                    | 0.45                   | 13.84                  | 0.00028                             | 0.3417         |
|        | 5171       | Sweeper | 52   | 2003           | 0.93                   | 7.54                    | 0.82                   | 4.10                   | 0.00028                             | 0.3417         |
| 330900 | 3209       | Truck   | 1050 | 1991           | 0.59                   | 9.12                    | 0.29                   | 13.84                  | 0.00028                             | 0.3819         |
| 333411 | 3211       | Truck   | 635  | 2006           | 0.27                   | 2.66                    | 0.14                   | 1.12                   | 0.00028                             | 0.3819         |
| 331600 | 3216       | Truck   | 938  | 2000           | 0.33                   | 7.11                    | 0.20                   | 3.34                   | 0.00028                             | 0.3819         |
| 333251 | Retired    | Truck   | 1050 | 1982           | -                      | -                       | -                      | -                      | -                                   | -              |
| 333252 | 3252       | Truck   | 1050 | 2002           | 0.33                   | 7.11                    | 0.20                   | 3.34                   | 0.00028                             | 0.3819         |
| 333053 | 3253       | Truck   | 635  | 2004           | 0.29                   | 4.73                    | 0.14                   | 1.14                   | 0.00028                             | 0.3819         |
| 333254 | 3254       | Truck   | 1050 | 2004           | 0.33                   | 7.11                    | 0.20                   | 3.34                   | 0.00028                             | 0.3819         |
| 333255 | 3255       | Truck   | 1050 | 2004           | 0.33                   | 7.11                    | 0.20                   | 3.34                   | 0.00028                             | 0.3819         |
| 333256 | 3256       | Truck   | 1050 | 1997           | 0.59                   | 9.29                    | 0.32                   | 13.84                  | 0.00028                             | 0.3819         |
| 333257 | 3257       | Truck   | 760  | 2000           | 0.33                   | 7.11                    | 0.20                   | 3.34                   | 0.00028                             | 0.3819         |
| 333091 | Retired    | Truck   | 635  | 1992           | -                      | -                       | -                      | -                      | -                                   | -              |
| 333098 | Retired    | Truck   | 635  | 1990           | -                      | -                       | -                      | -                      | -                                   | -              |

White Knob Generator was replaced by a contractor-owned portable crushing system but the generator emissions rates were analyzed. Classes of units retired (i.e. crane and manlift) replaced by equipment with the same emissions rates.

Emissions factors in Table 10 were combined with activity data in Table 6 to calculate baseline vehicular emissions that are presented in Table 11.

Table 11 Baseline Vehicle Emissions

| Location | Туре             | Avg. (hp-<br>hr) | HC<br>(lb/yr) | NOx<br>(lb/yr) | PM<br>(lb/yr) | CO<br>(lb/yr) | SOx<br>(lb/yr) | CO₂<br>(tpy) |
|----------|------------------|------------------|---------------|----------------|---------------|---------------|----------------|--------------|
| Pit      | Dozer Total      | 44,393           | 28            | 376            | 18            | 536           | 0.012          | 26           |
| Pit      | Excavator Total  | 57,265           | 34            | 447            | 22            | 163           | 0.013          | 33           |
| Pit      | Loader Total     | 3,543,333        | 1,468         | 21,668         | 950           | 13,951        | 0.781          | 2,064        |
| Plant    | Bobcat Total     | 12,167           | 24            | 70             | 8             | 81            | 0.003          | 7            |
| Plant    | Crane Total      | 5,050            | 4             | 46             | 2             | 19            | 0.001          | 3            |
| Plant    | Forklift Total   | 887,473          | 447           | 2,981          | 308           | 1,816         | 0.109          | 517          |
| Plant    | Guzzler Total    | 0                | -             | -              | -             | -             | -              | -            |
| Plant    | Loader Total     | 71,287           | 46            | 625            | 32            | 561           | 0.016          | 42           |
| Plant    | Manlift Total    | 4,350            | 2             | 21             | 1             | 9             | 0.001          | 3            |
| Plant    | Sweeper Total    | 70,650           | 62            | 640            | 48            | 307           | 0.017          | 41           |
| Roads    | Dump Truck Total | 165,430          | 87            | 1,137          | 56            | 1,725         | 0.034          | 96           |
| Roads    | Fuel Truck Total | 25,500           | 13            | 175            | 9             | 266           | 0.005          | 15           |
| Roads    | Grader Total     | 168,392          | 130           | 1,862          | 95            | 2,101         | 0.042          | 98           |
| Roads    | Lube Truck Total | 93,270           | 59            | 780            | 42            | 685           | 0.019          | 54           |

| Location | Туре            | Avg. (hp-<br>hr) | HC<br>(lb/yr) | NOx<br>(lb/yr) | PM<br>(lb/yr) | CO<br>(lb/yr) | SOx<br>(lb/yr) | CO₂<br>(tpy) |
|----------|-----------------|------------------|---------------|----------------|---------------|---------------|----------------|--------------|
| Roads    | Truck Total     | 16,706,243       | 4,897         | 91,813         | 2,789         | 57,696        | 3.885          | 9,730        |
| WKQ      | Generator Total | 847,280          | 575           | 8,940          | 285           | 13,576        | 0.271          | 493          |
|          | Grand Total     | 22,692,682       | 7,869         | 131,513        | 4,663         | 93,464        | 5.207          | 13,217       |

Note: WKQ = White Knob Quarry.

Table 12 presents the emissions summed by area. Quarry emissions are assumed to occur in locations where material is being excavated (quarries) and deposited (overburden areas). Plant emissions are assumed to occur at the LVPP. Road emissions are further allocated to specific roads based upon the vehicle miles traveled (VMT) presented in Table 9. Figure 2 (Appendix A) shows the location of each road segment. VMT is calculated based upon the tons of material being transported and the capacity of haul trucks.

Table 12 Baseline Vehicle Emissions by Location

|                 | Average<br>(hp-hr) | HC<br>(lb/yr) | NOx<br>(lb/yr) | PM<br>(lb/yr) | CO<br>(lb/yr) | SOx<br>(lb/yr) | CO₂<br>(tpy) |
|-----------------|--------------------|---------------|----------------|---------------|---------------|----------------|--------------|
| Quarry Subtotal | 3,644,992          | 1,531         | 22,491         | 990           | 14,650        | 0.806          | 2,123        |
| Plant Subtotal  | 1,041,576          | 578           | 4,316          | 396           | 2,765         | 0.144          | 607          |
| Roads Subtotal  | 17,158,834         | 5,186         | 95,767         | 2,990         | 62,474        | 3.987          | 9,994        |
| WKQ Generator   | 847,280            | 575           | 8,940          | 285           | 13,576        | 0.271          | 493          |
| Total           | 22,692,682         | 7,869         | 131,513        | 4,663         | 93,464        | 5.207          | 13,217       |

Note: WKQ = White Knob Quarry.

The Roads Subtotal in Table 12 is combined with road dust and offsite haul truck emissions in Table 13.

Table 13 Baseline Emissions on Roads

|                                   | On-site | Off-site  | Total     |
|-----------------------------------|---------|-----------|-----------|
| VMT (miles/yr)                    | 133,590 | 5,751,988 | 5,885,578 |
| TSP – Dust (tpy)                  | 248.44  | 105.89    | 354.34    |
| PM <sub>10</sub> – Dust (tpy)     | 70.65   | 21.18     | 91.83     |
| PM <sub>2.5</sub> – Dust (tpy)    | 7.06    | 5.20      | 12.26     |
| TSP – Exhaust (tpy)               | 1.50    | 4.48      | 5.97      |
| PM <sub>10</sub> – Exhaust (tpy)  | 1.50    | 4.48      | 5.97      |
| PM <sub>2.5</sub> – Exhaust (tpy) | 1.38    | 4.12      | 5.50      |
| HC (tpy)                          | 2.59    | 4.13      | 6.72      |
| NOx (tpy)                         | 47.88   | 77.94     | 125.82    |
| CO (tpy)                          | 31.24   | 18.70     | 49.94     |
| SOx (tpy)                         | 0.0020  | 0.10      | 0.10      |
| CO <sub>2</sub> (tpy)             | 9,994   | 10,732    | 20,725    |

Table 14 presents mining and processing emissions that were scaled up from the 2008 reporting and adjusted as described previously in this section.

Table 14 Baseline Mining and Processing Emissions

| Emission Source /<br>Operation / Activity                   | LVPP<br>(tons per year) |                  |                   | Butterfield and Sentinel<br>Quarries<br>(tons per year) |                  |                   | White Knob Quarry<br>(tons per year) |                  |                   |
|-------------------------------------------------------------|-------------------------|------------------|-------------------|---------------------------------------------------------|------------------|-------------------|--------------------------------------|------------------|-------------------|
|                                                             | TSP                     | PM <sub>10</sub> | PM <sub>2.5</sub> | TSP                                                     | PM <sub>10</sub> | PM <sub>2.5</sub> | TSP                                  | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Drilling                                                    | -                       | -                | -                 | 0.31                                                    | 0.25             | 0.25              | 0.23                                 | 0.19             | 0.19              |
| Blasting                                                    | -                       | -                | -                 | 14.46                                                   | 7.52             | 0.43              | 5.41                                 | 2.81             | 0.16              |
| Explosives                                                  | -                       | -                | -                 | -                                                       | -                | -                 | -                                    | -                | -                 |
| Bulldozing and Grading                                      | 0.185                   | 0.090            | 0.028             | 28.27                                                   | 13.75            | 4.20              | 20.99                                | 10.21            | 3.12              |
| Loading Quarry / Pad                                        | 0.0072                  | 0.0035           | 0.0011            | 0.39                                                    | 0.19             | 0.06              | 1.65                                 | 0.81             | 0.25              |
| Primary Crushing                                            | -                       | -                | -                 | 8.43                                                    | 1.48             | 0.46              | 11.83                                | 3.83             | 1.20              |
| Ball Mill #1                                                | 1.68                    | 0.106            | 0.033             | -                                                       | -                | -                 | -                                    | -                | -                 |
| Tertiary Crushing                                           | 34.7                    | 2.25             | 0.69              | -                                                       | -                | -                 | -                                    | -                | -                 |
| Roller Mill #1                                              | 3.61                    | 0.242            | 0.076             | -                                                       | -                | -                 | -                                    | -                | -                 |
| Roller Mill #2                                              | 2.66                    | 0.167            | 0.052             | -                                                       | -                | -                 | -                                    | -                | -                 |
| Roller Mill #3                                              | 1.62                    | 0.104            | 0.033             | -                                                       | -                | -                 | -                                    | -                | -                 |
| Roller Mill #4                                              | 1.60                    | 0.104            | 0.033             | -                                                       | -                | -                 | -                                    | -                | -                 |
| Surface Treating Plant                                      | 0.011                   | 0.0010           | 0.0003            | -                                                       | -                | -                 | -                                    | -                | -                 |
| Rock Storage System/Plan                                    | 19.5                    | 5.47             | 1.71              | -                                                       | -                | -                 | -                                    | -                | -                 |
| Optical Sorter                                              | 0.019                   | 0.014            | 0.004             | -                                                       | -                | -                 | -                                    | -                | -                 |
| Coarse Product Storage<br>System                            | 0.48                    | 0.080            | 0.025             | -                                                       | -                | -                 | -                                    | -                | -                 |
| Silo 81-70c                                                 | 0.58                    | 0.082            | 0.026             | -                                                       | -                | -                 | -                                    | -                | -                 |
| Bulk Loadout 82 System                                      | 0.16                    | 0.025            | 0.008             | -                                                       | -                | -                 | -                                    | -                | -                 |
| Bulk Loadout 83 System                                      | 0.028                   | 0.005            | 0.001             | -                                                       | -                | -                 | -                                    | -                | -                 |
| Stockpiles - Wind Erosion                                   | 1.06                    | 0.53             | 0.21              | 0.67                                                    | 0.34             | 0.13              | 0.18                                 | 0.09             | 0.04              |
| Exhaust - Stationary and Portable Equipment                 | 0.047                   | 0.046            | 0.046             | 0.04                                                    | 0.04             | 0.04              | -                                    | -                | -                 |
| Exhaust - Mobile and<br>Vehicular Equipment*                | -                       | -                | -                 | -                                                       | -                | -                 | -                                    | -                | -                 |
| Paved Roads - Entrained<br>Dust*                            | -                       | -                | -                 | -                                                       | -                | -                 | -                                    | -                | -                 |
| Unpaved Roads -<br>Entrained Dust*                          | 30.84                   | 9.10             | 1.40              | -                                                       | -                | -                 | -                                    | -                | -                 |
| Wind Erosion From<br>Unpaved Operational<br>Areas and Roads | 11.25                   | 5.62             | 2.25              | 20.10                                                   | 10.05            | 4.02              | 20.66                                | 10.33            | 4.13              |
| Total                                                       | 110.03                  | 24.04            | 6.62              | 72.66                                                   | 33.61            | 9.59              | 60.96                                | 28.27            | 9.08              |

<sup>\*</sup>Engine exhaust and road dust are calculated elsewhere except for road dust in the LVPP facility and portable water pump engines

that are scaled from 2008 levels. Windblown dust is not scaled because the area disturbed daily remains unchanged.

Table 15 Baseline Mining and Processing Combustion Emissions

| Sources                                | CO (tpy) | NOx (tpy) | ROG (tpy) | SOx (tpy) |
|----------------------------------------|----------|-----------|-----------|-----------|
| Sentinel Quarry Blasting & Water Pumps | 4.2      | 1.6       | 0.042     | 0.037     |
| White Knob Quarry Blasting *           | 3.71     | 0.94      | 0         | 0         |
| LVPP Heaters                           | 0.12     | 0.48      | 0.01      | 0.01      |
| Total                                  | 8.03     | 3.02      | 0.052     | 0.047     |

Note: White Knob quarry generator emissions are quantified with the offroad vehicle emissions in Table 12.

## 5.3 Proposed Activity Levels and Emissions

The Project is limited to expanding the Butterfield and Sentinel Quarries area but overall combined production from all quarries is limited by the LVPP maximum production rate. The Project would allow up to the maximum production rate to be extracted exclusively from the Butterfield and Sentinel Quarries. This would result in no material being quarried at White Knob which is an indirect effect of the Project that necessitates calculation of White Knob emissions in the baseline. Moreover, vehicular activity data provided by Omya does not distinguish which units operate in each quarry. Thus, the emissions from vehicles are calculated for the fleet and apportioned to quarries based on throughput amount and to units operating on roads by VMT. Proposed future activity levels are presented in Table 16.

Table 16 Activity Scaling Factors

| Source                                                 | Baseline Value    | Project Value      | Scale Factor |
|--------------------------------------------------------|-------------------|--------------------|--------------|
| LVPP (excludes wind erosion)                           | 653,635 tons/yr   | 680,000 tons/yr    | 1.04         |
| LVPP wind erosion                                      | 14.88 acres       | 14.88 acres        | 1.00         |
| Off-site Road Emissions                                | 3,787,946 VMT/yr  | 3,940,736 VMT/yr   | 1.04         |
| On-site Road Emissions                                 | 133,590 VMT/yr*   | 187,084 VMT/yr *   | 1.40         |
| Vehicles Working in Quarries (based on tons excavated) | 1,087,658 tons/yr | 1,487,500 tons/yr  | 1.37         |
| New Mobile Crusher                                     | 0 hp-hr/yr        | 2,084,855 hp-hr/yr | n/a **       |

<sup>\*</sup> Value calculated based upon tonnage moved, capacity of trucks, and road segments traveled.

<sup>\*\*</sup> Activity based on White Knob Quarry Crusher activity scaled up for greater production.

Project emissions are calculated in Appendix I and presented in the following tables. Table 17 presents emissions from Project vehicle engines and Table 18 presents potential proposed emissions on roads and the increment from baseline that would result from the Project. Table 19 presents Proposed emissions and incremental Project emissions from mining and processing activities. The White Knob Quarry would have zero emissions because there would be no activity there if the Project maximum were to be quarried from the Butterfield and Sentinel Quarries. Table 20 presents proposed emissions and the Project increment from mining and processing activities.

Table 17 Project Vehicle Emissions by Location

|                   | Average<br>(hp-hr) | HC<br>(lb/yr) | NOx<br>(lb/yr) | PM<br>(lb/yr) | CO<br>(lb/yr) | SOx<br>(lb/yr) | CO <sub>2</sub><br>(tpy) |
|-------------------|--------------------|---------------|----------------|---------------|---------------|----------------|--------------------------|
| Quarry Subtotal   | 4,984,952          | 2,093         | 30,759         | 1,355         | 20,035        | 1.10           | 2,903                    |
| Plant Subtotal    | 1,093,368          | 607           | 4,531          | 416           | 2,902         | 0.15           | 643                      |
| Roads Subtotal    | 24,029,854         | 7,262         | 134,115        | 4,188         | 87,490        | 5.58           | 13,996                   |
| Mobile Crusher    | 2,084,855          | 208           | 5,307          | 181           | 6,274         | 0.67           | 638                      |
| Proposed          | 32,193,030         | 10,171        | 174,712        | 6,140         | 116,702       | 7.50           | 18,179                   |
| Baseline*         | 22,692,682         | 7,869         | 131,513        | 4,663         | 93,464        | 5.21           | 13,222                   |
| Project Increment | 9,500,348          | 2,301         | 43,199         | 1,477         | 23,237        | 2.30           | 4,957                    |

Note: \* See also Table 12.

Table 18 Proposed Emissions on Roads

|                                   | On-site | Off-site  | Total     | Baseline  | Increment |
|-----------------------------------|---------|-----------|-----------|-----------|-----------|
| VMT (miles/yr)                    | 187,084 | 3,940,736 | 4,127,820 | 3,921,535 | 206,285   |
| TSP – Dust (tpy)                  | 348     | 72.6      | 420       | 318       | 102       |
| PM <sub>10</sub> – Dust (tpy)     | 98.9    | 14.5      | 113       | 84.6      | 28.9      |
| PM <sub>2.5</sub> – Dust (tpy)    | 9.89    | 3.56      | 13.5      | 10.5      | 3.0       |
| TSP – Exhaust (tpy)               | 2.09    | 3.07      | 5.16      | 4.44      | 0.72      |
| PM <sub>10</sub> – Exhaust (tpy)  | 2.09    | 3.07      | 5.16      | 4.44      | 0.72      |
| PM <sub>2.5</sub> – Exhaust (tpy) | 1.93    | 2.82      | 4.75      | 4.09      | 0.66      |
| HC (tpy)                          | 3.63    | 2.83      | 6.46      | 5.31      | 1.15      |
| NOx (tpy)                         | 67.1    | 53.4      | 120       | 99.2      | 21        |
| CO (tpy)                          | 43.8    | 12.8      | 56.6      | 43.6      | 13        |
| SOx (tpy)                         | 0.0028  | 0.07      | 0.07      | 0.07      | 0.0035    |
| CO <sub>2</sub> (tpy)             | 13,996  | 7,339     | 21,335    | 17,061    | 4,274     |

Note: See also Table 13 and Table 17.

Table 19 Proposed Particulate Matter

| Emission Source / Operation /<br>Activity                |       | LVPP (tpy)       |                   |       | tterfield a<br>el Quarri |                   | White Knob Quarry<br>(tpy) |                  |                   |
|----------------------------------------------------------|-------|------------------|-------------------|-------|--------------------------|-------------------|----------------------------|------------------|-------------------|
|                                                          | TSP   | PM <sub>10</sub> | PM <sub>2.5</sub> | TSP   | PM <sub>10</sub>         | PM <sub>2.5</sub> | TSP                        | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Drilling                                                 | -     | -                | -                 | 0.74  | 0.60                     | 0.60              | -                          | -                | -                 |
| Blasting                                                 | -     | -                | -                 | 34.46 | 17.92                    | 1.03              | -                          | -                | -                 |
| Explosives                                               | -     | -                | -                 | -     | -                        | -                 | -                          | -                | -                 |
| Bulldozing, Scraping And Grading<br>Of Material          | 0.19  | 0.09             | 0.03              | 67.36 | 32.77                    | 10.01             | -                          | -                | -                 |
| Loading Quarry / Pad                                     | 0.01  | 0.00             | 0.00              | 0.92  | 0.45                     | 0.14              | -                          | -                | -                 |
| Primary Crushing                                         | -     | -                | -                 | 20.10 | 3.52                     | 1.09              | -                          | -                | -                 |
| Ball Mill #1                                             | 1.75  | 0.11             | 0.03              | -     | -                        | -                 | -                          | -                | -                 |
| Tertiary Crushing                                        | 36.05 | 2.34             | 0.72              | -     | -                        | -                 | -                          | -                | -                 |
| Roller Mill #1                                           | 3.75  | 0.25             | 0.08              | -     | -                        | -                 | -                          | -                | -                 |
| Roller Mill #2                                           | 2.77  | 0.17             | 0.05              | -     | -                        | -                 | -                          | -                | -                 |
| Roller Mill #3                                           | 1.68  | 0.11             | 0.03              | -     | -                        | -                 | -                          | -                | -                 |
| Roller Mill #4                                           | 1.67  | 0.11             | 0.03              | -     | -                        | -                 | -                          | -                | -                 |
| Surface Treating Plant                                   | 0.01  | 0.00             | 0.00              | -     | -                        | -                 | -                          | -                | -                 |
| Rock Storage System/Plan                                 | 20.33 | 5.69             | 1.78              | -     | -                        | -                 | -                          | -                | -                 |
| Optical Sorter                                           | 0.02  | 0.01             | 0.00              | -     | -                        | -                 | -                          | -                | -                 |
| Coarse Product Storage System                            | 0.50  | 0.08             | 0.03              | -     | -                        | -                 | -                          | -                | -                 |
| Silo 81-700                                              | 0.60  | 0.09             | 0.03              | -     | -                        | -                 | -                          | -                | -                 |
| Bulk Loadout 82 System                                   | 0.16  | 0.03             | 0.01              | -     | -                        | -                 | -                          | -                | -                 |
| Bulk Loadout 83 System                                   | 0.03  | 0.00             | 0.00              | -     | -                        | -                 | -                          | -                | -                 |
| Stockpiles - Wind Erosion                                | 1.06  | 0.53             | 0.21              | 0.67  | 0.34                     | 0.13              | -                          | -                | -                 |
| Exhaust - Stationary and Portable<br>Equipment           | 0.05  | 0.05             | 0.05              | 0.09  | 0.09                     | 0.09              | -                          | -                | -                 |
| Exhaust - Mobile and Vehicular Equipment*                | -     | -                | -                 | -     | -                        | -                 | -                          | -                | -                 |
| Paved Roads - Entrained Dust*                            | -     | -                | -                 | -     | -                        | -                 | -                          | -                | -                 |
| Unpaved Roads - Entrained Dust*                          | 32.08 | 9.47             | 1.45              | -     | -                        | -                 | -                          | -                | -                 |
| Wind Erosion From Unpaved<br>Operational Areas and Roads | 11.25 | 5.62             | 2.25              | 20.10 | 10.05                    | 4.02              | -                          | -                | -                 |
| Project Total by Area                                    | 114   | 24.8             | 6.79              | 144   | 65.7                     | 17.1              | -                          | -                | -                 |
| Baseline by Area                                         | 110   | 24.0             | 6.62              | 72.7  | 33.6                     | 9.59              | 61.0                       | 28.3             | 9.08              |
| Increment by Area                                        | 3.94  | 0.72             | 0.17              | 71.8  | 32.1                     | 7.52              | -61.0                      | -28.3            | -9.08             |
| Increment Total                                          | 14.76 | 4.57             | -1.40             |       |                          |                   |                            |                  |                   |
|                                                          |       |                  |                   |       |                          |                   |                            |                  |                   |

Note: Elimination of windblown dust from White Knob Quarry accounts for beneficial effect on PM<sub>2.5</sub>. See also Table 14.

Table 20 Project Mining and Processing Combustion Emissions

| Sources                                | CO (tpy) | NOx (tpy) | VOC (tpy) | SOx (tpy) |
|----------------------------------------|----------|-----------|-----------|-----------|
| Sentinel Quarry Blasting & Water Pumps | 10.02    | 3.72      | 0.088     | 0.0041    |
| White Knob Quarry Blasting             | -        | -         | -         | -         |
| LVPP Heaters                           | 0.124    | 0.497     | 0.0054    | 0.132     |
| Proposed                               | 10.15    | 4.21      | 0.093     | 0.136     |
| Baseline                               | 8.03     | 2.98      | 0.042     | 0.13      |
| Project Increment                      | 2.12     | 1.24      | 0.051     | 0.01      |

Note: see also Table 15.

Table 21 summarizes the incremental change in emissions that would occur if the Project were to operate at the maximum rate of 680,000 tons per year production and 100% of the ore being mined from the Butterfield and Sentinel Quarries.

Table 21 Incremental Change in Emissions from Project

|                   | Total<br>Sentinel<br>Butterfield<br>(tpy) | Total White<br>Knob (tpy) | Total LVPP<br>(tpy) | Total Offsite<br>(tpy) | Total Project<br>without<br>White Knob<br>Reductions<br>(tpy) | Total Project<br>with White<br>Knob<br>Reductions<br>(tpy) |
|-------------------|-------------------------------------------|---------------------------|---------------------|------------------------|---------------------------------------------------------------|------------------------------------------------------------|
| VOC               | 2.69                                      | -1.54                     | 0.01                | 0.11                   | 2.82                                                          | 1.27                                                       |
| NOx               | 48.1                                      | -26.4                     | 0.10                | 2.07                   | 50.3                                                          | 23.9                                                       |
| СО                | 32.6                                      | -21.1                     | 0.07                | 0.50                   | 33.1                                                          | 12.0                                                       |
| SOx               | 0.0022                                    | -0.0010                   | 0.0000              | 0.0027                 | 0.0049                                                        | 0.0038                                                     |
| TSP               | 262                                       | -151                      | 4.04                | 2.93                   | 269                                                           | 118                                                        |
| PM <sub>10</sub>  | 87.3                                      | -54.5                     | 0.76                | 0.68                   | 88.8                                                          | 34.3                                                       |
| PM <sub>2.5</sub> | 14.4                                      | -12.5                     | 0.18                | 0.25                   | 14.8                                                          | 2.38                                                       |
| CO₂e              | 9,900                                     | -4,978                    | 28.3                | 0.14                   | 9,929                                                         | 4,951                                                      |

## 5.4 Dispersion Modeling

Dispersion modeling was performed in consultation with the EPA Modeling Guidelines (40CFR 51, Appendix W) to determine the concentration of pollutants at receptors located near the Project and to estimate deposition of dust onto carbonaceous plant species which exist within and surrounding the Project. Consistent with the Guidelines, EPA's AERMOD Gaussian plume model was selected for use. AERMOD requires inputs characterizing the model domain, emissions sources, terrain, and meteorological conditions. The model domain was created to encompass the Project site, the White Knob Quarry site, the Omya processing facility, and nearby receptors beyond which pollutant concentrations would decrease with distance from the Project.

#### 5.4.1 Sources

Source characteristics including emissions rates, vertical and lateral dimensions, initial velocity, and location were determined by calculation using methods presented in this report and physical characteristics of each source. The Project includes fugitive area sources and no point sources (i.e., stacks). Initial lateral and vertical dimensions were selected based on engineering judgement regarding the nature of the source(s) being represented and the physical size of the source(s). The maximum size of a volume source in the model is 100 m x 100 m representing the mine pits. By way of comparison, the distance from the any non-haul road source to the nearest receptor exceeds 2,800 meters. Haul road emissions volume sources were converted from line-volume sources having a width and height equal to the road width and off-road truck height. These haul road parameters were converted to model source parameters using EPA approved methods documented in the Haul Road Workgroup Final Report (US EPA, March 2, 2012: <a href="https://www3.epa.gov/ttn/scram/reports/Haul Road Workgroup-Final Report Package-20120302.pdf">https://www3.epa.gov/ttn/scram/reports/Haul Road Workgroup-Final Report Package-20120302.pdf</a>). The large number of sources in the model, large areas on-site over which mobile equipment works, and relatively large distances to receptors were considered in choosing appropriate sizes for model objects.

In general, area sources and sources operating below the surrounding ground level (i.e., in pits) were assigned zero release height while plant equipment and mobile sources were assigned release heights that reflect the sources' actual height or represent wake off the source consistent with EPA policy for haul roads. Regardless, the property boundary and off-site receptors are at such great distances from the sources that there is no practical difference between 0 and 4.25 m releases. This is particularly true given that the AAQS analysis assumed that dry depletion of the plume would not occur (deposition is a separate model run). Thus, dust hitting the ground is reflected back into the air. The angle at which pollutants disperse in AERMOD results in pollutants hitting the ground within a lateral distance three times greater than the release height. Thus, the plume hits the ground within 13 m (50 feet) of the source and travels along the ground until it reaches the receptor which is no different than being released at ground level when receptors are hundreds of feet or more distant from the sources.

#### 5.4.2 Terrain

Dispersion modeling was performed utilizing flat terrain. Section 4.1 of the AERMOD Implementation Guide (EPA, 12.2016) and other historical guidance documents address modeling sources with terrain-following plumes in sloping terrain.

"For cases in which receptor elevations are lower than the base elevation of the source (i.e., receptors that are down-slope of the source), AERMOD will predict concentrations

that are less than what would be estimated from an otherwise identical flat terrain situation....

To avoid underestimating concentrations in such situations, it may be reasonable in cases of terrain-following plumes in sloping terrain to apply the non-DFAULT option to assume flat, level terrain. This determination should be made on a case-by-case basis, relying on the modeler's experience and knowledge of the surrounding terrain and other factors that affect the air flow in the study area, characteristics of the plume (release height and buoyancy), and other factors that may contribute to a terrain-following plume, especially under worst-case meteorological conditions associated with the source." (EPA, 12/2016).

In addition, the South Coast AQMD has the following warning posted on it's website.

"WARNING: According to the AERMOD Implementation Guide Link to external website. (PDF, 133kb) revised August 3,2015, for cases in which receptor elevations are lower than the base elevation of the source, AERMOD will predict concentrations that are less than what would be estimated from an otherwise identical flat terrain situation. While this is appropriate and realistic in most cases, for cases of down-sloping terrain where the plume is terrain-following, AERMOD will tend to underestimate concentrations when terrain effects are taken into account. In order to avoid underestimating concentrations in such situations, AQMD recommends the following:

- If all receptor elevations are lower than the base elevation of the source, the non-default option within AERMOD should be applied to assume flat, level terrain.
- 2. If some receptors are lower and some receptors are higher than the base elevation of the source, AERMOD should be run twice once using the default option and the second time using the non-default option. The maximum ground-level concentration from both runs should be reported."

  (http://www.aqmd.gov/home/library/air-quality-data-studies/meteorological-data/modeling-guidance).

Existing guidance supports the use of the non-default FLAT option and it was used so that the modeling would produce conservatively high concentrations and health risks as compared to the default option.

## 5.4.3 Meteorological Data

Meteorological data was purchased from Lakes Environmental after consultation with the MDAQMD. Existing weather stations for which meteorological data was available from the MDAQMD (Barstow, Hesperia, Lucerne Valley, Phelan, Trona, Twentynine Palms, and Victorville) were determined to be unrepresentative of the Project site conditions because they are located far from the site and in desert valleys whereas the Project site is in the foothills and mountains.

Lakes generated prognostic meteorological data for the five-year period of 2008 through 2012 based on coordinates within the Project area using the Mesoscale Meteorological model, MM5 (Pennsylvania State University / National Center for Atmospheric Research). At the time, MM5 was a non-default option and

observed meteorological data from a weather station was the recommended option for AERMOD. However, other EPA recommended models (i.e., grid models CAMX & CalPuff) could use MM5 data and be consistent with the Modeling Guidelines in effect at the time. Nevertheless, the observed weather data was determined by MDAQMD and Sespe to be unrepresentative and the MM5 data was determined likely to be more representative of conditions on-site because MM5 uses observational data from the weather stations and interpolates between them based on relevant factors that affect wind speed and direction (e.g., terrain). EPA's website (<a href="https://www.epa.gov/scram/air-modeling-meteorological-grid-models">https://www.epa.gov/scram/air-modeling-meteorological-grid-models</a>) currently states:

"For air quality modeling purposes, meteorological grid models are used in conjunction with chemical interaction models to provide gridded output of chemical species or pollutant data. Meteorological grid models use mathematical formulations that simulate atmospheric processes such as the change of winds and temperature in time. These meteorological parameters are calculated at distinct spatially equidistant points over an area of interest which is called a grid. When these models are applied in a retrospective mode (i.e. modeling a past event) they are able to blend ambient data with model predictions via four-dimensional data assimilation, thereby yielding temporal and spatially complete data sets that are grounded by actual observations.

There are several commonly-used meteorological grid models that can develop inputs for air quality models. These grid models differ in their simulation of atmospheric processes but each produce gridded meteorological parameters. There are also several post-processors which are needed to convert the raw meteorological modeling output to suitable air quality model input. A few of the most commonly used meteorological models and post-processors are briefly described below.

[The MM5 model] ... is a frequently-used meteorological model for historical episodes. It is a limited-area, nonhydrostatic, terrain-following sigma-coordinate model designed to simulate or predict mesoscale and regional-scale atmospheric circulations."

Meteorological data used in dispersion modeling was chosen based on the EPA Modeling Guidelines in effect at the time (40CFR51 Appendix W) and which have changed slightly to better incorporate prognostic meteorological grid model as a substitute for measured data in cases where the prognostic data would be more representative.

The meteorological data used as input to a dispersion model should be selected on the basis of spatial and climatological (temporal) representativeness as well as the ability of the individual parameters selected to characterize the transport and dispersion conditions in the area of concern. The representativeness of the data is dependent on:

- proximity of the meteorological monitoring site to the area under consideration;
- complexity of the terrain;
- exposure of the meteorological monitoring site; and
- period of time during which data are collected. (70FR 68243 and 82FR 5222).

Spatial representativeness of the data can be adversely affected by large distances between the source and receptors of interest and the complex topographic characteristics of the area. Temporal representativeness is a function of the year-to-year variations in weather conditions. Where appropriate, data representativeness should be viewed in

terms of the appropriateness of the data for constructing realistic boundary layer profiles and three dimensional meteorological fields. (70FR 68243 and 82FR 5222).

Former EPA Modeling Guidelines (2005) were silent on use of prognostic meteorological data. However, there was no better option at the time modeling was performed and EPA had come to allow its use with AERMOD in certain situations. Subsequently, EPA changed the Modeling Guidelines (2017) related to meteorological data as described in Federal Register preamble to the updated Modeling Guidelines. EPA states:

"We made extensive updates and modifications ... to reflect current EPA practices, requirements, and recommendations for determining the appropriate modeling domain and model input data from new or modifying source(s) or sources under consideration for a revised permit limit, from background concentrations (including air quality monitoring data and nearby and other sources), and from meteorology....

The use of prognostic mesoscale meteorological models to provide meteorological input for regulatory dispersion modeling applications has been incorporated throughout the "Meteorological Input Data" subsection, including the introduction of the MMIF as a tool to inform regulatory model applications...." (82 FR 5201-5202, January 17, 2017).

A portion of the most recent Modeling Guidelines (2017) that addresses how prognostic meteorological data should be evaluated prior to its use is paraphrased below.

For some modeling applications, there may not be a representative National Weather Service (NWS) or comparable meteorological station available (e.g., complex terrain), and it may be cost prohibitive or infeasible to collect adequately representative site-specific data. For these cases, it may be appropriate to use prognostic meteorological data, if deemed adequately representative, in a regulatory modeling application. However, if prognostic meteorological data are not representative of transport and dispersion conditions in the area of concern, the collection of site-specific data is necessary.

The EPA has developed a processor, the MMIF, to process MM5 (Mesoscale Model 5) or WRF (Weather Research and Forecasting) model data for input to various models including AERMOD. MMIF can process data for input to AERMET or AERMOD for a single grid cell or multiple grid cells. MMIF output has been found to compare favorably against observed data (site-specific or NWS).... (Section 8.4.5.1, 2017 Modeling Guidelines).

a. Prognostic model evaluation. Appropriate effort by the applicant should be devoted to the process of evaluating the prognostic meteorological data. The modeling data should be compared to NWS observational data or other comparable data in an effort to show that the data are adequately replicating the observed meteorological conditions of the time periods modeled. An operational evaluation of the modeling data for all model years (i.e., statistical, graphical) should be completed. The use of output from prognostic mesoscale meteorological models is contingent upon the concurrence with the appropriate reviewing authority that the data are of acceptable quality, which can be demonstrated through statistical comparisons with meteorological observations aloft and at the surface at several appropriate locations.

- b. <u>Representativeness</u>. When processing MMIF data for use with AERMOD, the grid cell used for the dispersion modeling should be adequately spatially representative of the analysis domain. In most cases, this may be the grid cell containing the emission source of interest. Since the dispersion modeling may involve multiple sources and the domain may cover several grid cells, depending on grid resolution of the prognostic model, professional judgment may be needed to select the appropriate grid cell to use. In such cases, the selected grid cells should be adequately representative of the entire domain.
- c. <u>Grid resolution</u>. The grid resolution of the prognostic meteorological data should be considered and evaluated appropriately, particularly for projects involving complex terrain. The operational evaluation of the modeling data should consider whether a finer grid resolution is needed to ensure that the data are representative. The use of output from prognostic mesoscale meteorological models is contingent upon the concurrence with the appropriate reviewing authority that the data are of acceptable quality. (Section 8.4.5.2, 2017 Modeling Guidelines).

In summary, the meteorological dataset used in AERMOD to estimate pollutant concentrations was appropriately selected and more representative of conditions on-site and at receptor locations than observational data that could have been used. A co-benefit of purchasing MM5 data was that the electronic file format enabled use of AERMOD which was EPA's preferred model at the time and remains the preferred model today. Otherwise, EPA's ISCST model which is the predecessor to AERMOD and no longer preferred would have been used because the observational meteorological data files available from MDAQMD were formatted for ISCST and lacked certain parameters needed to run AERMOD.

Illustrations of the dataset including a wind rose (Figure 4), a wind speed frequency distribution graph (Figure 5), and a flow chart for the meso-scale meteorological (MM5) modeling system (Figure 6) that produced the dataset are presented in Appendix A. Other documentation describing characteristics of the dataset including wind speed frequency tables underlying Figure 4 and Figure 5; and MM5 model settings are presented in Appendix J.

#### 5.4.4 Receptors

Several models with a consistent set of volume sources and varying list of receptors (i.e. discrete, boundary, and grid) were run. The discrete receptor model includes the receptors shown in Table 22 and Figure 7 (Appendix A).

The boundary receptor model run includes only receptors along the boundary around the quarries (Figure 8). The boundary receptor run is used to estimate concentrations of  $PM_{10}$  and  $PM_{2.5}$  at the point of maximum impact for comparison to primary ambient air quality standards (i.e. to protect human health). The boundary on the north was chosen to coincide with the limits of the national forest as suggested by USFS. The boundary on the south was chosen to reflect the concentration that may be experienced by an individual on the nearest roadway. The boundary on the east was chosen to be half way between the Sentinel Quarry and the neighboring quarry. The boundary on the west was chosen to extend approximately the same distance from the Butterfield Quarry as the boundary on the east extends from the Sentinel Quarry.

Table 22 Nearby Receptors

| ID | UTM, Easting<br>(meters) | UTM, Northing (meters) | Type – Location                                            |
|----|--------------------------|------------------------|------------------------------------------------------------|
| 1  | 507564                   | 3796038                | Boy Scout Ranch – mountains 1.85 miles southeast of B5 Pad |
| 2  | 504448                   | 3801743                | Buddhist Temple – foothills 1.7 miles south of LVPP        |
| 3  | 505532                   | 3803636                | Residence – valley 0.5 mile south of LVPP                  |
| 4  | 505725                   | 3803616                | Residence – valley 0.5 mile south of LVPP                  |
| 5  | 505322                   | 3802524                | Residence – valley 1.2 miles south of LVPP                 |
| 6  | 504060                   | 3801770                | Residence – foothills 1.8 miles south-southwest of LVPP    |
| 7  | 504222                   | 3801955                | Residence – foothills 1.7 miles south-southwest of LVPP    |
| 8  | 503804                   | 3802143                | Residence – foothills 1.7 miles south-southwest of LVPP    |
| 9  | 503942                   | 3802456                | Residence – foothills 1.5 miles southwest of LVPP          |
| 10 | 503842                   | 3802821                | Residence – foothills 1.3 miles southwest of LVPP          |

Grid receptor model runs were used in the health risk assessment and the deposition model to generate contoured plots of the results. Grid results were used only for illustration purposes with exception of the deposition impact on vegetation. Due to the nature of the sources which release near the ground (i.e., as compared to a source with a tall stack such as a power plant), the concentration of pollutants decreases with distance from the source and, in fact, may follow the terrain as discussed in relation to the use of the FLAT option above. In cases like this, the point of compliance for AAQS evaluation will be on the project boundary. Receptors located along the project boundary are spaced 50 meters apart which should be acceptable for a site of this size and where the primary sources are mobile (i.e., unlikely to cause a hot spot). Illustrations of contours for pollutants affecting health risk use a grid with 200 meter spacing (Figure 9). The deposition model was prepared to inform the biological impacts of the dust landing on the carbonaceous plants (i.e., as opposed to remaining in air and impacting human health). Areas of carbonaceous plant species span great distances and occur intermittently. Thus, 500 meter grid spacing was used to estimate deposition on the plants and that information was transmitted to the biological consultant (Figure 10).

The deposition model is the only model run that assumes the plume is depleted by deposition. The deposition model considers three sizes of particulates. TSP (i.e. PM<sub>30</sub>), PM<sub>10</sub>, and PM<sub>2.5</sub> are calculated for each source and the amount of each size varies based on the source type accordingly. For instance, the dominant source of dust emissions is the roads which emit a combination of dust and diesel particulate matter. When dust and diesel PM emissions are combined the resulting fractionation for unpaved roadway particulates is 3.34% PM<sub>2.5</sub>; 25.5% PM<sub>10-2.5</sub>; and 71.2% PM<sub>30-10</sub>. The combination of sources operating at the LVPP results in fractionation of 4.5% PM<sub>2.5</sub>; 14.0% PM<sub>10-2.5</sub>; and 81.5% PM<sub>30-10</sub>. Other source fractionations were varied according to the calculated amounts of dust and diesel PM.

Table 23 Deposition Parameters

| Particle Size Bin (μm) | Assumed Density (grams/cubic centimeter) |
|------------------------|------------------------------------------|
| 2.5                    | 1.0                                      |
| 2.5 - 10 μm            | 1.75                                     |
| <br>10 - 30 μm         | 2.5                                      |

Note: Source: http://www.arb.ca.gov/research/ltads/ltads-ws/4-dust.pdf.

The weight of particles presented in Table 23 is most appropriate for dust particles which constitute the majority of particulate matter emitted by project sources. Because the diesel particulates are emitted in smaller quantities, the dust densities are applied to all particulates regardless of their origin.

## 5.5 Health Risk Assessment

Constituents in diesel exhaust and dust emissions were speciated into toxic components using the following CARB Speciation Profiles:

- Particulate matter from unpaved roads (PM Profile #470);
- Particulate matter from paved roads (PM Profile #471);
- Particulate matter from aggregate processing (PM Profile #90013);
- Diesel particulate matter (PM Profile #6139 for the 2013 fleet); and
- Diesel total organic gases (Organic Profile #818).

The health risk assessment was performed using a combination of AERMOD dispersion model (version 12345) and HARP2 (version 15180). AERMOD was used to generate plot files containing dispersion coefficients ( $\chi$ /Q) that were input to the HARP2 Air Dispersion Model and Risk Tool (ADMRT version 15180). To produce the dispersion coefficients, each source in the AERMOD model was assigned the unit rate emissions factor of one gram per second (1.0 g/s). Values in the resulting plot files were then multiplied by emissions rates for each source to determine the ground level concentration (GLC, in units  $\mu$ g/m³) of each pollutant at each receptor location. Appendix J contains a TAC emissions summary table for the Project and Appendix L is a CDROM containing the modeling files.

Peak hour and annual average GLCs calculated by HARP2 were then used for health risk assessment in HARP2. Non-cancer (acute and chronic) and cancer health risks were calculated for individual resident receptors and for worker receptors. Population-wide cancer risk was not calculated due to the remote location of the Project site and results of the individual modeling presented below.

## 5.5.1 Inhalation Pathway

Non-cancer health risks were determined in HARP2 by dividing the GLC of each pollutant at each receptor by the corresponding reference exposure level (REL, units of  $\mu g/m^3$ ) resulting a hazard index (HI). The HIs for pollutants affecting each target organ were then summed to determine the total HI for each target organ. The target organ with the greatest HI is reported as the non-cancer health risk at each receptor. Worker chronic non-cancer health risk results were multiplied by a Worker Adjustment Factor (WAF) of 4.2 which represents the amount overlap between the Project operating schedule and the worker's work schedule; both of which are assumed to be 8 hr/day, 5 days/wk.

For cancer risk, exposure to individuals was evaluated in HARP2 by calculating the daily dose of each pollutant in milligrams per kilogram body weight per day (mg/kg/d). HARP2 algorithms were used to calculate dose for exposure through inhalation, dermal absorption, ingestion, and mother's milk pathways. Other pathways that are available include drinking water, fish consumption, home grown produce, beef/dairy, and pig/chicken/egg and were not used due to lack of available input parameters and observed characteristics of the residences near the Project site (i.e., no farms or lakes in the vicinity). Although the emissions sources of particulates are controlled, deposition of particles onto the skin, soil, and other media was assumed to occur at the uncontrolled rate of 0.05 meters per second (m/s) because the results were observed to be greater than when the controlled rate of 0.02 m/s was used.

HARP2 contains average and high-end point estimates and data distributions for adults and children for each exposure pathway. The point estimates and data distributions that were used in the HRA fall within the age bins of 3<sup>rd</sup> trimester to birth, birth to two years of age (0<2), two years through 16 years of age (2<16) and 16 years through 30 years of age (16<30; adult). Table 24 presents the mean and high end point estimates for residential intake rates that were assumed in the HRA.

Table 24 Point Estimates of Residential Daily Breathing Rates by Age Group

|                            | 3 <sup>rd</sup> Trimester <sup>1</sup> | 0<2 Years     | 2<16 Years    | 16<30 Years   |
|----------------------------|----------------------------------------|---------------|---------------|---------------|
| Estimate                   | (L/kg BW-day) <sup>2</sup>             | (L/kg BW-day) | (L/kg BW-day) | (L/kg BW-day) |
| Mean (65%ile) <sup>3</sup> | 225                                    | 658           | 452           | 210           |
| High-End (95%ile)          | 361                                    | 1090          | 745           | 335           |

Source: HRA Guidelines (p. 5-25).

- <sup>1</sup> 3<sup>rd</sup> trimester breathing rates based on breathing rate of pregnant women using the assumption that the dose to the fetus during the 3<sup>rd</sup> trimester is the same as that to the mother.
- <sup>2</sup> Values are in units of liters of air per kilogram of body weight per day.
- Mean values were not used in the HRA and are provided for informational purposes only.

As recommended in the HRA Guidelines, workers were assumed to be between the ages 16 and 70 (16<70) and performing moderate intensity activities. The mean and high-end intake rates for workers were 170 and 230 liters per kilogram per 8-hours (L/kg-8-hrs). Workers were assumed to be exposed for 25 years as recommended in the HRA Guidelines (p. 5-26).

Annual residential dose was calculated by HARP2 using the GLC (mg/m³), the intake rate (L/kg-day), 365 days/yr exposure frequency, and an assumption that the entire mass of pollutants inhaled is absorbed into the body of the individual exposed (i.e., no pollutants are exhaled). A fraction of time at home (FAH) of 73% was applied for individuals 16 years and older but could have been applied from the 3<sup>rd</sup> trimester to age two (85%) and from two to 16 years (72%) because there is likely no school within the 1 in 1 million cancer risk contour (p. 8-5 HRA Guidelines). Annual worker dose was calculated the same way and adjusted to 250 days/yr exposure frequency by multiplying the result by 0.68.

Inhalation dose of each pollutant at each receptor for each year was then multiplied in HARP2 by the inhalation cancer slope factor for the pollutant to estimate annual cancer risk in units of excess cancer cases per million individuals exposed. The total cancer risk from inhalation was then calculated by summing the annual risk from each pollutant and year of exposure. Residential cancer risk assumed exposure duration of 30 years as recommended by OEHHA in the HRA Guidelines (p. 8-1) and the OEHHA Derived Method intake rate for all exposure pathways and all ages which is more conservative than the recommended Risk Management Policy (RMP) (95/80%ile combination for inhalation pathway and 65%ile for other pathways), and RMP Derived Method (95/80%ile combination for two dominant exposure pathways and 65%ile for other pathways). The RMP 95/80%ile combination refers to applying the 95<sup>th</sup> percentile intake rate for ages less than two years and the 80<sup>th</sup> percentile intake rate for ages over two years whereas the OEHHA Derived Method uses 95%ile intake rate for all ages and results in greater risk estimates which is conservative.

# 5.5.2 Ingestion Pathway

The average concentration of pollutants in soil is a function of the deposition, accumulation period, chemical specific half-life, mixing depth, and soil bulk density. For simplicity and health protection, the

HARP2 default 70-year soil deposition for the accumulation period was assumed. As discussed above, the uncontrolled deposition rate (0.05 m/s) was applied, which is conservative. Equations and parameters used to estimate the concentration of pollutant in the soil from the GLC can be found in the HRA Guidelines (p. 5-6 to 5-8).

The exposure dose through residential soil ingestion varies by age and was calculated for each age group. The dose is calculated by HARP2 based on the concentration in soil, pollutant specific gastrointestinal relative absorption fraction (GRAF, unitless), soil ingestion rate (mg/kg-day), and exposure frequency using the equation presented in the HRA Guidelines (p. 5-43). For simplicity, GRAF was assigned a value of one which represents the entire mass of pollutant being absorbed. Soil ingestion rates vary by age and the high-end point estimates shown in Table 25 were used.

Table 25 Soil Ingestion Rate Point Estimates by Age Group

| Estimate                   | 3 <sup>rd</sup> Trimester <sup>1</sup><br>(mg/kg BW-yr) <sup>2</sup> | 0<2 Years<br>(mg/kg BW-yr) | 2<16 Years<br>(mg/kg BW-yr) | 16<30 Years<br>(mg/kg BW-yr) |
|----------------------------|----------------------------------------------------------------------|----------------------------|-----------------------------|------------------------------|
| Mean (65%ile) <sup>3</sup> | 0.7                                                                  | 20                         | 3                           | 0.7                          |
| High-End (95%ile)          | 3                                                                    | 40                         | 10                          | 3                            |

Source: HRA Guidelines (p. 5-44).

- <sup>1</sup> 3<sup>rd</sup> trimester is assumed to be the mother's soil ingestion rate.
- <sup>2</sup> Values are in units of milligrams of pollutant ingested per kilogram of body weight per year.
- <sup>3</sup> Geometric mean (GM) values were not used in the HRA and are provided for informational purposes only.

## 5.5.3 Dermal Pathway

Exposure through dermal absorption (dose-dermal) is a function of the soil or dust loading of the exposed skin surface, the amount of skin surface area exposed, and the concentration and availability of the pollutant. The annual dermal load (ADL) is a composite of the body surface area per kg body weight, exposure frequency, and soil adherence to the skin. High-end point estimates of ADL for individuals located in a mixed climate were used.

Table 26 Annual Dermal Loading Point Estimates by Age Group

|                            | 3 <sup>rd</sup> Trimester <sup>1</sup> | 0<2 Years     | 2<16 Years    | 16<30 Years   |
|----------------------------|----------------------------------------|---------------|---------------|---------------|
| Estimate                   | (mg/kg BW-yr) <sup>2</sup>             | (mg/kg BW-yr) | (mg/kg BW-yr) | (mg/kg BW-yr) |
| Mean (65%ile) <sup>3</sup> | 1,100                                  | 2,200         | 5,700         | 1,100         |
| High-End (95%ile)          | 2,400                                  | 2,900         | 8,100         | 2,400         |

Source: HRA Guidelines (p. 5-37).

- <sup>1</sup> 3<sup>rd</sup> trimester based on ADL of mother normalized to body weight assuming exposure to the mother and feus are the same.
- <sup>2</sup> Values are in units of milligrams of pollutant on skin per kilogram of body weight per year.
- Mean values were not used in the HRA and are provided for informational purposes only.

High-end ADL was combined with the concentration of pollutant in soil (see Section 5.5.2), the fraction absorbed across skin (pollutant-specific factor), the exposure duration (i.e., 30 years) and the averaging time (i.e., 70 year lifetime) using equations presented in the HRA Guidelines (p. 5-41) to estimate the dermal dose for each residential receptor. Worker receptors used the adult ADL and omitted exposure duration and averaging time from the calculation.

## 5.5.4 Mother's Milk Pathway

Estimates of the concentration of pollutants in a mother's milk require the use of the air, water, and soil environmental fate evaluations. Infants would be exposed to the pollutants in concentrations equal to the concentrations at which the mother is exposed from birth up to 25 years of age when the infant is born. The exposed infant is assumed to be fully breastfed for the first year of life. The summed average dose daily dose (mg/kg-day) from all pathways is calculated for the nursing mother using equations in the HRA Guidelines (p. 5-59). Breast milk intake rates of 101 and 139 g/kg-day are used by HARP2.

#### 6.0 PROJECT IMPACTS

The Project does not propose to construct any structures other than excavations and piles which are created from mining operations. Thus, only operation phase is assessed (Appendix I).

- Regional air quality impacts are assessed in Section 6.1 by comparison to the MDAQMD massbased significance criteria.
- Localized criteria pollutant impacts are assessed in Section 6.2 by comparison to Significant Impact Levels (SILs) because the region is in non-attainment for pollutants modeled (i.e., PM<sub>10</sub>, PM<sub>2.5</sub>).
- Federal conformity is assessed based on federal regulations (i.e., 40CFR93) and MDAQMD Rule 2002 which mirrors the federal regulation as discussed in Sections 3.2 and 4.1.
- Impacts on Class I Wilderness Areas are assessed in Section 6.4 using Air Quality Related Values as discussed in Section 3.3.
- Health risk is not discussed in this section because the assessment included the effects of proposed mitigation measures which are discussed in the next section, Section 7.0.
- Greenhouse gas emissions impacts are assessed using the MDAQMD significance criteria in Section 6.5.

# 6.1 Regional Air Quality Impacts

Project emissions are compared to the mass-based significance criteria from the MDAQMD CEQA Handbook in Table 27.

Table 27 Project Emissions and Significance Determination

|                   | Project Increment (tpy) | Significance Criteria (tpy) | Significant? |
|-------------------|-------------------------|-----------------------------|--------------|
| VOC               | 1.27                    | 25                          | No           |
| NOx               | 23.9                    | 25                          | No           |
| СО                | 12.0                    | 100                         | No           |
| SOx               | 0.0038                  | 25                          | No           |
| TSP               | 118                     | n/a                         | No           |
| PM <sub>10</sub>  | 34.3                    | 15                          | Yes          |
| PM <sub>2.5</sub> | 2.38                    | 15                          | No           |
| CO <sub>2</sub> e | 4,951                   | 100,000                     | No           |
| H₂S               | ND                      | 10                          | No           |
| Pb                | 0.012                   | 0.6                         | No           |

Notes: ND = Not Determined; n/a = not applicable; tpy = tons per year.

As shown in Table 27, the increment in emissions exceeds the mass-based threshold for PM<sub>10</sub>. Other pollutant emissions are less than the significance criteria and will not result in a significant impact on regional air quality.

# 6.2 Localized Criteria Pollutant Impacts

A project will have a "potentially significant impact" on air quality if it "violates any air quality standard or contributes substantially to an existing or projected air quality violation." Project emissions have the potential to create localized "hot spots" if, when summed with existing ambient concentrations, they result in concentrations greater than the applicable AAQS. The main criteria pollutants of concern for the Project are TSPs (used for deposition modeling), PM<sub>10</sub>, and PM<sub>2.5</sub>. Ambient air quality standards for pollutants that are less of a concern are discussed first followed by modeling results for the criteria pollutants of concern.

As discussed in the EPA Modeling Guidelines (40 CFR Part 51, Appendix W), CO AAQS exceedence is generally a concern at high volume vehicular intersections in urban areas that operate at level of service (LOS) D or worse and where CO is emitted into partially or completely enclosed spaces such as parking structures and garages. The Guidelines state the following regarding CO models:

"5.1.a. This section identifies modeling approaches or models appropriate for addressing ozone (O3) a, carbon monoxide (CO), nitrogen dioxide (NO $_2$ ), particulates (PM-2.5 and PM-10), and lead. These pollutants are often associated with emissions from numerous sources. Generally, mobile sources contribute significantly to emissions of these pollutants or their precursors. For cases where it is of interest to estimate concentrations of CO or NO $_2$  near a single or small group of stationary sources, refer to Section 4. (Modeling approaches for SO $_2$  are discussed in Section 4.)

5.1.i. Models for assessing the impact of CO emissions are needed for a number of different purposes. Examples include evaluating effects of point sources, congested intersections and highways, as well as the cumulative effect of numerous sources of CO in an urban area.

This Project has no stationary combustion sources, is not in an urban area, and would not change the number of vehicles on a public road. Moreover, the maximum possible increase in CO emissions is 12 ton/yr which is much less than the PSD screening threshold of 250 ton/yr for a single source above which CO modeling is required. Finally, even if the Project was responsible for an increasing the concentration of CO by an amount relative to the increase in emissions over the existing emissions (i.e., 40% as shown in Table 16, existing concentrations and applicable AAQS are in Table 1 and Table 2), the result would still not exceed the AAQS. For these reasons, modeling for CO is unwarranted for the Project and the impact on CO AAQS is considered less than significant.

 $SO_2$  AAQS exceedences are normally a concern for industrial facilities and specifically those that burn coal or refine petroleum. In fact, the EPA Guidelines recommend all modeling for  $SO_2$  be performed using methods applicable to stationary sources (i.e., AERMOD). The maximum possible increase in  $SO_2$  emissions is 0.0038 ton/yr which is much less than the PSD screening threshold of 40 ton/yr for a single source above which  $SO_2$  modeling is warranted. Moreover, California has regulations that affect each inuse diesel engine on-site and the fuel burned in those engines. In-use requirements are implemented on

a fleetwide basis and require all engines to be replaced or retrofit with diesel particulate filters. In California, diesel fuel is required to be ultra-low sulfur which has less than 15 ppmw sulfur as compared to EPA standards which require less than 2,000 ppmw sulfur. Finally, even if the Project was responsible for an increasing the concentration of SO<sub>2</sub> by an amount relative to the increase in emissions over the existing emissions (i.e., 40% as shown in Table 16, existing concentrations and applicable AAQS are in Table 1 and Table 2), the result would still not exceed the AAQS. For these reasons, SO<sub>2</sub> modeling is unwarranted for the Project and the impact on SO<sub>2</sub> AAQS is considered less than significant.

 $NO_2$  AAQS exceedences are normally a concern for facilities with a large combustion source. The quarrying and transportation of materials is performed by diesel engines which are a source of  $NO_2$ . However, the diesel vehicles are comparatively small emitters of  $NO_2$  and they move in order to perform job tasks. Movement reduces the likelihood of a hot spot.  $NO_2$  has annual and hourly AAQS.

On an annual basis, the Project would result in an increase in NOx emissions that is less than the mass-based MDAQMD CEQA Significance Criteria. Therefore, modeling to determine annual  $NO_2$  concentration for comparison to the AAQS is not warranted.

On an hourly basis, the Project may increase NOx hourly potential to emit by adding up to four offroad engines. Specifically, two offroad haul trucks, one loader/excavator, and one mobile crusher/screening system or surface miner. The potential for the Project to cause or contribute to an exceedence of the hourly  $NO_2$  AAQS is unlikely given the size of the operational area (214.8 acres), distance from the quarries where activity is expected to be most intense to the Project boundary, and the limited potential increase in hourly activity at any one location on-site. Therefore, modeling hourly  $NO_2$  concentrations is not warranted for the Project and the impact on  $NO_2$  AAQS is considered less than significant.

Emissions of the criteria pollutants of concern for the Project (i.e.,  $PM_{10}$  and  $PM_{2.5}$ ) are modeled to predict concentrations at the off-site point of maximum impact (PMI). For Project sources that are close to the ground relative to the distance to the boundary, the PMIs are predicted at the property boundary. Table 28 shows impact assessment results for the  $PM_{10}$  and  $PM_{2.5}$  air dispersion models that were prepared.

Table 28 PM<sub>10</sub> and PM<sub>2.5</sub> Concentrations at Point of Maximum Impact and Significance Determination

| (all values in units μg/m³) | PM <sub>10</sub> -24hr | PM <sub>10</sub> -Annual | PM <sub>2.5</sub> -24hr | PM <sub>2.5</sub> -Annual |
|-----------------------------|------------------------|--------------------------|-------------------------|---------------------------|
| Increment                   | 14.4                   | 3.07                     | 3.0                     | 0.37                      |
| Background                  | 160.2                  | 18.5                     | 35.1                    | 9.7                       |
| Cumulative Concentration    | 174.6                  | 21.57                    | 38.1                    | 10.07                     |
| Most Stringent AAQS         | 50                     | 20                       | 12                      | 35                        |
| SIL                         | 10.4                   | 2.08                     | 2.5                     | 0.63                      |
| Exceeds AAQS?               | No                     | No                       | No                      | No                        |
| Exceeds SIL?                | Yes                    | Yes                      | Yes                     | No                        |

Note: PMI for the 24-hr concentrations occurs at 506637.17, 3798752.79 which is located east of Sentinel Quarry. Annual concentration PMI occurs at 505406.72, 3801304.61 which is where the Project boundary crosses Crystal Creek Road.

OM01 SB-AQHRCCIA fnl.docx 48 Sespe Consulting, Inc.

Results of criteria pollutant modeling show that the Project alone would not exceed the most stringent AAQS but would increase pollutants concentrations above the both 24-hour SILs and the SIL for annual  $PM_{10}$ . The SILs represent the amount that is cumulatively considerable and are applied as the significance thresholds. The exceedences are because of road dust and bulldozing/grading each of which is likely overestimated by the MDAQMD and US EPA AP-42 calculation methodologies. Nevertheless, mitigations and alternatives are assessed later in this report that will reduce the impacts shown in Table 28.

Deposition of dust occurs onto plants surrounding the quarries and specifically areas called out for conservation in the Carbonate Plant Habitat Management Strategy. Deposition outside the operational areas of the quarries is on the order of 1.0 gram per square meter per year (g/m²-yr). This modeling was performed in order to disclose this impact so that it could be considered as an impact on Class II Wilderness Areas that surround the quarries (i.e. Class II areas are all areas in the National Forest that are not Class I).

## 6.3 Federal Conformity

As discussed in Section 3.1, federal conformity analysis is not required provided that:

- NOx and VOC emissions are less than 25 tons per year each;
- PM<sub>10</sub> emissions are less than 100 tons per year; and
- Emissions are less than 10% of the non-attainment area emissions inventory.

As shown in Table 27, the Project emits 1.27 tons per year of VOC (i.e. ROG) and 23.9 tons per year of NOx. Thus, VOC and NOx emissions are each less than the screening threshold. PM<sub>10</sub> emissions are 34.3 tons per year which is also less than the applicable screening threshold.

In 2010, sources within San Bernardino portion of the Mojave Desert Air Basin (CARB 2009 Almanac) emitted NOx and  $PM_{10}$  in the amounts of 55,125 tons per year and 43,646 tons per year, respectively. The Project increment represents 0.043% of the NOx emissions and 0.055% of the  $PM_{10}$  emissions in the region. The standard is to evaluate the emissions inventory within the non-attainment area. However, those emissions were not readily available. The Project may represent a somewhat higher percentage of the total emissions within the Western Mojave Desert Ozone Non-Attainment Area and/or the "portion of MDAQMD outside of Southeast Desert Modified AQMA." However, is unlikely that the emissions would exceed 10% in any case.

# 6.4 Class I Wilderness Area Impacts

The Federal Land Managers' AQRVs apply to new or modified major sources and are generally used for PSD permitting under the Clean Air Act. The Project does not propose a new stationary major source or a modified stationary major source that would require a permit under the Clean Air Act. Fugitive area source emissions and vehicular emissions are excluded from determining whether the quarry is a major source (i.e., only emissions from stationary sources are counted). The Omya facility is not considered a major source as evidenced by the fact that it holds local district operating permits rather than a federal operating permit under Title V of the Clean Air Act (i.e., as required by the implementing regulations in 40 CFR Part 70). The Project would modify the Sentinel and Butterfield Quarries by increasing the production rate. A major modification which would trigger review of AQRVs would have a significant emissions increase defined as exceeding the values from 40 CFR Section 52.21(b)(23) shown in Table 29.

Table 29 Comparison of Project Emissions with Major Modification Thresholds

| Pollutant         | Major Modification<br>Significant Increase<br>(ton/yr) | Project Increase<br>(ton/yr) | Mitigated Project<br>Increase (ton/yr) |
|-------------------|--------------------------------------------------------|------------------------------|----------------------------------------|
| CO                | 100                                                    | 12                           | 12                                     |
| NO <sub>X</sub>   | 40                                                     | 23.9                         | 15.3                                   |
| SO <sub>X</sub>   | 40                                                     | 0.0038                       | 0.0038                                 |
| PM                | 25                                                     | 118                          | 23                                     |
| PM <sub>10</sub>  | 15                                                     | 34.3                         | 2.1                                    |
| PM <sub>2.5</sub> | 10                                                     | 2.38                         | -3.39                                  |
| H2S               | 10                                                     | ND                           | ND                                     |
| Pb                | 0.6                                                    | 0.012                        | 0.012                                  |

As shown in Table 29, even when fugitive and mobile sources are included in the comparison, the increased emissions from sources operated by Omya do not exceed major modification thresholds and would therefore not be evaluated under the Prevention of Significant Deterioration (PSD) program. By not triggering PSD, the increase in emissions would also not be required to assess the AQRVs. Nevertheless, US Forest Service staff has required evaluation of potential impacts on AQRVs for this Project.

The FLAG report provides an equation (Quantity/Distance < 10; or Q/D < 10) by which projects may screen out of detailed analyses for impacts to AQRVs. Application of the equation is limited to projects that are located more than 50 km from a Class I Wilderness Area. This Project is located 18 km from the San Gorgonio Wilderness Area and may not use the Q/D approach.

Project sources are fugitive and mobile such that a coherent plume is physically impossible. Moreover, Figure 23, which shows the intervening terrain between the Project site and the San Gorgonio Wilderness Area is such that there is little possibility that an observer of one could see the other. As shown in Table 29, were this Project a single stationary source seeking an air quality operating permit, no analysis of AQRVs would be necessary.

Monitoring performed in the San Gorgonio Wilderness Area indicates that nitrates, organic matter, and sulfates have the strongest contributions to degrading visibility on worst days (Appendix D). The concentrations of these pollutants are the result of regional emissions and particularly emissions from the South Coast Air Basin to the west. The Project emits NOx, some of which may become nitrates but the relative amount as compared to the entire South Coast Air Basin is de minimis. The Project also emits particulate matter but the worst days are relatively unaffected by particulates. Thus, the Project is unlikely to emit pollutants in amounts that would affect visibility in the San Gorgonio and other nearby Class I Wilderness Areas. Nevertheless, visibility impact analysis was performed (Appendix N) using the Major Modification thresholds that are shown to be greater than Project emissions increase in Table 29. Based on the visibility analysis presented in Appendix N, even if the Project were to emit greater amounts of pollutants up to the Major Modification thresholds, the impact on visibility would be less than significant.

Phytotoxic ozone concentrations may result where the plume from a large combustion source travels relatively intact a sufficient distance for the photo-chemical reaction between NOx, reactive organics, and

sunlight to have occurred and produced ozone. The ozone would then be concentrated at a hot spot where vegetation could be affected. The Project sources of NOx are small and distributed over a large area. Therefore, it is unlikely that the Project would cause phytotoxic ozone concentrations.

The deposition AQRV is concerned with the acidification of water bodies. Specifically, sulfur and nitrogen compounds cause sensitive freshwater lakes and streams to lose acid-neutralizing capacity and sensitive soils to become acidified. Other ecosystems, including the forest, may exhibit fertilization and other effects from excess nitrogen deposition. The Project sources of nitrogen and sulfur are small and distributed over a large area. Therefore, it is unlikely that the Project would cause acidification and the Project impact for this AQRV is considered less than significant.

In summary, as discussed above and analyzed in Appendix N, the Project would have a less than significant effect on each of the ARQVs.

## 6.5 Greenhouse Gas Emissions Impact

GHG emissions would be 4,951 tons/yr of  $CO_2e$  (Appendix I) which is less than the MDAQMD criteria of 100,000 tons/yr. As discussed in Section 3.5.3, the County GHG Plan does not apply to the Project, because it is a stationary source and located on National Forest land. Thus, the 3,000 MTCO $_2e$ /yr screening criteria is not used. Even if the County screening criteria were used, the performance standards that would then be required could not be implemented because the Project does not involve the construction of buildings or additional employees traveling to the site.

#### 7.0 PROPOSED MITIGATIONS AND RESIDUAL IMPACTS

The Project would result in significant PM<sub>10</sub> emissions and concentrations. The following mitigations are recommended to reduce impacts to less than significant levels:

Mitigation Measure AQ-1: Unpaved roads shall be controlled by at least 80% using methods that are

consistent with MDAQMD guidance.

Mitigation Measure AQ-2: Areas to be graded and where bulldozer operates shall controlled by at

least 85% using methods that are consistent with MDAQMD guidance.

# 7.1 Mitigated Mass-Based Criteria Pollutant Impacts

Table 30 presents the mitigated increment in emissions (Appendix J: Meteorological Data Used in Modeling

Appendix K) and compares the increment to significance thresholds. As shown in Table 30, Mitigation Measures AQ-1 through AQ-2 reduce Project emissions to less than the MDAQMD significance thresholds.

**Table 30** Mitigated Emissions Comparisons

|                   | Mitigated Increment (tpy) | Significance Threshold (tpy) | Significant? |
|-------------------|---------------------------|------------------------------|--------------|
| VOC               | 1.27                      | 25                           | No           |
| NOx               | 23.9                      | 25                           | No           |
| СО                | 12.0                      | 100                          | No           |
| SOx               | 0.0038                    | 25                           | No           |
| TSP               | 23                        | n/a                          | No           |
| PM <sub>10</sub>  | 2.1                       | 15                           | No           |
| PM <sub>2.5</sub> | -3.39                     | 15                           | No           |
| H <sub>2</sub> S  | ND                        | 10                           | No           |
| Pb                | 0.012                     | 0.6                          | No           |

Note: ND = Not Determined; n/a = not applicable; tpy = tons per year.

Localized concentrations are also mitigated to less than significant levels by AQ-1 and AQ-2. Modeling results showing mitigated emissions impacts are shown in Table 31. Although cumulative concentration exceeds AAQS, the project effect would be de minimis because it does not exceed the SIL.

Table 31 Mitigated PM<sub>10</sub> and PM<sub>2.5</sub> Concentrations at PMI and Significance Determination

| (all values in units μg/m³) | PM <sub>10</sub> -24hr | PM <sub>10</sub> -Annual | PM <sub>2.5</sub> -24hr | PM <sub>2.5</sub> -Annual |
|-----------------------------|------------------------|--------------------------|-------------------------|---------------------------|
| Increment                   | 7.9                    | 1.72                     | 1.54                    | 0.23                      |
| Background                  | 160.2                  | 18.5                     | 35.1                    | 9.7                       |
| Cumulative Concentration    | 168.1                  | 20.27                    | 36.64                   | 9.93                      |
| Most Stringent AAQS         | 50                     | 20                       | 12                      | 35                        |
| SIL                         | 10.4                   | 2.08                     | 2.5                     | 0.63                      |
| Exceeds AAQS?               | No                     | No                       | No                      | No                        |
| Exceeds SIL?                | No                     | No                       | No                      | No                        |

Note: PMI for the 24-hr concentrations occurs at 505493.47, 3797728.78 which is located south of the B5 Pad. Annual concentration PMI occurs at 505406.72, 3801304.61 which is where the Project boundary crosses Crystal Creek Road.

# 7.2 Health Risk Impacts

TACs emitted from project operation consist mainly of those found in vehicle exhaust and, to a lesser extent, trace amounts of metals and silica found fugitive dust. Table 32 presents health risk predicted at nearby receptors. As shown in Table 32, health risk impacts from the Project are less than significant. Figure 13 through Figure 17 (Appendix A) present contoured plots of health risk for the Project.

Table 32 Health Risk Impacts and Significance Determination

| Receptor ID | Cancer Risk* | Chronic Non-Cancer<br>Risk (H.I.)* | Acute Non-Cancer<br>Risk (H.I.)* | Significant? |
|-------------|--------------|------------------------------------|----------------------------------|--------------|
| R1          | 2.52         | 0.042                              | 0.098                            | No           |
| R2          | 8.41         | 0.086                              | 0.093                            | No           |
| R3          | 5.82         | 0.055                              | 0.036                            | No           |
| R4          | 4.51         | 0.046                              | 0.033                            | No           |
| R5          | 9.67         | 0.087                              | 0.068                            | No           |
| R6          | 5.69         | 0.064                              | 0.078                            | No           |
| R7          | 6.32         | 0.066                              | 0.073                            | No           |
| R8          | 4.00         | 0.044                              | 0.048                            | No           |
| R9          | 3.96         | 0.042                              | 0.037                            | No           |
| R10         | 2.91         | 0.031                              | 0.014                            | No           |

<sup>\*</sup>Values represent excess cancer cases per million people exposed and hazard index (H.I.).

#### 8.0 ALTERNATIVES

Reasonable alternatives were developed that respond to the significant issues, reduce potential environmental impacts and address the purpose of and need for action and project objectives. Alternatives that did not meet the purpose of and need for action, did not resolve environmental conflicts and/or were not available or feasible were eliminated from detailed consideration

The Forest Supervisor and County identified the following four alternatives for detailed analysis in this DEIR/EIS, each of which is summarized below, followed by the detailed analysis.

#### 8.1 Alternative 1: No Action/Mining under Current Entitlements

Under this alternative, Omya would not expand the Butterfield - Sentinel Quarries. The existing permitted mining activities located on approximately 137 acres within the 954 acres of unpatented placer claims controlled by Omya would continue in accordance with the approved POO and Reclamation Plans and other Federal, State and local regulations.

Cancer risk which would be less than for the Project due to the shortened life of the resource and exposure duration. The additional equipment described in Table 5 of the Amended Plan of Operations (June 2013) would presumably not be added under this alternative. Nevertheless, existing entitlements would allow the project maximum of 680,000 tons to be produced from the Sentinel and Butterfield quarries exclusively. Aside from the minor differences in the number and/or type of equipment and the slightly reduced cancer risk, the air quality impacts of the No Action alternative are the same as the Project alternative.

## 8.2 Alternative 2: Proposed Project

This alternative is the Proposed Project. It reflects the activities identified in the Amended POO and Reclamation Plan submitted to the Forest Service and the Mining and Reclamation Plan CUP submitted to the County. The potential impacts to air quality for Alternative 2 are discussed in Sections 6.0 and 7.0 of this AQIA.

## 8.3 Alternative 3: Partial Implementation – Butterfield Quarry Expansion Only

Alternative 3 would allow for only the expansion of the Butterfield Quarry. The Sentinel Quarry would continue to be mined under its current permit approved in 2003. In this alternative the Butterfield Quarry would have a shorter duration of 20 years through year 2035 instead of 40 years as proposed in Alternative 2. It would also have a smaller footprint than Alternative 2 by approximately 50 acres.

This alternative would have similar differences from the Project as the No Action alternative described above. Specifically, cancer risk would be less than for the Project due to the shortened life of the resource and exposure duration.

#### 8.4 Alternative 4: Combined Production with the White Knob Quarry

Historically the limestone ore provided to the LVPP has been approximately a 60/40 ratio between the Butterfield and Sentinel Quarries and the White Knob Quarry. This alternative would assume that instead of the Butterfield and Sentinel Quarries providing 100% (680,000 tpy) of the ore to the LVPP, a range of more realistic production mixes between the quarries would be evaluated.

This alternative would be more likely than the Project alternative and will result in less difference from the existing setting. This alternative was determined by adjusting the ratio of quarry production until the  $PM_{10}$  emissions were less than the significance threshold (Appendix L). Butterfield and Sentinel can process 77% of the ore without exceeding the significance thresholds in Table 33.

Table 33 Alternative 4 Emissions Comparison (77% from Butterfield and Sentinel Quarries)

|                   | Project Increment (tpy) | Significance Threshold (tpy) | Significant? |
|-------------------|-------------------------|------------------------------|--------------|
| VOC               | 0.77                    | 25                           | No           |
| NOx               | 15.3                    | 25                           | No           |
| СО                | 6.2                     | 100                          | No           |
| SOx               | 0.0035                  | 25                           | No           |
| TSP               | 60                      | n/a                          | No           |
| PM <sub>10</sub>  | 14.9                    | 15                           | No           |
| PM <sub>2.5</sub> | -1.58                   | 15                           | No           |
| CO <sub>2</sub> e | 3,515                   | 100,000                      | No           |
| H <sub>2</sub> S  | ND                      | 10                           | No           |
| Pb                | -0.011                  | 0.6                          | No           |

Notes: ND = Not Determined; n/a = not applicable; tpy = tons per year.

Table 34 presents predicted concentrations for Alternative 4. Alternative 4 is significant for the 24-hour  $PM_{10}$  standard and cumulative considerable when compared to  $PM_{10}$  annual and  $PM_{2.5}$  24-hour standards.

Table 34 Alternative 4 Concentration at Point of Maximum Impact

| (all values in units μg/m³) | PM <sub>10</sub> -24hr | PM <sub>10</sub> -Annual | PM <sub>2.5</sub> -24hr | PM <sub>2.5</sub> -Annual |
|-----------------------------|------------------------|--------------------------|-------------------------|---------------------------|
| Increment                   | 10.9                   | 1.50                     | 2.1                     | 0.18                      |
| Background                  | 160.2                  | 18.5                     | 35.1                    | 9.7                       |
| Cumulative Concentration    | 171.1                  | 20.0                     | 37.2                    | 9.88                      |
| Most Stringent AAQS         | 50                     | 20                       | 12                      | 35                        |
| SIL                         | 10.4                   | 2.08                     | 2.5                     | 0.63                      |
| Exceeds AAQS?               | No                     | No                       | No                      | No                        |
| Exceeds SIL?                | Yes                    | No                       | No                      | No                        |

Note: Daily PMI for PM<sub>10</sub> occurs at 505533.04, 3797727.34 which is located south of the B5 Pad and daily PMI for PM<sub>2.5</sub> occurs at 506637.17, 3798752.79 which is located east of Sentinel Quarry. Annual concentration PMI occurs at 505406.72, 3801304.61 which is where the Project boundary crosses Crystal Creek Road.

Table 35 presents health risk results for Alternative 4. The results indicate that Alternative 4 will result in less than significant impacts on health risk. Figure 18 through Figure 22 (Appendix A) show contoured plots of health risk for Alternative 4.

Table 35 Alternative 4 Health Risk Impacts and Significance Determinations

| Receptor ID | Cancer Risk * | Chronic Non-Cancer<br>Risk (H.I.) * | Acute Non-Cancer<br>Risk (H.I.) | Significant? |
|-------------|---------------|-------------------------------------|---------------------------------|--------------|
| R1          | 1.09          | 0.0064                              | 0.00211                         | No           |
| R2          | 3.70          | 0.0224                              | 0.0019                          | No           |
| R3          | 3.47          | 0.0542                              | 0.0823                          | No           |
| R4          | 2.72          | 0.0447                              | 0.0636                          | No           |
| R5          | 4.54          | 0.0338                              | 0.0187                          | No           |
| R6          | 2.45          | 0.0138                              | 0.0018                          | No           |
| R7          | 2.78          | 0.0167                              | 0.0019                          | No           |
| R8          | 1.73          | 0.0093                              | 0.0014                          | No           |
| R9          | 1.76          | 0.0113                              | 0.0019                          | No           |
| R10         | 1.32          | 0.0099                              | 0.0005                          | No           |

<sup>\*</sup>Values represent excess cancer cases per million people exposed and hazard index (H.I.).

As shown in Table 34, Alternative 4 would result in a cumulatively considerable concentration of PM<sub>10</sub>. Accordingly, Alternative 4 requires mitigation of the impact to less than significant levels or the maximum extent feasible. Alternative 4 Mitigation Measure AQ-1 is applied to reduce concentrations of particulates.

**Alt 4 Mitigation Measure AQ-1**: Unpaved roads shall be controlled by at least 80% using methods that are consistent with MDAQMD guidance.

Mitigated concentrations of particulates presented in Table 36 are less than the SILs which are applied as the significance threshold.

Table 36 Mitigated Alternative 4 Concentrations at PMI and Significance Determinations

| (all values in units μg/m³) | PM <sub>10</sub> -24hr | PM <sub>10</sub> -Annual | PM <sub>2.5</sub> -24hr | PM <sub>2.5</sub> -Annual |
|-----------------------------|------------------------|--------------------------|-------------------------|---------------------------|
| Increment                   | 8.6                    | 0.57                     | 1.86                    | 0.11                      |
| Background                  | 160.2                  | 18.5                     | 35.1                    | 9.7                       |
| Cumulative Concentration    | 168.8                  | 19.07                    | 36.96                   | 9.81                      |
| Most Stringent AAQS         | 50                     | 20                       | 12                      | 35                        |
| SIL                         | 10.4                   | 2.08                     | 2.5                     | 0.63                      |
| Exceeds AAQS?               | No                     | No                       | No                      | No                        |
| Exceeds SIL?                | No                     | No                       | No                      | No                        |

Note: Daily PMI for  $PM_{10}$  occurs at 506638.52, 3798702.95 and daily PMI for  $PM_{2.5}$  occurs at 506637.17, 3798752.79; both of which are located east of Sentinel Quarry. Annual concentration PMI occurs at 505406.72, 3801304.61 which is where the Project boundary crosses Crystal Creek Road.

#### 9.0 REFERENCES

AB 32 Scoping Plan, CARB, December 2014.

(http://www.arb.ca.gov/cc/scopingplan/document/scopingplandocument.htm).

AB 32 Scoping Plan, updated October 1, 2015

http://www.arb.ca.gov/cc/scopingplan/meetings/10 1 15slides/2015slides.pdf

AERMOD View Version 8.2.0 by Lakes Environmental (AERMOD build number 12345).

(http://www.weblakes.com/products/aermod/index.html)

Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments, California Office of Environmental Health Hazard Assessment (OEHHA) (2015)

(<a href="http://www.oehha.org/air/hot\_spots/HRAguidefinal.html">http://www.oehha.org/air/hot\_spots/HRAguidefinal.html</a>).

AP-42, US EPA.

(<a href="http://www.epa.gov/ttn/chief">http://www.epa.gov/ttn/chief</a> ).

Area Designations Maps, (page last reviewed August 22, 2014)

(http://www.arb.ca.gov/desig/adm/adm.htm)

CalEEMod User Guide Version 2011.1, SCAQMD, February 2011.

(http://www.aqmd.gov/caleemod/guide.htm).

CEQA and Federal Conformity Guidelines, MDAQMD, August 2011.

(http://www.mdaqmd.ca.gov/Modules/ShowDocument.aspx?documentid=2910).

## EMFAC2011, CARB.

(http://www.arb.ca.gov/msei/msei.htm).

EPA Memorandum from Tyler Fox, Leader Air Quality Modeling Group C439-01 to Regional Air Division Directors, "Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO2 National Ambient Air Quality Standard" dated March 1, 2011.

(http://www.epa.gov/region7/air/nsr/nsrmemos/appwno2\_2.pdf)

EPA's Endangerment Finding – Health Effects Fact Sheet

(<a href="http://www.epa.gov/climatechange/Downloads/endangerment/EndangermentFinding\_Health.">http://www.epa.gov/climatechange/Downloads/endangerment/EndangermentFinding\_Health.</a> pdf ).

Final Supplement to the AB 32 Scoping Plan Functionally Equivalent Document, CARB, August 24, 2011. (http://www.arb.ca.gov/cc/scopingplan/document/final supplement to sp fed.pdf).

GHG Emissions Development Process Review, San Bernardino County (updated 3/2015).

HARP User Manual, CARB, 8/1/2014

(http://www.arb.ca.gov/toxics/harp/harp.htm).

Hot Spots Analysis and Reporting Program (HARP) Version 1.4f (Build 23.11.01), CARB, May 2012. (<a href="http://www.arb.ca.gov/toxics/harp/harp.htm">http://www.arb.ca.gov/toxics/harp/harp.htm</a>).

Multiple Air Toxics Exposure Study in the South Coast Air Basin (MATES-II and MATES-III), South Coast Air Quality Management District, March 2000 and September 2008.

(http://www.aqmd.gov/matesiidf/matestoc.htm)

(http://www.aqmd.gov/prdas/matesIII/matesIII.html)

Multiple Air Toxics Exposure Study in the South Coast Air Basin (MATES-IV) Final Report, May 2015. (<a href="http://www.aqmd.gov/home/library/air-quality-data-studies/health-studies/mates-iv">http://www.aqmd.gov/home/library/air-quality-data-studies/health-studies/mates-iv</a>)

OFFROAD2011, CARB.

(http://www.arb.ca.gov/msei/msei.htm).

"Phase I Report – Revised 2010," Federal Land Managers' Air Quality Related Values Work Group (FLAG),
October 2010.

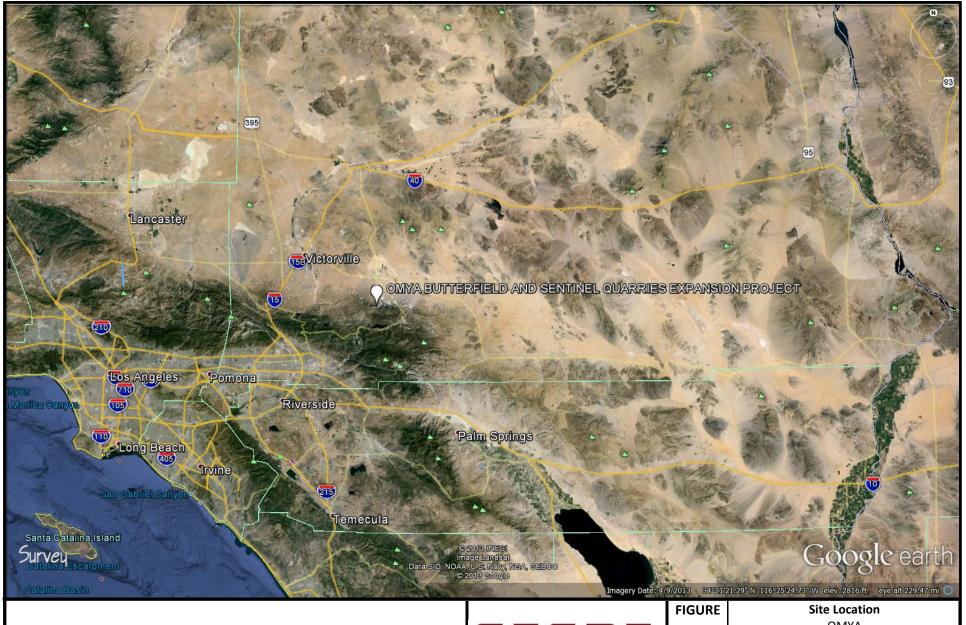
(http://www.nature.nps.gov/air/pubs/pdf/flag/FLAG 2010.pdf).

Rules and Regulations of the Mojave Desert Air Quality Management District.

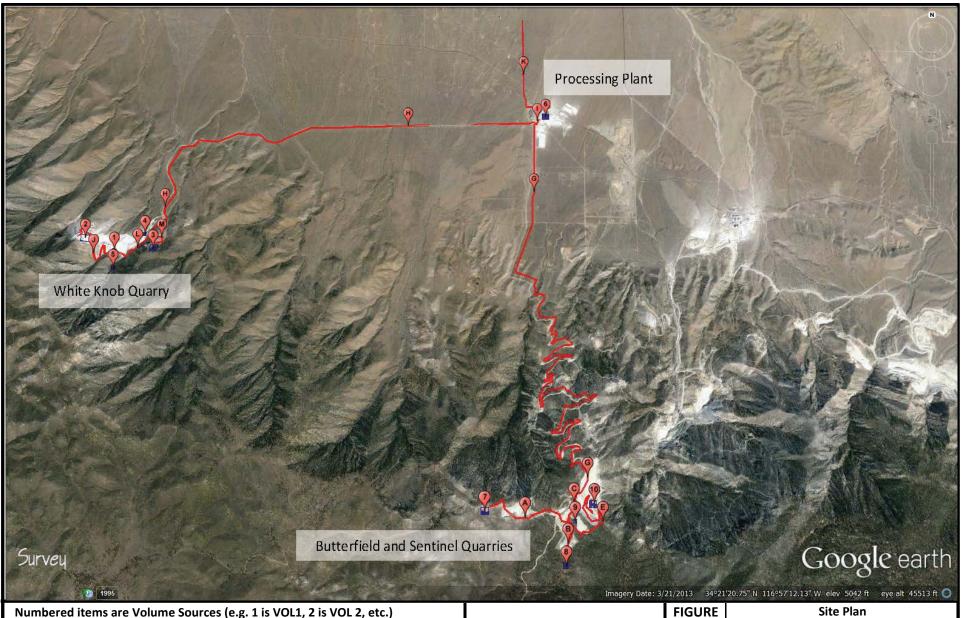
(http://www.mdaqmd.ca.gov/index.aspx?page=138).

Regulatory Advisory 10-414, CARB, May 2011.

(http://www.arb.ca.gov/enf/advs/advs414.pdf).

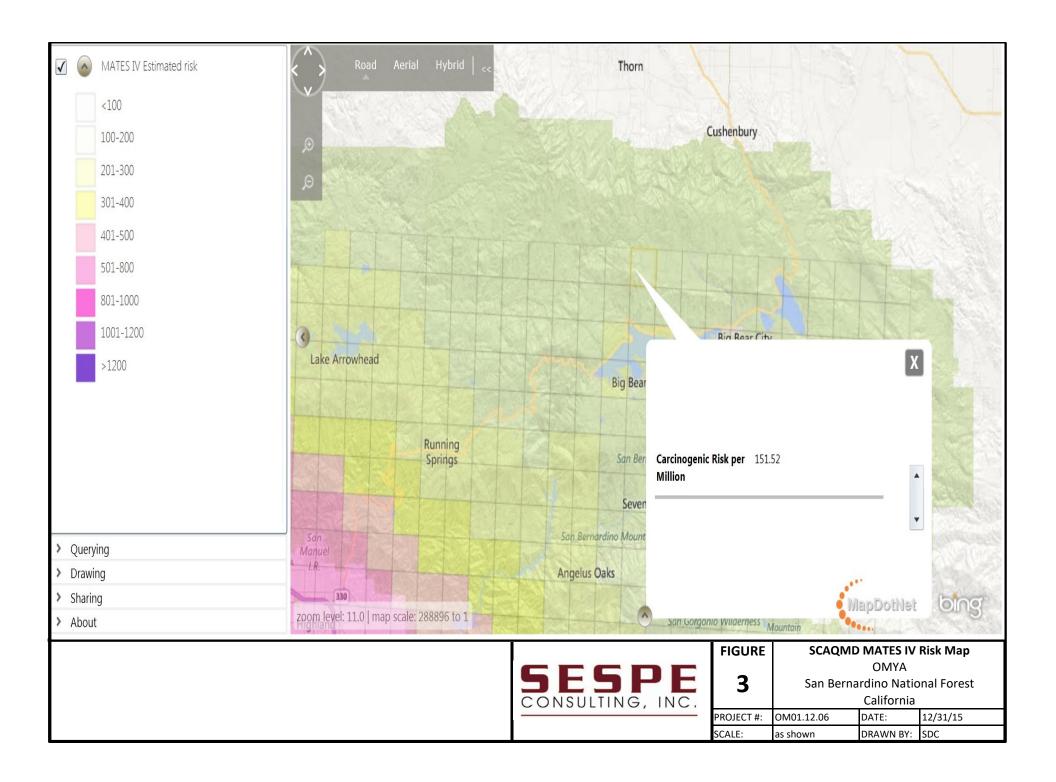

State CEQA Guidelines, National Resources Agency, last updated March 18, 2010.

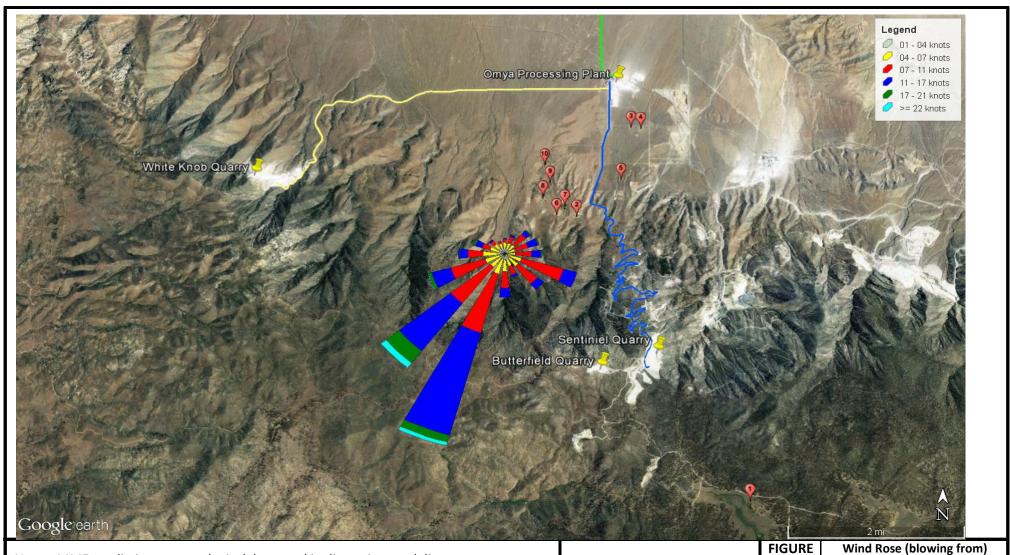
(http://ceres.ca.gov/ceqa/guidelines/).


Air Quality and Greenhouse Gas Impact Assessment October 25, 2017

Speciation Profiles Used in ARB Modeling, CARB, December 12, 2012. (<a href="http://www.arb.ca.gov/ei/speciate/speciate.htm">http://www.arb.ca.gov/ei/speciate/speciate.htm</a> ).

Appendix A: Figures

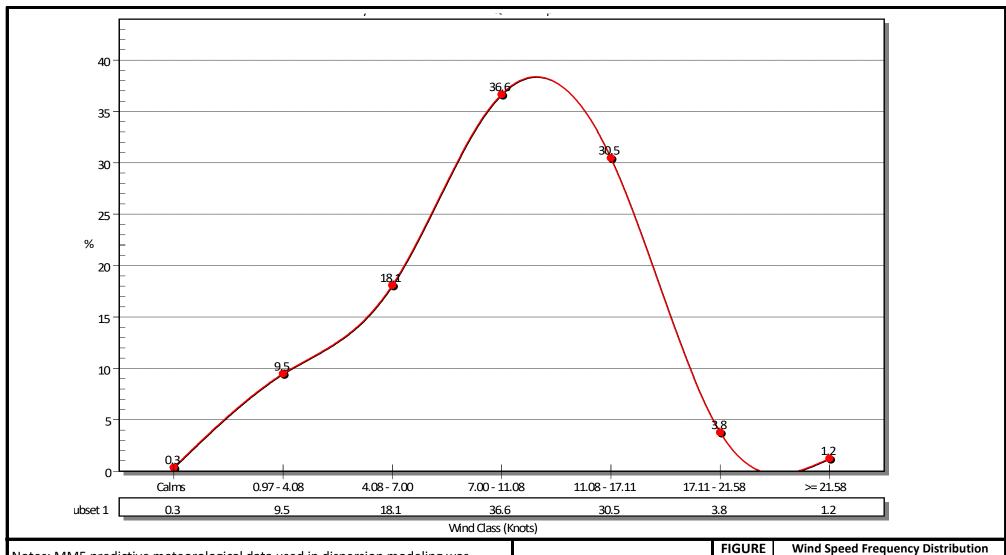




| FIGURE     | Site Location                  |           |          |
|------------|--------------------------------|-----------|----------|
|            | OMYA                           |           |          |
| 1          | San Bernardino National Forest |           |          |
| _          | California                     |           |          |
| PROJECT #: | OM01.12.06                     | DATE:     | 12/31/15 |
| SCALE:     | as shown                       | DRAWN BY: | SDC      |



Numbered items are Volume Sources (e.g. 1 is VOL1, 2 is VOL 2, etc.) Lettered items are line sources which are dissociated into individual volume sources beginning with the letter shown (e.g. road segment A is modeled as a number of volume sources A001, A002, etc.).

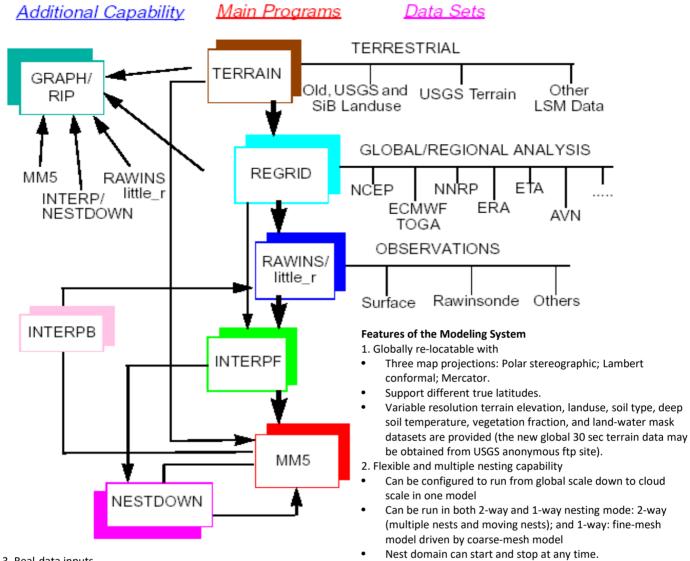
| FIGURE     | Site Plan                      |           |          |
|------------|--------------------------------|-----------|----------|
|            | OMYA                           |           |          |
| 2          | San Bernardino National Forest |           |          |
|            | California                     |           |          |
| PROJECT #: | OM01.12.06                     | DATE:     | 12/31/15 |
| SCALE:     | as shown                       | DRAWN BY: | SDC      |






Notes: MM5 predictive meteorological data used in dispersion modeling was generated by Lakes Environmental based on coordinate provided by Sespe depicted as center of windrose. Coordinate chosen between Project site, White Knob Quarry, and nearby receptors. See also Figures 5 & 6.

|        | 2 mi                           |  |  |
|--------|--------------------------------|--|--|
| FIGURE | Wind Rose (blowing from)       |  |  |
|        | OMYA                           |  |  |
| 4      | San Bernardino National Forest |  |  |
| •      | California                     |  |  |
|        |                                |  |  |


|            | Camornia |           |          |
|------------|----------|-----------|----------|
| PROJECT #: | OM01     | DATE:     | 10/25/17 |
| SCALE:     | As shown | DRAWN BY: | SDC      |



Notes: MM5 predictive meteorological data used in dispersion modeling was generated by Lakes Environmental based on coordinate provided by Sespe depicted as center of windrose. Coordinate chosen between Project site, White Knob Quarry, and nearby receptors. See also Figures 4 & 6.

| SFSF        | F    |
|-------------|------|
| CONSULTING, | INC. |

| FIGURE     | Wind Speed Frequency Distribution            |           |          |  |
|------------|----------------------------------------------|-----------|----------|--|
|            | OMYA                                         |           |          |  |
| <b>1</b> 5 | San Bernardino National Forest<br>California |           |          |  |
|            |                                              |           |          |  |
| PROJECT #: | OM01                                         | DATE:     | 10/25/17 |  |
| SCALE:     | As shown                                     | DRAWN BY: | SDC      |  |



- 3. Real-data inputs
- Can be configured to run from global scale down to cloud scale in one model
- Can be run in both 2-way and 1-way nesting mode: 2-way (multiple nests and moving nests); models and other regional models: Use other model's output either as first guess for objective analysis, or as lateral boundary conditions, e.g. NCEP and ECMWF global analysis, NCEP/NCAR and ECMWF reanalysis, NCEP ETA model.
- 4. Non-hydrostatic and hydrostatic (V2 only) dynamic frameworks.
- 5. Terrain-following vertical coordinates.
- 6. Choices of advanced physical parameterization.
- 7. Four-dimensional data assimilation system via nudging.

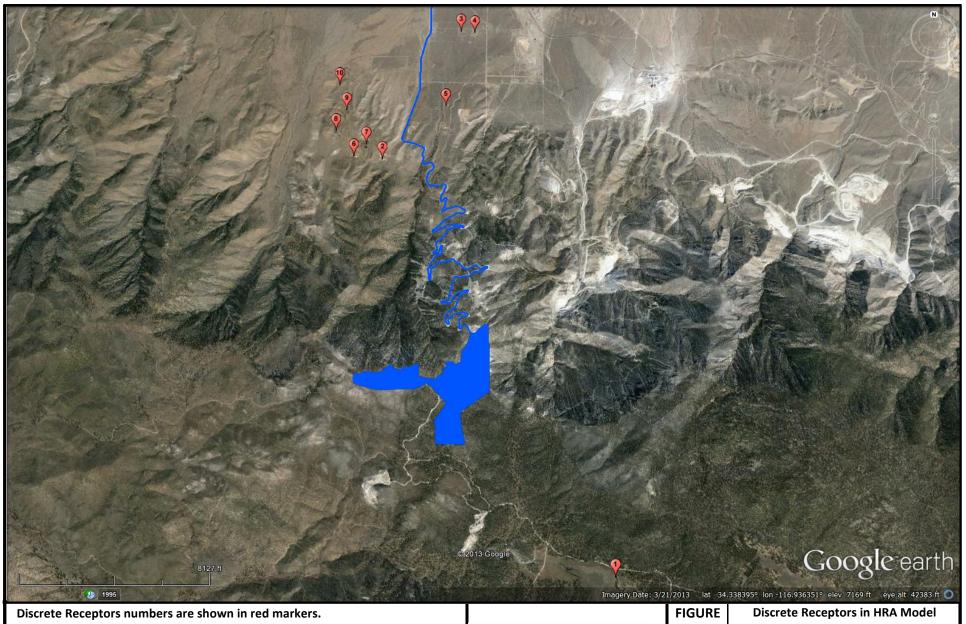
8. Adjoint model and 3DVAR.

the model.

9. Runs on various computer platforms (e.g., Cray, SGI, IBM, Alpha, Sun, HP, and PCs running Linux).

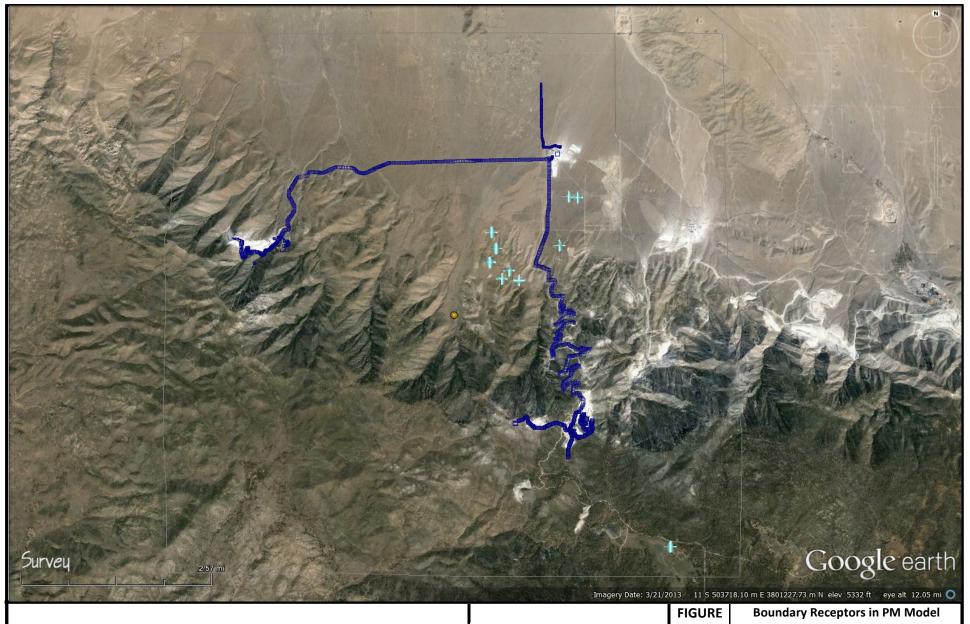
Nest terrain file may be input at the time of nest start-up in

10. Parallelization on shared-memory machines (e.g., Cray (EL, J90, YMP), HP-SPP2000, SGI, SUN, Alpha, and Linux); or distributedmemory machines (e.g., IBM SP2, Cray T3E, SGI Origin 2000, HP-SPP2000, Fujitsu VPP, Sun and Linux clusters).

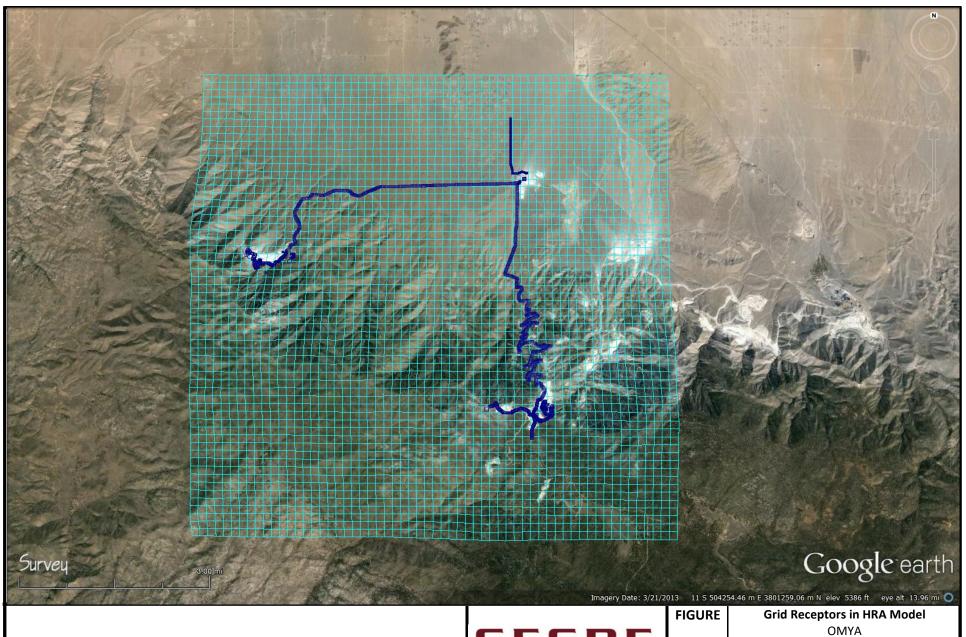

Well-documented, and user-support available.

As discussed in Item 3 above, MM5 incoporates surface and upper air measurements which would normally be used in AERMOD and interpolates wind conditions in locations that are far from or otherwise not represented by the observation stations. For more information on MM5, check the EPA website and the UCAR website below.

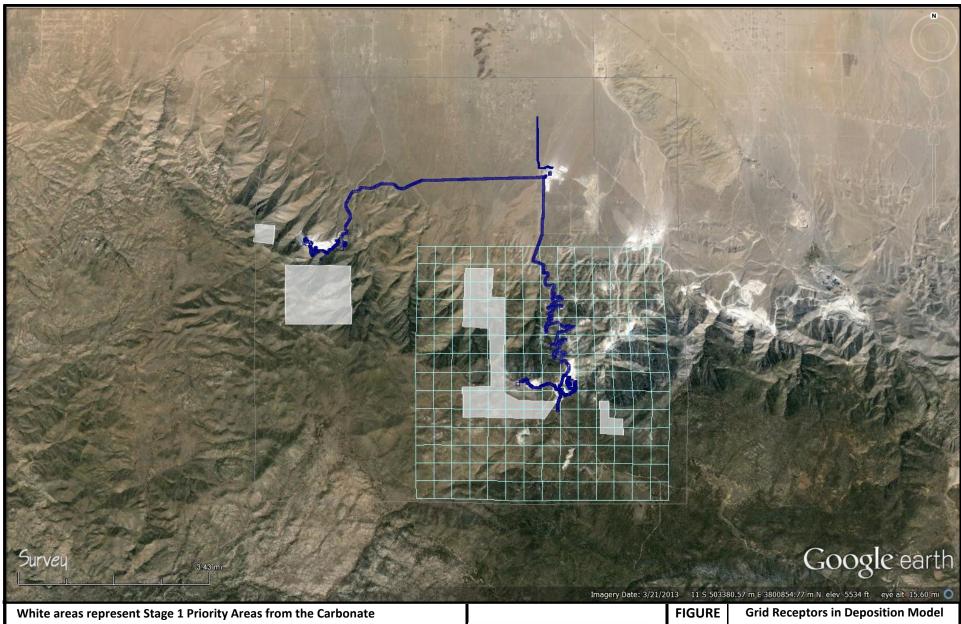
Source: http://www2.mmm.ucar.edu/mm5/overview.html




| FIGURE     | MM5 Modeling System Flow Chart               |           |          |
|------------|----------------------------------------------|-----------|----------|
|            | OMYA                                         |           |          |
| l 6        | San Bernardino National Forest<br>California |           |          |
|            |                                              |           |          |
| PROJECT #: | OM01.12.06                                   | DATE:     | 10/25/17 |
| SCALE:     | as shown                                     | DRAWN BY: | SDC      |

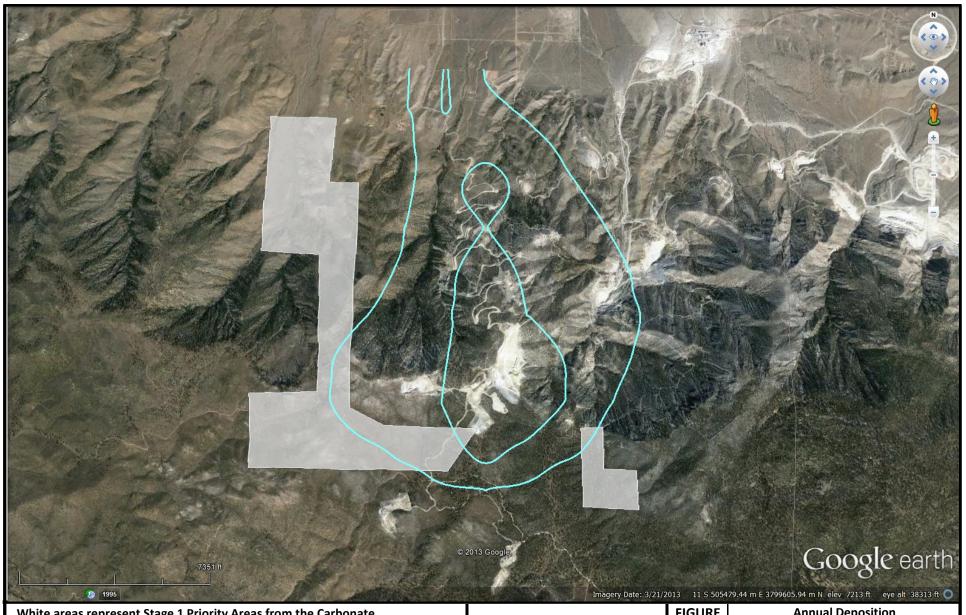



Operational areas are shown in blue.


| FIGURE     | Discrete Receptors in HRA Model                      |           |          |
|------------|------------------------------------------------------|-----------|----------|
|            | OMYA<br>San Bernardino National Forest<br>California |           |          |
| 7          |                                                      |           |          |
| _          |                                                      |           |          |
| PROJECT #: | OM01.12.06                                           | DATE:     | 12/31/15 |
| SCALE:     | as shown                                             | DRAWN BY: | SDC      |



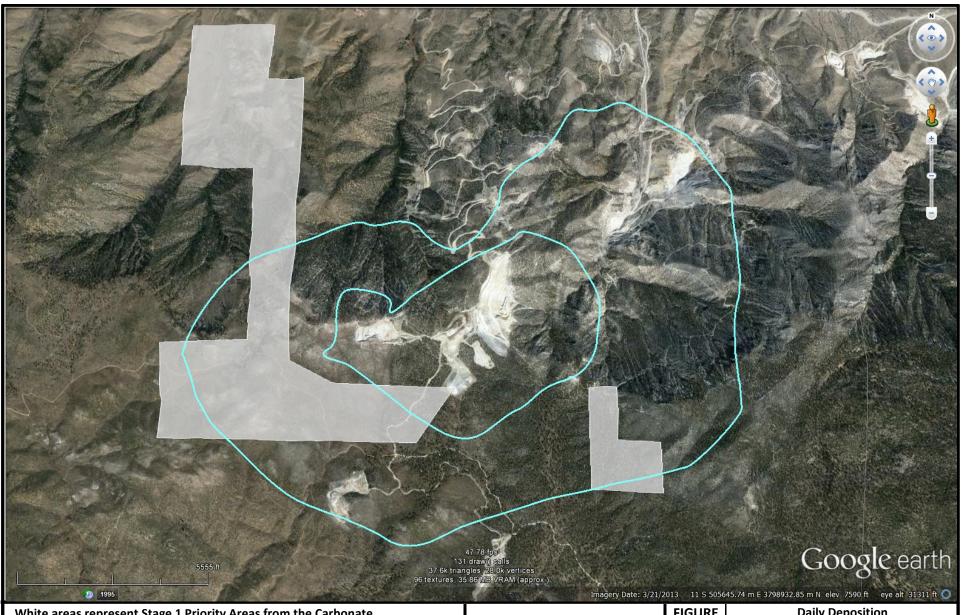
| FIGURE     | Boundary F | Receptors in      | n PM Model |  |  |
|------------|------------|-------------------|------------|--|--|
|            |            | OMYA              |            |  |  |
| l 8        | San Berna  | irdino Natio      | nal Forest |  |  |
|            |            | California        |            |  |  |
| PROJECT #: | OM01.12.06 | DATE:             | 12/31/15   |  |  |
| SCALE:     | as shown   | s shown DRAWN BY: |            |  |  |




| FIGURE     | <b>Grid Receptors in HRA Model</b> |           |          |  |  |  |  |
|------------|------------------------------------|-----------|----------|--|--|--|--|
|            | OMYA                               |           |          |  |  |  |  |
| 9          | San Bernardino National Forest     |           |          |  |  |  |  |
|            | California                         |           |          |  |  |  |  |
| PROJECT #: | OM01.12.06                         | DATE:     | 12/31/15 |  |  |  |  |
| SCALE:     | as shown                           | DRAWN BY: | SDC      |  |  |  |  |



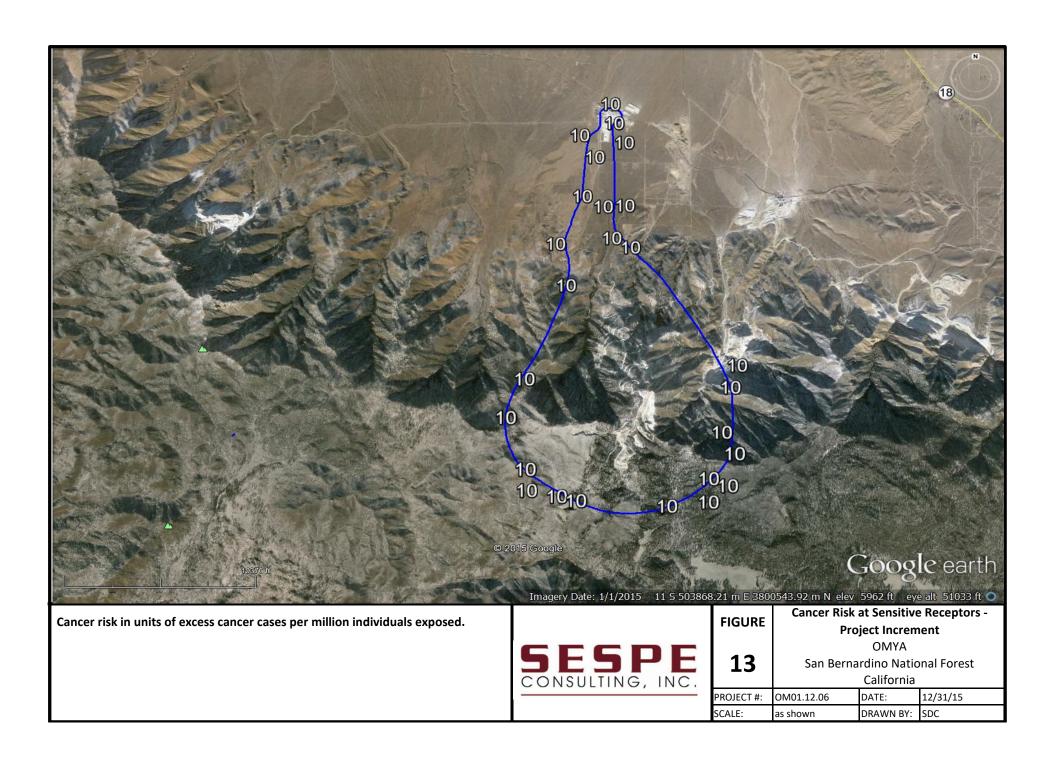
**Habitat Management Strategy.** 

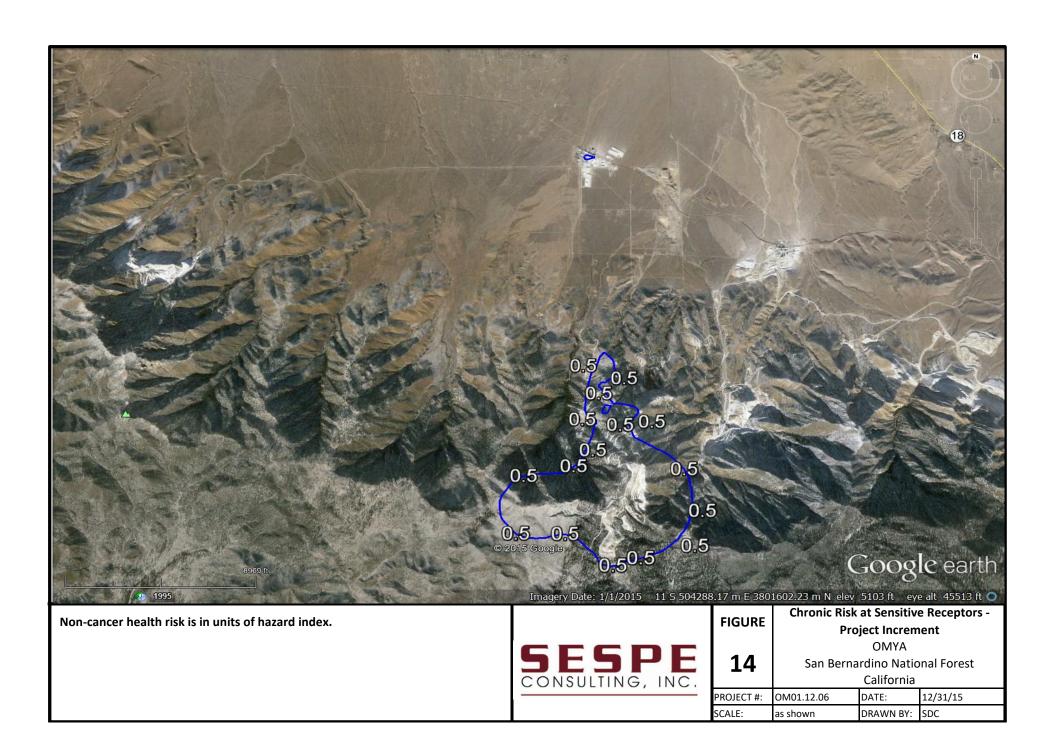

| FIGURE   Grid Receptors in Deposition Mod |                                |           |          |  |  |  |  |
|-------------------------------------------|--------------------------------|-----------|----------|--|--|--|--|
|                                           | OMYA                           |           |          |  |  |  |  |
| l 10                                      | San Bernardino National Forest |           |          |  |  |  |  |
|                                           | California                     |           |          |  |  |  |  |
| PROJECT #:                                | OM01.12.06                     | DATE:     | 12/31/15 |  |  |  |  |
| SCALE:                                    | as shown                       | DRAWN BY: | SDC      |  |  |  |  |



White areas represent Stage 1 Priority Areas from the Carbonate Habitat Management Stategy.

Contours are for 1.0 and 5.0 grams per meter squared per year.


| FIGURE Annual Deposition |                                |           |          |  |  |  |
|--------------------------|--------------------------------|-----------|----------|--|--|--|
|                          | OMYA                           |           |          |  |  |  |
| l 11                     | San Bernardino National Forest |           |          |  |  |  |
|                          | California                     |           |          |  |  |  |
| PROJECT #:               | OM01.12.06                     | DATE:     | 12/31/15 |  |  |  |
| SCALE:                   | as shown                       | DRAWN BY: | SDC      |  |  |  |

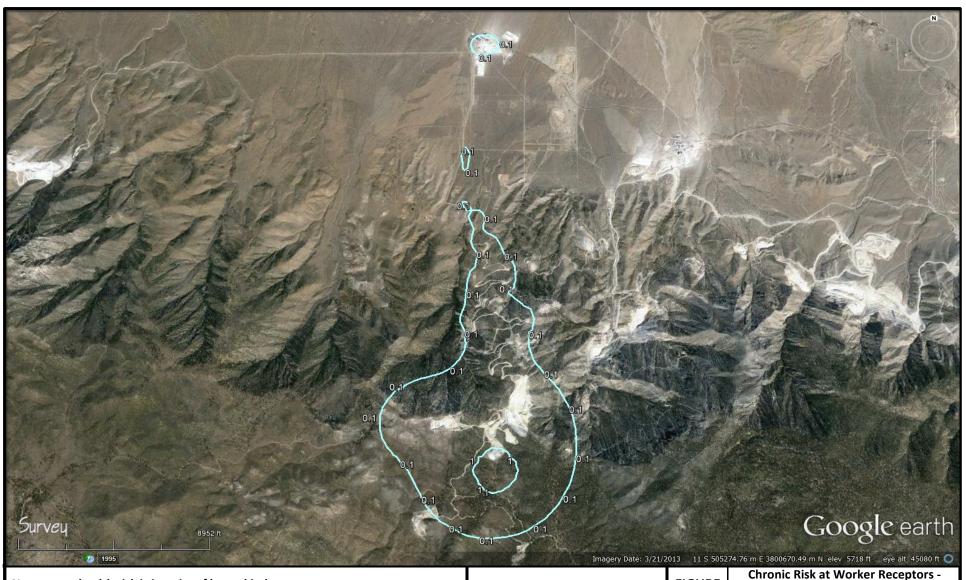



White areas represent Stage 1 Priority Areas from the Carbonate Habitat Management Stategy.

Contours are for 1.0 and 5.0 grams per meter squared per year.

| FIGURE     | Daily Deposition               |           |          |  |  |  |  |
|------------|--------------------------------|-----------|----------|--|--|--|--|
|            | OMYA                           |           |          |  |  |  |  |
| 12         | San Bernardino National Forest |           |          |  |  |  |  |
|            | California                     |           |          |  |  |  |  |
| PROJECT #: | OM01.12.06                     | DATE:     | 12/31/15 |  |  |  |  |
| SCALE:     | as shown                       | DRAWN BY: | SDC      |  |  |  |  |








Cancer risk in units of excess cancer cases per million individuals exposed

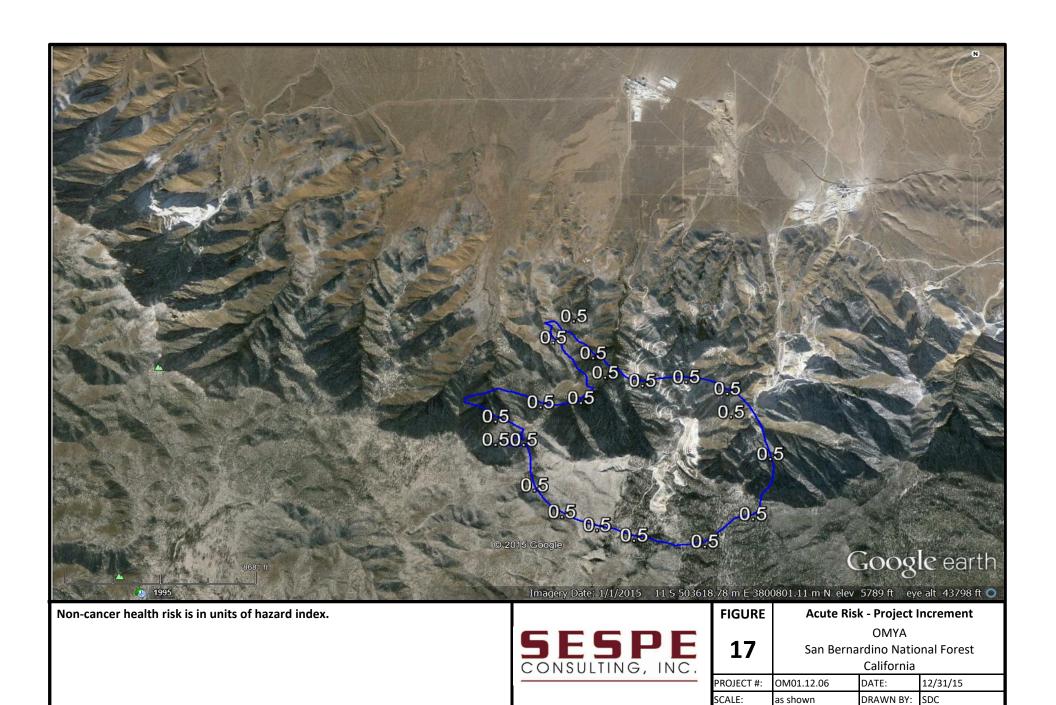
SESPE CONSULTING, INC.

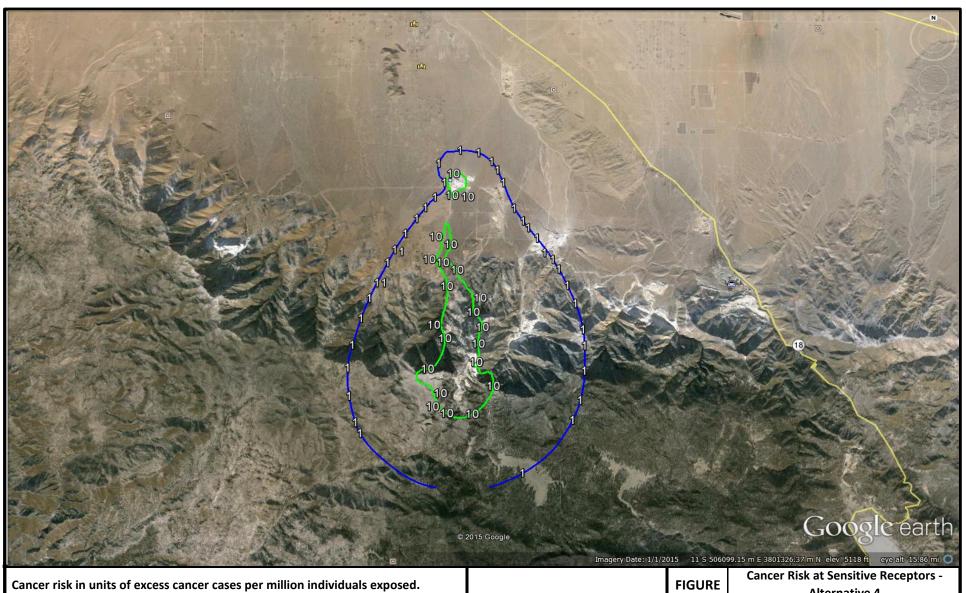
FIGURE
Cancer Risk at Worker Receptors Project Increment
OMYA
San Bernardino National Forest
California
PROJECT #: OM01.12.06 DATE: 12/31/15
SCALE: as shown DRAWN BY: SDC



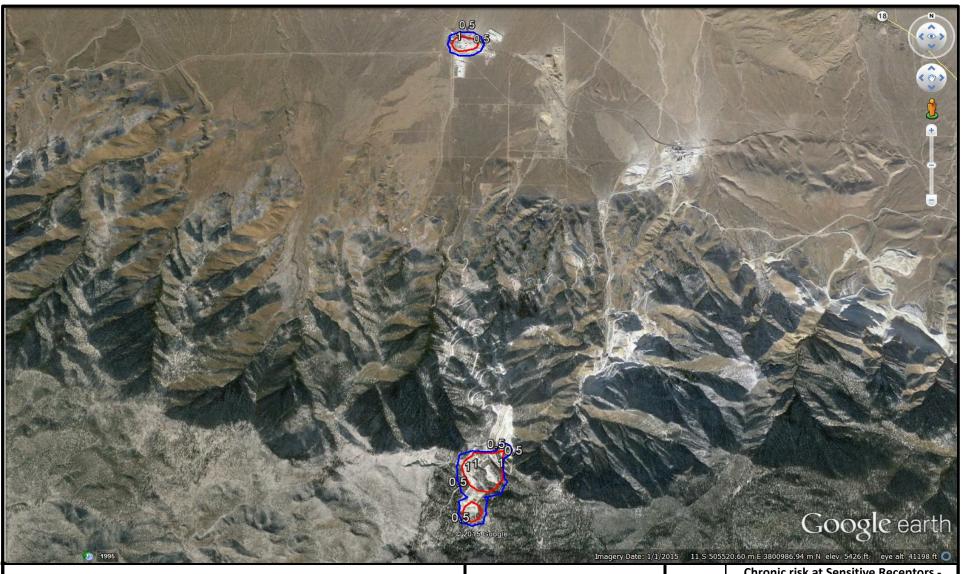
Non-cancer health risk is in units of hazard index.

SESPE CONSULTING, INC.


FIGURE


Chronic Risk at Worker Receptors Project Increment
OMYA

San Bernardino National Forest
California

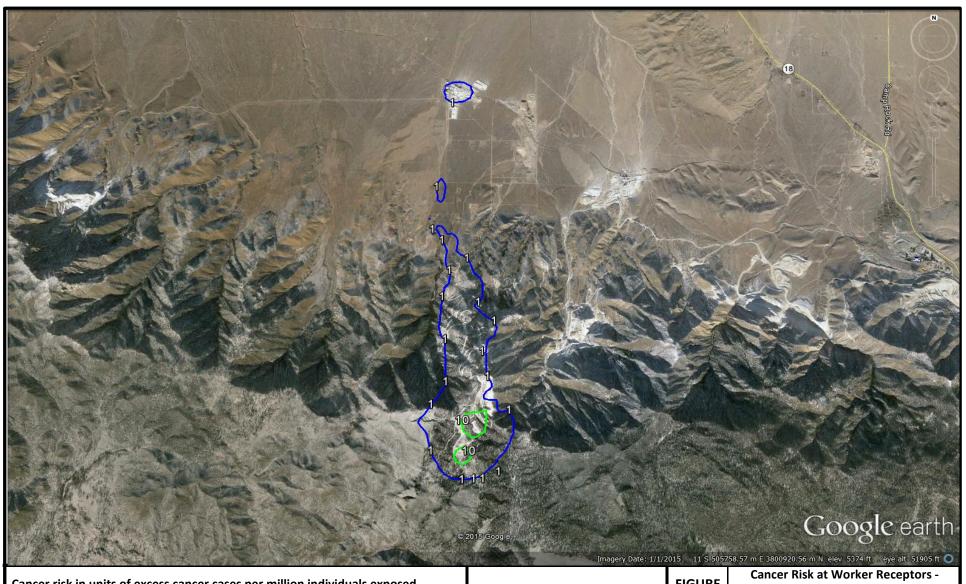

PROJECT #: OM01.12.06 DATE: 12/31/15

SCALE: as shown DRAWN BY: SDC





| FICURE     | Cancer Risk at Sensitive Receptors - |           |          |  |  |  |
|------------|--------------------------------------|-----------|----------|--|--|--|
| FIGURE     | Alternative 4                        |           |          |  |  |  |
|            | OMYA                                 |           |          |  |  |  |
| 18         | San Bernardino National Forest       |           |          |  |  |  |
| )          |                                      |           |          |  |  |  |
| PROJECT #: | OM01.12.06                           | DATE:     | 12/31/15 |  |  |  |
| SCALE:     | as shown                             | DRAWN BY: | SDC      |  |  |  |




Non-cancer health risk is in units of hazard index.

H.I. of 1 is shown in red.

H.I. of 0.5 is shown in blue.

| FIGURE     | Chronic risk at Sensitive Receptors - |           |     |  |  |  |
|------------|---------------------------------------|-----------|-----|--|--|--|
| FIGURE     | Alternative 4                         |           |     |  |  |  |
|            | OMYA                                  |           |     |  |  |  |
| 19         | San Bernardino National Forest        |           |     |  |  |  |
|            | California                            |           |     |  |  |  |
| PROJECT #: | OM01.12.06 DATE: 12/31/15             |           |     |  |  |  |
| SCALE:     | as shown                              | DRAWN BY: | SDC |  |  |  |

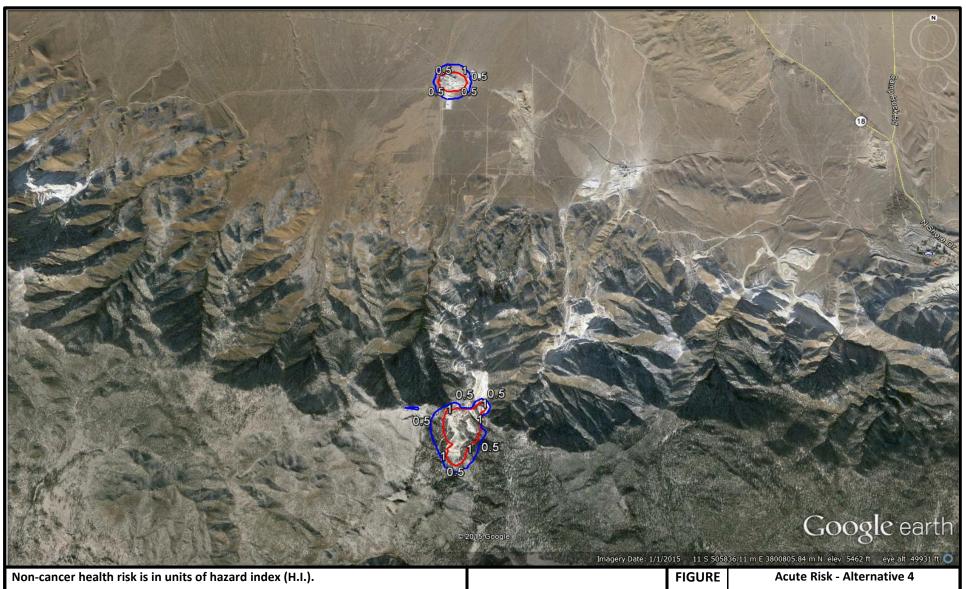



Cancer risk in units of excess cancer cases per million individuals exposed.

1 case per million is shown in blue.

10 cases per million are shown in green.

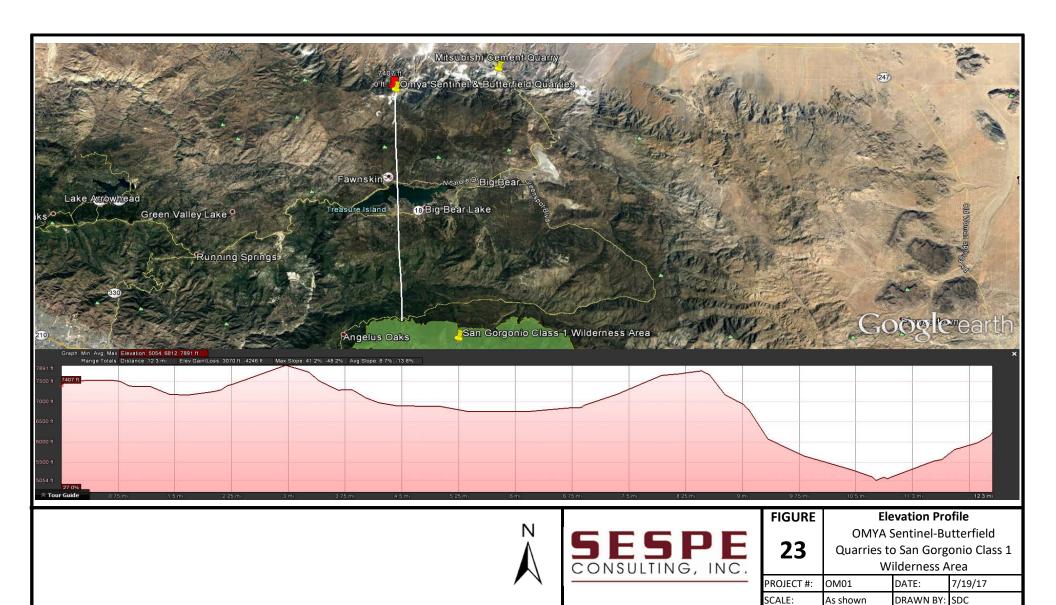
| AL YOPALW DIESEY (SNAME PAPAR | Maria de la compansión de | erforced in manufacture of the Contract | Market - Application of the property of the pr |  |  |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| FICLIBE                       | Cancer Risk at Worker Receptors -                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| FIGURE                        | Alternative 4                                                                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                               | OMYA                                                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 20                            | San Bernardino National Forest                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                               | California                                                                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| PROJECT #:                    | OM01.12.06                                                                                                     | DATE:                                   | 12/31/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| SCALE:                        | as shown                                                                                                       | DRAWN BY:                               | SDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |




Non-cancer health risk is in units of hazard index.

H.I. of 1 is shown in red.

H.I. of 0.5 is shown in blue.


|            | 1                                  |           |     |  |  |  |
|------------|------------------------------------|-----------|-----|--|--|--|
| FICLIBE    | Chronic Risk at Worker Receptors - |           |     |  |  |  |
| FIGURE     | Alternative 4                      |           |     |  |  |  |
|            | OMYA                               |           |     |  |  |  |
| 21         | San Bernardino National Forest     |           |     |  |  |  |
|            | California                         |           |     |  |  |  |
| PROJECT #: | OM01.12.06 DATE: 12/31/15          |           |     |  |  |  |
| SCALE:     | as shown                           | DRAWN BY: | SDC |  |  |  |



H.I. of 1 in red

H.I. of 0.5 in blue

| FIGURE Acute Risk - Alternative 4 |                                |           |          |  |  |  |
|-----------------------------------|--------------------------------|-----------|----------|--|--|--|
|                                   | OMYA                           |           |          |  |  |  |
| <b>  22</b>                       | San Bernardino National Forest |           |          |  |  |  |
|                                   | California                     |           |          |  |  |  |
| PROJECT #:                        | OM01.12.06                     | DATE:     | 12/31/15 |  |  |  |
| SCALE:                            | as shown                       | DRAWN BY: | SDC      |  |  |  |



Appendix B: Health Effects of Air Pollutants

| B-1.0 | Ozone   |                                                 | 1 |
|-------|---------|-------------------------------------------------|---|
| B-2.0 |         | ve Organic Gases and Volatile Organic Compounds |   |
| B-3.0 | Carbor  | n Monoxide                                      | 3 |
| B-4.0 | Nitrog  | en Oxides                                       | 4 |
| B-5.0 | Particu | ulate Matter                                    | 5 |
| B-6.0 | Other   | Pollutants                                      | 6 |
|       | B-6.1   | Sulfur Dioxide                                  | 6 |
|       | B-6.2   | Sulfates                                        | 7 |
|       | B-6.3   | Lead                                            | 8 |
|       | B-6.4   | Hydrogen Sulfide                                | 8 |
|       | B-6.5   | Visibility Reducing Particles                   | 8 |
|       | B-6.6   | Vinyl Chloride                                  | 9 |
|       | B-6.7   | Toxic Air Contaminants                          | 9 |

Discussion presented in this section is mainly reproduced from Appendix C of the Guidelines for Preparing an Air Quality Assessment for Use in Environmental Impact Reports (County of Kern, 2006). The health effects of pollutants do not change between jurisdictions and so the information is relevant in San Bernardino County as well.

## **B-1.0 OZONE**

Ozone occurs in two layers of the atmosphere. The layer surrounding the earth's surface is the troposphere. Here, ground level or "bad" ozone is an air pollutant that damages human health, vegetation, and many common materials. It is a key ingredient of urban smog. The troposphere extends to a level about 10 miles up, where it meets the second layer, the stratosphere. The stratospheric or "good" ozone layer extends upward from about 10 to 30 miles and protects life on earth from the sun's harmful ultraviolet rays (UV-B).

"Bad" ozone is what is known as a photochemical pollutant. It needs reactive organic gases (ROG), oxides of nitrogen (NOx), and sunlight. ROG and NOx are emitted from various sources throughout San Bernardino County. In order to reduce ozone concentrations, it is necessary to control the emissions of these ozone precursors.

Significant ozone formation generally requires an adequate amount of precursors in the atmosphere and several hours in a stable atmosphere with strong sunlight.

Ozone is a regional air pollutant. It is generated over a large area and is transported and spread by wind. Ozone, the primary constituent of smog, is the most complex, difficult to control, and pervasive of the criteria pollutants. Unlike other pollutants, ozone is not emitted directly into the air by specific sources. Ozone is created by sunlight acting on other air pollutants (called precursors), specifically NOX and ROGs. Sources of precursor gases to the photochemical reaction that form ozone number in the thousands. Common sources include consumer products, gasoline vapors, chemical solvents, and combustion products of various fuels. Originating from gas stations, motor vehicles, large industrial facilities, and small businesses such as bakeries

and dry cleaners, the ozone forming chemical reactions often take place in another location, catalyzed by sunlight and heat. High ozone concentrations can form over large regions when emissions from motor vehicles and stationary sources are carried hundreds of miles from their origins. Approximately 50 million people lived in counties with air quality levels above U. S. EPA's health-based national air quality standard in 1994. The highest levels of ozone were recorded in Los Angeles. High levels also persist in other heavily populated areas including the Texas Gulf Coast and much of the Northeast.

While the ozone in the upper atmosphere absorbs harmful ultraviolet light, ground-level ozone is damaging to the tissues of plants, animals, and humans, as well as to a wide variety of inanimate materials such as plastics, metals, fabrics, rubber, and paints. Societal costs from ozone damage include increased medical costs, the loss of human and animal life, accelerated replacement of industrial equipment, and reduced crop yields.

## Health Effects

While ozone in the upper atmosphere protects the earth from harmful ultraviolet radiation, high concentrations of ground level ozone can adversely affect the human respiratory system. Many respiratory ailments, as well as cardiovascular disease, are aggravated by exposure to high ozone levels. Ozone also damages natural ecosystems such as forests and foothill communities, and damages agricultural crops and some man-made materials, such as rubber, paint, and plastics. High levels of ozone may negatively impact immune systems making people more susceptible to respiratory illnesses including bronchitis and pneumonia. Ozone also accelerates aging and exacerbates pre-existing asthma and bronchitis and in cases of high concentrations can lead to the development of asthma in active children. Active people, both children and adults, appear to be more at risk from ozone exposure than those with a low level of activity. Additionally, the elderly and those with respiratory disease are also considered sensitive populations for ozone.

People who work or play outdoors are at a greater risk for harmful health effects from ozone. Children and adolescents are also at greater risk, as they are more likely than adults to spend time engaged in vigorous activities. Research indicates that children under 12 years of age spend nearly twice as much time outdoors daily than adults. Teenagers spend at least twice as much time as adults in active sports and outdoor activities. Also, children inhale more air per pound of body weight than adults, and they breathe more rapidly than adults. Children are less likely than adults to notice their own symptoms and avoid harmful exposures.

Ozone is a powerful oxidant – it can be compared to household bleach, which can kill living cells (such as germs or human skin cells) upon contact. Ozone can damage the respiratory tract, causing inflammation and irritation, and it can induce symptoms such as coughing, chest tightness, shortness of breath, and worsening of asthma symptoms. Ozone in sufficient doses increases the permeability of lung cells, rendering them more susceptible to toxins and microorganisms. Exposure to levels of ozone above the current ambient air quality standard leads to lung inflammation and lung tissue damage, and a reduction in the amount of air inhaled into the lungs. Recent evidence has, for the first time, linked the onset of asthma to exposure to elevated ozone levels in exercising children (McConnell, et al., 2002). Elevated ozone concentrations also reduce crop and timber yields, damage native plants, and damage materials such as rubber, paints, fabric, and plastics (CARB and American Lung Association, 2004).

## B-2.0 REACTIVE ORGANIC GASES AND VOLATILE ORGANIC COMPOUNDS

Hydrocarbons are organic gases that are formed solely of hydrogen and carbon. There are several subsets of organic gases including Volatile Organic Compounds (VOCs) and Reactive Organic Gases (ROGs). ROGs include all hydrocarbons except those exempted by the California Air Resources Board. Therefore, ROGs are a set of

organic gases based on state rules and regulations. VOCs are similar to ROGs in that they include all organic gases except those exempted by federal law. The list of compounds exempt from the definition of VOC is included by the SJVAPCD and is presented in District Rule 1102. Both VOCs and ROGs are emitted from incomplete combustion of hydrocarbons or other carbon-based fuels. Combustion engine exhaust, oil refineries, and oil fueled power plants are the primary sources of hydrocarbons. Another source of hydrocarbons is evaporation from petroleum fuels, solvents, dry cleaning solutions, and paint.

# Health Effects

The primary health effects of hydrocarbons result from the formation of ozone and its related health effects (see ozone health effects discussion above). High levels of hydrocarbons in the atmosphere can interfere with oxygen intake by reducing the amount of available oxygen through displacement. There are no separate federal or California ambient air quality standards for ROG. Carcinogenic forms of ROG are considered toxic air contaminants (TACs). An example is benzene, which is a carcinogen. The health effects of individual ROGs are described below under the toxic air contaminants heading below.

### **B-3.0 CARBON MONOXIDE**

Carbon monoxide (CO) is emitted by mobile and stationary sources as a result of incomplete combustion of hydrocarbons or other carbon-based fuels. CO is an odorless, colorless, poisonous gas that is highly reactive. CO is a byproduct of motor vehicle exhaust, which contributes more than two-thirds of all CO emissions nationwide. In cities, automobile exhaust can cause as much as 95% of all CO emissions. These emissions can result in high concentrations of CO, particularly in local areas with heavy traffic congestion. Other sources of CO emissions include industrial processes and fuel combustion in sources such as boilers and incinerators. Despite an overall downward trend in concentrations and emissions of CO, some metropolitan areas still experience high levels of CO.

# Health Effects

CO enters the bloodstream and binds more readily to hemoglobin than oxygen, reducing the oxygen-carrying capacity of blood, thus reducing oxygen delivery to organs and tissues. The health threat from CO is most serious for those who suffer from cardiovascular disease. Healthy individuals are also affected, but only at higher levels of exposure. Carbon monoxide binds strongly to hemoglobin, the oxygen-carrying protein in blood, and thus reduces the blood's capacity for carrying oxygen to the heart, brain, and other parts of the body. Exposure to carbon monoxide can cause chest pain in heart patients, headaches, and reduced mental alertness. At high concentrations, CO can cause heart difficulties in people with chronic diseases, and can impair mental abilities. Exposure to elevated CO levels is associated with visual impairment, reduced work capacity, reduced manual dexterity, poor learning ability, difficulty performing complex tasks, and in prolonged, enclosed exposure, death.

The adverse health effects associated with exposure to ambient and indoor concentrations of CO are related to concentration of carboxyhemoglobin (COHb) in the blood. Health effects observed may include early onset of cardiovascular disease, behavioral impairment; decreased exercise performance of young healthy men, reduced birth weigh, Sudden Infant Death Syndrome (SIDS), and increased daily mortality rate (Fierro, O'Rourke, & Burgess, 2001). Most of the studies evaluating adverse health effects of CO on the central nervous system examine high-level poisoning. Such poisoning results in symptoms ranging from common flu and cold symptoms (shortness of breath on mild exertion, mild headaches, and nausea) to unconsciousness and death. Hexter and Goldsmith report an association between daily death rate and exposure to ambient CO in Los Angeles County. They postulate a concentration of 20.2 ppm (the highest daily concentration recorded during a 4 year period)

contributed 11 out of 159 deaths (Hexter & Goldsmith, 1971). Additional studies conducted in Los Angeles (Kinney & Ozkaynak, 1991) and Sao Paulo also suggest a relationship between daily death rates and CO concentrations (Saldivia, et al., 1995).

## **B-4.0 NITROGEN OXIDES**

Nitrogen oxides (NOx) are a family of highly reactive gases that are a primary precursor to the formation of ground-level ozone, and react in the atmosphere to form acid rain. NOx is emitted from the use of solvents and combustion processes in which fuel is burned at high temperatures, principally from motor vehicle exhaust and stationary sources such as electric utilities and industrial boilers. A brownish gas, nitrogen dioxide is a strong oxidizing agent that reacts in the air to form corrosive nitric acid, as well as toxic organic nitrates.

## Health Effects

NOx is an ozone precursor that combines with ROG to form ozone. See the ozone section above for a discussion of the health effects of ozone. Direct inhalation of NOx can also cause a wide range of health effects.

NOx can irritate the lungs, cause lung damage, and lower resistance to respiratory infections such as influenza. Short-term exposures (e.g., less than 3 hours) to low levels of NO<sub>2</sub> may lead to changes in airway responsiveness and lung function in individuals with preexisting respiratory illnesses. These exposures may also increase respiratory illnesses in children. Long-term exposures to NO<sub>2</sub> may lead to increased susceptibility to respiratory infection and may cause irreversible alterations in lung structure. Other health effects associated with NOx are an increase in the incidence of chronic bronchitis and lung irritation. Chronic exposure to nitrogen dioxide (NO<sub>2</sub>) may lead to eye and mucus membrane aggravation, along with pulmonary dysfunction. NOx can cause fading of textile dyes and additives, deterioration of cotton and nylon, and corrosion of metals due to production of particulate nitrates. Airborne NOx can also impair visibility. NOx is a major component of acid deposition in California. NOx may affect both terrestrial and aquatic ecosystems. NOx in the air is a potentially significant contributor to a number of environmental effects such as acid rain and eutrophication in coastal waters. Eutrophication occurs when a body of water suffers an increase in nutrients that reduce the amount of oxygen in the water, producing an environment that is destructive to fish and other animal life.

Nitrogen dioxide is toxic to various animals as well as to humans. Its toxicity relates to its ability to combine with water to form nitric acid in the eye, lung, mucus membranes and skin. Studies of the health impacts of NO2 include experimental studies on animals, controlled laboratory studies on humans, and observational studies.

In animals, long-term exposure to NOx increases susceptibility to respiratory infections lowering their resistance to such diseases as pneumonia and influenza. Laboratory studies show susceptible humans, such as asthmatics, exposed to high concentrations of NO<sub>2</sub> can suffer lung irritation and potentially, lung damage.

Epidemiological studies have also shown associations between NO<sub>2</sub> concentrations and daily mortality from respiratory and cardiovascular causes and with hospital admissions for respiratory conditions.

NOx contributes to a wide range of environmental effects directly and when combined with other precursors in acid rain and ozone. Increased nitrogen inputs to terrestrial and wetland systems can lead to changes in plant species composition and diversity. Similarly, direct nitrogen inputs to aquatic ecosystems such as those found in estuarine and coastal waters can lead to eutrophication (a condition that promotes excessive algae growth, which can lead to a severe depletion of dissolved oxygen and increased levels of toxins harmful to aquatic life). Nitrogen, alone or in acid rain, also can acidify soils and surface waters. Acidification of soils causes the loss of

essential plant nutrients and increased levels of soluble aluminum that are toxic to plants. Acidification of surface waters creates conditions of low pH and levels of aluminum that are toxic to fish and other aquatic organisms. NOx also contribute to visibility impairment. (U.S. EPA, 2005).

## **B-5.0 PARTICULATE MATTER**

Particulate matter pollution consists of very small liquid and solid particles floating in the air. Some particles are large or dark enough to be seen as soot or smoke. Others are so small they can be detected only with an electron microscope. Particulate matter is a mixture of materials that can include smoke, soot, dust, salt, acids, and metals. Particulate matter also forms when gases emitted from motor vehicles and industrial sources undergo chemical reactions in the atmosphere.  $PM_{10}$  refers to particles less than or equal to 10 microns in aerodynamic diameter.  $PM_{2.5}$  refers to particles less than or equal to 2.5 microns in aerodynamic diameter and are a subset of  $PM_{10}$ .

In the western United States, there are sources of  $PM_{10}$  in both urban and rural areas.  $PM_{10}$  and  $PM_{2.5}$  are emitted from stationary and mobile sources, including diesel trucks and other motor vehicles, power plants, industrial processing, wood burning stoves and fireplaces, wildfires, dust from roads, construction, landfills, and agriculture, and fugitive windblown dust. Because particles originate from a variety of sources, their chemical and physical compositions vary widely.

# Health Effects

PM10 and PM2.5 particles are small enough – about 1/7th the thickness of a human hair, or smaller– to be inhaled into, and lodge in, the deepest parts of the lung, evading the respiratory system's natural defenses. Health problems begin as the body reacts to these foreign particles.

Acute and chronic health effects associated with high particulate levels include the aggravation of chronic respiratory diseases, heart and lung disease, and coughing, bronchitis, and respiratory illnesses in children. Recent mortality studies have shown a statistically significant direct association between mortality and daily concentrations of particulate matter in the air. Non health-related effects include reduced visibility and soiling of buildings. PM<sub>10</sub> can increase the number and severity of asthma attacks, cause or aggravate bronchitis and other lung diseases, and reduce the body's ability to fight infections. PM<sub>10</sub> and PM<sub>2.5</sub> can aggravate respiratory disease, and cause lung damage, cancer, and premature death.

Although particulate matter can cause health problems for everyone, certain people are especially vulnerable to adverse health effects of PM<sub>10</sub>. These "sensitive populations" include children, the elderly, exercising adults, and those suffering from chronic lung disease such as asthma or bronchitis. Of greatest concern are recent studies that link PM10 exposure to the premature death of people who already have heart and lung disease, especially the elderly. Acidic PM10 can also damage manmade materials and is a major cause of reduced visibility in many parts of the U.S.

Premature deaths linked to particulate matter are now at levels comparable to deaths from traffic accidents and second-hand smoke. One of the most dangerous pollutants, fine particulate matter (e.g., from diesel exhaust and fireplace soot) not only bypasses the body's defense mechanisms and becomes embedded in the deepest recesses of the lung, but also can disrupt cellular processes. Population based studies in hundreds of cities in the U.S. and around the world have demonstrated a strong link between elevated particulate levels and premature deaths, hospital admissions, emergency room visits, and asthma attacks. Longterm studies of children's health

conducted in California have demonstrated that particulate pollution may significantly reduce lung function growth in children (CARB, 2002).

Attaining the California PM standards would annually prevent about 6,500 premature deaths, or 3% of all deaths. These premature deaths shorten lives by an average of 14 years. This is roughly equivalent to the same number of deaths (4,200-7,400) linked to second hand smoke in the year 2000. In comparison, motor vehicle crashes cause 3,200 deaths and homicides were responsible for 2,000 deaths. Attaining the California PM and ozone standards would annually prevent 4,000 hospital admissions for respiratory disease, 3,000 hospital admissions for cardiovascular disease, and 2,000 asthma-related emergency room visits. Exposure to diesel PM causes about 250 excess cancer cases per year in California. (CARB, 2002).

A recent study provides evidence that exposure to particulate air pollution is associated with lung cancer. This study found that residents who live in an area that is severely impacted by particulate air pollution are at risk of lung cancer at a rate comparable to nonsmokers exposed to second-hand smoke. This study also found an approximately 16 percent excess risk of dying from lung cancer due to fine particulate air pollution (Pope III, et al., 2002).

Another study shows that individuals with existing cardiac disease can be in a potentially life-threatening situation when exposed to high levels of ultrafine air pollution. Fine particles can penetrate the lungs and may cause the heart to beat irregularly or can cause inflammation, which could lead to a heart attack (Peters, et al., 2001).

Currently, 61% of California's population live in areas that exceed the federal PM2.5 air standard, while 89% live in areas that exceed California's PM2.5 air standard (California Air Resources Board, 2004).

## **B-6.0 OTHER POLLUTANTS**

Discussion presented in this section is mainly reproduced from Appendix C of the Guidelines for Preparing an Air Quality Assessment for Use in Environmental Impact Reports (County of Kern, 2006).

## **B-6.1** Sulfur Dioxide

Sulfur dioxide  $(SO_2)$  is a colorless, irritating gas with a "rotten egg" smell formed primarily by the combustion of sulfur-containing fossil fuels. Historically,  $SO_2$  was a pollutant of concern but with the successful application of regulations, the levels have been reduced significantly.

High concentrations of  $SO_2$  can result in temporary breathing impairment for asthmatic children and adults who are active outdoors. Short-term exposures of asthmatic individuals to elevated  $SO_2$  levels during moderate activity may result in breathing difficulties that can be accompanied by symptoms such as wheezing, chest tightness, or shortness of breath. Other effects that have been associated with longer-term exposures to high concentrations of  $SO_2$ , in conjunction with high levels of PM, include aggravation of existing cardiovascular disease, respiratory illness, and alterations in the lungs' defenses.  $SO_2$  also is a major precursor to  $PM_{2.5}$ , which is a significant health concern, and a main contributor to poor visibility. (See also the discussion of health effects of particulate matter).

Sulfur dioxide not only has a bad odor, it can irritate the respiratory system. Exposure to high concentrations for short periods of time can constrict the bronchi and increase mucous flow, making breathing difficult. Sulfur dioxide can also:

- Immediately irritate the lung and throat at concentrations greater than 6 parts per million (ppm) in many people.
- Impair the respiratory system's defenses against foreign particles and bacteria, when exposed to concentrations less than 6 ppm for longer time periods.
- Enhance the harmful effects of ozone. (Combinations of the two gases at concentrations occasionally found in the ambient air appear to increase airway resistance to breathing.)

Sulfur dioxide tends to have more toxic effects when acidic pollutants, liquid or solid aerosols, and particulates are also present. (In the 1950s and 1960s, thousands of excess deaths occurred in areas where  $SO_2$  concentrations exceeded 1 ppm for a few days and other pollutants were also high.) Effects are more pronounced among mouth breathers, e.g., people who are exercising or who have head colds. These effects include:

- Health problems, such as episodes of bronchitis requiring hospitalization associated with lower-level acid concentrations.
- Self-reported respiratory conditions, such as chronic cough and difficult breathing, associated with acid
  aerosol concentrations. (Asthmatic individuals are especially susceptible to these effects. The elderly
  and those with chronic respiratory conditions may also be affected at lower concentrations than the
  general population.)
- Increased respiratory tract infections, associated with longer term, lower-level exposures to SO<sub>2</sub> and acid aerosols.
- Subjective symptoms, such as headaches and nausea, in the absence of pathological abnormalities, due to long-term exposure.

Sulfur dioxide easily injures many plant species and varieties, both native and cultivated. Some of the most sensitive plants include various commercially valuable pines, legumes, red and black oaks, white ash, alfalfa and blackberry. The effects include:

- Visible injury to the most sensitive plants at exposures as low as 0.12 ppm for 8 hours.
- Visible injury to many other plant types of intermediate sensitivity at exposures of 0.30 ppm for 8 hours.
- Positive benefits from low levels, in a very few species growing on sulfur deficient soils.
- Increases in sulfur dioxide concentrations accelerate the corrosion of metals, probably through the formation of acids. (SO<sub>2</sub> is a major precursor to acidic deposition.) Sulfur oxides may also damage stone and masonry, paint, various fibers, paper, leather, and electrical components.
- Increased SO<sub>2</sub> also contributes to impaired visibility. Particulate sulfate, much of which is derived from sulfur dioxide emissions, is a major component of the complex total suspended particulate mixture.

# **B-6.2** Sulfates

Sulfates are particulate products of combustion of sulfur containing fossil fuels. When SO or  $SO_2$  are exposed to oxygen it precipitates out into sulfates ( $SO_3$  or  $SO_4$ ). Data collected in San Bernardino County identify levels of sulfates that are significantly less than the applicable health standards.

Sulfates ( $SO_4$  <sup>2-</sup>) are the fully oxidized ionic form of sulfur. Sulfates occur in combination with metal and / or hydrogen ions. In California, emissions of sulfur compounds occur primarily from the combustion of petroleum-derived fuels (e.g., gasoline and diesel fuel) that contain sulfur. This sulfur is oxidized to sulfur dioxide ( $SO_2$ ) during the combustion process and subsequently converted to sulfate compounds in the atmosphere. The conversion of  $SO_2$  to sulfates takes place comparatively rapidly and completely in urban areas of California due to regional meteorological features.

The ARB's sulfates standard is designed to prevent aggravation of respiratory symptoms. Effects of sulfate exposure at levels above the standard include a decrease in ventilatory function, aggravation of asthmatic symptoms, and an increased risk of cardio-pulmonary disease. Sulfates are particularly effective in degrading visibility, and, due to fact that they are usually acidic, can harm ecosystems and damage materials and property (CARB, 2009).

## B-6.3 Lead

Lead is a metal that is a natural constituent of air, water, and the biosphere. Lead is neither created nor destroyed in the environment, so it essentially persists forever. Lead was used until recently to increase the octane rating in auto fuel. Since gasoline powered automobile engines were a major source of airborne lead through the use of leaded fuels and the use of leaded fuel has been mostly phased out, the ambient concentrations of lead have dropped dramatically.

Exposure to lead occurs mainly through inhalation of air and ingestion of lead in food, water, soil, or dust. It accumulates in the blood, bones, and soft tissues and can adversely affect the kidneys, liver, nervous system, and other organs. Excessive exposure to lead may cause neurological impairments such as seizures, mental retardation, and behavioral disorders. Even at low doses, lead exposure is associated with damage to the nervous systems of fetuses and young children, resulting in learning deficits and lowered IQ. Recent studies also show that lead may be a factor in high blood pressure and subsequent heart disease. Lead can also be deposited on the leaves of plants, presenting a hazard to grazing animals and humans through ingestion (EPA, 2005).

## **B-6.4** Hydrogen Sulfide

Hydrogen sulfide (H₂S) is associated with geothermal activity, oil and gas production, refining, sewage treatment plants, and confined animal feeding operations.

Exposure to low concentrations of hydrogen sulfide may cause irritation to the eyes, nose, or throat. It may also cause difficulty in breathing for some asthmatics. Exposure to higher concentrations (above 100 parts per million [ppm]), can cause olfactory fatigue, respiratory paralysis, and death. Brief exposures to high concentrations of hydrogen sulfide (greater than 500 ppm) can cause a loss of consciousness. In most cases, the person appears to regain consciousness without any other effects. However, in many individuals, there may be permanent or long-term effects such as headaches, poor attention span, poor memory, and poor motor function. No health effects have been found in humans exposed to typical environmental concentrations of hydrogen sulfide (0.00011-0.00033 ppm). Deaths due to breathing in large amounts of hydrogen sulfide have been reported in a variety of different work settings, including sewers, animal processing plants, waste dumps, sludge plants, oil and gas well drilling sites, and tanks and cesspools.

## **B-6.5** Visibility Reducing Particles

Visibility in important natural areas (e.g., Federal Class I areas) is protected under a number of provisions of the Clean Air Act, including Sections 169A and 169B (addressing impacts primarily from existing sources) and Section 165 (new source review). Visibility impairment is caused by light scattering and light absorption associated with particles and gases in the atmosphere. In most areas of the country, light scattering by PM–2.5 is the most significant component of visibility impairment. The key components of PM–2.5 contributing to visibility impairment include sulfates, nitrates, organic carbon, elemental carbon, and crustal material (US EPA, 2005).

## **B-6.6** Vinyl Chloride

Vinyl chloride is known also as chloroethene, chloroethylene, ethylene monochloride, or monochloroethylene. At room temperature, it is a colorless gas, it burns easily, and it is not stable at high temperatures. Vinyl chloride exists in liquid form if kept under high pressure or at low temperatures. Vinyl chloride has a mild, sweet odor, which may become noticeable at 3,000 parts vinyl chloride per million parts (ppm) of air. However, the odor is of little value in preventing excess exposure. Most people begin to taste vinyl chloride in water at 3.4 ppm(ATSDR, 2006).

Vinyl chloride is not normally found in urban, suburban, or rural air in amounts that are detectable by the usual methods of analysis. However, vinyl chloride has been found in the air near vinyl chloride manufacturing and processing plants, hazardous waste sites, and landfills. The U.S. Department of Health and Human Services, the International Agency for Research on Cancer, and EPA have each determined that vinyl chloride is a human carcinogen (ATSDR, 2006).

Breathing high levels of vinyl chloride will cause dizziness or sleepiness. These effects occur within 5 minutes if you are exposed to about 10,000 ppm of vinyl chloride. Still higher levels (25,000 ppm) induce unconsciousness and potentially death. Studies in animals show that extremely high levels of vinyl chloride can damage the liver, lungs, and kidneys. These levels also can damage the heart and prevent blood clotting. Some people who have breathed vinyl chloride for several years have changes in the structure of their livers. Some people who have worked with vinyl chloride have nerve damage, and others develop an immune reaction (ATSDR, 2006).

#### **B-6.7** Toxic Air Contaminants

Hazardous air pollutants is a term used by the federal Clean Air Act that includes a variety of pollutants generated or emitted by industrial production activities. Called Toxic Air Contaminants (TAC) under the California Clean Act, ten have been identified through ambient air quality data as being the most substantial health risk in California. Direct exposure to these pollutants has been shown to cause cancer, birth defects, damage to brain and nervous system and respiratory disorders.

TACs do not have ambient air quality standards. Instead, TAC impacts are evaluated by calculating the health risks associated with a given exposure. The requirements of the Air Toxic "Hot Spots" Information and Assessment Act apply to facilities that use, produce, or emit toxic chemicals. Facilities that are subject to the toxic emission inventory requirements of the Act must prepare and submit toxic emission inventory plans and reports, and periodically update those reports.

## Health Risks - Nickel

"Nickel occurs naturally in the environment at low levels. Nickel is an essential element in some animal species, and it has been suggested it may be essential for human nutrition. Nickel dermatitis, consisting of itching of the fingers, hands, and forearms, is the most common effect in humans from chronic (long-term) skin contact with nickel. Respiratory effects have also been reported in humans from inhalation exposure to nickel. Human and animal studies have reported an increased risk of lung and nasal cancers from exposure to nickel refinery dusts and nickel subsulfide. Animal studies of soluble nickel compounds (i.e., nickel carbonyl) have reported lung tumors. EPA has classified nickel refinery dust and nickel subsulfide as Group A, human carcinogens, and nickel carbonyl as a Group B2, probable human carcinogen." (US EPA, 2000).

## Health Risks - Diesel Particulate Matter

Diesel particulate matter is emitted from both mobile and stationary sources. In California, on-road diesel fueled engines contribute approximately 24 percent of the statewide total, with an additional 71 percent attributed to

other mobile sources such as construction and mining equipment, agricultural equipment, and transport refrigeration units. Stationary sources contribute about 5 percent of total diesel particulate matter.

Diesel exhaust and many individual substances contained in it (including arsenic, benzene, formaldehyde and nickel) have the potential to contribute to mutations in cells that can lead to cancer. Long-term exposure to diesel exhaust particles poses the highest cancer risk of any toxic air contaminant evaluated by the California Office of Environmental Health Hazard Assessment (OEHHA). ARB estimates that about 70 percent of the cancer risk that the average Californian faces from breathing toxic air pollutants stems from diesel exhaust particles (OEHHA and ALA, 2002).

In its comprehensive assessment of diesel exhaust, OEHHA analyzed more than 30 studies of people who worked around diesel equipment, including truck drivers, railroad workers and equipment operators. The studies showed these workers were more likely to develop lung cancer than workers who were not exposed to diesel emissions. These studies provide strong evidence that long-term occupational exposure to diesel exhaust increases the risk of lung cancer. Using information from OEHHA's assessment, ARB estimates that diesel-particle levels measured in California's air in 2000 could cause 540 "excess" cancers (beyond what would occur if there were no diesel particles in the air) in a population of 1 million people over a 70-year lifetime. Other researchers and scientific organizations, including the National Institute for Occupational Safety and Health, have calculated cancer risks from diesel exhaust that are similar to those developed by OEHHA and ARB (OEHHA and ALA, 2002).

Exposure to diesel exhaust can have immediate health effects. Diesel exhaust can irritate the eyes, nose, throat and lungs, and it can cause coughs, headaches, lightheadedness and nausea. In studies with human volunteers, diesel exhaust particles made people with allergies more susceptible to the materials to which they are allergic, such as dust and pollen. Exposure to diesel exhaust also causes inflammation in the lungs, which may aggravate chronic respiratory symptoms and increase the frequency or intensity of asthma attacks (OEHHA and ALA, 2002).

Diesel engines are a major source of fine-particle pollution. The elderly and people with emphysema, asthma, and chronic heart and lung disease are especially sensitive to fine-particle pollution (see also health effects discussion in Section 4.3.4.5). Numerous studies have linked elevated particle levels in the air to increased hospital admissions, emergency room visits, asthma attacks and premature deaths among those suffering from respiratory problems. Because children's lungs and respiratory systems are still developing, they are also more susceptible than healthy adults to fine particles. Exposure to fine particles is associated with increased frequency of childhood illnesses and can also reduce lung function in children. In California, diesel exhaust particles have been identified as a carcinogen (OEHHA and ALA, 2002).

## Health Risks - Acetaldehyde

Acetaldehyde is both directly emitted into the atmosphere and formed in the atmosphere from photochemical oxidation. Sources include combustion processes such as exhaust from mobile sources and fuel combustion from stationary internal combustion engines, boilers, and process heaters.

Acetaldehyde is classified as a federal hazardous air pollutant and as a California TAC. Acetaldehyde is a carcinogen that also causes chronic non-cancer toxicity in the respiratory system. Symptoms of chronic intoxication of acetaldehyde in humans resemble those of alcoholism. The primary acute effect of inhalation exposure to acetaldehyde is irritation of the eyes, skin, and respiratory tract in humans. At higher exposure levels, erythema, coughing, pulmonary edema, and necrosis may also occur. Acute inhalation of acetaldehyde resulted in a depressed respiratory rate and elevated blood pressure in experimental animals. Tests involving

acute exposure of rats, rabbits, and hamsters have demonstrated acetaldehyde to have low acute toxicity from inhalation and moderate acute toxicity from oral or dermal exposure (US EPA, 2000).

#### Health Risks - Benzene

Approximately 84 percent of the benzene emitted in California comes from motor vehicles, including evaporative leakage and unburned fuel exhaust. Currently, the benzene content of gasoline is less than one percent.

Benzene is highly carcinogenic and occurs throughout California. Benzene also has non-cancer health effects. Brief inhalation exposure to high concentrations can cause central nervous system depression. Acute effects include central nervous system symptoms of nausea, tremors, drowsiness, dizziness, headache, intoxication, and unconsciousness (CalEPA and CARB, 2005).

Neurological symptoms of inhalation exposure to benzene include drowsiness, dizziness, headaches, and unconsciousness in humans. Ingestion of large amounts of benzene may result in vomiting, dizziness, and convulsions in humans. Exposure to liquid and vapor may irritate the skin, eyes, and upper respiratory tract in humans. Redness and blisters may result from dermal exposure to benzene.

Chronic inhalation of certain levels of benzene causes disorders in the blood in humans. Benzene specifically affects bone marrow (the tissues that produce blood cells). Aplastic anemia, excessive bleeding, and damage to the immune system (by changes in blood levels of antibodies and loss of white blood cells) may develop. Increased incidence of leukemia (cancer of the tissues that form white blood cells) has been observed in humans occupationally exposed to benzene (US EPA, 2000).

# Health Risks - 1,3 -Butadiene

The majority of 1,3-butadiene emissions come from incomplete combustion of gasoline and diesel fuels. Mobile sources account for 83 percent of total statewide emissions. Area wide sources such as agricultural waste burning and open burning contribute approximately 13 percent of statewide emissions.

1,3-Butadiene has been identified as a carcinogen in California. Butadiene vapors cause neurological effects at very high levels such as blurred vision, fatigue, headache, and vertigo. Dermal exposure of humans to 1,3-butadiene causes a sensation of cold, followed by a burning sensation, which may lead to frostbite (US EPA, 2009).

One epidemiological study reported that chronic (long-term) exposure to 1,3-butadiene via inhalation resulted in an increase in cardiovascular diseases, such as rheumatic and arteriosclerotic heart diseases, while other human studies have reported effects on the blood. A large epidemiological study of synthetic rubber industry workers demonstrated a consistent association between 1,3-butadiene exposure and occurrence of leukemia. Several epidemiological studies of workers in styrene-butadiene rubber factories have shown an increased incidence of respiratory, bladder, stomach, and lymphato-hematopoietic cancers. However, these studies are not sufficient to determine a causal association between 1,3-butadiene exposure and cancer due to possible exposure to other chemicals and other confounding factors(US EPA, 2009).

## Health Risks - Carbon Tetrachloride

The primary sources of carbon tetrachloride in California include chemical and allied product manufacturers and petroleum refineries.

In California, carbon tetrachloride has been identified as a carcinogen. Carbon tetrachloride is also a central nervous system depressant and mile eye and respiratory tract irritant. EPA has classified carbon tetrachloride as a Group B2, probable human carcinogen (US EPA, 2000).

Acute inhalation and oral exposures to high levels of carbon tetrachloride have been observed primarily to damage the liver (swollen, tender liver, changes in enzyme levels, and jaundice) and kidneys (nephritis, nephrosis, proteinurea) of humans. Depression of the central nervous system has also been reported. Symptoms of acute exposure in humans include headache, weakness, lethargy, nausea, and vomiting. Delayed pulmonary edema (fluid in lungs) has been observed in humans exposed to high levels of carbon tetrachloride by inhalation and ingestion, but this is believed to be due to injury to the kidney rather than direct action of carbon tetrachloride on the lung. Chronic inhalation or oral exposure to carbon tetrachloride produces liver and kidney damage in humans and animals (US EPA, 2000).

## Health Risks - Chromium, Hexavalent

Chromium plating and other metal finishing processes are the primary sources of hexavalent chromium emissions in California. In California, hexavalent chromium has been identified as a carcinogen. There is epidemiological evidence that exposure to inhaled hexavalent chromium may result in lung cancer. The principal acute effects are renal toxicity, gastrointestinal hemorrhage, and intravascular hemolysis (CalEPA and CARB, 2005).

The respiratory tract is the major target organ for chromium (VI) following inhalation exposure in humans. Other effects noted from acute inhalation exposure to very high concentrations of chromium (VI) include gastrointestinal and neurological effects, while dermal exposure causes skin burns in humans. Chronic inhalation exposure to chromium (VI) in humans results in effects on the respiratory tract, with perforations and ulcerations of the septum, bronchitis, decreased pulmonary function, pneumonia, asthma, and nasal itching and soreness reported. Chronic human exposure to high levels of chromium (VI) by inhalation or oral exposure may produce effects on the liver, kidney, gastrointestinal and immune systems, and possibly the blood (US EPA, 2000).

### Health Risks - Para-Dichlorobenzene

The primary sources of para-dichlorobenzene include consumer products such as non-aerosol insect repellents and solid/gel air fresheners. These sources contribute 99% of statewide para-dichlorobenzene emissions.

In California, para-dichlorobenzene has been identified as a carcinogen. Acute exposure to 1,4-dichlorobenzene via inhalation in humans results in irritation to the eyes, skin, and throat. In addition, long-term inhalation exposure may affect the liver, skin, and central nervous system in humans (e.g., cerebellar ataxia, dysarthria, weakness in limbs, and hyporeflexia).(CalEPA and CARB, 2005); (US EPA, 2000).

## Health Risks - Formaldehyde

Formaldehyde is both directly emitted into the atmosphere and formed in the atmosphere as a result of photochemical oxidation. Formaldehyde is a product of incomplete combustion. One of the primary sources of formaldehyde is vehicular exhaust. Formaldehyde is also used in resins, can be found in many consumer products as an antimicrobial agent, and is used in fumigants and soil disinfectants.

The major toxic effects caused by acute formaldehyde exposure via inhalation are eye, nose, and throat irritation and effects on the nasal cavity. Other effects seen from exposure to high levels of formaldehyde in humans are coughing, wheezing, chest pains, and bronchitis. Chronic exposure to formaldehyde by inhalation in humans has been associated with respiratory symptoms and eye, nose, and throat irritation. Animal studies

have reported effects on the nasal respiratory epithelium and lesions in the respiratory system from chronic inhalation exposure to formaldehyde. Occupational studies have noted statistically significant associations between exposure to formaldehyde and increased incidence of lung and nasopharyngeal cancer. This evidence is considered to be "limited," rather than "sufficient," due to possible exposure to other agents that may have contributed to the excess cancers. EPA considers formaldehyde to be a probable human carcinogen (cancercausing agent) and has ranked it in EPA's Group B1. In California, formaldehyde has been identified as a carcinogen. (CalEPA and CARB, 2005); (US EPA, 2000).

# Health Risks - Methylene Chloride

Methylene chloride is used as a solvent, a blowing and cleaning agent in the manufacture of polyurethane foam and plastic manufacture, and as a solvent in paint stripping operations. Paint removers account for the largest use of methylene chloride in California.

Case studies of methylene chloride poisoning during paint stripping operations have demonstrated that inhalation exposure to extremely high levels can be fatal to humans. Acute inhalation exposure to high levels of methylene chloride in humans has resulted in effects on the central nervous system (CNS) including decreased visual, auditory, and psychomotor functions, but these effects are reversible once exposure ceases. Methylene chloride also irritates the nose and throat at high concentrations. The major effects from chronic inhalation exposure to methylene chloride in humans are effects on the central nervous system, such as headaches, dizziness, nausea, and memory loss. In addition, chronic exposure can lead to bone marrow, hepatic, and renal toxicity. EPA considers methylene chloride to be a probable human carcinogen and has ranked it in EPA's Group B2. California considers methylene chloride to be carcinogenic. (US EPA, 2000).

## Health Risks - Perchloroethylene

Perchloroethylene is used as a solvent, primarily in dry cleaning operations. Perchloroethylene is also used in degreasing operations, paints and coatings, adhesives, aerosols, specialty chemical production, printing inks, silicones, rug shampoos, and laboratory solvents.

In California, perchloroethylene has been identified as a carcinogen. Perchloroethylene vapors are irritating to the eyes and respiratory tract. Following chronic exposure, workers have shown signs of liver toxicity, as well as kidney dysfunction, and neurological disorders (CalEPA and CARB, 2005).

# Ozone Trends Summary: Hesperia-Olive Street



|         | D         | Days > Standard |      |           |       | 1-Hour Observations |        | 8-Hour Averages |       |       |                       |          |
|---------|-----------|-----------------|------|-----------|-------|---------------------|--------|-----------------|-------|-------|-----------------------|----------|
|         | St        | ate             | Na   | tional    |       | State               | Nat'l  | Sta             | ate   | Na    | tional                | Year     |
| Year    | 1-Hr      | 8-Hr            | 1-Hr | '08 8-Hr  | Max.  | D.V.1               | D. V.2 | Max.            | D.V.1 | Max.  | '08 D.V. <sup>2</sup> | Coverage |
| 2014    |           | <b>40</b>       | 0    | <b>27</b> | 0.121 | 0.11                | 0.111  | 0.094           | 0.097 | 0.093 | 0.087                 | 100      |
| 2013    | 1         |                 | 0    | 12        | 0.100 | 0.11                | 0.117  |                 | 0.102 | 0.084 | 0.091                 | 98       |
| 2012    | <b>21</b> |                 | 0    | <b>55</b> | 0.116 | 0.12                | 0.118  | 0.097           | 0.102 | 0.097 | 0.095                 | 100      |
| 2011    | <b>24</b> | 101             | 1    | <b>67</b> | 0.132 | 0.12                | 0.119  | 0.114           | 0.102 | 0.113 | 0.097                 | 100      |
| 2010    | <b>15</b> |                 | 0    | 42        | 0.119 | 0.12                | 0.121  | 0.102           | 0.107 | 0.101 | 0.096                 | 100      |
| 2009    | 18        | 64              | 0    | 40        | 0.123 | 0.12                | 0.123  | 0.101           | 0.110 | 0.101 | 0.097                 | 100      |
| 2008    | <b>29</b> |                 | 1    | <b>58</b> | 0.132 | 0.12                | 0.132  | 0.107           | 0.107 | 0.106 | 0.097                 | 99       |
| 2007    | <b>24</b> | <b>75</b>       | 2    | 47        | 0.132 | 0.13                | 0.133  | 0.110           | 0.113 | 0.109 | 0.099                 | 94       |
| 2006    | <b>22</b> | <b>76</b>       | 2    | <b>50</b> | 0.148 | 0.13                | 0.134  | 0.125           | 0.113 | 0.124 | 0.099                 | 100      |
| 2005    | 41        |                 | 3    | <b>67</b> | 0.140 | 0.13                | 0.136  | 0.121           | 0.119 | 0.120 | 0.104                 | 99       |
| 2004    | <b>28</b> | <b>67</b>       | 2    | <b>53</b> | 0.138 | 0.13                | 0.138  | 0.119           | 0.120 | 0.119 | 0.107                 | 100      |
| 2003    | 43        |                 | 2    | <b>70</b> | 0.163 | 0.13                | 0.136  | 0.131           | 0.119 | 0.130 | 0.106                 | 100      |
| 2002    | 46        | 107             | 5    | <b>73</b> | 0.147 | 0.14                | 0.143  | 0.123           | 0.120 | 0.123 | 0.106                 | 99       |
| 롣 Graph |           |                 |      |           |       |                     |        |                 |       |       |                       |          |

Info: Click on a column header for more information about the statistic in that column.

Area: San Bernardino County; Mojave Desert Air Basin;

Antelope Valley & W Mojave Desert 8-Hr Ozone Plan Area

District: Mojave Desert AQMD

Years: Annual Ozone statistics are available for this site from 1985 through 2014.

Notes: All concentrations expressed in parts per million.

The national 1-hour ozone standard was revoked in June 2005 and is no longer in effect. Statistics related to the revoked standard are shown in *italics* or *italics*.

State exceedances shown in  $\ensuremath{\,^{\text{yellow}}}$  . National exceedances shown in  $\ensuremath{\,^{\text{orange}}}$  .

An exceedance is not necessarily a violation.

<sup>1</sup> D.V. = State Designation Value

<sup>2</sup> D.V. = National Design Value

\* There was insufficient (or no) data available to determine the value.

Go to: Data Statistics Home Page Trends Summaries Start Page PM10 Trends for this Site

1 of 1 12/29/2015 10:59 AM



# **Top 4 Summary: Highest 4 Daily Maximum 8-Hour Ozone Averages**

| at Hesperia-Olive Street         |                             |              |        |              |        |              |  |
|----------------------------------|-----------------------------|--------------|--------|--------------|--------|--------------|--|
|                                  | 2009                        |              | 2010   |              | 2011   |              |  |
|                                  | Date                        | 8-Hr Average | Date   | 8-Hr Average | Date   | 8-Hr Average |  |
| National:                        |                             |              |        |              |        |              |  |
| First High:                      | Jul 21                      | 0.101        | Jun 23 | 0.101        | Jul 2  | 0.113        |  |
| Second High:                     | Sep 4                       | 0.098        | Jun 24 | 0.101        | Jun 27 | 0.102        |  |
| Third High:                      | Aug 30                      | 0.097        | Jul 17 | 0.098        | Jul 7  | 0.101        |  |
| Fourth High:                     | Jul 28                      | 0.096        | Jun 30 | 0.095        | Aug 18 | 0.100        |  |
| California:                      |                             |              |        |              |        |              |  |
| First High:                      | Jul 21                      | 0.101        | Jun 23 | 0.102        | Jul 2  | 0.114        |  |
| Second High:                     | Sep 4                       | 0.099        | Jun 24 | 0.102        | Jun 27 | 0.102        |  |
| Third High:                      | Aug 30                      | 0.098        | Jul 17 | 0.099        | Jul 7  | 0.102        |  |
| Fourth High:                     | Jul 28                      | 0.097        | Jun 30 | 0.096        | Aug 18 | 0.101        |  |
| National:                        |                             |              |        |              |        |              |  |
| # Days Above tl                  | ne Standard                 | : 40         |        | 42           |        | 67           |  |
| Nat'l Standard Design<br>Value:  |                             | () ()()      |        | 0.096        |        | 0.097        |  |
| National Year Coverage:          |                             | : 100        |        | 100          |        | 100          |  |
| California:                      |                             |              |        |              |        |              |  |
| # Days Above the Standard:       |                             | : 64         |        | 66           |        | 101          |  |
| California Designation<br>Value: |                             | (1.1.1(1)    |        | 0.107        |        | 0.102        |  |
| •                                | ed Peak Day<br>oncentration | () 11()      |        | 0.107        |        | 0.108        |  |
| California Yea                   | ar Coverage                 | : 100        |        | 99           |        | 100          |  |

#### Notes:

Eight-hour ozone averages and related statistics are available at Hesperia-Olive Street between 1985 and 2014. Some years in this range may not be represented. All averages expressed in parts per million.

## Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 1 12/29/2015 11:25 AM

An exceedance of a standard is not necessarily related to a violation of the standard.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

 $<sup>^{\</sup>star}$   $\,$  means there was insufficient data available to determine the value.



# **Top 4 Summary: Highest 4 Daily Maximum 8-Hour Ozone Averages**

| at Hesperia-Olive Street         |                             |              |        |              |        |              |  |
|----------------------------------|-----------------------------|--------------|--------|--------------|--------|--------------|--|
|                                  | 2012                        |              | 2013   |              | 2014   |              |  |
|                                  | Date                        | 8-Hr Average | Date   | 8-Hr Average | Date   | 8-Hr Average |  |
| National:                        |                             |              |        |              |        |              |  |
| First High:                      | Jul 11                      | 0.097        | May 4  | 0.084        | May 16 | 0.093        |  |
| Second High:                     | Jun 20                      | 0.096        | May 21 | 0.084        | May 17 | 0.092        |  |
| Third High:                      | May 12                      | 0.093        | Jul 19 | 0.084        | Jun 5  | 0.088        |  |
| Fourth High:                     | Jun 2                       | 0.092        | May 30 | 0.083        | Jul 25 | 0.087        |  |
| California:                      |                             |              |        |              |        |              |  |
| First High:                      | Jul 11                      | 0.097        | May 4  | 0.085        | May 16 | 0.094        |  |
| Second High:                     | Jun 20                      | 0.096        | May 21 | 0.085        | May 17 | 0.092        |  |
| Third High:                      | May 12                      | 0.094        | Jul 19 | 0.085        | Jun 5  | 0.089        |  |
| Fourth High:                     | Jun 2                       | 0.092        | May 30 | 0.084        | Jul 25 | 0.088        |  |
| National:                        |                             |              |        |              |        |              |  |
| # Days Above t                   | he Standard                 | : 55         |        | 12           |        | 27           |  |
| Nat'l Standard Design<br>Value:  |                             | 11 1195      |        | 0.091        |        | 0.087        |  |
| National Year Coverage:          |                             | : 100        |        | 98           |        | 100          |  |
| California:                      |                             |              |        |              |        |              |  |
| # Days Above the Standard:       |                             | : 93         |        | 35           |        | 40           |  |
| California Designation<br>Value: |                             | 0.107        |        | 0.102        |        | 0.097        |  |
| •                                | ed Peak Day<br>oncentration | UTUh         |        | 0.103        |        | 0.100        |  |
| California Ye                    | ar Coverage                 | : 100        |        | 98           |        | 100          |  |

#### Notes:

Eight-hour ozone averages and related statistics are available at Hesperia-Olive Street between 1985 and 2014. Some years in this range may not be represented. All averages expressed in parts per million.

## Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 1 12/29/2015 11:24 AM

An exceedance of a standard is not necessarily related to a violation of the standard.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

 $<sup>^{\</sup>star}$   $\,$  means there was insufficient data available to determine the value.



# **Top 4 Summary: Highest 4 Daily Maximum Hourly Ozone Measurements**

| at Hesperia-Olive Street         |        |             |        |             |        |             |  |
|----------------------------------|--------|-------------|--------|-------------|--------|-------------|--|
|                                  | 2009   |             | 2010   |             | 2011   |             |  |
|                                  | Date   | Measurement | Date   | Measurement | Date   | Measurement |  |
| First High:                      | Aug 31 | 0.123       | Jul 15 | 0.119       | Jul 2  | 0.132       |  |
| Second High:                     | Jul 21 | 0.122       | Jul 16 | 0.115       | Jul 1  | 0.119       |  |
| Third High:                      | Aug 30 | 0.117       | Jul 17 | 0.115       | Jun 27 | 0.118       |  |
| Fourth High:                     | Sep 2  | 0.112       | Jun 24 | 0.114       | Jul 3  | 0.117       |  |
| California:                      |        |             |        |             |        |             |  |
| # Days Above the Standard:       |        | l: 18       |        | 15          |        | 24          |  |
| California Designation<br>Value: |        | 0.12        |        | 0.12        |        | 0.12        |  |
| Expected Peak Day Concentration: |        |             |        | 0.120       |        | 0.120       |  |
| National:                        |        |             |        |             |        |             |  |
| # Days Above the Standard:       |        | d: O        |        | 0           |        | 1           |  |
| Nat'l Standard Design<br>Value:  |        | 11.17.3     |        | 0.121       |        | 0.119       |  |
| Year Coverage:                   |        | e: 100      |        | 100         |        | 100         |  |

### Notes:

Hourly ozone measurements and related statistics are available at Hesperia-Olive Street between 1985 and 2014. Some years in this range may not be represented. All concentrations expressed in parts per million.

## Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 1 12/29/2015 11:26 AM

The national 1-hour ozone standard was revoked in June 2005 and is no longer in effect. Statistics related to the revoked standard are shown in italics or italics. An exceedance of a standard is not necessarily related to a violation of the standard.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

<sup>\*</sup> means there was insufficient data available to determine the value.



# **Top 4 Summary: Highest 4 Daily Maximum Hourly Ozone Measurements**

| at Hesperia-Oli                  | ve Street   |             |        |             |        | <u>i/ADAW</u> |
|----------------------------------|-------------|-------------|--------|-------------|--------|---------------|
|                                  | 2012        |             | 2013   |             | 2014   |               |
|                                  | Date        | Measurement | Date   | Measurement | Date   | Measurement   |
| First High:                      | Aug 13      | 0.116       | Jul 3  | 0.100       | May 17 | 0.121         |
| Second High:                     | Aug 16      | 0.111       | May 4  | 0.094       | May 16 | 0.111         |
| Third High:                      | Aug 2       | 0.110       | Jul 4  | 0.093       | Jul 25 | 0.099         |
| Fourth High:                     | Jul 11      | 0.105       | May 21 | 0.092       | Jun 24 | 0.097         |
| California:                      |             |             |        |             |        |               |
| # Days Above the Standard:       |             | d: 21       |        | 1           |        | 8             |
| California Designation<br>Value: |             | 0.12        |        | 0.11        |        | 0.11          |
| Expected Peak Day Concentration: |             | • 0.117     |        | 0.114       |        | 0.107         |
| National:                        |             |             |        |             |        |               |
| # Days Above the Standard:       |             | d: 0        |        | 0           |        | 0             |
| Nat'l Standard Design<br>Value:  |             | אודוו       |        | 0.117       |        | 0.111         |
| Yea                              | ar Coverage | e: 100      |        | 98          |        | 100           |

### Notes:

Hourly ozone measurements and related statistics are available at Hesperia-Olive Street between 1985 and 2014. Some years in this range may not be represented. All concentrations expressed in parts per million.

# Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 1 12/29/2015 11:26 AM

The national 1-hour ozone standard was revoked in June 2005 and is no longer in effect. Statistics related to the revoked standard are shown in italics or italics. An exceedance of a standard is not necessarily related to a violation of the standard.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

<sup>\*</sup> means there was insufficient data available to determine the value.

## PM2.5 Trends Summary: Big Bear City-501 W. Valley Blvd



|         | Est. Days | Anı   | nual  | Nat'l     | State             | Nat'l '06  | Nat'l '06  | High 2 | 4-Hour |          |
|---------|-----------|-------|-------|-----------|-------------------|------------|------------|--------|--------|----------|
|         | > Nat'l   | Ave   | rage  | Ann. Std. | Annual            | Std. 98th  | 24-Hr Std. | Ave    | rage   | Year     |
| Year    | '06 Std.  | Nat'l | State | D.V.1     | D.V. <sup>2</sup> | Percentile | D.V.1      | Nat'l  | State  | Coverage |
| 2014    | *         | *     | *     | *         | 10                | *          | *          | 24.2   | 24.2   | 81       |
| 2013    | 5.8       | 9.7   | 9.7   | *         | 10                | 35.1       | *          | 35.5   | 35.5   | 94       |
| 2012    | *         | *     | *     | *         | *                 | *          | *          | 36.4   | 36.4   | 95       |
| 2011    | 0.0       | 8.4   | *     | *         | 10                | 30.6       | *          | 30.7   | 30.7   | 91       |
| 2010    | *         | *     | *     | *         | 10                | *          | *          | 35.4   | 35.4   | 76       |
| 2009    | 6.6       | 9.9   | 9.9   | *         | 10                | 29.4       | 32         | 40.7   | 40.7   | 90       |
| 2008    | 5.7       | 9.1   | *     | *         | *                 | 33.2       | 36         | 36.7   | 36.7   | 84       |
| 2007    | *         | *     | *     | *         | *                 | 34.0       | 38         | 45.4   | 45.4   | 95       |
| 2006    | *         | *     | *     | *         | *                 | 40.0       | *          | 40.0   | 40.0   | 84       |
| 2005    | *         | *     | *     | *         | *                 | 38.7       | *          | 38.7   | 38.7   | 90       |
| 2004    | *         | *     | *     | *         | *                 | *          | *          | 28.6   | 28.6   | 75       |
| 2003    | 0.0       | 10.6  | *     | *         | *                 | 28.8       | *          | 35.0   | 35.0   | 92       |
| 2002    | *         | *     | *     | *         | *                 | *          | *          | 34.1   | 34.1   | 83       |
| 롣 Graph |           |       |       |           |                   |            |            |        |        |          |

Info: Click on a column header for more information about the statistic in that column.

Area: San Bernardino County; South Coast Air Basin;

South Coast Air Basin 8-Hour Ozone Planning Area

District: South Coast AQMD

Years: Annual PM2.5 statistics are available for this site from 1999 through 2014.

Notes: All concentrations expressed in micrograms per cubic meter.

State exceedances shown in yellow . National exceedances shown in orange .

An exceedance is not necessarily a violation.

State and national statistics may differ for the following reasons:

State statistics are based on California approved samplers, whereas national statistics

are based on samplers using federal reference or equivalent methods.

State and national statistics may therefore be based on different samplers.

State criteria for ensuring that data are sufficiently complete for calculating valid annual averages are more stringent than the national criteria.

- <sup>1</sup> D.V. = National Design Value
- <sup>2</sup> D.V. = State Designation Value
- \* There was insufficient (or no) data available to determine the value.

Go to: Data Statistics Home Page Trends Summaries Start Page

1 of 1 12/29/2015 11:00 AM



## Top 4 Summary: Highest 4 Daily 24-Hour PM2.5 Averages

| at Big Bear Cit | y-501 W. Valle               | y Blvd           |        |                  |        | <b>ADOM</b>      |
|-----------------|------------------------------|------------------|--------|------------------|--------|------------------|
|                 | 200                          | )9               | 20     | )10              | 20     | 11               |
|                 | Date                         | 24-Hr<br>Average | Date   | 24-Hr<br>Average | Date   | 24-Hr<br>Average |
| National:       |                              |                  |        |                  |        |                  |
| First High:     | Dec 27                       | 40.7             | Jan 2  | 35.4             | Dec 11 | 30.7             |
| Second High:    | Jan 19                       | 29.4             | Jan 8  | 27.5             | Dec 29 | 30.6             |
| Third High:     | Jan 31                       | 26.7             | Dec 4  | 21.0             | Nov 23 | 28.2             |
| Fourth High:    | Jan 7                        | 23.5             | Nov 16 | 18.4             | Jan 21 | 27.0             |
| California:     |                              |                  |        |                  |        |                  |
| First High:     | Dec 27                       | 40.7             | Jan 2  | 35.4             | Dec 11 | 30.7             |
| Second High:    | Jan 19                       | 29.4             | Jan 8  | 27.5             | Dec 29 | 30.6             |
| Third High:     | Jan 31                       | 26.7             | Dec 4  | 21.0             | Nov 23 | 28.2             |
| Fourth High:    | Jan 7                        | 23.5             | Nov 16 | 18.4             | Jan 21 | 27.0             |
| National:       |                              |                  |        |                  |        |                  |
|                 | ited # Days > 24-Hour Std:   | 6.6              |        | *                |        | 0.0              |
|                 | red # Days > 24-Hour Std:    | 1                |        | 0                |        | 0                |
| 24-Hour Star    | ndard Design<br>Value:       | 32               |        | *                |        | *                |
| 24-Hour S       | Standard 98th<br>Percentile: | 29.4             |        | *                |        | 30.6             |
| Annual Star     | ndard Design<br>Value:       | *                |        | *                |        | *                |
| Anr             | nual Average:                | 9.8              |        | *                |        | 8.4              |
| California:     |                              |                  |        |                  |        |                  |
| Annual Sto      | d Designation<br>Value:      | 10               |        | 10               |        | 10               |
| Anr             | nual Average:                | 9.9              |        | *                |        | *                |
| Ye              | ar Coverage:                 | 90               |        | 76               |        | 91               |
|                 |                              |                  |        |                  |        |                  |

### Notes:

Daily PM2.5 averages and related statistics are available at Big Bear City-501 W. Valley Blvd between 1999 and 2014. Some years in this range may not be represented. All averages expressed in micrograms per cubic meter.

#### Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 1 12/29/2015 11:28 AM

An exceedance of a standard is not necessarily related to a violation of the standard.

State statistics are based on California approved samplers, whereas national statistics are based on samplers using federal reference or equivalent methods. State and national statistics may therefore be based on different samplers.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

<sup>\*</sup> means there was insufficient data available to determine the value.



## Top 4 Summary: Highest 4 Daily 24-Hour PM2.5 Averages

| at Big Bear Cit | y-501 W. Valle               | ey Blvd          |        |                  |        | MADON            |
|-----------------|------------------------------|------------------|--------|------------------|--------|------------------|
|                 | 20′                          | 12               | 20     | )13              | 20     | 14               |
|                 | Date                         | 24-Hr<br>Average | Date   | 24-Hr<br>Average | Date   | 24-Hr<br>Average |
| National:       |                              |                  |        |                  |        |                  |
| First High:     | Nov 23                       | 36.4             | Nov 30 | 35.5             | Jan 5  | 24.2             |
| Second High:    | Nov 11                       | 27.4             | Jan 4  | 35.1             | Feb 22 | 19.1             |
| Third High:     | Jan 4                        | 18.0             | Dec 30 | 25.8             | Jan 17 | 17.7             |
| Fourth High:    | Jan 10                       | 15.3             | Nov 6  | 21.8             | Jan 23 | 15.5             |
| California:     |                              |                  |        |                  |        |                  |
| First High:     | Nov 23                       | 36.4             | Nov 30 | 35.5             | Jan 5  | 24.2             |
| Second High:    | Nov 11                       | 27.4             | Jan 4  | 35.1             | Feb 22 | 19.1             |
| Third High:     | Jan 4                        | 18.0             | Dec 30 | 25.8             | Jan 17 | 17.7             |
| Fourth High:    | Jan 10                       | 15.3             | Nov 6  | 21.8             | Jan 23 | 15.5             |
| National:       |                              |                  |        |                  |        |                  |
|                 | ted # Days > 24-Hour Std:    | *                |        | 5.8              |        | *                |
|                 | red # Days > 24-Hour Std:    | 1                |        | 1                |        | 0                |
| 24-Hour Star    | ndard Design<br>Value:       | *                |        | *                |        | *                |
| 24-Hour S       | standard 98th<br>Percentile: | *                |        | 35.1             |        | *                |
| Annual Star     | ndard Design<br>Value:       | *                |        | *                |        | *                |
| Anr             | ual Average:                 | *                |        | 9.6              |        | *                |
| California:     |                              |                  |        |                  |        |                  |
| Annual Sto      | Designation Value:           | *                |        | 10               |        | 10               |
| Anr             | ual Average:                 | *                |        | 9.7              |        | *                |
| Ye              | ar Coverage:                 | 95               |        | 94               |        | 81               |
|                 |                              |                  |        |                  |        |                  |

### Notes:

Daily PM2.5 averages and related statistics are available at Big Bear City-501 W. Valley Blvd between 1999 and 2014. Some years in this range may not be represented. All averages expressed in micrograms per cubic meter.

#### Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 1 12/29/2015 11:27 AM

An exceedance of a standard is not necessarily related to a violation of the standard.

State statistics are based on California approved samplers, whereas national statistics are based on samplers using federal reference or equivalent methods. State and national statistics may therefore be based on different samplers.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

 $<sup>^{\</sup>star}$   $\,$  means there was insufficient data available to determine the value.

### PM10 Trends Summary: Lucerne Valley-Middle School



|         | Est. Day | ys > Std. | Annual | Average     | 3-Year | Average   | High 24-F | Ir Average  | Year     |
|---------|----------|-----------|--------|-------------|--------|-----------|-----------|-------------|----------|
| Year    | Nat'l    | State     | Nat'l  | State       | Nat'l  | State     | Nat'l     | State       | Coverage |
| 2014    | *        | *         | 16.7   | *           | 16     | *         | 49.8      | 44.6        | 86       |
| 2013    | *        | *         | 18.5   | *           | 15     | *         | 160.2     | 142.8       | 74       |
| 2012    | 0.0      | *         | 13.9   | *           | 14     | 13        | 30.0      | 27.0        | 89       |
| 2011    | *        | *         | 13.8   | *           | 15     | 15        | 33.0      | 31.0        | 93       |
| 2010    | 0.0      | 0.0       | 14.6   | 13.4        | 18     | 15        | 43.0      | 38.0        | 99       |
| 2009    | 0.0      | 6.1       | 17.3   | 15.4        | 23     | <b>28</b> | 93.0      | 81.0        | 99       |
| 2008    | *        | *         | 20.7   | *           | 25     | <b>28</b> | 67.0      | 62.0        | 76       |
| 2007    | 6.1      |           | 31.0   | <b>27.8</b> | 24     | <b>28</b> | 229.0     | 212.0       | 100      |
| 2006    | 0.0      | *         | 23.0   | *           | 20     | 17        | 56.0      | 50.0        | 97       |
| 2005    | 0.0      | 6.1       | 19.1   | 16.9        | 19     | 17        | 64.0      | 57.0        | 100      |
| 2004    | 0.0      | *         | 18.1   | *           | 19     | 17        | 53.0      | 47.0        | 95       |
| 2003    | 0.0      | 6.5       | 19.7   | 17.4        | 19     | 17        | 79.0      | <b>75.0</b> | 97       |
| 2002    | 0.0      | *         | 19.2   | *           | 20     | <b>23</b> | 46.0      | 46.0        | 94       |
| 롣 Graph |          |           |        |             |        |           |           |             |          |

Info: Click on a column header for more information about the statistic in that column.

Area: San Bernardino County; Mojave Desert Air Basin;

Antelope Valley & W Mojave Desert 8-Hr Ozone Plan Area

District: Mojave Desert AQMD

Years: Annual PM10 statistics are available for this site from 1990 through 2014.

Notes: All concentrations expressed in micrograms per cubic meter.

The national annual average PM10 standard was revoked in December 2006 and is no longer in effect.

Statistics related to the revoked standard are shown in italics or italics .

State exceedances shown in yellow . National exceedances shown in orange .

An exceedance is not necessarily a violation.

Statistics may include data that are related to an exceptional event.

State and national statistics may differ for the following reasons:

State statistics are based on California approved samplers, whereas national statistics

are based on samplers using federal reference or equivalent methods.

State and national statistics may therefore be based on different samplers.

State statistics for 1998 and later are based on local conditions (except for sites in the

South Coast Air Basin, where State statistics for 2002 and later are based on *local* conditions).

National statistics are based on standard conditions.

State criteria for ensuring that data are sufficiently complete for calculating valid annual averages are more stringent than the national criteria.

\* There was insufficient (or no) data available to determine the value.

Go to: Data Statistics Home Page Trends Summaries Start Page

1 of 1 12/29/2015 11:01 AM



## Top 4 Summary: Highest 4 Daily 24-Hour PM10 Averages

| at Lucerne Valle | ey-Middle Sc                 | hool             |        |                  |        | iADAM            |
|------------------|------------------------------|------------------|--------|------------------|--------|------------------|
|                  | 200                          | )9               | 20     | )10              | 20     | )11              |
|                  | Date                         | 24-Hr<br>Average | Date   | 24-Hr<br>Average | Date   | 24-Hr<br>Average |
| National:        |                              |                  |        |                  |        |                  |
| First High:      | Jul 24                       | 93.0             | Sep 5  | 43.0             | Apr 15 | 33.0             |
| Second High:     | Oct 4                        | 39.0             | Sep 17 | 39.0             | May 27 | 33.0             |
| Third High:      | Sep 4                        | 38.0             | Jun 13 | 32.0             | Feb 8  | 29.0             |
| Fourth High:     | Aug 11                       | 35.0             | Sep 11 | 28.0             | Jul 8  | 27.0             |
| California:      |                              |                  |        |                  |        |                  |
| First High:      | Jul 24                       | 81.0             | Sep 5  | 38.0             | Apr 15 | 31.0             |
| Second High:     | Oct 4                        | 35.0             | Sep 17 | 35.0             | May 27 | 30.0             |
| Third High:      | Sep 4                        | 33.0             | Jun 13 | 28.0             | Feb 8  | 27.0             |
| Fourth High:     | Aug 11                       | 31.0             | Sep 11 | 25.0             | Jul 8  | 24.0             |
| National:        |                              |                  |        |                  |        |                  |
|                  | ted # Days > 24-Hour Std:    | 0.0              |        | 0.0              |        | *                |
|                  | red # Days ><br>24-Hour Std: | 0                |        | 0                |        | 0                |
| 3-Yr Avg         | Est # Days > 24-Hr Std:      | *                |        | *                |        | *                |
| Ann              | ual Average:                 | 17.3             |        | 14.6             |        | 13.8             |
| 3-Y              | 'ear Average:                | 23               |        | 18               |        | 15               |
| California:      |                              |                  |        |                  |        |                  |
|                  | ted # Days > 24-Hour Std:    | 6.1              |        | 0.0              |        | *                |
|                  | red # Days ><br>24-Hour Std: | 1                |        | 0                |        | 0                |
| Ann              | ual Average:                 | 15.4             |        | 13.4             |        | *                |
| 3-Year Maxi      | mum Annual<br>Average:       | 28               |        | 15               |        | 15               |
| Yea              | ar Coverage:                 | 99               |        | 99               |        | 93               |

#### Notes:

Daily PM10 averages and related statistics are available at Lucerne Valley-Middle School between 1990 and 2014. Some years in this range may not be represented. All averages expressed in micrograms per cubic meter.

#### Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 2 12/29/2015 11:29 AM

The national annual average PM10 standard was revoked in December 2006 and is no longer in effect. Statistics related to the revoked standard are shown in italics or italics.

An exceedance of a standard is not necessarily related to a violation of the standard.

 $<sup>\</sup>textbf{All values listed above represent midnight-to-midnight 24-hour averages and may be related to an \textbf{exceptional event}.}\\$ 

State and national statistics may differ for the following reasons:

State statistics are based on California approved samplers, whereas national statistics are based on samplers using federal reference or equivalent methods. State and national statistics may therefore be based on different samplers.

State statistics for 1998 and later are based on local conditions (except for sites in the South Coast Air Basin, where State statistics for 2002 and later are based on local conditions). National statistics are based on standard conditions.

State criteria for ensuring that data are sufficiently complete for calculating valid annual averages are more stringent than the national criteria.

Measurements are usually collected every six days. Measured days counts the days that a measurement was greater than the level of the standard; Estimated days mathematically estimates how many days concentrations would have been greater than the level of the standard had each day been monitored.

<sup>3-</sup>Year statistics represent the listed year and the 2 years before the listed year.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

<sup>\*</sup> means there was insufficient data available to determine the value.

2 of 2



## Top 4 Summary: Highest 4 Daily 24-Hour PM10 Averages

| at Lucerne Val | ley-Middle Sc              | hool             |        |                  |        | iADAM            |
|----------------|----------------------------|------------------|--------|------------------|--------|------------------|
|                | 201                        | 2                | 20     | )13              | 20     | )14              |
|                | Date                       | 24-Hr<br>Average | Date   | 24-Hr<br>Average | Date   | 24-Hr<br>Average |
| National:      |                            |                  |        |                  |        |                  |
| First High:    | Sep 12                     | 30.0             | Jun 3  | 160.2            | Aug 21 | 49.8             |
| Second High:   | Jun 8                      | 28.0             | May 4  | 71.4             | May 11 | 35.8             |
| Third High:    | May 9                      | 26.0             | May 16 | 70.3             | Oct 8  | 31.7             |
| Fourth High:   | May 21                     | 26.0             | Jul 15 | 50.2             | Apr 17 | 30.3             |
| California:    |                            |                  |        |                  |        |                  |
| First High:    | Sep 12                     | 27.0             | Jun 3  | 142.8            | Aug 21 | 44.6             |
| Second High:   | Jun 8                      | 25.0             | May 4  | 64.5             | May 11 | 33.0             |
| Third High:    | May 9                      | 23.0             | May 16 | 63.9             | Oct 8  | 28.5             |
| Fourth High:   | May 21                     | 23.0             | Jul 15 | 44.2             | Apr 17 | 27.4             |
| National:      |                            |                  |        |                  |        |                  |
| Estima         | ated # Days > 24-Hour Std: | 0.0              |        | *                |        | *                |
| Measu          | red # Days > 24-Hour Std:  | 0                |        | 1                |        | 0                |
| 3-Yr Avg       | Est # Days > 24-Hr Std:    | *                |        | *                |        | *                |
| Anı            | nual Average:              | 13.9             |        | 18.5             |        | 16.7             |
| 3-1            | /ear Average:              | 14               |        | 15               |        | 16               |
| California:    |                            |                  |        |                  |        |                  |
| Estima         | ated # Days > 24-Hour Std: | *                |        | *                |        | *                |
| Measu          | red # Days > 24-Hour Std:  | 0                |        | 3                |        | 0                |
| Anr            | nual Average:              | *                |        | *                |        | *                |
| 3-Year Max     | imum Annual<br>Average:    | 13               |        | *                |        | *                |
| Ye             | ar Coverage:               | 89               |        | 74               |        | 86               |

#### Notes:

Daily PM10 averages and related statistics are available at Lucerne Valley-Middle School between 1990 and 2014. Some years in this range may not be represented. All averages expressed in micrograms per cubic meter.

#### Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 2 12/29/2015 11:28 AM

The national annual average PM10 standard was revoked in December 2006 and is no longer in effect. Statistics related to the revoked standard are shown in italics or italics.

An exceedance of a standard is not necessarily related to a violation of the standard.

All values listed above represent midnight-to-midnight 24-hour averages and may be related to an exceptional event.

State and national statistics may differ for the following reasons:

State statistics are based on California approved samplers, whereas national statistics are based on samplers using federal reference or equivalent methods. State and national statistics may therefore be based on different samplers.

State statistics for 1998 and later are based on local conditions (except for sites in the South Coast Air Basin, where State statistics for 2002 and later are based on local conditions). National statistics are based on standard conditions.

State criteria for ensuring that data are sufficiently complete for calculating valid annual averages are more stringent than the national criteria.

Measurements are usually collected every six days. Measured days counts the days that a measurement was greater than the level of the standard; Estimated days mathematically estimates how many days concentrations would have been greater than the level of the standard had each day been monitored.

<sup>3-</sup>Year Statistics represent the listed year and the 2 years before the listed year.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

<sup>\*</sup> means there was insufficient data available to determine the value.

2 of 2



# **Top 4 Summary: Highest 4 Daily Maximum 8-Hour Carbon Monoxide Averages**

| at Victorville-14 | 306 Park A                       | venue        |        |              |        | <u> ADAM</u> |
|-------------------|----------------------------------|--------------|--------|--------------|--------|--------------|
|                   | 2                                | 009          | 2      | 2010         | 2      | 2011         |
|                   | Date                             | 8-Hr Average | Date   | 8-Hr Average | Date   | 8-Hr Average |
| National:         |                                  |              |        |              |        |              |
| First High:       | Jan 31                           | 1.14         | Jun 27 | 5.17         | Nov 29 | 1.51         |
| Second High:      | Jan 7                            | 1.07         | Jun 29 | 4.26         | Dec 25 | 1.50         |
| Third High:       | Jan 7                            | 1.05         | Jan 25 | 1.60         | Dec 28 | 1.50         |
| Fourth High:      | Jan 11                           | 1.01         | Jun 28 | 1.52         | Dec 24 | 1.48         |
| California:       |                                  |              |        |              |        |              |
| First High:       | Jan 30                           | 1.14         | Jun 27 | 5.17         | Nov 28 | 1.51         |
| Second High:      | Jan 6                            | 1.07         | Jun 28 | 4.26         | Dec 24 | 1.50         |
| Third High:       | Jan 7                            | 1.05         | Jan 24 | 1.60         | Dec 27 | 1.50         |
| Fourth High:      | Jan 1                            | 1.01         | Jan 31 | 1.48         | Dec 6  | 1.44         |
| National:         |                                  |              |        |              |        |              |
| # Days Above th   | ne Standard                      | d: 0         |        | 0            |        | 0            |
| California:       |                                  |              |        |              |        |              |
| # Days Above th   | ne Standard                      | d: 0         |        | 0            |        | 0            |
| •                 | Expected Peak Day Concentration: |              |        | 1.64         |        | 1.98         |
| Yea               | ar Coverage                      | e: 99        |        | 96           |        | 93           |

#### Notes:

Eight-hour carbon monoxide averages and related statistics are available at Victorville-14306 Park Avenue between 2000 and 2012. Some years in this range may not be represented.

#### Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 1 12/29/2015 11:17 AM

All averages expressed in parts per million.

An exceedance of a standard is not necessarily related to a violation of the standard.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

means there was insufficient data available to determine the value.



## **Top 4 Summary: Highest 4 Daily Maximum 8-Hour Carbon Monoxide**

### **Averages**

| at Victorville-14 | 306 Park A                  | venue        |      |              |      | MODA         |
|-------------------|-----------------------------|--------------|------|--------------|------|--------------|
|                   | 2                           | 012          | 2    | 2013         | 2    | 2014         |
|                   | Date                        | 8-Hr Average | Date | 8-Hr Average | Date | 8-Hr Average |
| National:         |                             |              |      |              |      |              |
| First High:       | Jan 15                      | 1.83         |      | *            |      | *            |
| Second High:      | Jan 13                      | 1.52         |      | *            |      | *            |
| Third High:       | Jan 3                       | 1.44         |      | *            |      | *            |
| Fourth High:      | Jan 14                      | 1.44         |      | *            |      | *            |
| California:       |                             |              |      |              |      |              |
| First High:       | Jan 14                      | 1.83         |      | *            |      | *            |
| Second High:      | Jan 13                      | 1.52         |      | *            |      | *            |
| Third High:       | Jan 2                       | 1.44         |      | *            |      | *            |
| Fourth High:      | Jan 19                      | 1.41         |      | *            |      | *            |
| National:         |                             |              |      |              |      |              |
| # Days Above th   | ne Standard                 | : 0          |      | 0            |      | 0            |
| California:       |                             |              |      |              |      |              |
| # Days Above th   | ne Standard                 | : 0          |      | 0            |      | 0            |
| •                 | ed Peak Day<br>oncentration | 7 17         |      |              |      |              |
| Yea               | ar Coverage                 | : 51         |      | *            |      | *            |

#### Notes:

Eight-hour carbon monoxide averages and related statistics are available at Victorville-14306 Park Avenue between 2000 and 2012. Some years in this range may not be represented.

#### Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 1 12/29/2015 11:19 AM

All averages expressed in parts per million.

An exceedance of a standard is not necessarily related to a violation of the standard.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

means there was insufficient data available to determine the value.



# **Top 4 Summary: Highest 4 Daily Maximum Hourly Nitrogen Dioxide Measurements**

| at Victorville-14 | 1306 Park A                                   | venue       |        |             |        | MODON       |  |
|-------------------|-----------------------------------------------|-------------|--------|-------------|--------|-------------|--|
|                   | 2                                             | 009         | 2      | 2010        | 2      | 2011        |  |
|                   | Date                                          | Measurement | Date   | Measurement | Date   | Measurement |  |
| National:         |                                               |             |        |             |        |             |  |
| First High:       | Jun 25                                        | 64.0        | Oct 9  | 137.0       | Oct 31 | 75.0        |  |
| Second High:      | May 11                                        | 60.0        | Oct 16 | 131.0       | May 5  | 70.0        |  |
| Third High:       | Aug 13                                        | 60.0        | Oct 8  | 85.0        | Oct 13 | 68.0        |  |
| Fourth High:      | Aug 17                                        | 60.0        | Oct 20 | 81.0        | Aug 26 | 65.0        |  |
| California:       |                                               |             |        |             |        |             |  |
| First High:       | Jun 25                                        | 64          | Oct 9  | 137         | Oct 31 | 75          |  |
| Second High:      | May 11                                        | 60          | Oct 16 | 131         | May 5  | 70          |  |
| Third High:       | Aug 13                                        | 60          | Oct 8  | 85          | Oct 13 | 68          |  |
| Fourth High:      | Aug 17                                        | 60          | Oct 20 | 81          | Aug 26 | 65          |  |
| National:         |                                               |             |        |             |        |             |  |
| 1-Hour Star       | National:<br>1-Hour Standard Design<br>Value: |             |        | 63          |        | 61          |  |
| 1-Hour S          | tandard 98th<br>Percentile                    | 59.0        |        | 65.0        |        | 60.0        |  |
| # Days Above t    | he Standard                                   | l: 0        |        | 2           | 0      |             |  |
| Annual Star       | ndard Desigr<br>Value                         |             |        | 15          |        | 15          |  |
| California:       |                                               |             |        |             |        |             |  |
| 1-Hour Std        | l Designation<br>Value                        | /()         |        | 80          |        | 80          |  |
|                   | ed Peak Day<br>oncentration                   |             |        | 78          |        | 76          |  |
| # Days Above t    | he Standard                                   | l: 0        |        | 0           |        | 0           |  |
| Annual Std        | l Designation<br>Value                        |             |        | 16          |        | 15          |  |
| Ann               | ual Average                                   | : 15        |        | 15          |        | 15          |  |
| Yea               | ar Coverage                                   | : 98        |        | 99          |        | 100         |  |
|                   |                                               |             |        |             |        |             |  |

#### Notes:

#### Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 1 12/29/2015 11:22 AM

Hourly nitrogen dioxide measurements and related statistics are available at Victorville-14306 Park Avenue between 2000 and 2014. Some years in this range may not be represented.

All concentrations expressed in parts per billion.

An exceedance of a standard is not necessarily related to a violation of the standard.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

<sup>\*</sup> means there was insufficient data available to determine the value.



# **Top 4 Summary: Highest 4 Daily Maximum Hourly Nitrogen Dioxide Measurements**

| at Victorville-14 |                               |             |        |             |        | ADOM        |
|-------------------|-------------------------------|-------------|--------|-------------|--------|-------------|
|                   | 2                             | 012         | 2      | 2013        | 2      | 2014        |
|                   | Date                          | Measurement | Date   | Measurement | Date   | Measurement |
| National:         |                               |             |        |             |        |             |
| First High:       | Jan 20                        | 56.0        | Nov 8  | 64.6        | Jul 31 | 66.6        |
| Second High:      | Oct 30                        | 55.0        | Feb 12 | 61.0        | Apr 9  | 60.7        |
| Third High:       | Jun 12                        | 51.0        | Apr 29 | 60.1        | Sep 12 | 56.3        |
| Fourth High:      | Oct 29                        | 51.0        | Feb 13 | 57.4        | Oct 24 | 53.3        |
| California:       |                               |             |        |             |        |             |
| First High:       | Jan 20                        | 56          | Nov 8  | 64          | Jul 31 | 66          |
| Second High:      | Oct 30                        | 55          | Feb 12 | 61          | Apr 9  | 60          |
| Third High:       | Jun 12                        | 51          | Apr 29 | 60          | Sep 12 | 56          |
| Fourth High:      | Oct 29                        | 51          | Feb 13 | 57          | May 16 | 53          |
| National:         |                               |             |        |             |        |             |
| 1-Hour Star       | ndard Desigi<br>Value         | אר          |        | 55          |        | 53          |
| 1-Hour S          | tandard 98tl<br>Percentile    | 50.0        |        | 55.7        |        | 52.7        |
| # Days Above t    | he Standard                   | l: 0        |        | 0           |        | 0           |
| Annual Star       | ndard Desigi<br>Value         | 7.4         |        | 14          | 13     |             |
| California:       |                               |             |        |             |        |             |
| 1-Hour Std        | l Designation<br>Value        | XU          |        | 70          |        | 60          |
|                   | ed Peak Day<br>oncentration   |             |        | 65          |        | 61          |
| # Days Above t    | he Standard                   | l: 0        |        | 0           |        | 0           |
| Annual Std        | Annual Std Designation Value: |             |        | 15          |        | 14          |
| Ann               | ual Average                   | : 13        |        | 14          |        | 13          |
| Ye                | ar Coverage                   | : 99        |        | 99          |        | 99          |
|                   |                               |             |        |             |        |             |

#### Notes:

#### Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 1 12/29/2015 11:20 AM

Hourly nitrogen dioxide measurements and related statistics are available at Victorville-14306 Park Avenue between 2000 and 2014. Some years in this range may not be represented.

All concentrations expressed in parts per billion.

An exceedance of a standard is not necessarily related to a violation of the standard.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

<sup>\*</sup> means there was insufficient data available to determine the value.

Geographic Area: San Bernardino County, CA

Pollutant: SO2 Year: 2009

**Exceptional Events:** Included (if any)

Note: The \* indicates the mean does not satisfy minimum data completeness criteria.

| Obs<br>1hr |    | Second<br>Max<br>1hr | 99th<br>Percentile |     | Max |     | Days |      |      | Monitor<br>Number |           | Address                          | City           | County         | State | EPA<br>Region |
|------------|----|----------------------|--------------------|-----|-----|-----|------|------|------|-------------------|-----------|----------------------------------|----------------|----------------|-------|---------------|
| 8343       | 8  | 7                    | 6                  | 364 | 5.5 | 5   | 0    | 0.68 | None | 1                 | 060710306 | 14306 Park Ave., Victorville, Ca | Victorville    | San Bernardino | CA    | 09            |
| 8332       | 11 | 10                   | 9                  | 359 | 2.8 | 2.4 | 0    | 0.62 | None | 1                 | 060711234 | Corner Of Athol And Telescope    | Searles Valley | San Bernardino | CA    | 09            |
| 8271       | 5  | 4                    | 4                  | 362 | 2   | 1.8 | 0    | 0.87 | None | 1                 | 060712002 | 14360 Arrow Blvd., Fontana       | Fontana        | San Bernardino | CA    | 09            |

Get detailed information about this report, including column descriptions, at http://www.epa.gov/airquality/airdata/ad\_about\_reports.html#mon

AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated daily by state, local, and tribal organizations who own and submit the data. Please contact the appropriate air quality monitoring agency to report any data problems.

<a href="http://www.epa.gov/airquality/airdata/ad">http://www.epa.gov/airquality/airdata/ad</a> contacts.html>

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area.

This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based.

Geographic Area: San Bernardino County, CA

Pollutant: SO2 Year: 2010

**Exceptional Events:** Included (if any)

Note: The \* indicates the mean does not satisfy minimum data completeness criteria.

|      | First<br>Max<br>1hr | Second<br>Max<br>1hr | 99th<br>Percentile |     | Max |     | Days |       |      | Monitor<br>Number |           | Address                          | City           | County         | State | EPA<br>Region |
|------|---------------------|----------------------|--------------------|-----|-----|-----|------|-------|------|-------------------|-----------|----------------------------------|----------------|----------------|-------|---------------|
| 8224 | 52                  | 16                   | 11                 | 361 | 7.2 | 6.7 | 0    | 0.92  | None | 1                 | 060710306 | 14306 Park Ave., Victorville, Ca | Victorville    | San Bernardino | CA    | 09            |
| 8148 | 10                  | 10                   | 8                  | 355 | 3.2 | 3.1 | 0    | 1.23  | None | 1                 | 060711234 | Corner Of Athol And Telescope    | Searles Valley | San Bernardino | CA    | 09            |
| 5503 | 6.6                 | 4.9                  | 3                  | 242 | 1.6 | 1.5 | 0    | 0.65* | None | 1                 | 060712002 | 14360 Arrow Blvd., Fontana       | Fontana        | San Bernardino | CA    | 09            |

Get detailed information about this report, including column descriptions, at http://www.epa.gov/airquality/airdata/ad\_about\_reports.html#mon

AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated daily by state, local, and tribal organizations who own and submit the data. Please contact the appropriate air quality monitoring agency to report any data problems.

<a href="http://www.epa.gov/airquality/airdata/ad">http://www.epa.gov/airquality/airdata/ad</a> contacts.html>

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area.

This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based.

Geographic Area: San Bernardino County, CA

Pollutant: SO2 Year: 2011

**Exceptional Events:** Included (if any)

Note: The \* indicates the mean does not satisfy minimum data completeness criteria.

| Obs  | First<br>Max | Second<br>Max | 99th       | Obs | First<br>Max | Second<br>Max |   | Annual | Fxc  | Monitor |           |                                  |                |                |       | EPA    |
|------|--------------|---------------|------------|-----|--------------|---------------|---|--------|------|---------|-----------|----------------------------------|----------------|----------------|-------|--------|
| 1hr  | 1hr          |               | Percentile |     |              |               |   |        |      | Number  | Site ID   | Address                          | City           | County         | State | Region |
| 8340 | 13           | 9             | 7          | 362 | 7            | 7             | 0 | 1.44   | None | 1       | 060710306 | 14306 Park Ave., Victorville, Ca | Victorville    | San Bernardino | CA    | 09     |
| 7867 | 14           | 12            | 11         | 341 | 6.2          | 6.2           | 0 | 1.55   | None | 1       | 060711234 | Corner Of Athol And Telescope    | Searles Valley | San Bernardino | CA    | 09     |
| 7585 | 12.3         | 9.4           | 7          | 339 | 3.1          | 3.1           | 0 | 0.62   | None | 1       | 060712002 | 14360 Arrow Blvd., Fontana       | Fontana        | San Bernardino | CA    | 09     |

Get detailed information about this report, including column descriptions, at http://www.epa.gov/airquality/airdata/ad\_about\_reports.html#mon

AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated daily by state, local, and tribal organizations who own and submit the data. Please contact the appropriate air quality monitoring agency to report any data problems.

<a href="http://www.epa.gov/airquality/airdata/ad">http://www.epa.gov/airquality/airdata/ad</a> contacts.html>

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area.

This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based.

Geographic Area: San Bernardino County, CA

Pollutant: SO2 Year: 2012

**Exceptional Events:** Included (if any)

Note: The \* indicates the mean does not satisfy minimum data completeness criteria.

| Obs  | Max | Second<br>Max | 99th       |      | Max  |      | Days | Annual |        | Monitor | Cii ID    |                                  | O.             |                | 61.1  | EPA    |
|------|-----|---------------|------------|------|------|------|------|--------|--------|---------|-----------|----------------------------------|----------------|----------------|-------|--------|
| 1hr  | 1hr | 1hr           | Percentile | 24hr | 24hr | 24hr | >510 | Mean   | Events | Number  | Site ID   | Address                          | City           | County         | State | Region |
| 8324 | 6   | 5             | 5          | 362  | 2.7  | 2.1  | 0    | 0.95   | None   | 1       | 060710306 | 14306 Park Ave., Victorville, Ca | Victorville    | San Bernardino | CA    | 09     |
| 4193 | 12  | 11            | 11         | 181  | 2.5  | 2.5  | 0    | 0.62*  | None   | 1       | 060711234 | Corner Of Athol And Telescope    | Searles Valley | San Bernardino | CA    | 09     |
| 8113 | 4   | 4             | 4          | 355  | 3.2  | 3.2  | 0    | 0.64   | None   | 1       | 060712002 | 14360 Arrow Blvd., Fontana       | Fontana        | San Bernardino | CA    | 09     |

Get detailed information about this report, including column descriptions, at http://www.epa.gov/airquality/airdata/ad\_about\_reports.html#mon

AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated daily by state, local, and tribal organizations who own and submit the data. Please contact the appropriate air quality monitoring agency to report any data problems.

<a href="http://www.epa.gov/airquality/airdata/ad">http://www.epa.gov/airquality/airdata/ad</a> contacts.html>

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area.

This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based.

Geographic Area: San Bernardino County, CA

Pollutant: SO2 Year: 2013

**Exceptional Events:** Included (if any)

Note: The \* indicates the mean does not satisfy minimum data completeness criteria.

| Obs<br>1hr |      | Second<br>Max<br>1hr | 99th<br>Percentile |     | Max  |     | Days |       |      | Monitor<br>Number |           | Address                          | City           | County         | State | EPA<br>Region |
|------------|------|----------------------|--------------------|-----|------|-----|------|-------|------|-------------------|-----------|----------------------------------|----------------|----------------|-------|---------------|
| 7983       | 4.4  | 4.4                  | 4                  | 359 | 2.2  | 2.2 | 0    | 1.12  | None | 1                 | 060710306 | 14306 Park Ave., Victorville, Ca | Victorville    | San Bernardino | CA    | 09            |
| 6960       | 20.5 | 15.5                 | 11                 | 314 | 11.1 | 9.6 | 0    | 0.72* | None | 1                 | 060711234 | Corner Of Athol And Telescope    | Searles Valley | San Bernardino | CA    | 09            |
| 6738       | 4.3  | 3.1                  | 3                  | 288 | 2.1  | 2.1 | 0    | 0.47* | None | 1                 | 060712002 | 14360 Arrow Blvd., Fontana       | Fontana        | San Bernardino | CA    | 09            |

Get detailed information about this report, including column descriptions, at http://www.epa.gov/airquality/airdata/ad\_about\_reports.html#mon

AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated daily by state, local, and tribal organizations who own and submit the data. Please contact the appropriate air quality monitoring agency to report any data problems.

<a href="http://www.epa.gov/airquality/airdata/ad">http://www.epa.gov/airquality/airdata/ad</a> contacts.html>

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area.

This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based.

Geographic Area: San Bernardino County, CA

Pollutant: SO2 Year: 2014

**Exceptional Events:** Included (if any)

Note: The \* indicates the mean does not satisfy minimum data completeness criteria.

| Obs<br>1hr |     | Second<br>Max<br>1hr | 99th<br>Percentile |     | Max |     | Days |       |      | Monitor<br>Number |           | Address                          | City           | County         | State | EPA<br>Region |
|------------|-----|----------------------|--------------------|-----|-----|-----|------|-------|------|-------------------|-----------|----------------------------------|----------------|----------------|-------|---------------|
| 7960       | 4.8 | 3.6                  | 3                  | 361 | 1.9 | 1.8 | 0    | 1.12  | None | 1                 | 060710306 | 14306 Park Ave., Victorville, Ca | Victorville    | San Bernardino | CA    | 09            |
| 7656       | 8.8 | 8                    | 8                  | 347 | 2.8 | 1.7 | 0    | 0.52  | None | 1                 | 060711234 | Corner Of Athol And Telescope    | Searles Valley | San Bernardino | CA    | 09            |
| 7313       | 4   | 3.9                  | 3                  | 317 | 1   | 0.9 | 0    | 0.25* | None | 1                 | 060712002 | 14360 Arrow Blvd., Fontana       | Fontana        | San Bernardino | CA    | 09            |

Get detailed information about this report, including column descriptions, at http://www.epa.gov/airquality/airdata/ad\_about\_reports.html#mon

AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated daily by state, local, and tribal organizations who own and submit the data. Please contact the appropriate air quality monitoring agency to report any data problems.

<a href="http://www.epa.gov/airquality/airdata/ad">http://www.epa.gov/airquality/airdata/ad</a> contacts.html>

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area.

This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based.



# Top 4 Summary: Highest 4 Daily Maximum State 24-Hour Sulfur Dioxide

| at Victorville-14 | 1306 Park Ave | enue             |        |                  |        | MODAN            |
|-------------------|---------------|------------------|--------|------------------|--------|------------------|
|                   | 200           | 9                | 20     | 10               | 20     | )11              |
|                   | Date          | 24-Hr<br>Average | Date   | 24-Hr<br>Average | Date   | 24-Hr<br>Average |
| First High:       | Mar 31        | 0.005            | May 9  | 0.007            | Apr 18 | 0.007            |
| Second High:      | Apr 2         | 0.005            | May 10 | 0.007            | Apr 19 | 0.007            |
| Third High:       | Apr 3         | 0.005            | May 7  | 0.006            | Apr 20 | 0.007            |
| Fourth High:      | Mar 30        | 0.005            | May 6  | 0.006            | Apr 21 | 0.007            |
| Ann               | ual Average:  | 0.000            |        | 0.000            |        | 0.001            |
| Ye                | ar Coverage:  | 97               |        | 96               |        | 97               |

#### Notes:

Hourly sulfur dioxide measurements and related statistics are available at Victorville-14306 Park Avenue between 2000 and 2012. Some years in this range may not be represented.

An exceedance of a standard is not necessarily related to a violation of the standard.

#### Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 1 12/29/2015 11:31 AM

All averages expressed in parts per million.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

<sup>\*</sup> means there was insufficient data available to determine the value.



# Top 4 Summary: Highest 4 Daily Maximum State 24-Hour Sulfur Dioxide

| at Victorville-14 | 306 Park Ave | enue             |        |                  |      | ADOM             |
|-------------------|--------------|------------------|--------|------------------|------|------------------|
|                   | 201          | 2                | 20     | 113              | 20   | 014              |
|                   | Date         | 24-Hr<br>Average | Date   | 24-Hr<br>Average | Date | 24-Hr<br>Average |
| First High:       | Aug 28       | 0.003            | Jan 18 | 0.002            |      | *                |
| Second High:      | Jan 5        | 0.002            | Jan 4  | 0.002            |      | *                |
| Third High:       | Jan 10       | 0.002            | Jan 22 | 0.002            |      | *                |
| Fourth High:      | Sep 10       | 0.002            | Feb 12 | 0.002            |      | *                |
| Ann               | ual Average: | *                |        | *                |      | *                |
| Yea               | ar Coverage: | 61               |        | *                |      | *                |

#### Notes:

Hourly sulfur dioxide measurements and related statistics are available at Victorville-14306 Park Avenue between 2000 and 2012. Some years in this range may not be represented.

An exceedance of a standard is not necessarily related to a violation of the standard.

#### Available Pollutants:

8-Hour Ozone | Hourly Ozone | PM2.5 | PM10 | Carbon Monoxide | Nitrogen Dioxide | State Sulfur Dioxide | Hydrogen Sulfide

1 of 1 12/29/2015 11:30 AM

All averages expressed in parts per million.

Year Coverage indicates the extent to which available monitoring data represent the time of the year when concentrations are expected to be highest. 0 means that data represent none of the high period; 100 means that data represent the entire high period. A high Year Coverage does not mean that there was sufficient data for annual statistics to be considered valid.

<sup>\*</sup> means there was insufficient data available to determine the value.



#### **SAGO1 Monitor**

The SAGO1 monitor location represents two wilderness areas located in the San Bernardino and San Jacinto Mountains in Southern California. The wilderness areas associated with the SAGO1 monitor are San Gorgonio Wilderness Area and San Jacinto Wilderness area. The SAGO1 site has been operating since March 1988. This site does not have sufficient data for the entire baseline period. Data was not available for the year 2000.

## Section I. SAGO1 Wilderness Area Descriptions

## I.a. San Gorgonio Wilderness Area

The San Gorgonio Wilderness Area (San Gorgonio) occupies 34,644 acres of the San Bernardino Mountains of southern California, approximately 75 miles east of Los Angeles. Elevations range from 1,341 meters to 3,505 meters at the crest of Mt. San Gorgonio; however most of the wilderness is above the 2,134 meter level. Eleven of the 12 peaks in the Wilderness are above 3,048 meters. Two rivers, the Santa Ana and the White, flow out of the Wilderness. Two small lakes, several meadows, and large, heavily forested areas provide a beautiful sub-alpine oasis in the dry lands that surround the mountain range.

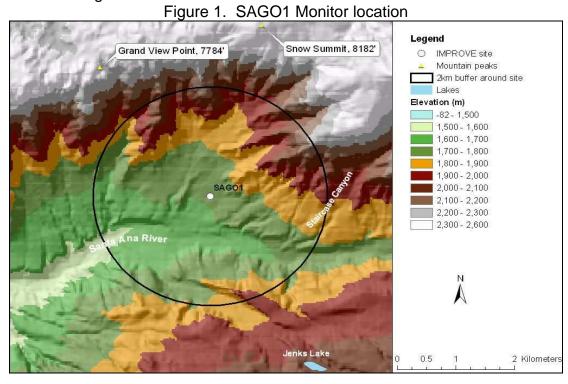
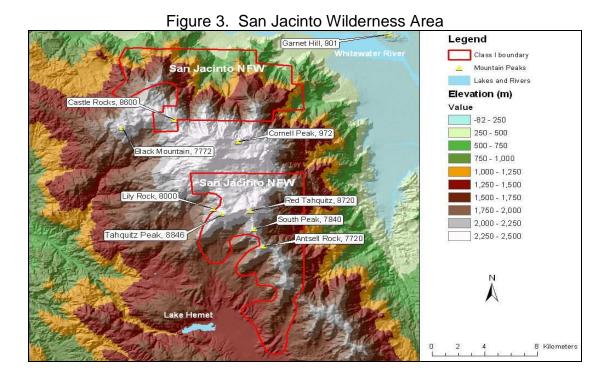




Figure 2. WINHAZE image of San Gorgonio Wilderness Area (5.4 vs. 22.2 dv)



#### I.b. San Jacinto Wilderness Area

The San Jacinto Wilderness Area (San Jacinto) is part of the San Jacinto Mountains in southern California, adjacent to the Los Angeles Basin to the west, which can be seen from its higher elevations. It is one of the Peninsular Ranges that extend south from the Los Angeles Basin to the tip of the Baja Peninsula and separate the Los Angeles Basin from the Mohave Desert to the east. It occupies 20,564 acres and is split into a north Wilderness and a south Wilderness, separated by the Mount San Jacinto State Park and Wilderness. It is separated from the San Bernardino Mountains and San Gorgonio Wilderness by San Gorgonio Pass. Elevations range from less than 610 meters on the north edge within San Gorgonio Pass to almost 3,353 meters at its higher peaks. The highest peak in the area is San Jacinto Peak located between the north and south Wilderness sections, at an elevation of 3,293 meters.



B-141




Figure 5. SAGO1 Monitor location in California



## **Section II. Visibility Conditions:**

## II.a. San Gorgonio Wilderness Area

Visibility conditions for San Gorgonio are currently monitored by the SAGO1 IMPROVE monitor. The monitor is located at 34.1939 north latitude and 116.9132 west longitude, in the upper Santa Ana River valley north of the northern San Gorgonio boundary. The orientation of the Santa Ana River valley is west to east, with its mouth to the west, exiting into the Los Angeles basin. The valley bottom location nearest the site is about 1,646 meters, just south of the monitoring site. Elevations rise to about 2,347 meters at the ridge crest, about 2 miles north, and to about 2,987 meters at the ridge crest about 7 miles south of the site.

The SAGO1 IMPROVE site is near the bottom of the Santa Ana River valley at an elevation Off 1,726 meters. This is well below typical San Gorgonio elevations which extend to over 3,048 meters on some of the peaks. Aerosol composition and concentration measured at SAGO1 may not be representative of higher San Gorgonio elevations. When the atmosphere is well mixed to San Gorgonio elevations the SAGO1 site should be representative.

The SAGO1 location is adequate for assessing the 2018 reasonable progress goals for the San Gorgonio Wilderness Class 1 area.

#### II.b. San Jacinto Wilderness Area

Visibility conditions for San Jacinto are currently monitored by the SAGO1 IMPROVE monitor in the San Gorgonio Wilderness Area. The monitor is located at 34.1939 north latitude and 116.9132 west longitude north of San Gorgonio Pass in the upper Santa Ana River Valley. The monitor is at an elevation of 1726 meters and about 20 miles north of the Wilderness boundary across the San Gorgonio Pass. It is also separated from the San Jacinto Wilderness by the San Gorgonio Wilderness that includes the so-called "Ten Thousand Foot Ridge", with elevations in excess of 3,048 meters.

The SAGO1 IMPROVE site is near the bottom of the Santa Ana River valley and is separated from the San Jacinto Wilderness by the San Gorgonio Wilderness, which presents a massive intervening obstruction. It should be representative of lower Wilderness elevations when the atmosphere is well mixed, but may not be as representative when it is within a local trapping inversion in the Santa Ana River Valley, or beneath a regional inversion between the SAGO1 elevation and San Jacinto elevations. The San Gorgonio Pass, a potential air pollution corridor between the Los Angeles Basin and the Mohave Desert to the east, also lies between SAGO1 and the San Jacinto Wilderness and could at times create a gradient in concentrations between the SAGO1 monitoring site and San Jacinto Wilderness locations. There could also be a difference in aerosol composition if and when the SAGO1 site is influenced by local sources such as wild land fires.

The SAGO1 location is adequate for assessing the 2018 reasonable progress goals for the San Jacinto Wilderness Class 1 area.

### II.c. Baseline Visibility

Baseline visibility is determined from SAGO1 IMPROVE monitoring data for the 20% best and the 20% worst days for the years 2000 through 2004. The baseline visibility for the SAGO1 monitor is calculated at 5.4 deciviews for the 20% best days and 22.2 deciviews for the 20% worst days. Figure 6 represents the worst baseline visibility conditions.

## II.d. Natural Visibility

Natural visibility represents the visibility condition that would be experienced in the absence of human-caused impairment. Based on EPA guidance, the natural visibility for the SAGO1 monitor is 1.2 deciviews for the 20% best days and 7.3 deciviews for the 20% worst days. It is possible that the Natural Conditions deciview value for 2064 could change in the future as more is learned about natural plant emissions and wildfire impacts.

### II.e. Presumptive Glide Slope and the Uniform Rate of Progress

Figure 6 also shows the uniform rate of progress, or "glide slope." The glide slope is the rate of reduction in the 20% worst days deciview average that would have to be achieved to reach natural conditions at a uniform pace in the 60 years following the baseline period. The first benchmark along the path towards achieving natural conditions occurs in 2018. The glide slope shows that the 2018 benchmark for the 20% worst days is 18.70 deciviews. According to the Regional Haze Rule, the 20% best days baseline visibility of 5.4 deciviews must be maintained or improved by 2018, the end of the first planning period.

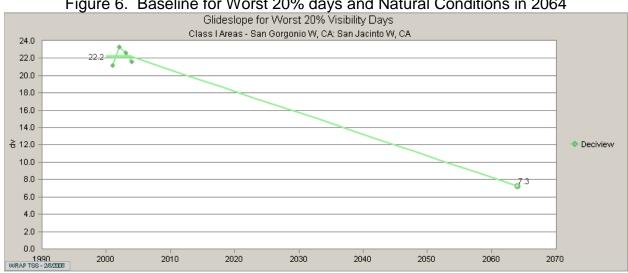



Figure 6. Baseline for Worst 20% days and Natural Conditions in 2064

## II.f. Species Contribution

Each pollutant species causes light extinction but its contribution differs on best and worst days. Figure 7 shows the contribution of each species to the 20% best and worst days in the baseline years at SAGO1.

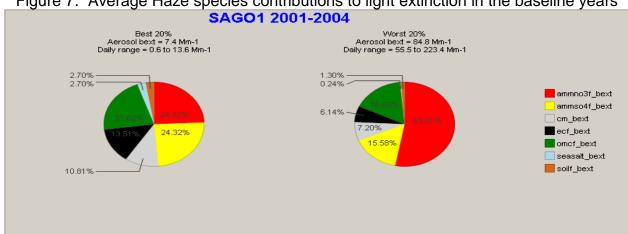
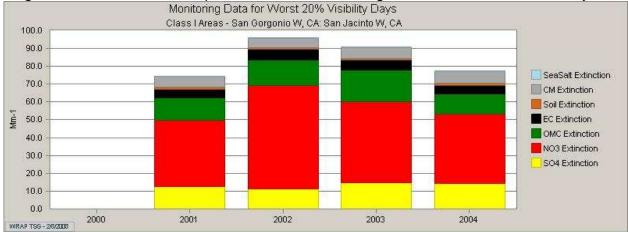
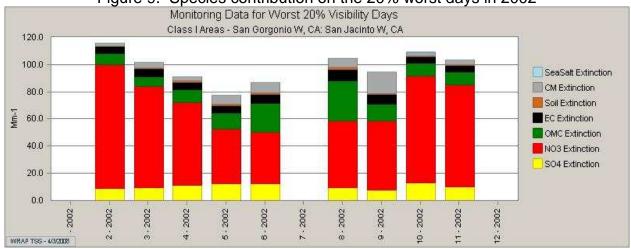
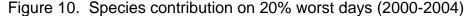




Figure 7. Average Haze species contributions to light extinction in the baseline years






As shown in Figures 7 and 8, nitrates, organic matter, and sulfates have the strongest contributions to degrading visibility on worst days at the SAGO1 monitor. Nitrates clearly dominate on the worst days, but nitrates and sulfates equally contribute emissions on the best days. Data points for 2000 were insufficient for calculating best and worst days per the Regional Haze Rule Guidance.


Figure 9 depicts the individual species contribution to worst days in 2002. Nitrates increase in the winter and spring months, while organic matter increases in the summer and fall. Sulfates remain relatively stable throughout the year. Nitrates clearly dominate the other haze species on worst days, but organic matter, sulfates, coarse mass and

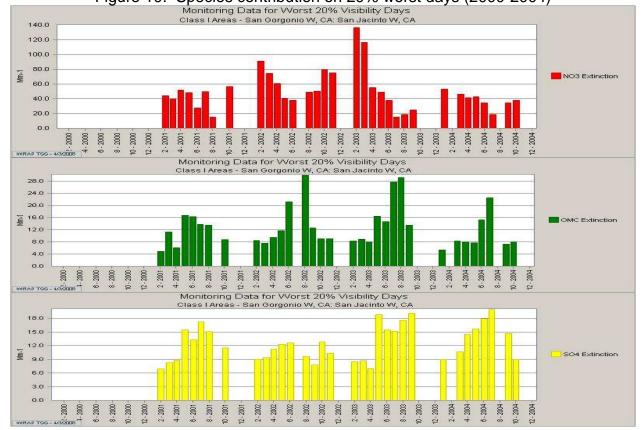

elemental carbon also contribute to the worst days. There are only trace amounts of soil and sea salt present throughout the years.

Figure 10 illustrates the individual species contribution on worst days in 2000-2004 by monthly average. The trend shown is comparable to Figure 9 for nitrates, organic matter, and sulfates. High organic periods vary from year to year due to the unpredictable occurrence of wild fires.

Figure 9. Species contribution on the 20% worst days in 2002







## II.g. Sources of Haze Species

Both natural and man-made sources contribute to the calculated deciview levels made by haze pollutants at SAGO1. Some haze species arise from sources that are within the control of the State of California or neighboring states. Others arise from natural, uncontrollable situations such as wildfires, sea salt or dust storms in natural areas, whether or not they from in-state or out-of-state (and out-of-country) sources. Finally, other uncontrollable, man-made sources are those industrial pollutants and other man-made (anthropogenic) emissions transported from outside the United States.

Figures 11 and 12 represent the regional contributions to nitrates on the 20% worst days. The WRAP region represents the largest contribution to nitrate in 2002 and 2018 (79%), followed by the Pacific Offshore Region (17%) and emissions from Outside Domain (3%). Mobile sources within California contribute the most nitrate at the SAGO1 monitor. In 2002, 87% of the nitrate from mobile sources at the SAGO1 monitor can be attributed to California. California mobile source emissions reductions are mainly responsible for improvement in nitrates in 2018.

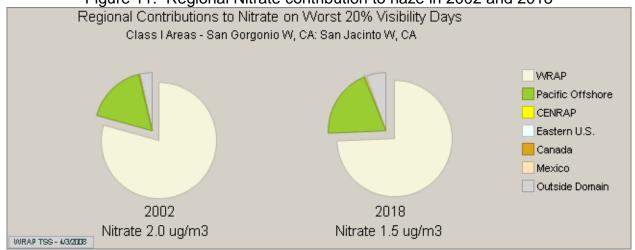
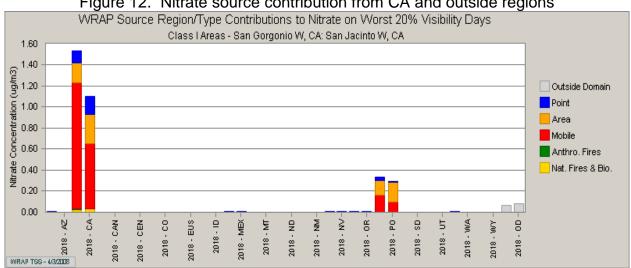
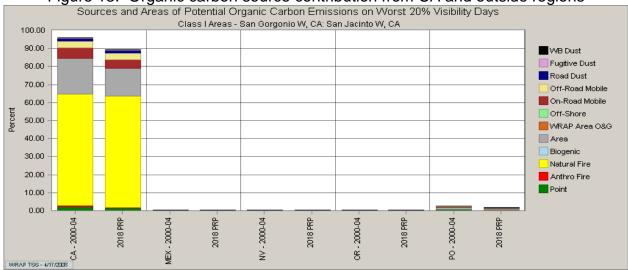
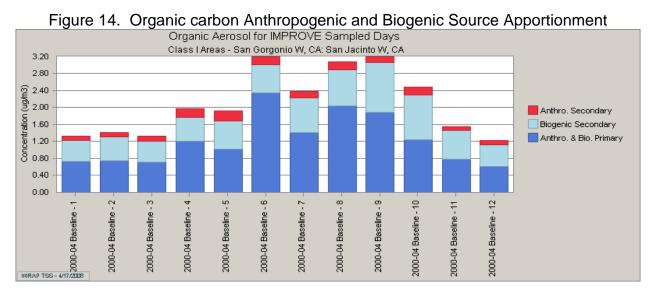
Figure 13 shows the primary organic carbon source contribution from California and the outside regions. The largest contributor to primary organic carbon at the SAGO1 monitor is from natural fire sources within California. California represents 99% of all natural fire source contributions.

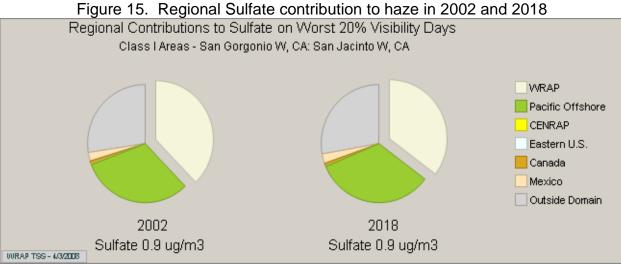
Figure 14 illustrates the total organic carbon source apportionment from 2000-2004 for anthropogenic and biogenic sources. The anthropogenic and biogenic primary source emissions account for 59% of the total organic carbon. Biogenic secondary emissions account for 34% of the total organic carbon emissions and anthropogenic secondary is responsible for the remaining emissions.

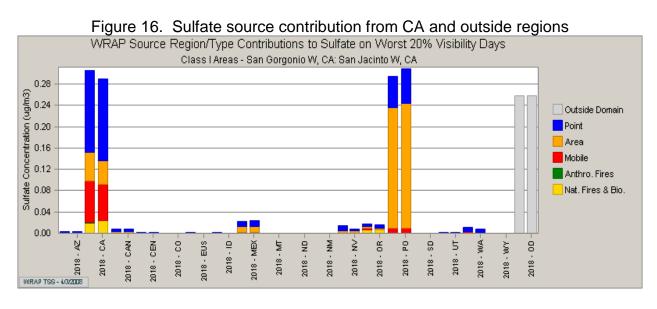
Figures 15 and 16 represent the regional contributions to sulfate on the 20% worst days in 2002 and 2018 at SAGO1. The WRAP region represents 38% of the sulfate contributions in 2002 and 2018, followed by the emissions from Pacific Offshore (31%) and the Outside Domain Region (27%). California contributes 33% of the total sulfate emissions seen at the SAGO1 monitor.

Individually, emissions from outside the modeling domain contribute the most to sulfate concentrations at the SAGO1 monitor. The next largest contributor to sulfate concentrations is area sources in the Pacific Offshore.





Figure 12. Nitrate source contribution from CA and outside regions














| District | Rule # | Rule Title                                    | Action Considered                                                                      |
|----------|--------|-----------------------------------------------|----------------------------------------------------------------------------------------|
|          |        |                                               | Update definitions. Update VOC definition to exempt TBac, use 40 CFR 51.100(s) rather  |
|          |        |                                               | than 40 CFR 51.00(s)(1). Update SIP to current. Includes removal of prior SB Rule 103  |
| MD       | 102    | Definitions                                   | from SB Co SIP.                                                                        |
| MD       | 104    | Reporting of Source Data and Analysis         | Update SIP to current. Includes removal of SC Rule 104 from RVSD Co SIP.               |
| MD       | 206    | Posting of Permit to Operate                  | Amend rule to add "Request for Waiver" section.                                        |
| MD       | 218    | Stack Monitoring                              | Amend. Standardize breakdown reporting.                                                |
| MD       | 301    | Permits                                       | Amend to reflect increase in cost.                                                     |
| MD       | 302    | Other Fees                                    | Consolidation of Rules 302, 304, 305, 306, 307, 308, 309, 310, 311 and 313             |
|          |        |                                               | Potential amendment to reformat, reorganize and update. Potential shift to make fees   |
| MD       | 303    | Hearing Board Fees                            | better reflect services rendered.                                                      |
| MD       | 304    | Analysis Fees                                 | Consolidate with 302 - Other Fees, and rescind.                                        |
| MD       | 305    | State Mandated Fees                           | Consolidate with 302 - Other Fees, and rescind.                                        |
| MD       | 306    | Demolition and Reonvation Project Fees        | Consolidate with 302 - Other Fees, and rescind.                                        |
| MD       | 307    | Asbestos Waste Disposal Site Fees             | Consolidate with 302 - Other Fees, and rescind.                                        |
| MD       | 308    | Stationary Source Monitoring Device Fees      | Consolidate with 302 - Other Fees, and rescind.                                        |
| MD       | 309    | Stationary Source Monitoring Device Fee       | Consolidate with 302 - Other Fees, and rescind.                                        |
| MD       | 310    | Source Emission Analysis Fees                 | Consolidate with 302 - Other Fees, and rescind.                                        |
|          |        | Permit Application Review Fee (Certificate of |                                                                                        |
| MD       | 311    | Occupancy Fee)                                | Consolidate with 302 - Other Fees, and rescind.                                        |
| MD       | 312    | Fees For Federal Operating Permits            | Amend to recover public notice and allow pass through direct costs.                    |
|          |        | ·                                             | ·                                                                                      |
| MD       | 313    | Fees for Emission Reduction Credit Banking    | Consolidate with 302 - Other Fees, and rescind.                                        |
|          |        |                                               |                                                                                        |
| MD       | 314    | Reinspection Fee                              | New rule to recover costs of excessive inspections. Could be consolidated in Rule 304. |
|          |        |                                               | Exempt sandblasters perm H&S 41900 et seq and 17 CCR 92000 et seq; Exempt pile         |
|          |        |                                               | drives per H&S 41701.5. Incorporate Method 9/22. Update SIP to current. Includes       |
| MD       | 401    | Visible Emissions                             | removal of SC Rule 401 from RVSD Co SIP.                                               |
|          |        |                                               |                                                                                        |
|          |        |                                               | Analyze PM Measures for cost effectiveness. Amend rule if necessary. Update SIP to     |
| MD       | 403    | Fugitive Dust                                 | current. Includes removal of SC Rule 403 and SC Rule 403.1 from RVSD Co SIP.           |
|          |        |                                               | Include analsis of PM Measures for Cost Effectiveness (consolidate with required       |
|          |        |                                               | report). Update rule to reflect findings. Update to conform to PM Plan requirements.   |
|          |        |                                               | Update SIP to current. Includes removal of SC Rule 403 and SC Rule 403.1 from RVSD     |
| MD       | 403.1  | Fugitive Dust Control for SVPA                | Co SIP. Address LALD in 74 FR 40751, 8/13/09.                                          |
|          | 100.1  |                                               | Include analsis of PM Measures for Cost Effectiveness (consolidate with required       |
|          |        |                                               | report). Update rule to reflect findings. Update to conform to PM Plan requirements.   |
|          |        |                                               | Update SIP to current. Includes removal of SC Rule 403 and SC Rule 403.1 from RVSD     |
| MD       | 403.2  | Fugitive Dust Control for MDPA                | Co SIP.                                                                                |
| טועו     | +∪∪.∠  | I aditive past control to Mine W              | 100 OII .                                                                              |

| District | Rule # | Rule Title                                      | Action Considered                                                                      |
|----------|--------|-------------------------------------------------|----------------------------------------------------------------------------------------|
|          |        | Fugitive Dust Control for Off-Site Agricultural | Add dust control for agricultural sources. Analyze PM Measures for cost effectiveness. |
| MD       | 403.3  | Sources                                         | Add rule.                                                                              |
|          |        |                                                 | New Rule to conform with with Agricultural Confined Animal Facilities, Agricultural    |
|          |        | Fugitive Dust Control for On-Site Agricultural  | Fugitive Dust, Agricultural Best Management Practices, Agricultural IC Engines, and    |
| MD       | 403.4  | Sources                                         | Rule 219 proposed amendments.                                                          |
| MD       | 404    | Particulate Matter - Concentration              | Update SIP to current. Includes removal of SC Rule 404 from RVSD Co SIP.               |
| MD       | 405    | Solid Particulate Matter - Weight               | Update SIP to current. Includes removal of SC Rule 405 from RVSD Co SIP.               |
| MD       | 406    | Specific Contaminants                           | Update SIP to current. Includes removal of SC Rule 406 from RVSD Co SIP.               |
| MD       | 407    | Liquid and Gaseous Air Contaminants             | Update SIP to current. Includes removal of SC Rule 407 from RVSD Co SIP.               |
| MD       | 408    | Circumvention                                   | Update SIP to current. Includes removal of SC Rule 408 from RVSD Co SIP.               |
| MD       | 409    | Combustion Contaminants                         | Update SIP to current. Includes removal of SC Rule 409 from RVSD Co SIP.               |
|          |        |                                                 | Update to conform with CARB Diesel requirements Title 13 CCR 2281. Update SIP to       |
|          |        |                                                 | current. Includes removal of SC Rule 431, SC Rule 431.1, SC Rule 431.2, SC Rule        |
| MD       | 431    | Sulfur content of fuels                         | 431.3 from RVSD Co SIP.                                                                |
| MD       | 432    | Gasoline Specifications                         | Update SIP to current. Includes removal of RC Rule 432 from RVSD Co SIP.               |
|          |        |                                                 | Amend to update language. Include analsis of PM Measures for Cost Effectiveness        |
| MD       | 442    | Usage of Solvents                               | (consolidate with required report). Review for RACT. Update rule to reflect findings.  |
|          |        |                                                 | Update SIP to current. Includes removal of RC Rule 443 and SC Rule 443.1 from RVSD     |
| MD       | 443    | Labeling of Solvents                            | Co SIP.                                                                                |
| MD       | 444    | Open Outdoor Burning                            | Analyze PM Measures for cost effectiveness. Amend rule if necessary.                   |
|          |        |                                                 | Add provisions regarding efficiency of vapor systems from 95 to 98, for EVR. Update    |
|          |        |                                                 | inspection frequency requirement. Add fleet vehicle onboard EVR provisions. Update     |
| MD       | 461    | Gasoline Transfer & Dispensing                  | SIP to current. Includes removal of SC Rule 461 from RVSD Co SIP. Update for RACT.     |
|          |        | - Case in a case of a proportion ig             | Update SIP to current. Includes removal of SC Rule 462 from RVSD Co SIP. Update for    |
| MD       | 462    | Organic Liquid Loading                          | RACT.                                                                                  |
|          |        |                                                 | Update definitions, update test methods, add the standard test method language.        |
|          |        |                                                 | Update SIP to current. Includes removal of SC Rule 463 from RVSD Co SIP. Update for    |
| MD       | 463    | Storage of Organic Liquids                      | RACT.                                                                                  |
| MD       | 468    | Sulfur Recovery Units                           | Update SIP to current. Includes removal of RC Rule 468 from RVSD Co SIP.               |
| MD       | 469    | Sulfuric Acid Units                             | Update SIP to current. Includes removal of RC Rule 469 from RVSD Co SIP.               |
| MD       | 470    | Asphalt Air Blowing (Rescinded)                 | Update SIP to current. Includes removal of RC Rule 470 from RVSD Co SIP.               |
| MD       | 472    | Reduction of Animal Matter                      | Update SIP to current. Includes removal of RC Rule 472 from RVSD Co SIP.               |
| MD       | 473    | Disposal of Solid and Liquid Wastes             | Update SIP to current. Includes removal of RC Rule 473 from RVSD Co SIP.               |
| MD       | 480    | Natural Gas Fired Control Devices               | Update SIP to current.                                                                 |
|          |        | Standards of Performance for New                |                                                                                        |
| MD       | 900    | Stationary Sources (NSPS)                       | Review annually and update as necessary.                                               |

| District | Rule # | Rule Title                                | Action Considered                                                                   |
|----------|--------|-------------------------------------------|-------------------------------------------------------------------------------------|
|          |        | Asbestos sources not covered by Federal   |                                                                                     |
| MD       | 901    | Regulation                                | Potential new rule.                                                                 |
|          |        | National Emission Standards for Hazardous | Review annually and update as necessary. Update SIP to current. Includes removal of |
| MD       | 1000   | Air Pollutants (NESHAP)                   | SC Rule 1102 and SC Rule 1102.1 from RVSD Co SIP.                                   |
|          |        | Fugitive Emissions of VOCs from           | Update SIP to current. Includes removal of SC Rule 466, SC Rule 466.1 and SC Rule   |
| MD       | 1102   | Components at Pipeline Transfer Stations  | 1173 from RVSD Co SIP.                                                              |
|          |        |                                           | Update SIP to current. Includes removal of SC Rule 1108 and SC Rule 1108.1 and SC   |
| MD       | 1103   | Cutback and Emulsified Asphalt            | Rule 1120 from RVSD Co SIP.                                                         |
|          |        |                                           | Analyze PM Measures for cost effectiveness. Amend rule if necessary. Update SIP to  |
|          |        |                                           | current. Includes removal of SC Rule 1122 and SC Rule 1171 from RVSD Co SIP.        |
| MD       | 1104   | Organic Solvent Degreasing Operations     | Revise rule to current RACT based on RACT re-analysis results.                      |
|          |        |                                           | Update SIP to current. Includes removal of SC Rule 109, SC Rule 481, SC Rule 1106   |
| MD       | 1106   | Marine Coating Operations                 | and SC Rule 1106.1 from RVSD Co SIP.                                                |
|          |        |                                           | Update SIP to current. Includes removal of SC Rule 109, SC Rule 481, and SC Rule    |
| MD       | 1113   | Architectural Coatings Rule               | 1151 from RVSD Co SIP.                                                              |
|          |        |                                           | Analyze PM Measures for cost effectiveness. Amend rule if necessary. Update SIP to  |
|          |        |                                           | current. Includes removal of SC Rule 109, SC Rule 481, SC Rule 1104, SC Rule 1106,  |
| MD       | 1114   | Wood Products Coating Operations          | SC Rule 1106.1 and SC Rule 1136 from RVSD Co SIP.                                   |
|          |        | <u> </u>                                  |                                                                                     |
|          |        |                                           | Update SIP to current. Includes removal of SC Rule 109, SC Rule 481, SC Rule 1106,  |
| MD       | 1115   | Metal Parts & Products Coating Operations | SC Rule 1106.1, SC Rule 1107, SC Rule 1125 and SC Rule 1126 from RVSD Co SIP.       |
|          |        |                                           | Update SIP to current. Includes removal of SC Rule 109, SC Rule 481, SC Rule 1106,  |
| MD       | 1116   | Automotive Refinishing Operations         | SC Rule 1106.1, SC Rule 1115 and SC Rule 1151 from RVSD Co SIP.                     |
|          |        | Graphic Arts and Paper, Film, Foil and    | Update SIP to current. Includes removal of SC Rule 1128, SC Rule 1130, SC Rule      |
| MD       | 1117   | Fabric Coatings                           | 1130.1 and SC Rule 1145 from RVSD Co SIP.                                           |
|          |        | Aerospace Vehicle Parts and Products      | Update rule to reflect SCM, MACT, and NESHAP requirements. Remove averaging         |
|          |        | Coating Operations                        | provisions. Update SIP to current. Includes removal of SC Rule 1124 from RVSD Co    |
| MD       | 1118   |                                           | SIP. CEQA IS/Neg Dec.                                                               |
|          |        |                                           | Analyze PM Measures for cost effectiveness. Amend rule if necessary. Update SIP to  |
| MD       | 1126   | Solid Waste Landfills (VOC)               | current. Includes removal of SC Rule 1150.1 from RVSD Co SIP.                       |
|          |        |                                           | Rescind and possibly re-adopt rule pursuant to Peremptory Writ of Mandate Case No.  |
| MD       | 1133   | Composting and Related Operations         | CIV BS800976                                                                        |
|          |        |                                           | Analyze PM Measures for cost effectiveness. Amend rule if necessary. Update SIP to  |
|          |        |                                           | current. Includes removal of SC Rule 1121, SC Rule 1146 and SC Rule 1146.1 from     |
| MD       | 1157   | Boilers & Process Heaters                 | RVSD Co SIP.                                                                        |
|          |        |                                           | Analyze PM Measures for cost effectiveness. Amend rule if necessary. Update SIP to  |
| MD       | 1158   | Electric Utility Operations               | current. Includes removal of SC Rule 1135 from RVSD Co SIP.                         |
| MD       | 1159   | Stationary Gas Turbines                   | Update SIP to current. Includes removal of SC Rule 1134 from RVSD Co SIP.           |

| District | Rule #     | Rule Title                                      | Action Considered                                                                                                                      |
|----------|------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|          |            |                                                 |                                                                                                                                        |
|          |            |                                                 | Analyze PM Measures for cost effectiveness. Update for RACT. Conform to ATCM,                                                          |
|          |            |                                                 | NESHAP and NSPS. Update SIP to current. Includes removal of SC Rule 1110.1, SC                                                         |
| MD       | 1160       | Internal Combustion Engines                     | Rule 1110.2 and SC Rule 1110 from RVSD Co SIP.                                                                                         |
|          |            | Internal Combustion Engines in Agricultural     | Update SIP to current. Includes removal of SC Rule 1110.1, SC Rule 1110.2 and SC                                                       |
| MD       | 1160.1     | Operations                                      | Rule 1110 from RVSD Co SIP.                                                                                                            |
|          |            |                                                 | Analyze PM Measures for cost effectiveness. Amend rule if necessary. Update SIP to                                                     |
|          |            |                                                 | current. Includes removal of SC Rule 1112 and SC Rule 1112.1 from RVSD Co SIP.                                                         |
| MD       | 1161       | Cement Kilns                                    | Update for RACT.                                                                                                                       |
| MD       | 1162       | Polyester Resin Operations                      | Update SIP to current. Includes removal of SC Rule 1141 from RVSD Co SIP.                                                              |
| MD       | 1165       | Glass Melting Furnaces                          | Update SIP to current. Includes removal of SC Rule 1117 from RVSD Co SIP.                                                              |
|          |            |                                                 | New Rule to conform with with Agricultural Confined Animal Facilities, Agricultural                                                    |
|          |            |                                                 | Fugitive Dust, Agricultural Best Management Practices, Agricultural IC Engines, and                                                    |
|          |            |                                                 | Rule 219 proposed amendments. SJVAPCD Rule is now considered RACT for this                                                             |
| MD       | 1186       | Agriculture Large Confined Animal Facility      | source. 77 FR 2228 1/17/12.                                                                                                            |
| MD       | 1300       | General                                         | Provide cross references to Reg XVI.                                                                                                   |
| MD       | 1302       | Procedure                                       | Provide cross reference to Reg XVI.                                                                                                    |
| MD       | 4000       | New Source Review for Toxic Air                 | He data areas or forester as 20 has don't as a f DOD or less                                                                           |
| MD       | 1320       | Contaminants                                    | Update cross references with adoption of PSD rules.                                                                                    |
| MD<br>MD | 2001       | Transportation Conformity                       | Amend to conform with USEPA regulations.                                                                                               |
| MD       | 2003       | Consultation procedures Commercial Charbroiling | Rescind if MOU signed and approved into SIP.  Analyze PM Measures for cost effectiveness. Add rule if necessary.                       |
| MD       | New<br>New | Residential Water Heaters                       | ,                                                                                                                                      |
| MD       | New        | Furnaces                                        | Analyze PM Measures for cost effectiveness. Add rule if necessary.  Analyze PM Measures for cost effectiveness. Add rule if necessary. |
| MD       | New        | Soil Decontamination                            | Analyze PM Measures for cost effectiveness. Add rule if necessary.  Analyze PM Measures for cost effectiveness. Add rule if necessary. |
| MD       | New        | Woodworking Operations                          | Analyze PM Measures for cost effectiveness. Add rule if necessary.  Analyze PM Measures for cost effectiveness. Add rule if necessary. |
| MD       | New        | Lawnmower Buy Back Program                      | Analyze PM Measures for cost effectiveness. Add rule if necessary.                                                                     |
| MD       | New        | Large Spray Booths                              | Analyze PM Measures for cost effectiveness. Add rule if necessary.                                                                     |
| MD       | New        | Wood Burning Fireplaces                         | Analyze PM Measures for cost effectiveness. Add rule if necessary.                                                                     |
| MD       | Notice     | Notification ATCM's and MACT Standards          | Review annually and update as necessary.                                                                                               |
| IVID     | TNOTICE    | Notification A Tolvi's and MACT Standards       | Update for latest planning assumptions (Local facility data, regional transportation data &                                            |
| MD       | Plan       | State Triannial Update                          | statewide growth data)                                                                                                                 |
| MD       | Plan       | PM10 Attainment & Maintainence Plan             | Update to comply with USEPA request.                                                                                                   |
| טועו     | i idii     | 1 WITO Attainment & Waintainence Fiall          | Update for latest planning assumptions (Local facility data, regional transportation data &                                            |
| MD       | Plan       | ROP Milestone Upldate                           | statewide growth data)                                                                                                                 |
| IVID     | 1 1011     | Tree inmediate opidate                          | Rescission of old SCAQMD rules in SIP for Riverside County and replacement by 8hr O3                                                   |
| MD       | Reg 4      | Regulation IV - Prohibitions                    | adopted Fed Negative Declarations.                                                                                                     |

# **Master Rule Development Calendar 2015**

| District | Rule # | Rule Title                                  | Action Considered                                                                       |
|----------|--------|---------------------------------------------|-----------------------------------------------------------------------------------------|
|          |        |                                             |                                                                                         |
| MD       | Reg 7  | Air Pollution Emergency Contingency Actions | Consolidate regulation into single rule.                                                |
|          |        |                                             | Rescission of old SCAQMD rules in SIP for Riverside County and replacement by 8hr O3    |
| MD       | Reg 11 | Regulation XI - Source Specific Standards   | adopted Fed Negative Declarations.                                                      |
| MD       | Reg 12 | Federal Operating Permits                   | Modify to implement PSD Program.                                                        |
| MD       | Reg 16 | PSD                                         | Adopt to implement PSD Program.                                                         |
| MD       | Reg 20 | Conformity                                  | Modify to implement PSD Program.                                                        |
|          |        |                                             | Re-adopt various Federal Negative Declarations for sources which are not present in the |
|          |        |                                             | District: SC Rule 1103; SC Rule 1105; SC Rule 1119; SC Rule 1123; SC Rule 1141.1;       |
|          |        |                                             | SC Rule 1142; SC Rule 1148; SC Rule 1158; SC Rule 1159; SC Rule 1164; SC Rule           |
| MD       | FNDs   | Re-adopt Various FNDs                       | 1175; SC Rule 1176.                                                                     |



# Mojave Desert Air Quality Management District Antelope Valley Air Pollution Control District

# **Emissions Inventory Guidance**

# Mineral Handling and Processing Industries

| I.         | REASON FOR GUIDANCE                                   | 1  |
|------------|-------------------------------------------------------|----|
| II.        | BACKGROUND                                            | 2  |
| III.       | APPROACH OF THIS GUIDANCE                             | 2  |
| IV.        | SOURCE TEST DATA                                      | 2  |
| V.         | CALCULATION SPREADSHEET ACCESSORY                     | 3  |
| VI.        | METHODS                                               | 3  |
| A.         | Blast Hole Drilling                                   | 4  |
| B.         | Dust Entrainment from Blasting                        | 6  |
| C.         | Criteria Emissions from Blasting Explosives           | 8  |
| D.         | Bulldozing, Scraping and Grading of Materials         | 9  |
| E.         | Material Handling Operations                          | 12 |
| F.         | Material Crushing and Screening Operations            | 16 |
| G.         | Wind Erosion From Stockpiles                          | 17 |
| Н.         | Stationary Equipment Exhaust                          | 20 |
| I.         | Mobile Equipment and Vehicular Exhaust                |    |
| J.         | Dust Entrainment from Paved Roads                     | 22 |
| <i>K</i> . | Dust Entrainment from Unpaved Roads                   | 25 |
| L.         | Wind Erosion from Unpaved Operational Areas and Roads |    |

# I. Reason for Guidance

The mineral handling and processing industry is the Mojave Desert Air Quality Management District's (District) dominant industry in terms of emissions, number of permit units, and revenue. The mineral industry performs a number of characteristic operations associated with extracting minerals from the Earth's crust and processing them. Aside from equipment and material differences, these operations and processes are essentially the same from facility to facility. Accordingly, the District has prepared this document to ensure that these common operations and processes have their emissions estimated consistently throughout the region.

Why is the District concerned with consistency? Two reasons: accuracy and fairness. The District emissions inventory as a whole will be more accurate if every process of a given type has its emissions estimated using the same methodology (as opposed to a myriad methods of unknown or questioned accuracy). Actions taken by the District that depend on the emissions inventory (such as attainment plans and the rules that implement them) will be fairly applied if all processes are represented in the emissions inventory to the same extent.

This attempt to impose regularity and claim to improve accuracy should not be construed as a criticism of existing inventories or methodologies. On the contrary, District staff greatly appreciates the efforts of the many individuals who have created the existing methodologies and used them to estimate emissions. Nor does District staff claim to have the most accurate inventory; rather, District staff are attempting to establish a minimum level of known accuracy. Methods more accurate than those presented herein will be accepted.

# II. Background

Federal and State law requires air districts to prepare and maintain as accurate and current an emissions inventory as possible. This inventory must include criteria (oxides of nitrogen, volatile organic compounds, carbon monoxide, oxides of sulfur, particulate matter, and lead), hazardous, and toxic air pollutants. The emissions inventory is used to determine attainment strategies, progress towards clean air goals, and air quality relative to other districts.

# III. Approach of this Guidance

This guidance will present methodologies for a large number of emissions-generating operations and processes. The methodologies will be provided with several levels of increasing complexity and accuracy; each level of increased complexity will require greater input (and effort) from the user. In practice, this means that an equation is provided for each process, with a variety of default equation inputs specified. At the lowest level of complexity, an emission factor is specified that can simply be multiplied by a process activity rate.

The greatest level of complexity and accuracy involves the use of data from a source test (if feasible). Of course, the District would prefer all emission inventories to be based on source test results or continuous emission monitor (CEMS) data. This is not feasible due to obvious cost and time constraints. However, a properly performed and documented source test (and/or CEMS data) provides the greatest accuracy possible, and represents a method that will always be accepted in lieu of a methodology presented herein. Other methods may be accepted, if they have been documented and approved by the District.

This guidance document is accompanied by a set of electronic spreadsheets that contains each of the equations used in these methodologies. This allows the user to 'plug-in' her local values and calculates her local result.

#### IV. Source Test Data

For a source test to be used to generate an emission factor, it must include additional emissionsand activity-related information. The following can be considered required supplemental elements for a source test report that is submitted to support or generate a set of equipmentspecific emission factors.

- A. <u>Process flow diagram</u> that specifies pickup points
- B. <u>Control equipment description</u> that defines operational parameters during test (such as water use or pressure drop).
- C. <u>Throughput</u> during test in hourly units (or shorter term units), including a discussion of maximum design throughput, average throughput, and actual throughput during the test.
- D. <u>Exhaust concentrations and mass emission rates</u>, including front half, back half, and total

emissions. The concentrations and mass rates should identify values for total hydrocarbon, reactive organic gases and volatile organic compounds. The concentrations and mass rates should also identify values for total suspended particulate, particulate 10 microns and less, and particulate 2.5 microns and less.

# V. Calculation Spreadsheet Accessory

An accessory spreadsheet has been prepared for this document. The spreadsheet contains each of the equations referenced in the guidance. The equations are programmed into input and output spreadsheet cells to assist the user. The spreadsheet was prepared in Microsoft Excel, and two versions are available. The spreadsheet is titled "Mineral Guidance Equations" and is in Microsoft Excel 97 format. The version titled "Mineral Guidance Equations 95" is in Microsoft Excel 95 format.

The spreadsheet is in the format of a multiple-worksheet workbook, with a separate worksheet for each method (the worksheets have individual tabs at the lower left). Those values which can be entered by the user are defined in dark blue, and the cells in which the values can be typed have a turquoise background. Selected turquoise cells may have a value pre-entered; these values are the District default values, and can be replaced by a known local value. After all necessary turquoise cells have a value, the results of the equation are automatically calculated (the user may need to hit the 'enter' key after entering the last value). In each case the calculated values are displayed in units of pounds and tons of the applicable pollutants.

Please contact District emissions inventory staff if you encounter any problems or errors with the calculation spreadsheet accessory.

#### VI. Methods

Each method will be presented in the same format. The method will begin with a detailed discussion of the processes and operations for which it is an applicable emissions estimation methodology. The method itself will then be provided, beginning with the most conservative and least complex version, and followed by increasingly complex and data-intensive versions. Each method will culminate with the complete equation (where possible), for which the user has the option of providing all inputs. The District has prepared tables calculating likely values for various common inputs. Each method contains a discussion of applicable control strategies (where possible), and appropriate calculation methods for those. Each method concludes with a source reference.

# A. Blast Hole Drilling

This procedure applies to the drilling of charge holes for open pit or open shelf blasting. Note that the activity input for the equation requires the total amount of material shifted, including, topsoil, overburden and ore. Blast hole drilling is often performed by portable internal combustion engine powered drills; exhaust emissions from this equipment are not accounted for by this method. Such exhaust emissions should be estimated using methods presented elsewhere.

"Shifted" is defined as loosened sufficiently to require removal or further handling.

# Least Complex:

Assume negligible particulate emissions from blast hole drilling. This can only be assumed by facilities shifting less than 50,000 tons per year of ore, overburden and topsoil combined.

#### *Intermediate Complexity:*

This method employs a conservative factor times the total amount of material shifted by blasting.

$$E = E_f \times Q$$

E = Particulate matter emissions rate in pounds per year

E<sub>f</sub> = Emission factor in units of pounds of particulate per ton shifted by blasting Q = Amount of material of all types shifted by blasting during the year in tons

 $\begin{array}{lll} TSP \ E_f & = & 0.001 \ pounds/ton \\ PM_{10} \ E_f & = & 0.0008 \ pounds/ton \\ PM_{2.5} \ E_f & = & 0.0008 \ pounds/ton \end{array}$ 

| Blast H                                                                                | Blast Hole Drilling Table 1 Blasting Activity Based Emissions |      |      |      |      |      |      |      |      |  |  |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------|------|------|------|------|------|------|------|------|--|--|--|--|
| Activity in tons (yearly) 50000 75000 100000 125000 150000 175000 200000 225000 250000 |                                                               |      |      |      |      |      |      |      |      |  |  |  |  |
| TSP Emissions (tons)                                                                   | 0.03                                                          | 0.04 | 0.05 | 0.06 | 0.08 | 0.09 | 0.10 | 0.11 | 0.13 |  |  |  |  |
| PM10 Emissions (tons)                                                                  | 0.02                                                          | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.10 |  |  |  |  |
| PM2.5 Emissions (tons)                                                                 | 0.02                                                          | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.10 |  |  |  |  |

#### *Most Complex:*

This method requires an estimate of the number of shot holes drilled on an annual basis.

$$E = E_f \times N$$

E = Particulate matter emissions rate in pounds per year

E<sub>f</sub> = Emission factor in units of pounds of particulate per hole drilled

N = Number of blast holes drilled per year

 $\begin{array}{lll} TSP \ E_f & = & 1.3 \ pounds/hole \\ PM_{10} \ E_f & = & 0.68 \ pounds/hole \\ PM_{2.5} \ E_f & = & 0.68 \ pounds/hole \\ \end{array}$ 

| Blast Hole Drilling Table 2 Drilling Activity Based Emissions                                                         |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-----------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Number of Holes (yearly)                                                                                              | 100  | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 1000 | 1100 | 1200 | 1300 | 1400 |
| TSP Emissions (tons)                                                                                                  | 0.07 | 0.13 | 0.20 | 0.26 | 0.33 | 0.39 | 0.46 | 0.52 | 0.59 | 0.65 | 0.72 | 0.78 | 0.85 | 0.91 |
| PM10 Emissions (tons)   0.03   0.07   0.10   0.14   0.17   0.20   0.24   0.27   0.30   0.34   0.37   0.41   0.44   0. |      |      |      |      |      | 0.47 |      |      |      |      |      |      |      |      |
| PM2.5 Emissions (tons)                                                                                                | 0.03 | 0.07 | 0.10 | 0.14 | 0.17 | 0.20 | 0.24 | 0.27 | 0.30 | 0.34 | 0.37 | 0.41 | 0.44 | 0.47 |

# Control Techniques:

None are presently quantified. The methods assume a wet drilling operation. Enclosures, air return or other control strategies can be employed for an estimated control efficiency, subject to District review and approval.

#### Source:

The intermediate complexity method employs a low confidence emission factor presented in Chapter 15 of the Air & Waste Management Association Air Pollution Engineering Manual, 1992 edition (Stone and Quarrying Processing). The high complexity method employs a relatively highly rated emission factor derived from overburden drilling operations at western surface coal mines presented in §11.9 of USEPA's AP-42 (January 1995 reformatted version).

# B. Dust Entrainment from Blasting

This procedure applies to the fracturing and loosening of topsoil, ore, overburden and substrate in open pits and open shelves through the use of explosives. Note that activity rates for this method require the total amount of material shifted through the use of blasting, including topsoil, overburden and ore. "Shifted" is defined as loosened sufficiently to require removal or further handling.

#### Least Complex:

This method employs a conservative factor times the total amount of material shifted by blasting.

$$E = E_f \times B$$

E = Particulate matter emissions rate in pounds per year

Emission factor in units of pounds of particulate per ton shifted by blasting
 Amount of material of all types shifted by blasting during the year in tons

 $E_f$  (TSP) = 0.16 pounds/ton  $E_f$  (PM<sub>10</sub>) = 0.08 pounds/ton  $E_f$  (PM<sub>2.5</sub>) = 0.08 pounds/ton

|                           | Blasting Table 1 Weight Based Emissions |       |        |        |        |        |        |        |        |  |  |  |
|---------------------------|-----------------------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
| Activity in tons (yearly) | 50000                                   | 75000 | 100000 | 125000 | 150000 | 175000 | 200000 | 225000 | 250000 |  |  |  |
| TSP Emissions (tons)      | 4                                       | 6     | 8      | 10     | 12     | 14     | 16     | 18     | 20     |  |  |  |
| PM10 Emissions (tons)     | 2                                       | 3     | 4      | 5      | 6      | 7      | 8      | 9      | 10     |  |  |  |
| PM2.5 Emissions (tons)    | 2                                       | 3     | 4      | 5      | 6      | 7      | 8      | 9      | 10     |  |  |  |

#### Most Complex:

This method requires information on the horizontal area shifted by blasting, and the number of such blasts performed during the year. This method cannot be used if blasting depth exceeds 70 feet.

$$E = k \times N \times 0.0005 \times A^{1.5}$$

E = Particulate matter emissions rate in pounds per year

k = Particulate matter size factor N = Number of blasts per year

A = Horizontal area shifted by each blast in square feet

k (TSP) = 1.00  $k (PM_{10}) = 0.52$  $k (PM_{2.5}) = 0.52$ 

| Blasting Table 2   | Area | Based 1 | SP Emi | ssions i | in tons  | per yeaı | f     |
|--------------------|------|---------|--------|----------|----------|----------|-------|
|                    |      | N       | umber  | of Week  | dy Blast | S        |       |
| Typical Shelf Area | 1    | 2       | 3      | 4        | 5        | 6        | 7     |
| 1000               | 0.41 | 0.82    | 1.23   | 1.64     | 2.06     | 2.47     | 2.88  |
| 1500               | 0.76 | 1.51    | 2.27   | 3.02     | 3.78     | 4.53     | 5.29  |
| 2000               | 1.16 | 2.33    | 3.49   | 4.65     | 5.81     | 6.98     | 8.14  |
| 2500               | 1.63 | 3.25    | 4.88   | 6.50     | 8.12     | 9.75     | 11.38 |
| 3000               | 2.14 | 4.27    | 6.41   | 8.54     | 10.68    | 12.82    | 14.95 |
| 3500               | 2.69 | 5.38    | 8.08   | 10.77    | 13.46    | 16.15    | 18.84 |
| 4000               | 3.29 | 6.58    | 9.87   | 13.16    | 16.44    | 19.73    | 23.02 |

| Blasting Table 3 - | - Area B | ased PN | /10 and  | PM2.5   | Emissic  | ns in tp | y     |
|--------------------|----------|---------|----------|---------|----------|----------|-------|
|                    |          | N       | lumber ( | of Week | dy Blast | S        |       |
| Typical Shelf Area | 1        | 2       | 3        | 4       | 5        | 6        | 7     |
| 1000               | 0.21     | 0.43    | 0.64     | 0.86    | 1.07     | 1.28     | 1.50  |
| 1500               | 0.39     | 0.79    | 1.18     | 1.57    | 1.96     | 2.36     | 2.75  |
| 2000               | 0.60     | 1.21    | 1.81     | 2.42    | 3.02     | 3.63     | 4.23  |
| 2500               | 0.84     | 1.69    | 2.54     | 3.38    | 4.23     | 5.07     | 5.92  |
| 3000               | 1.11     | 2.22    | 3.33     | 4.44    | 5.55     | 6.66     | 7.78  |
| 3500               | 1.40     | 2.80    | 4.20     | 5.60    | 7.00     | 8.40     | 9.80  |
| 4000               | 1.71     | 3.42    | 5.13     | 6.84    | 8.55     | 10.26    | 11.97 |

# Control Techniques:

None are presently quantified. The method does not assume any emission reducing procedures. Certain control techniques are available, such as blast blankets. Control strategies can be employed for an estimated control efficiency, subject to District review and approval.

#### Source:

The most complex method employs a poorly rated emission factor derived from blasting operations at western surface coal mines presented in §11.9 of USEPA's AP-42 (January 1995 reformatted version).

# C. Criteria Emissions from Blasting Explosives

This procedure estimates the criteria pollutants generated by the detonation of explosives for blasting. This is a "least complex" method that multiplies an emission factor by the total amount of explosives detonated in a year.

$$E = E_f \times A$$

E = Pollutant emissions rate in pounds per year

E<sub>f</sub> = Emission factor in units of pounds of pollutant per ton of explosive detonated

A = Amount of explosive detonated throughout the year in tons

|                    | Explosives Table 1 Emission Factors                          |     |     |      |
|--------------------|--------------------------------------------------------------|-----|-----|------|
| Explosive Type     | Composition                                                  | CO  | NOx | TOG  |
| Black Powder       | Potassium nitrate, charcoal and sulfur                       | 170 |     | 4.2  |
| Smokeless Powder   | Nitrocellulose                                               | 77  |     | 1.1  |
| Dynamite, straight | Nitroglycerine, sodium nitrate, wood pulp, calcium carbonate | 281 |     | 2.5  |
| Dynamite, ammonia  | Nitroglycerine, ammonium nitrate, sodium nitrate, wood pulp  | 63  |     | 1.3  |
| Dynamite, gelatin  | Nitroglycerine                                               | 104 | 53  | 0.7  |
| ANFO               | Ammonium nitrate, fuel oil                                   | 67  | 17  |      |
| TNT                | Trinitrotoluene                                              | 796 |     | 14.3 |
| RDX                | Cyclotrimethylenetrinitroamine                               | 196 |     |      |
| PETN               | Pentaerythritol tetranitrate                                 | 297 |     |      |

Note that VOC emissions are considered negligible for all explosives. TSP, PM<sub>10</sub> and PM<sub>2.5</sub> emissions are subsumed within the dust entrainment estimations.

#### Source:

This method is presented in §13.3 of USEPA's AP-42 (January 1995 reformatted version).

# D. Bulldozing, Scraping and Grading of Materials

This procedure applies to the bulldozing, scraping and grading of topsoil, overburden, waste material, and ore through the use of heavy equipment such as bulldozers, graders, scrapers, etc. This procedure does not apply to the lifting and dumping of said materials; such lifting and dumping emissions should be estimated using methods presented elsewhere.

#### Least Complex:

This method applies a conservative factor times the annual hours of operation.

$$E = E_f \times T$$

E = Particulate matter emissions rate in pounds per year

E<sub>f</sub> = Emission factor in units of pounds of particulate per hour of operation

T = Annual activity in hours

 $\begin{array}{lll} TSP \ E_f & = & 886 \ pounds/hour \\ PM_{10} \ E_f & = & 431 \ pounds/hour \\ PM_{2.5} \ E_f & = & 132 \ pounds/hour \end{array}$ 

(These emission factors were calculated using the defaults given in the Most Complex section)

| Bulldozing Table 1 - Time Based Emissions |        |        |         |         |         |  |  |  |  |  |  |  |
|-------------------------------------------|--------|--------|---------|---------|---------|--|--|--|--|--|--|--|
| Activity in hours (yearly)                | 1040   | 2080   | 2920    | 6240    | 8760    |  |  |  |  |  |  |  |
| TSP Emissions (tons)                      | 460.72 | 921.44 | 1293.56 | 2764.32 | 3880.68 |  |  |  |  |  |  |  |
| PM10 Emissions (tons)                     | 224.12 | 448.24 | 629.26  | 1344.72 | 1887.78 |  |  |  |  |  |  |  |
| PM2.5 Emissions (tons)                    | 68.64  | 137.28 | 192.72  | 411.84  | 578.16  |  |  |  |  |  |  |  |

#### *Most Complex:*

This method presents an equation requiring inputs for the moisture content and silt content of the material being moved, as well as an estimate of the total amount of material moved.

$$E = E_f \times T \qquad \qquad E_f = 2.76 \times k \times \frac{s^{1.5}}{M^{1.4}}$$

E = Particulate matter emissions rate in pounds per year

 $E_f$  = Emission factor in pounds per hour of operation

T = Extent of material moving operation in hours per year

k = Particulate aerodynamic factor (see below)

s = Average silt content in percent (%)

M = Average moisture content of material in percent (%)

k (TSP) = 0.74 (dimensionless)

 $k (PM_{10}) = 0.36$  $k (PM_{2.5}) = 0.11$ 

# Conservative silt content default is 30 percent Conservative moisture content default is 0.5 percent

| Bulldozin        | g Table 2 | Emission F | actor (Ef) fo | or Total Sus | pended Par | ticulates (TS | SP)      |
|------------------|-----------|------------|---------------|--------------|------------|---------------|----------|
|                  |           |            | Mois          | ture Conten  | t (%)      |               |          |
| Silt Content (%) | 0.25      | 0.50       | 0.75          | 1.00         | 1.50       | 2.00          | 2.50     |
| 0.50             | 5.0290    | 1.9056     | 1.0802        | 0.7221       | 0.4093     | 0.2736        | 0.2002   |
| 1.00             | 14.2241   | 5.3899     | 3.0553        | 2.0424       | 1.1577     | 0.7739        | 0.5663   |
| 5.00             | 159.0303  | 60.2612    | 34.1594       | 22.8347      | 12.9440    | 8.6527        | 6.3311   |
| 10.00            | 449.8055  | 170.4444   | 96.6173       | 64.5864      | 36.6111    | 24.4737       | 17.9071  |
| 15.00            | 826.3455  | 313.1264   | 177.4974      | 118.6527     | 67.2589    | 44.9610       | 32.8974  |
| 20.00            | 1272.2422 | 482.0896   | 273.2751      | 182.6778     | 103.5519   | 69.2219       | 50.6489  |
| 25.00            | 1778.0125 | 673.7407   | 381.9135      | 255.3000     | 144.7182   | 96.7406       | 70.7840  |
| 30.00            | 2337.2581 | 885.6552   | 502.0384      | 335.6006     | 190.2370   | 127.1688      | 93.0479  |
| 50.00            | 5028.9787 | 1905.6266  | 1080.2146     | 722.0974     | 409.3248   | 273.6238      | 200.2072 |
| 70.00            | 8330.5150 | 3156.6749  | 1789.3780     | 1196.1561    | 678.0475   | 453.2584      | 331.6438 |

|                  | Bulldo    | zing Table | 3 Emissic | n Factor (E | f) for PM10 |          |          |
|------------------|-----------|------------|-----------|-------------|-------------|----------|----------|
|                  |           |            | Mois      | ture Conten | t (%)       |          |          |
| Silt Content (%) | 0.25      | 0.50       | 0.75      | 1.00        | 1.50        | 2.00     | 2.50     |
| 0.50             | 2.4465    | 0.9271     | 0.5255    | 0.3513      | 0.1991      | 0.1331   | 0.0974   |
| 1.00             | 6.9198    | 2.6221     | 1.4864    | 0.9936      | 0.5632      | 0.3765   | 0.2755   |
| 5.00             | 77.3661   | 29.3163    | 16.6181   | 11.1088     | 6.2971      | 4.2094   | 3.0800   |
| 10.00            | 218.8243  | 82.9189    | 47.0030   | 31.4204     | 17.8108     | 11.9061  | 8.7116   |
| 15.00            | 402.0059  | 152.3318   | 86.3501   | 57.7229     | 32.7206     | 21.8729  | 16.0041  |
| 20.00            | 618.9286  | 234.5301   | 132.9446  | 88.8703     | 50.3766     | 33.6755  | 24.6400  |
| 25.00            | 864.9790  | 327.7658   | 185.7958  | 124.2000    | 70.4034     | 47.0630  | 34.4354  |
| 30.00            | 1137.0445 | 430.8593   | 244.2349  | 163.2651    | 92.5477     | 61.8659  | 45.2666  |
|                  | 2446.5302 |            | 525.5098  | 351.2906    | 199.1310    | 133.1143 | 97.3981  |
| 70.00            | 4052.6830 | 1535.6797  | 870.5082  | 581.9138    | 329.8609    | 220.5041 | 161.3402 |

|                  | Bulldo    | zing Table 4 | 4 Emissio | n Factor (Et | f) for PM2.5 |         |         |
|------------------|-----------|--------------|-----------|--------------|--------------|---------|---------|
|                  |           |              | Mois      | ture Conten  | t (%)        |         |         |
| Silt Content (%) | 0.25      | 0.50         | 0.75      | 1.00         | 1.50         | 2.00    | 2.50    |
| 0.50             | 0.7476    | 0.2833       | 0.1606    | 0.1073       | 0.0608       | 0.0407  | 0.0298  |
| 1.00             | 2.1144    | 0.8012       | 0.4542    | 0.3036       | 0.1721       | 0.1150  | 0.0842  |
| 5.00             | 23.6396   | 8.9577       | 5.0777    | 3.3944       | 1.9241       | 1.2862  | 0.9411  |
| 10.00            | 66.8630   | 25.3363      | 14.3620   | 9.6007       | 5.4422       | 3.6380  | 2.6619  |
| 15.00            | 122.8351  | 46.5458      | 26.3847   | 17.6376      | 9.9979       | 6.6834  | 4.8902  |
| 20.00            | 189.1171  | 71.6620      | 40.6220   | 27.1548      | 15.3928      | 10.2897 | 7.5289  |
| 25.00            | 264.2992  | 100.1507     | 56.7709   | 37.9500      | 21.5122      | 14.3804 | 10.5219 |
| 30.00            | 347.4303  | 131.6514     | 74.6273   | 49.8866      | 28.2785      | 18.9035 | 13.8314 |
| 50.00            | 747.5509  | 283.2688     | 160.5724  | 107.3388     | 60.8456      | 40.6738 | 29.7605 |
| 70.00            | 1238.3198 | 469.2355     | 265.9886  | 177.8070     | 100.7908     | 67.3762 | 49.2984 |

# Control Techniques:

Water spray is commonly used to reduce fugitive dust from this type of activity. Water spray essentially increases the moisture content of the material. Therefore, to take credit for the use of

April 10, 2000 Page 10 of 31 mineralguidance

water spray as an emissions control technique, measure the moisture content of the material when being actively moistened and use this value in the method.

Particulate emissions can also be reduced through the use of wind screens or enclosures (on a relatively small scale). The District assumes that complete coverage by wind screens (on the windward side) will provide a control efficiency of 75 percent.

$$E_c = E \times \left(\frac{100 - C}{100}\right)$$

E<sub>c</sub> = Controlled emissions E = Uncontrolled emissions

C = Control efficiency in percent (%)

#### Source:

The method is derived from the Western Surface Coal Mining discussion in §11.9 of USEPA's AP-42 (January 1995 reformatted version).

# **E.** Material Handling Operations

This procedure applies to the handling of materials in batches and conveyor belts, including loading, unloading, transferring and dropping. "Materials" include topsoil, overburden, waste material and ore. This procedure specifically applies to the operation of heavy equipment such as front end loaders and shovels as well as conveyor belts. This procedure is intended to be applied to each material handling point. This means that each batch drop should be counted. For example, a loader dropping a quantity of material into a temporary storage pile, then dropping into a dump truck, then the dump truck dumping into a long term storage pile would be three separate operations which should be separately accounted for.

#### Least Complex:

This method multiplies a conservative factor by the total amount of material moved in a year.

$$E = E_f \times Q$$

E = Particulate matter emissions rate in pounds per year

 $E_f$  = Emission factor in units of pounds of particulate per ton handled

Q = Quantity of material handled per year in tons

 $\begin{array}{lll} TSP \; E_f & = & 0.029 \; pounds/ton \\ PM_{10} \; E_f & = & 0.014 \; pounds/ton \\ PM_{2.5} \; E_f & = & 0.004 \; pounds/ton \end{array}$ 

(These emission factors were calculated using the defaults given in the Most Complex section)

|                                                                                                                    | Material Handling Table 1 - Weight Based Emissions |      |      |      |      |      |      |      |      |      |        |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------|------|------|------|------|------|------|------|------|--------|
| Activity in tons (yearly)   10000   20000   30000   40000   50000   60000   70000   80000   90000   100000   11000 |                                                    |      |      |      |      |      |      |      |      |      | 110000 |
| TSP Emissions (tons)                                                                                               | 0.15                                               | 0.29 | 0.44 | 0.58 | 0.73 | 0.87 | 1.02 | 1.16 | 1.31 | 1.45 | 1.60   |
| PM10 Emissions (tons)                                                                                              | 0.07                                               | 0.14 | 0.21 | 0.28 | 0.35 | 0.42 | 0.49 | 0.56 | 0.63 | 0.70 | 0.77   |
| PM2.5 Emissions (tons)                                                                                             | 0.06                                               | 0.11 | 0.17 | 0.22 | 0.28 | 0.33 | 0.39 | 0.44 | 0.50 | 0.55 | 0.61   |

# Most Complex:

This method presents an equation requiring inputs for the mean wind speed at the handling site, moisture content of the material being moved, and an estimate of the total amount of material handled.

$$E = E_f \times Q$$

$$E_f = k \times 0.0032 \times \frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$$

E = Particulate matter emissions rate in pounds per year

E<sub>f</sub> = Emission factor in pounds per ton handled
 Q = Quantity of material handled per year in tons
 k = Particulate aerodynamic factor (see below)

U = Mean wind speed in miles per hour

M = Average moisture content of material handled in percent (%)

k (TSP) = 0.74 (dimensionless)

 $k (PM_{10}) = 0.36$  $k (PM_{2.5}) = 0.11$ 

Conservative mean wind speed default is 7.7 mph Conservative moisture content default is 0.5 percent

|                      | Material Har | ndling Tabl | e 2 Emiss | sion Factor | (Ef) for TSP |        |        |
|----------------------|--------------|-------------|-----------|-------------|--------------|--------|--------|
|                      |              |             | Win       | d Speed (m  | nph)         |        |        |
| Moisture Content (%) | 5.0          | 7.5         | 10.0      | 12.5        | 15.0         | 20.0   | 25.0   |
| 0.25                 | 0.0435       | 0.0737      | 0.1072    | 0.1432      | 0.1815       | 0.2639 | 0.3527 |
| 0.50                 | 0.0165       | 0.0279      | 0.0406    | 0.0543      | 0.0688       | 0.1000 | 0.1336 |
| 0.75                 | 0.0093       | 0.0158      | 0.0230    | 0.0308      | 0.0390       | 0.0567 | 0.0758 |
| 1.00                 | 0.0062       | 0.0106      | 0.0154    | 0.0206      | 0.0261       | 0.0379 | 0.0506 |
| 1.50                 | 0.0035       | 0.0060      | 0.0087    | 0.0117      | 0.0148       | 0.0215 | 0.0287 |
| 2.00                 | 0.0024       | 0.0040      | 0.0058    | 0.0078      | 0.0099       | 0.0144 | 0.0192 |
| 2.50                 | 0.0017       | 0.0029      | 0.0043    | 0.0057      | 0.0072       | 0.0105 | 0.0140 |

|                      | Material Har | ndling Table | 3 Emiss | ion Factor ( | Ef) for PM1 | 0      |        |
|----------------------|--------------|--------------|---------|--------------|-------------|--------|--------|
|                      |              |              | Wir     | id Speed (m  | nph)        |        |        |
| Moisture Content (%) | 5.0          | 7.5          | 10.0    | 12.5         | 15.0        | 20.0   | 25.0   |
| 0.25                 | 0.0212       | 0.0359       | 0.0521  | 0.0697       | 0.0883      | 0.1284 | 0.1716 |
| 0.50                 | 0.0080       | 0.0136       | 0.0198  | 0.0264       | 0.0335      | 0.0486 | 0.0650 |
| 0.75                 | 0.0045       | 0.0077       | 0.0112  | 0.0150       | 0.0190      | 0.0276 | 0.0369 |
| 1.00                 | 0.0030       | 0.0052       | 0.0075  | 0.0100       | 0.0127      | 0.0184 | 0.0246 |
| 1.50                 | 0.0017       | 0.0029       | 0.0042  | 0.0057       | 0.0072      | 0.0104 | 0.0140 |
| 2.00                 | 0.0012       | 0.0020       | 0.0028  | 0.0038       | 0.0048      | 0.0070 | 0.0093 |
| 2.50                 | 0.0008       | 0.0014       | 0.0021  | 0.0028       | 0.0035      | 0.0051 | 0.0068 |

| ľ                    | Material Han | dling Table | 4 Emissi | on Factor (I | Ef) for PM2. | 5      |        |
|----------------------|--------------|-------------|----------|--------------|--------------|--------|--------|
|                      |              |             | Wir      | nd Speed (m  | nph)         |        |        |
| Moisture Content (%) | 5.0          | 7.5         | 10.0     | 12.5         | 15.0         | 20.0   | 25.0   |
| 0.25                 | 0.0065       | 0.0110      | 0.0159   | 0.0213       | 0.0270       | 0.0392 | 0.0524 |
| 0.50                 | 0.0025       | 0.0042      | 0.0060   | 0.0081       | 0.0102       | 0.0149 | 0.0199 |
| 0.75                 | 0.0014       | 0.0024      | 0.0034   | 0.0046       | 0.0058       | 0.0084 | 0.0113 |
| 1.00                 | 0.0009       | 0.0016      | 0.0023   | 0.0031       | 0.0039       | 0.0056 | 0.0075 |
| 1.50                 | 0.0005       | 0.0009      | 0.0013   | 0.0017       | 0.0022       | 0.0032 | 0.0043 |
| 2.00                 | 0.0004       | 0.0006      | 0.0009   | 0.0012       | 0.0015       | 0.0021 | 0.0029 |
| 2.50                 | 0.0003       | 0.0004      | 0.0006   | 0.0008       | 0.0011       | 0.0016 | 0.0021 |

# Control Techniques:

Water spray is commonly used to reduce fugitive dust from this type of activity. Water spray essentially increases the moisture content of the material. Therefore, to take credit for the use of water spray as an emissions control technique, measure the moisture content of the material when being actively moistened and use this value in the method.

Some materials and process lines are exposed and lose moisture rapidly. Measuring moisture content at a given point in the process line will not accurately reflect the control efficiency of the wet suppression. In these cases, refer to the following table.

| Material Handling T                             | able 5 Control | Techniques                                 |
|-------------------------------------------------|----------------|--------------------------------------------|
| •                                               | Control        | ·                                          |
| Control Technique                               | Efficiency (%) | Discussion                                 |
| Water Spray (Application Point)                 | 75             |                                            |
| Chemical Additive (Application Point)           | 85             |                                            |
| Water Spray (Downstream Effect)                 | 75-(5*n)       | n = number of transfer points from initial |
| Chemical Additive (Downstream Effect)           | 85-(5*n)       | application                                |
| Conveyor with Half Cover                        | 50             | Covers less than 60 percent of conveyor    |
| Conveyor with Three Quarter Cover               | 70             | Covers less than 85 percent of conveyor    |
| Conveyor with Full Cover                        | 85             | Completely covers conveyor width           |
| Baghouse with Multiple Pickups                  | 95             |                                            |
| Baghouse with Single Pickup (Unenclosed)        | 97             | Baghouse must meet minimum flow            |
| Baghouse with Single Pickup (Partial Enclosure) | 98             | standard given in Table 6                  |
| Baghouse with Single Pickup (Full Enclosure)    | 99             | Standard given in Table 6                  |
| Baghouse with Single Pickup (Attached)          | 99.5           |                                            |

| Mater                             | Material Handling Table 6 Required Baghouse Flow Ratios (in cfm/sq ft) |                  |              |        |      |          |         |          |        |            |            |      |           |        |           |      |        |       |      |
|-----------------------------------|------------------------------------------------------------------------|------------------|--------------|--------|------|----------|---------|----------|--------|------------|------------|------|-----------|--------|-----------|------|--------|-------|------|
|                                   |                                                                        | Type of Material |              |        |      |          |         |          |        |            |            |      |           |        |           |      |        |       |      |
| Type of Baghouse/<br>Filter Cloth | Alumina                                                                | Bauxite          | Carbon Black | Cement | Clay | Feldspar | Fly Ash | Graphite | Gypsum | Iron Oxide | lead Oxide | Lime | Limestone | Quartz | Rock Dust | Sand | Silica | Slate | Talc |
| Shaker/Woven or                   |                                                                        |                  |              |        |      |          |         |          |        |            |            |      |           |        |           |      |        |       |      |
| Reverse Air/Woven                 | 2.5                                                                    | 2.5              | 1.5          | 2.0    | 2.5  | 2.2      | 2.5     | 2.0      | 2.0    | 2.5        | 2.0        | 2.5  | 2.7       | 2.8    | 3.0       | 2.5  | 2.5    | 3.5   | 2.5  |
| Pulse Jet/Felt or                 |                                                                        |                  |              |        |      |          |         |          |        |            |            |      |           |        |           |      |        |       |      |
| Reverse Air/Felt                  | 8                                                                      | 8                | 5            | 8      | 9    | 9        | 8       | 8        | 10     | 7          | 6          | 10   | 8         | 8      | 9         | 10   | 7      | 12    | 10   |

Note that higher baghouse control efficiencies can be justified with source tests, permit conditions and/or design factors.

Particulate emissions can also be reduced through the use of wind screens or enclosures (on a relatively small scale). The District assumes that complete coverage by wind screens (on the windward side) will provide a control efficiency of 75 percent.

Once the control efficiency of the applicable control technique is known, the following equation is used to determine the "controlled" emissions from the operation or process:

$$E_c = E \times \left(\frac{100 - C}{100}\right)$$

E<sub>c</sub> = Controlled emissions E = Uncontrolled emissions

C = Control efficiency in percent (%)

| C      |  |
|--------|--|
| Source |  |

The method is presented in the Aggregate Handling and Storage Pile discussion in §13.2.4 of USEPA's AP-42 (January 1995).

# F. Material Crushing and Screening Operations

This procedure applies to the crushing and screening of materials. This is effectively a "least complex" method that multiplies an emission factor by annual throughput. This method applies to each occurrence of a crushing or screening operation; in a process line with primary crushing and a screen, secondary crushing and a screen, and tertiary crushing followed by a screen, this method should be applied six times (to six potentially different throughputs).

$$E = E_f \times T$$

E = Particulate matter emissions rate in pounds per year

E<sub>f</sub> = Emission factor in units of pounds of particulate per ton of throughput

T = Throughput of material processed per year in tons

| Material Crushing and Screening Table 1 Emission Factor |       |             |       |  |  |  |  |  |
|---------------------------------------------------------|-------|-------------|-------|--|--|--|--|--|
|                                                         | En    | nission Fac | tor   |  |  |  |  |  |
| Processing Device                                       | TSP   | PM10        | PM2.5 |  |  |  |  |  |
| Dry Primary or Secondary Crushing                       | 0.280 | 0.017       | 0.005 |  |  |  |  |  |
| Wet Primary or Secondary Crushing                       | 0.018 | 0.001       | 0.001 |  |  |  |  |  |
| Tertiary Crushing                                       | 1.850 | 0.112       | 0.035 |  |  |  |  |  |
| Dry Screening                                           | 0.160 | 0.120       | 0.038 |  |  |  |  |  |
| Wet Screening                                           | neg   | neg         | neg   |  |  |  |  |  |

Note: "neg" indicates negligible emissions.

#### Control Techniques:

Please refer to the control techniques discussion in the Material Handling Operations section.

#### Source:

The method is derived from the Sand and Gravel Processing discussion in the Air & Waste Management Association Air Pollution Engineering Manual (1992 edition).

April 10, 2000 Page 16 of 31 mineralguidance

# **G.** Wind Erosion From Stockpiles

This procedure applies to wind erosion from open storage piles.

#### Least Complex:

This method employs a conservative emission factor multiplied by the surface area of a stockpile.

$$E = E_f \times A$$

E = Particulate matter emissions rate in tons per year

 $E_f$  = Emission factor in units of tons of particulate per surface acre

A = Exposed surface area of stockpile in acres

 $\begin{array}{lll} TSP \ E_f & = & 8.10 \ tons/acre \\ PM_{10} \ E_f & = & 4.05 \ tons/acre \\ PM_{2.5} \ E_f & = & 1.62 \ tons/acre \end{array}$ 

(These emission factors were calculated using the defaults given in the Most Complex section)

| Sto                                                  | Stockpile Table 1 Area Based Emissions |      |       |       |       |       |        |        |  |  |  |  |
|------------------------------------------------------|----------------------------------------|------|-------|-------|-------|-------|--------|--------|--|--|--|--|
| Area (acres) 0.02 0.11 0.23 0.46 1.00 2.00 5.00 10.0 |                                        |      |       |       |       |       |        |        |  |  |  |  |
| Area (square feet)                                   | 1000                                   | 5000 | 10000 | 20000 | 43560 | 87120 | 217800 | 435600 |  |  |  |  |
| TSP Emissions (tons)                                 | 0.19                                   | 0.93 | 1.86  | 3.72  | 8.10  | 16.20 | 40.50  | 81.00  |  |  |  |  |
| PM10 Emissions (tons)                                | 0.09                                   | 0.46 | 0.93  | 1.86  | 4.05  | 8.10  | 20.25  | 40.50  |  |  |  |  |
| PM2.5 Emissions (tons)                               | 0.04                                   | 0.19 | 0.37  | 0.74  | 1.62  | 3.24  | 8.10   | 16.20  |  |  |  |  |

#### Most Complex:

This method presents an equation requiring inputs for the silt content of the stockpiled material, the average number of days during the year in question that experienced at least 0.01 inches of precipitation, the percentage of time during the year that the unobstructed wind speed exceeded 12 mph, and the exposed surface area of the stockpile.

$$E = E_f \times A$$
  $E_f = J \times 1.7 \times \frac{sL}{1.5} \times \frac{(365 - P)}{235} \times \frac{I}{15} \times \frac{365}{2000}$ 

E = Particulate matter emissions rate in tons per year

 $E_f$  = Emission factor in tons per acre

A = Exposed surface area of stockpile in acres
J = Particulate aerodynamic factor (see below)

sL = Average silt loading of storage pile in percent (%), see below

P = Average number of days during the year with at least 0.01 inches of precipitation

I = Percentage of time with unobstructed wind speed >12 mph in percent (%)

Conservative silt loading default is 30 percent Conservative days with precipitation default is 20 Conservative windy hours default is 13.3 percent

| Stockpile Table 2 Silt Conte | ent Percentages  |
|------------------------------|------------------|
| Stockpile Material           | Silt Content (%) |
| Limestone                    | 0.5              |
| Crushed Limestone            | 1.5              |
| Asphalt Batching             | 5.0              |
| Coal                         | 6.0              |
| Concrete Batching            | 6.0              |
| Sand and Gravel Processing   | 8.0              |
| Overburden                   | 10.0             |
| Blend Ore and Dirt           | 15.0             |
| Flue Dust                    | 20.0             |
| Inorganic Minerals           | 30.0             |

| Stockpile Table 3 T           | Stockpile Table 3 TSP Emissions for P = 20 days with >=0.01 inches |                  |       |       |       |       |        |        |  |  |  |
|-------------------------------|--------------------------------------------------------------------|------------------|-------|-------|-------|-------|--------|--------|--|--|--|
| I (% of winds > than 12 mph)  |                                                                    | Silt Content (%) |       |       |       |       |        |        |  |  |  |
| 1 (% of willds > than 12 mph) | 0.5                                                                | 1.0              | 5.0   | 10.0  | 15.0  | 20.0  | 25.0   | 30.0   |  |  |  |
| 5                             | 0.051                                                              | 0.101            | 0.506 | 1.012 | 1.518 | 2.024 | 2.530  | 3.036  |  |  |  |
| 10                            | 0.101                                                              | 0.202            | 1.012 | 2.024 | 3.036 | 4.049 | 5.061  | 6.073  |  |  |  |
| 15                            | 0.152                                                              | 0.304            | 1.518 | 3.036 | 4.555 | 6.073 | 7.591  | 9.109  |  |  |  |
| 20                            | 0.202                                                              | 0.405            | 2.024 | 4.049 | 6.073 | 8.097 | 10.122 | 12.146 |  |  |  |

| Stockpile Table 4 PN         | Stockpile Table 4 PM10 Emissions for P = 20 days with >=0.01 inches |                  |       |       |       |       |       |       |  |  |  |  |
|------------------------------|---------------------------------------------------------------------|------------------|-------|-------|-------|-------|-------|-------|--|--|--|--|
| I (% of winds > than 12 mph) |                                                                     | Silt Content (%) |       |       |       |       |       |       |  |  |  |  |
| 1 (% of winds > than 12 mph) | 0.5                                                                 | 1.0              | 5.0   | 10.0  | 15.0  | 20.0  | 25.0  | 30.0  |  |  |  |  |
| 5                            | 0.025                                                               | 0.051            | 0.253 | 0.506 | 0.759 | 1.012 | 1.265 | 1.518 |  |  |  |  |
| 10                           | 0.051                                                               | 0.101            | 0.506 | 1.012 | 1.518 | 2.024 | 2.530 | 3.036 |  |  |  |  |
| 15                           | 0.076                                                               | 0.152            | 0.759 | 1.518 | 2.277 | 3.036 | 3.796 | 4.555 |  |  |  |  |
| 20                           | 0.101                                                               | 0.202            | 1.012 | 2.024 | 3.036 | 4.049 | 5.061 | 6.073 |  |  |  |  |

| Stockpile Table 5 PM2.5 Emissions for P = 20 days with >=0.01 inches |       |                  |       |       |       |       |       |       |  |  |
|----------------------------------------------------------------------|-------|------------------|-------|-------|-------|-------|-------|-------|--|--|
| I (% of winds > than 12 mph)                                         |       | Silt Content (%) |       |       |       |       |       |       |  |  |
| 1 (% of willus > than 12 mpn)                                        | 0.5   | 1.0              | 5.0   | 10.0  | 15.0  | 20.0  | 25.0  | 30.0  |  |  |
| 5                                                                    | 0.010 | 0.020            | 0.101 | 0.202 | 0.304 | 0.405 | 0.506 | 0.607 |  |  |
| 10                                                                   | 0.020 | 0.040            | 0.202 | 0.405 | 0.607 | 0.810 | 1.012 | 1.215 |  |  |
| 15                                                                   | 0.030 | 0.061            | 0.304 | 0.607 | 0.911 | 1.215 | 1.518 | 1.822 |  |  |
| 20                                                                   | 0.040 | 0.081            | 0.405 | 0.810 | 1.215 | 1.619 | 2.024 | 2.429 |  |  |

#### Control Techniques:

Fugitive particulate emissions from storage piles can be reduced through the use of water spray (by increasing the moisture content of the material). The following table presents the required minimum water application rates to achieve a given control efficiency. Water application or use records must accompany any watering control efficiency claim.

| Stockpiles Table 6 Watering Control Efficiency (%)         |       |  |  |  |  |  |
|------------------------------------------------------------|-------|--|--|--|--|--|
| Desired Efficiency (%) Daily Water Application Rate (gal/a |       |  |  |  |  |  |
| 50                                                         | 1703  |  |  |  |  |  |
| 60                                                         | 2390  |  |  |  |  |  |
| 70                                                         | 3396  |  |  |  |  |  |
| 80                                                         | 5083  |  |  |  |  |  |
| 85                                                         | 6506  |  |  |  |  |  |
| 90                                                         | 8892  |  |  |  |  |  |
| 95                                                         | 14279 |  |  |  |  |  |

Stockpile fugitive particulate emissions can also be reduced through the use of wind screens or enclosures. The District assumes that complete coverage by wind screens (on the windward side) will provide a control efficiency of 75 percent.

Once the control efficiency of the applicable control technique is known, the following equation is used to determine the "controlled" emissions from the operation or process:

$$E_c = E \times \left(\frac{100 - C}{100}\right)$$

E<sub>c</sub> = Controlled emissions E = Uncontrolled emissions

C = Control efficiency in percent (%)

#### Source:

The method is derived from the Fugitive Emissions discussion in the Air & Waste Management Association Air Pollution Engineering Manual (1992 edition).

# H. Stationary Equipment Exhaust

This procedure estimates exhaust from a wide variety of fuel-burning stationary equipment used in the mineral industry. This is a "least complex" method that multiplies an emission factor by annual fuel use, and should be used only if source test or manufacturer guaranteed emissions data is not available for the equipment in question. This method requires fuel type and annual fuel use as inputs. Boilers, Space Heaters, Generic Industrial Process Heaters, Internal Combustion Engines, and Gas Turbines are covered by this method.

$$E = E_f \times F$$

E = Pollutant emissions rate in pounds per year

 $E_f$  = Emission factor in units of pounds of pollutant per unit of fuel use

F = Annual fuel consumption in millions of cubic feet (MMCF) for natural gas or

1000's of gallons for gasoline, diesel or propane

|                              | Stationary Equi      | pment Table | 1 Em   | ission F | actors |        |       |       |       |
|------------------------------|----------------------|-------------|--------|----------|--------|--------|-------|-------|-------|
| Equipment Type               | Fuel Type            | Fuel Units  | TOG    | ROG      | CO     | NOx    | SOx   | TSP   | PM10  |
| Boiler >100 MMBTU/hr         | Natural Gas          | MMCF        | 3.18   | 1.40     | 40.0   | 550.0  | 0.60  | 3.00  | 3.00  |
| Boiler 10-100<br>MMBTU/hr    | Natural Gas          | MMCF        | 6.36   | 2.80     | 35.0   | 140.0  | 0.60  | 3.00  | 3.00  |
| Boiler <10 MMBTU/hr          | Natural Gas          | MMCF        | 12.05  | 5.30     | 20.0   | 100.0  | 0.60  | 3.00  | 3.00  |
| Boiler, Cogeneration         | Natural Gas          | MMCF        | 3.18   | 1.40     | 40.0   | 275.0  |       | 3.00  | 3.00  |
|                              | Fuel Oil #2, 0.5% S  | 1000 gal    | 0.21   | 0.20     | 5.0    | 20.0   | 71.80 | 2.00  | 1.95  |
| Boiler                       | Fuel Oil #2, 0.05% S | 1000 gal    | 0.21   | 0.20     | 5.0    | 20.0   | 7.18  | 2.00  | 1.95  |
|                              | Propane or LPG       | 1000 gal    | 0.65   | 0.60     | 1.8    | 8.8    | 1.50  | 0.26  | 0.26  |
|                              | Natural Gas          | MMCF        | 12.05  | 5.30     | 20.0   | 100.0  | 0.60  | 3.00  | 3.00  |
| Space Heater                 | Fuel Oil #2, 0.5% S  | 1000 gal    | 0.74   | 0.70     | 5.0    | 18.0   | 72.00 | 2.50  | 2.44  |
| орасе пеагег                 | Fuel Oil #2, 0.05% S | 1000 gal    | 0.74   | 0.70     | 5.0    | 18.0   | 7.20  | 2.50  | 2.44  |
|                              | Propane or LPG       | 1000 gal    | 0.69   | 0.63     | 2.0    | 7.5    | 1.50  | 1.85  | 1.85  |
|                              | Natural Gas          | MMCF        | 12.05  | 5.30     | 20.0   | 100.0  | 0.60  | 3.00  | 2.85  |
| Generic Industrial           | Fuel Oil #2, 0.5% S  | 1000 gal    | 0.21   | 0.20     | 5.0    | 20.0   | 53.50 | 2.00  | 1.95  |
| Process Heater               | Fuel Oil #2, 0.05% S | 1000 gal    | 0.21   | 0.20     | 5.0    | 20.0   | 5.35  | 2.00  | 1.95  |
|                              | Propane or LPG       | 1000 gal    | 0.65   | 0.60     | 1.8    | 8.8    | 1.50  | 0.26  | 0.25  |
|                              | Natural Gas          | MMCF        | 799.42 | 187.06   | 430.0  | 3400.0 | 0.60  | 10.00 | 9.94  |
| Internal Combustion          | Fuel Oil #2, 0.5% S  | 1000 gal    | 37.42  | 33.08    | 102.0  | 469.0  | 15.60 | 33.50 | 32.70 |
| Engine                       | Fuel Oil #2, 0.05% S | 1000 gal    | 37.42  | 33.08    | 102.0  | 469.0  | 1.56  | 33.50 | 32.70 |
| Liigiile                     | Propane or LPG       | 1000 gal    | 800.39 | 187.29   | 129.0  | 139.0  | 0.35  | 5.00  | 4.97  |
|                              | Gasoline             | 1000 gal    | 164.13 | 148.96   | 3940.0 | 102.0  | 5.31  | 6.47  | 6.43  |
| Gas Turbine,<br>Cogeneration | Natural Gas          | MMCF        | 66.54  | 15.57    | 115.0  | 413.0  | 0.60  | 14.00 | 13.92 |
|                              | Natural Gas          | MMCF        | 121.50 | 28.43    | 115.0  | 413.0  | 0.60  | 14.00 | 13.92 |
| Gas Turbine                  | Fuel Oil #2, 0.5% S  | 1000 gal    | 5.56   | 4.92     | 15.4   | 67.8   | 70.00 | 5.00  | 4.88  |
|                              | Fuel Oil #2, 0.05% S | 1000 gal    | 5.56   | 4.92     | 15.4   | 67.8   | 7.00  | 5.00  | 4.88  |

Note that, for the above table, the ROG emission factors can be used as VOC emission factors, and the  $PM_{10}$  emission factors can be used as  $PM_{2.5}$  emission factors.

#### Source:

These generic factors are derived from a variety of sources (primarily USEPA's AP-42).

#### I. Mobile Equipment and Vehicular Exhaust

This procedure estimates the exhaust and brake wear emissions from a variety of mobile equipment common in the mineral industry. Note that this method estimates exhaust from mobile equipment only, and dust entrainment due to the travel of mobile equipment on paved and unpaved surfaces should be estimated using the methods presented elsewhere in this document. This is effectively a "least complex" method that multiplies a conservative emission factor by annual activity in hours of use, fuel consumption in 1000's of gallons, or travel in 1000's of miles.

$$E = E_f \times A$$

E = Pollutant emissions rate in pounds per year

 $E_f$  = Emission factor in units of pounds of pollutant per unit of activity

A = Annual activity consumption in 1000's of horsepower-hours, 1000's of gallons of

diesel fuel burned, or 1000's of vehicle miles traveled

|                                                  | Mobile Equipment Table 1 Emission Factors |                |       |       |       |       |       |       |       |
|--------------------------------------------------|-------------------------------------------|----------------|-------|-------|-------|-------|-------|-------|-------|
| Equipment Type                                   | Activity Type                             | Activity Units | TOG   | ROG   | CO    | NOx   | SOx   | TSP   | PM10  |
| Heavy Duty Diesel Off<br>Road                    | Hours of Operation                        | 1000 hp-hr     | 2.42  | 2.34  | 7.5   | 24.3  | 2.91  | 1.54  | 1.53  |
| Road                                             | Hours of Operation                        |                | 16.53 | 15.99 | 474.0 | 9.9   | 2.82  | 0.13  | 0.13  |
| Miscellaneous Natural Gas<br>or Propane Off Road | Hours of Operation                        | 1000 hp-hr     | 10.40 | 10.06 | 275.6 | 11.9  | 1.50  | 0.13  | 0.13  |
| Locomotives                                      | Fuel Burned                               | 1000 gal       | 36.00 | 34.46 | 115.0 | 659.0 | 47.35 | 15.50 | 14.88 |
| Light Duty Gasoline On or Off Road               | Distance Traveled                         | 1000 vmt       | 2.92  | 2.67  | 18.8  | 2.3   | 0.12  | 0.47  | 0.21  |
| Heavy Duty Diesel On<br>Road                     | Distance Traveled                         | 1000 vmt       | 4.21  | 4.10  | 17.4  | 29.1  | 0.94  | 4.62  | 4.02  |

Note that, for the above table, the ROG emission factors can be used as VOC emission factors, and the  $PM_{10}$  emission factors can be used as  $PM_{2.5}$  emission factors.

Control Techniques:

None are presently quantified.

Source:

This method is consists of fleet average emission factors derived from the District emission inventory.

#### J. Dust Entrainment from Paved Roads

This procedure applies to all traffic on paved roads. This procedure estimates the dust entrainment due to vehicular travel on paved surfaces. Vehicular exhaust emissions should be estimated using methods presented elsewhere.

#### Least Complex:

This method consists of multiplying a conservative default emission factor for a typical haul truck operating on a material laden surface by an estimate of that haul trucks annual activity in vehicle mile traveled.

$$E = E_f \times V$$

E = Particulate matter emissions rate in pounds per year

 $E_f$  = Emission factor in units of pounds of pollutant per mile traveled

V = Annual travel in units of vehicle miles traveled

 $E_f$  (TSP) = 55 pounds/mile traveled  $E_f$  (PM<sub>10</sub>) = 11 pounds/mile traveled  $E_f$  (PM<sub>2.5</sub>) = 3 pounds/mile traveled

(These emission factors were calculated using the defaults given in the Most Complex section)

| Paved Roads Table 1 Activity Based Emissions |       |       |        |       |       |       |        |        |        |
|----------------------------------------------|-------|-------|--------|-------|-------|-------|--------|--------|--------|
|                                              |       |       |        |       |       |       |        | . =    |        |
| Activity (miles traveled)                    | 500   | 1000  | 5000   | 10000 | 20000 | 50000 | 100000 | 150000 | 200000 |
| TSP Emissions (tons)                         | 13.75 | 27.50 | 137.50 | 275   | 550   | 1375  | 2750   | 4125   | 5500   |
| PM10 Emissions (tons)                        | 2.75  | 5.50  | 27.50  | 55    | 110   | 275   | 550    | 825    | 1100   |
| PM2.5 Emissions (tons)                       | 0.75  | 1.50  | 7.50   | 15    | 30    | 75    | 150    | 225    | 300    |

#### Most Complex:

This method calculates a vehicle-specific emission factor based on paved surface silt loading and vehicle weight, and multiplies it by annual vehicular activity in miles traveled.

$$E = E_f \times V \qquad \qquad E_f = k \times \left(\frac{sL}{2}\right)^{0.65} \times \left(\frac{W}{3}\right)^{1.5}$$

E = Particulate matter emissions rate in pounds per year

 $E_f$  = Emission factor in units of pounds of pollutant per mile traveled

V = Annual travel in units of vehicle miles traveled k = Aerodynamic particle size multiplier (see below) sL = Roadway silt loading, in grams per square meter

W = Mean vehicle weight in tons

$$k (TSP) = 0.082$$

 $k (PM_{10}) = 0.016$  $k (PM_{2.5}) = 0.004$ 

Conservative silt loading default is 100 grams per square meter Conservative mean vehicle weight default is 42 tons

| Paved Roads Table 2 Default Silt Loadings |                     |  |  |  |  |  |
|-------------------------------------------|---------------------|--|--|--|--|--|
| Paved Surface                             | Silt Loading (g/m2) |  |  |  |  |  |
| Freeway or High Traffic                   | 0.1                 |  |  |  |  |  |
| Low Traffic Road                          | 0.4                 |  |  |  |  |  |
| Municipal Solid Waste Landfill            | 7                   |  |  |  |  |  |
| Quarry                                    | 8                   |  |  |  |  |  |
| Concrete Batching                         | 12                  |  |  |  |  |  |
| Sand and Gravel Processing                | 70                  |  |  |  |  |  |
| Industrial Site                           | 100                 |  |  |  |  |  |
| Asphalt Batching                          | 120                 |  |  |  |  |  |

| Р            | Paved Roads Table 3 Emission Factors (Ef) for TSP |      |          |            |            |        |        |  |  |
|--------------|---------------------------------------------------|------|----------|------------|------------|--------|--------|--|--|
| Silt Loading |                                                   |      | Mean Vel | nicle Weig | ght (W) in | tons   |        |  |  |
| (g/m2)       | 2.5                                               | 5.0  | 10.0     | 15.0       | 25.0       | 50.0   | 100.0  |  |  |
| 0.4          | 0.02                                              | 0.06 | 0.18     | 0.32       | 0.69       | 1.96   | 5.54   |  |  |
| 1.0          | 0.04                                              | 0.11 | 0.32     | 0.58       | 1.26       | 3.56   | 10.06  |  |  |
| 1.5          | 0.05                                              | 0.15 | 0.41     | 0.76       | 1.64       | 4.63   | 13.09  |  |  |
| 5.0          | 0.11                                              | 0.32 | 0.91     | 1.66       | 3.58       | 10.12  | 28.63  |  |  |
| 10.0         | 0.18                                              | 0.50 | 1.42     | 2.61       | 5.62       | 15.88  | 44.92  |  |  |
| 15.0         | 0.23                                              | 0.65 | 1.85     | 3.40       | 7.31       | 20.67  | 58.47  |  |  |
| 25.0         | 0.32                                              | 0.91 | 2.58     | 4.73       | 10.19      | 28.81  | 81.49  |  |  |
| 50.0         | 0.51                                              | 1.43 | 4.04     | 7.43       | 15.98      | 45.21  | 127.88 |  |  |
| 100.0        | 0.79                                              | 2.24 | 6.35     | 11.66      | 25.08      | 70.94  | 200.66 |  |  |
| 150.0        | 1.03                                              | 2.92 | 8.26     | 15.17      | 32.65      | 92.34  | 261.17 |  |  |
| 200.0        | 1.24                                              | 3.52 | 9.96     | 18.29      | 39.36      | 111.32 | 314.87 |  |  |

| Pa           | Paved Roads Table 4 Emission Factors (Ef) for PM10 |                                 |      |      |      |       |       |  |  |  |
|--------------|----------------------------------------------------|---------------------------------|------|------|------|-------|-------|--|--|--|
| Silt Loading |                                                    | Mean Vehicle Weight (W) in tons |      |      |      |       |       |  |  |  |
| (g/m2)       | 2.5                                                | 5.0                             | 10.0 | 15.0 | 25.0 | 50.0  | 100.0 |  |  |  |
| 0.4          | 0.00                                               | 0.01                            | 0.03 | 0.06 | 0.14 | 0.38  | 1.08  |  |  |  |
| 1.0          | 0.01                                               | 0.02                            | 0.06 | 0.11 | 0.25 | 0.69  | 1.96  |  |  |  |
| 1.5          | 0.01                                               | 0.03                            | 0.08 | 0.15 | 0.32 | 0.90  | 2.55  |  |  |  |
| 5.0          | 0.02                                               | 0.06                            | 0.18 | 0.32 | 0.70 | 1.97  | 5.59  |  |  |  |
| 10.0         | 0.03                                               | 0.10                            | 0.28 | 0.51 | 1.10 | 3.10  | 8.77  |  |  |  |
| 15.0         | 0.05                                               | 0.13                            | 0.36 | 0.66 | 1.43 | 4.03  | 11.41 |  |  |  |
| 25.0         | 0.06                                               | 0.18                            | 0.50 | 0.92 | 1.99 | 5.62  | 15.90 |  |  |  |
| 50.0         | 0.10                                               | 0.28                            | 0.79 | 1.45 | 3.12 | 8.82  | 24.95 |  |  |  |
| 100.0        | 0.15                                               | 0.44                            | 1.24 | 2.27 | 4.89 | 13.84 | 39.15 |  |  |  |
| 150.0        | 0.20                                               | 0.57                            | 1.61 | 2.96 | 6.37 | 18.02 | 50.96 |  |  |  |
| 200.0        | 0.24                                               | 0.69                            | 1.94 | 3.57 | 7.68 | 21.72 | 61.44 |  |  |  |

| Pa           | Paved Roads Table 5 Emission Factors (Ef) for PM2.5 |       |          |            |            |       |        |  |  |
|--------------|-----------------------------------------------------|-------|----------|------------|------------|-------|--------|--|--|
| Silt Loading |                                                     |       | Mean Vel | nicle Weig | ght (W) in | tons  |        |  |  |
| (g/m2)       | 2.5                                                 | 5.0   | 10.0     | 15.0       | 25.0       | 50.0  | 100.0  |  |  |
| 0.4          | 0.001                                               | 0.003 | 0.009    | 0.016      | 0.034      | 0.096 | 0.270  |  |  |
| 1.0          | 0.002                                               | 0.005 | 0.016    | 0.029      | 0.061      | 0.173 | 0.491  |  |  |
| 1.5          | 0.003                                               | 0.007 | 0.020    | 0.037      | 0.080      | 0.226 | 0.639  |  |  |
| 5.0          | 0.006                                               | 0.016 | 0.044    | 0.081      | 0.175      | 0.494 | 1.396  |  |  |
| 10.0         | 0.009                                               | 0.024 | 0.069    | 0.127      | 0.274      | 0.775 | 2.191  |  |  |
| 15.0         | 0.011                                               | 0.032 | 0.090    | 0.166      | 0.357      | 1.008 | 2.852  |  |  |
| 25.0         | 0.016                                               | 0.044 | 0.126    | 0.231      | 0.497      | 1.405 | 3.975  |  |  |
| 50.0         | 0.025                                               | 0.070 | 0.197    | 0.362      | 0.780      | 2.205 | 6.238  |  |  |
| 100.0        | 0.039                                               | 0.109 | 0.310    | 0.569      | 1.224      | 3.461 | 9.788  |  |  |
| 150.0        | 0.050                                               | 0.142 | 0.403    | 0.740      | 1.592      | 4.504 | 12.740 |  |  |
| 200.0        | 0.061                                               | 0.172 | 0.486    | 0.892      | 1.920      | 5.430 | 15.360 |  |  |

#### Control Techniques:

Several control techniques are effective in reducing dust entrainment emissions from paved surfaces. Broom sweeping provides a 20 percent control effectiveness. Vacuum sweeping with at least a 12,000 cfm blower provides 45 percent control effectiveness (30 percent for  $PM_{10}$  and  $PM_{2.5}$ ). Water flushing can also be used, but at least 0.48 gallons per square yard (or 8448 gallons per mile of 30 foot road) must be used to qualify for the following control efficiencies:

| Paved Road Table 6 Water Flushing Control Efficiency |                                                                     |                                   |  |  |  |  |  |
|------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|
| Method                                               | Control Efficiency (%)                                              | Discussion                        |  |  |  |  |  |
| Water flushing                                       | 69-(0.231*V)                                                        | V is the number of vehicle passes |  |  |  |  |  |
| Water flushing followed by sweeping                  | ushing followed by sweeping 96-(0.263*V) since the last water flush |                                   |  |  |  |  |  |

Once the control efficiency of the applicable control technique is known, the following equation is used to determine the "controlled" emissions from the operation or process:

$$E_c = E \times \left(\frac{100 - C}{100}\right)$$

E<sub>c</sub> = Controlled emissions E = Uncontrolled emissions

C = Control efficiency in percent (%)

#### Source:

These methods were derived from the Paved Roads discussion in §13.2.1 of USEPA's AP-42 (October 1997 version).

# K. Dust Entrainment from Unpaved Roads

This procedure applies to all traffic on unpaved roads. This procedure estimates the dust entrainment due to vehicular travel on unpaved surfaces. Vehicular exhaust emissions should be estimated using methods presented elsewhere.

#### Least Complex:

This method consists of a conservative default emission factor (based on average vehicle weight in tons) multiplied by an estimate of annual vehicular activity in miles traveled.

$$E = E_f \times V$$

E = Particulate matter emissions rate in pounds per year

 $E_f$  = Emission factor in units of pounds of particulate per mile traveled

V = Annual travel in units of vehicle miles traveled

(These emission factors were calculated using the defaults given in the Most Complex section)

| Unpaved Road Table 1 Default Emission Factors (Ef) in pounds/vmt |      |       |       |       |       |       |       |       |
|------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|-------|
| Average weight (tons):                                           | 3    | 5     | 10    | 20    | 50    | 100   | 150   | 200   |
| TSP Emission Factor                                              | 9.33 | 12.04 | 17.03 | 24.08 | 38.08 | 53.85 | 65.96 | 76.16 |
| PM10 Emission Factor                                             | 2.43 | 2.97  | 3.93  | 5.18  | 7.47  | 9.86  | 11.60 | 13.01 |
| PM2.5 Emission Factor                                            | 0.35 | 0.43  | 0.57  | 0.76  | 1.09  | 1.44  | 1.69  | 1.90  |

#### *Most Complex:*

This method calculates a vehicle specific emission factor based on unpaved surface silt content in percent, average vehicle weight in tons, and unpaved surface moisture content in percent, and multiplies it by annual vehicular activity in miles traveled.

$$E = E_f \times V \qquad \qquad E_{f(TSP)} = 10 \times \left(\frac{s}{12}\right)^{0.8} \times \left(\frac{W}{3}\right)^{0.5} \times \left(\frac{M}{0.2}\right)^{-0.4}$$

$$E_{f(PM_{10})} = 2.6 \times \left(\frac{s}{12}\right)^{0.8} \times \left(\frac{W}{3}\right)^{0.4} \times \left(\frac{M}{0.2}\right)^{-0.3}$$

$$E_{f(PM_{2.5})} = 0.38 \times \left(\frac{s}{12}\right)^{0.8} \times \left(\frac{W}{3}\right)^{0.4} \times \left(\frac{M}{0.2}\right)^{-0.3}$$

E = Particulate matter emissions rate in pounds per year

 $E_f$  = Emission factor in units of pounds of pollutant per mile traveled

V = Annual travel in units of vehicle miles traveled (vmt)

s = Unpaved surface silt content in percent (%)

W = Average vehicle weight in tons

#### M = Unpaved surface moisture content in percent (%)

| Unpaved Roads Table 2 Default Silt Content    |                  |  |  |  |  |  |
|-----------------------------------------------|------------------|--|--|--|--|--|
| Source                                        | Silt Loading (%) |  |  |  |  |  |
| Sand & gravel plant road                      | 5                |  |  |  |  |  |
| Landfill road                                 | 6                |  |  |  |  |  |
| Rural road (gravel/crushed limestone surface) | 6                |  |  |  |  |  |
| Industrial haul road                          | 8                |  |  |  |  |  |
| Construction site scraper route               | 9                |  |  |  |  |  |
| Stone quarrying and processing plant road     | 10               |  |  |  |  |  |
| Rural road (dirt surface)                     | 11               |  |  |  |  |  |
| Coal mine scraper route                       | 17               |  |  |  |  |  |
| Coal mine freshly graded haul road            | 24               |  |  |  |  |  |

Conservative default silt content is 11 percent Conservative default surface moisture content is 0.2 percent Default average vehicle speed is assumed to be at least 15 mph

#### Control Techniques:

Several techniques are used to reduce fugitive dust emissions from vehicular travel on unpaved roads. The equation suggests that reducing travel, speed, and vehicle weight will directly reduce emissions. In addition, changing the nature of the unpaved surface can reduce emissions, as can be seen from the default silt loading table. Chemical stabilization is often used, but the control efficiency of chemical stabilization is very dependent on the material used and how it is applied; consult with the vendor and the District to derive a control efficiency for chemical stabilization (no control efficiency will be allowed for calcium chloride). Watering is the most common control technique for unpaved roads. What follows is an equation to calculate the control efficiency for a given water application rate:

$$C_f = 100 - \left(0.0012 \times \frac{A \times D \times T}{I}\right)$$

C<sub>f</sub> = Control efficiency of watering application in percent
 A = Average annual class A pan evaporation in inches
 D = Average hourly traffic rate in vehicles per hour
 T = Time between water applications in hours

I = Water application intensity in gallons per square yard

Conservative average annual evaporation is 75 inches
Conservative time between applications is 3 hours
Conservative watering intensity is 0.11 gal/yd<sup>2</sup> or 1936 gallons per mile of 30 foot road
(These defaults equate to no control efficiency for 41 vehicles per hour)

Once the control efficiency of the applicable control technique is known, the following equation

is used to determine the "controlled" emissions from the operation or process:

$$E_c = E \times \left(\frac{100 - C}{100}\right)$$

E<sub>c</sub> = Controlled emissions E = Uncontrolled emissions

C = Control efficiency in percent (%)

#### Source:

These methods are presented in the Unpaved Roads discussion (§13.2.2) in USEPA's AP-42 (September 1998).

# L. Wind Erosion from Unpaved Operational Areas and Roads

This procedure applies to actively disturbed unpaved areas, specifically including plant or operational areas (such as quarries) and roads. Actively disturbed is defined as being disturbed by man's activity at least once per day. This procedure estimates the particulate emissions from these areas due to wind erosion. Particulate emissions due to actual vehicular travel on these areas should be estimated using methods presented elsewhere.

#### Least Complex:

This method multiplies a conservative emission factor by the amount of disturbed area.

$$E = E_f \times A$$

E = Particulate matter emission rate in tons per year E<sub>f</sub> = Emission factor in tons per acre (see below)

A = Disturbed area in acres

 $E_f(TSP)$  = 16 tons/acre  $E_f(PM_{10})$  = 8 tons/acre  $E_f(PM_{25})$  = 3.2 tons/acre

(These emission factors were calculated using the defaults given in the Intermediate Complexity section)

| Wind Erosion Table 1 Area Based Emissions |     |     |    |     |     |     |      |
|-------------------------------------------|-----|-----|----|-----|-----|-----|------|
| Area Disturbed (acres)                    | 1   | 2   | 5  | 10  | 20  | 50  | 100  |
| TSP Emissions (tons)                      | 16  | 32  | 80 | 160 | 320 | 800 | 1600 |
| PM10 Emissions (tons)                     | 8   | 16  | 40 | 80  | 160 | 400 | 800  |
| PM2.5 Emissions (tons)                    | 3.2 | 6.4 | 16 | 32  | 64  | 160 | 320  |

#### *Intermediate Complexity:*

This method presents an equation requiring inputs for the fraction of vegetative cover on the disturbed area, mean wind speed in meters per second, threshold value of wind speed in meters per second (a derived value), and a correction factor (a derived value). The derived values can be estimated from tables presented below.

$$E = k \times E_f \times A \qquad \qquad Ef = 2.814 \times (1 - v) \times \left(\frac{u}{u_t}\right)^3 \times C(x) \qquad \qquad u_t = u_t^* \times u^*$$

E = Particulate matter emission rate in tons per year k = Particulate aerodynamic factor (see below)

 $E_f$  = Emission factor in tons per acre

A = Disturbed area in acres

v = Amount of vegetative cover as a fraction u = Mean wind speed in meters per second u<sub>t</sub> = Threshold value of wind speed in meters per second (calculated)

C(x) = Correction factor (see Table 4 below)

 $u_t^* = Threshold friction velocity in meters per second (see Table 2 below)$ 

u\* = Ratio of wind speed to friction velocity

k (TSP) = 1.0  $k (PM_{10}) = 0.5$  $k (PM_{2.5}) = 0.2$ 

| Wind Erosion Tab            | le 2 Threshold Friction   | Velocity           |  |  |
|-----------------------------|---------------------------|--------------------|--|--|
| Area Use                    | Typical friction velocity | Threshold friction |  |  |
| Area Use                    | particle size (mm)        | velocity (m/s)     |  |  |
| Mine tailings               | 0.05                      | 0.14               |  |  |
| Abandoned agricultural land | 0.10                      | 0.25               |  |  |
| Construction site           | 0.11                      | 0.26               |  |  |
| Disturbed desert            | 0.20                      | 0.33               |  |  |
| Scrub desert                | 0.30                      | 0.38               |  |  |
| Coal dust                   | 0.60                      | 0.52               |  |  |
| Active agricultural land    | 0.60                      | 0.52               |  |  |
| Coal pile                   | 1.00                      | 0.64               |  |  |

| Wind Erosion Table 3 Ratio of wind speed to friction velocity |                               |       |  |  |  |  |
|---------------------------------------------------------------|-------------------------------|-------|--|--|--|--|
| Area use                                                      | Typical roughness height (cm) | Ratio |  |  |  |  |
| Open space                                                    | 2                             | 15.0  |  |  |  |  |
| Light industrial                                              | 35                            | 8.0   |  |  |  |  |
| Moderate industrial                                           | 70                            | 6.5   |  |  |  |  |
| Heavy industrial                                              | 100                           | 5.0   |  |  |  |  |

$$x = 0.886 \times \frac{u_t}{u}$$

| Wind Erosion Table 4 C(x) Correction Factor |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Х                                           | 0.3  | 0.4  | 0.5  | 0.6  | 0.7  | 0.8  | 0.9  | 1.0  | 1.1  | 1.2  | 1.3  | 1.4  | 1.5  | 1.6  | 1.7  | 1.8  | 1.9  | 2.0  |
| C(x)                                        | 1.91 | 1.90 | 1.89 | 1.86 | 1.83 | 1.77 | 1.70 | 1.60 | 1.48 | 1.33 | 1.20 | 1.05 | 0.90 | 0.78 | 0.62 | 0.50 | 0.40 | 0.29 |

Conservative default for mean wind speed is 2.36 m/s (7.7 mph) Conservative default for roughness height is 70 cm (medium industry) Conservative default for particle size is 0.1 mm (abandoned ag. land)

# Most Complex:

This method presents an additional equation that is used as an alternative depending on the nature of the surface being eroded. Erodible surfaces can be characterized as "limited" or "unlimited" reservoirs of erodible material. The following table determines the type of surface and the appropriate equation:

| Wind Erosion Table 5 Limited vs Unlimited |                                                                                                     |                                                              |  |  |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|--|
|                                           | Reservoir Type                                                                                      |                                                              |  |  |  |  |  |  |
| Variable                                  | Limited                                                                                             | Unlimited                                                    |  |  |  |  |  |  |
| Surface cover                             | Stones and/or clumps of vegetation                                                                  | Bare with finely divided materials such as sand or soil      |  |  |  |  |  |  |
| Threshold Frictional                      | Greater than 75 cm/s with particle                                                                  | Equal to or less than 75 cm/s with                           |  |  |  |  |  |  |
| Velocity                                  | size 1.5 mm or greater                                                                              | particle size less than 1.5 mm                               |  |  |  |  |  |  |
| Surface crust                             | Crust thicker than 0.25 inch and not easily crumbled between fingers (modulus of rupture > one bar) | Crust less than 0.25 inch or easily crumbled between fingers |  |  |  |  |  |  |

If the surface in question is best characterized as an "unlimited" reservoir, use the moderate complexity method above.

The method for limited reservoirs involves a summation of the particulate emissions from each individual day in the year, based on each day's maximum wind speed in meters per second and the friction velocity of the surface in question. Those days without sufficient wind speed are ignored.

$$E = \frac{k \times \sum_{i=1}^{N} (9.813 \times A \times (58 \times (u_i - u_t)^2 + 25 \times (u_i - u_t)))}{2000}$$

$$u_i = 0.056 \times u_d$$

E = Particulate emissions in tons per year

k = Particulate aerodynamic multiplier (see below)

N = Number of days that daily maximum wind speed exceeded equivalent threshold

friction velocity (threshold friction velocity multiplied by 17.9)

A = Disturbed area in acres (disturbed on a daily basis)

 $u_i$  = Friction velocity (at surface) in meters per second

 $u_t = Threshold friction velocity in meters per second (see Table 2)$ 

 $u_d$  = Maximum wind speed of the *i*th day in meters/second (tower measurement)

k (TSP) = 1.0  $k (PM_{10}) = 0.5$  $k (PM_{25}) = 0.2$ 

#### Control Techniques:

Water spray is commonly used to reduce fugitive dust from unpaved surfaces. Water spray essentially increases the moisture content of the material. The control discussion presented in the previous section (unpaved roads) includes a method for estimating the control efficiency of watering. Other forms of stabilization can be used to reduce the erodibility of the unpaved surface and/or increase its threshold frictional velocity. For the most part, these control techniques will require case-by-case analysis, and review and approval of the District.

Once the control efficiency of the applicable control technique is known, the following equation is used to determine the "controlled" emissions from the operation or process:

$$E_c = E \times \left(\frac{100 - C}{100}\right)$$

E<sub>c</sub> = Controlled emissions E = Uncontrolled emissions

C = Control efficiency in percent (%)

#### Source:

These methods are presented in the Industrial Wind Erosion discussion (§13.2.5) in USEPA's AP-42 (January 1995).

Appendix G: Baseline Data from Omya

**EMISSION** YEAR 200 <u>8</u>

# HARP / CEIDARS MINING OPERATIONS **TOTAL EMISSIONS**

**FORM MINE TOTAL** 

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90

FACILITY NAME: Plant

FACILITY NUMBER: 461

# **TOTAL**

| EMISSION SOURCE / OPERATION / ACTIVITY                | DEVICE ID#  |         |           | C                 | RITERIA EMISSIO | NS (tons per year) |       |           |      |
|-------------------------------------------------------|-------------|---------|-----------|-------------------|-----------------|--------------------|-------|-----------|------|
|                                                       |             | TSP     | $PM_{10}$ | PM <sub>2.5</sub> | CO              | NOx                | TOG   | ROG / VOC | SOx  |
| DRILLING                                              | 90010       | 0.000   | 0.000     | 0.000             |                 |                    |       |           |      |
| BLASTING                                              | 90011       | 0.000   | 0.000     | 0.000             |                 |                    |       |           |      |
| EXPLOSIVES                                            | 90011       |         |           |                   | 0.000           | 0.000              | 0.000 |           |      |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL          | 90012a      | 0.102   | 0.050     | 0.015             |                 |                    |       |           |      |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT            | 90006,7,8,9 | 0.004   | 0.002     | 0.001             |                 |                    |       |           |      |
| Ball Mill #1                                          | 2002        | 0.928   | 0.059     | 0.018             |                 |                    |       |           |      |
| Tertiary Crushing                                     | 757         | 19.092  | 1.240     | 0.382             |                 |                    |       |           |      |
| Roller Mill #1                                        | 763         | 1.986   | 0.133     | 0.042             |                 |                    |       |           |      |
| Roller Mill #2                                        | 763         | 1.465   | 0.092     | 0.029             |                 |                    |       |           |      |
| Roller Mill #3                                        | 3935        | 0.892   | 0.058     | 0.018             |                 |                    |       |           |      |
| Roller Mill #4                                        | 7674        | 0.884   | 0.057     | 0.018             |                 |                    |       |           |      |
| Surface Treating Plant                                | 2003        | 0.006   | 0.001     | 0.000             |                 |                    |       |           |      |
| Rock Storage System/Plan                              | 754         | 10.768  | 3.014     | 0.941             |                 |                    |       |           |      |
| Optical Sorter                                        | 763         | 0.010   | 0.007     | 0.002             |                 |                    |       |           |      |
| Coarse Product Storage System                         | 2009        | 0.267   | 0.044     | 0.014             |                 |                    |       |           |      |
| Silo 81-70c                                           | 4967        | 0.320   | 0.045     | 0.014             |                 |                    |       |           |      |
| Bulk Loadout 82 System                                | 2007        | 0.087   | 0.014     | 0.004             |                 |                    |       |           |      |
| Bulk Loadout 83 System                                | 2009        | 0.016   | 0.003     | 0.001             |                 |                    |       |           |      |
| STOCKPILES - WIND EROSION                             | 90015       | 1.057   | 0.529     | 0.211             |                 |                    |       |           |      |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT           | VARIOUS     | 0.026   | 0.025     | 0.025             | 0.066           | 0.263              | 0.003 | 0.003     | 0.07 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT              | 90001,2     | 0.653   | 0.646     | 0.646             | 3.226           | 29.068             | 1.151 | 1.114     | 5.26 |
| PAVED ROADS - ENTRAINED DUST                          | 0           | 0.000   | 0.000     | 0.000             |                 |                    |       |           |      |
| UNPAVED ROADS - ENTRAINED DUST                        | 90013       | 16.990  | 5.015     | 0.769             |                 |                    |       |           |      |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROADS | 90014a      | 53.702  | 26.851    | 10.740            |                 |                    |       |           |      |
|                                                       | GRAND TOTAL | 109.255 | 37.883    | 13.891            | 3.291           | 29.332             | 1.154 | 1.117     | 5.33 |



EMISSION YEAR **200** <u>8</u>

# HARP / CEIDARS MINING OPERATIONS FACILITY INFORMATION

FORM MINE FAC

| DATA INPUT BY FACILITY          | D                          | ATA FROM ANOTHER V | WORKSHEET | OU      | TPUT DATA TO CEI | DARS |
|---------------------------------|----------------------------|--------------------|-----------|---------|------------------|------|
|                                 |                            |                    |           |         |                  |      |
| COMPANY NAME: Omya Californ     | ia Inc                     |                    | COMPANY   | NUMBER: | 90               |      |
| FACILITY NAME: Plant            |                            |                    | FACILITY  | NUMBER: | 461              |      |
| FACILITY LOCATION (address): 72 | 225 Crystal Creek Road     |                    |           | FACID:  | 9000461          |      |
| CITY: L                         | ucerne Valley              |                    |           |         |                  |      |
| STATE: C                        | CA                         | ZIP: 92356         |           |         |                  |      |
| _                               |                            |                    |           |         |                  |      |
| MAILING ADDRESS: P.             | .O. Box 825                |                    |           |         |                  |      |
| CITY: L                         | ucerne Valley              |                    |           |         |                  |      |
| STATE: C                        | CA                         | ZIP: 92356         |           |         |                  |      |
|                                 |                            |                    |           |         |                  |      |
| CONTACT PERSON: C               | Christine Granquist        |                    |           |         |                  |      |
| TELEPHONE NUMBER: 70            | 60-248-5223                | EXT:               |           |         |                  |      |
| FAX NUMBER: 70                  | 60-248-9115                | •                  |           |         |                  |      |
| EMAIL: ch                       | ristine.granquist@omya.com |                    |           |         |                  |      |
|                                 |                            |                    |           |         |                  |      |

# MINE TYPE AND PARAMETERS

| TYPE OF MINE           | Quarry (Quarry, Surface, Pit, Bank Run, Shaft, I | Etc.)                                                                                                    |
|------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| TYPE OF MATERIAL MINED | Limestone                                        | (Limestone, Tale, Salts, Sand, Gravel, Rock, Volcanic Cinders, Gold, Silver, Iron Ore, Rear Earth, Etc.) |
| OVERBURDEN RATIO       | n/a Tons of Overburden per Ton of Ore            |                                                                                                          |

## **EMISSION** YEAR

**200 8** 

## HARP / CEIDARS MINING OPERATIONS MINERALS HANDLED - AMOUNT & CHARACTERISTICS

**FORM MINE** MIN

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME:

Omya California Inc

FACILITY NAME: Plant

COMPANY NUMBER: 90

FACILITY NUMBER: 461

| Name of   | Amounts             | Characte      | ristics      |          |
|-----------|---------------------|---------------|--------------|----------|
| Minerals  | Shifted by Blasting | Total Handled | Moisture (%) | Silt (%) |
| Limestone | 0                   | 360,117       | 1.5          | 1.5      |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
| TOTAL     | 0                   | 360,117       |              |          |

# HARP / CEIDARS MINING OPERATIONS METEOROLOGICAL DATA

FORM MINE MET-D

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc

FACILITY NAME: Plant

COMPANY NUMBER: 90

FACILITY NUMBER: 461

| Parameter       | Value | Description                                             | Default Value |
|-----------------|-------|---------------------------------------------------------|---------------|
| Mean Wind Speed | 7.7   | mph                                                     | 7.7           |
| u               | 3.4   | meters per second                                       | $\searrow$    |
| Precipitation   |       | Day per year with at least 0.01 inches of precipitation | 20.0          |
| Wind Speed      | 13.3  | Percent of time with wind speed >12mph (%)              | 13.3          |
| Evaporation     | 75.0  | Annual Pan Evaporation Rate in inches                   | 75.0          |

#### HARP / CEIDARS MINING OPERATIONS DRILLING AND BLASTING

FORM MINE D&B

DATA INPUT BY FACILITY DATA FROM ANOTHER WORKSHEET OUTPUT DATA TO CEIDARS COMPANY NAME: Omya California Inc COMPANY NUMBER: 90 FACILITY NAME: Plant FACILITY NUMBER: 461 Device ID# DRILLING 90010 Device ID# 90011 BLASTING Blast per year number Ioles per Blast - Average Number of holes per year loles drilled per year rea Shifted per Blast - Averag square foot per blast - average rea Shifted per Year square foot per year Tons Ore. Waste & Overburder amount shifted by blasting **EMISSIONS** DRILLING 30502514 Device ID# 90010 SCC 30502514 SCC By Amount Shifted By Number of Holes Drilled Annual Throughput 0 Tons Shifted nnual Throughput Emission Factors (pounds per tons shifted) Fractionation Value Emission Factors (pounds per hole drilled) Fractionation Value Controls Controls None, assumed wet drilling None, assumed wet drilling Emissions - tons per yea Emissions - tons per yea PM<sub>2</sub>  $PM_{10}$ BLASTING Device ID# 90011 By Tons Shifted Area Shifted per Blast - Average quare foot per blast - average Annual Throughpu ons Shifted Area Shifted per Year quare foot per year Emission Factors (pounds per on shifted) ctors (pounds per blast) Fractionation Value  $PM_2$  $PM_{10}$  $PM_{2.5}$ TSP  $PM_1$  $PM_2$  $PM_1$ \*  $EmFac = k * 0.0005 * A^{1.5}$ 35.71428571 TSP = 1.00 PM<sub>10</sub>= PM<sub>2.5</sub>= 0.03 Area Shifted per Blast - Average A = Controls Controls None Emissions - tons per year Em = EmFac \* Blast per Year Emissions - tons per year Em = EmFac \* Amount Shift  $PM_{10}$  $PM_{10}$ 

| EMI  | <b>EMISSION</b> |  |  |  |  |
|------|-----------------|--|--|--|--|
| YEAR |                 |  |  |  |  |
| 200  | <u>8</u>        |  |  |  |  |

#### HARP / CEIDARS MINING OPERATIONS **EXPLOSIVES**

FORM MINE **EXPL** 

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

OUTPUT DATA TO CEIDARS

FACILITY NAME: Plant

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90 FACILITY NUMBER: 461

90011 Device ID#

| Code *<br>See Codes below | Type | Composition | Amount<br>tons/ year |
|---------------------------|------|-------------|----------------------|
|                           | None | None        |                      |

| * Codes for Explosive |                    |  |  |
|-----------------------|--------------------|--|--|
| Code                  | Explosive          |  |  |
| 0                     | None               |  |  |
| 1                     | Black Powder       |  |  |
| 2                     | Smokeless Powder   |  |  |
| 3                     | Dynamite, Straight |  |  |
| 4                     | Dynamite, Ammonia  |  |  |
| 5                     | Dynamite, Gelatin  |  |  |
| 6                     | ANFO               |  |  |
| 7                     | TNT                |  |  |
| 8                     | RDX                |  |  |
| 9                     | PETN               |  |  |
| 10                    | User Defined       |  |  |
| 11                    | User Defined       |  |  |
| 12                    | User Defined       |  |  |

| EMI          | <b>EMISSION</b> |  |  |
|--------------|-----------------|--|--|
| YEAR         |                 |  |  |
| 200 <u>8</u> |                 |  |  |

#### HARP / CEIDARS MINING OPERATIONS EXPLOSIVES

FORM MINE EXPL

## **EMISSIONS**

Device ID# 90011 SCC 30502514

|      | Explosive         |            |         | Emission Factor |         |       | Emission Rate |       |
|------|-------------------|------------|---------|-----------------|---------|-------|---------------|-------|
| Code | Type              | Amount     |         | pounds per ton  |         |       | ton per year  |       |
|      |                   | tons/ year | CO      | NOx             | TOG     | CO    | NOx           | TOG   |
| 0    | None              | 0.000      | 0       | 0               | 0       | 0.000 | 0.000         | 0.000 |
| 0    | None              | 0.000      | 0       | 0               | 0       | 0.000 | 0.000         | 0.000 |
| 0    | None              | 0.000      | 0       | 0               | 0       | 0.000 | 0.000         | 0.000 |
| 0    | None              | 0.000      | 0       | 0               | 0       | 0.000 | 0.000         | 0.000 |
| 0    | None              | 0.000      | 0       | 0               | 0       | 0.000 | 0.000         | 0.000 |
| 0    | None              | 0.000      | 0       | 0               | 0       | 0.000 | 0.000         | 0.000 |
| 0    | None              | 0.000      | 0       | 0               | 0       | 0.000 | 0.000         | 0.000 |
|      | INPUTS            | 0.000      | #DIV/0! | #DIV/0!         | #DIV/0! |       |               |       |
|      | Number of Devices | 0          |         |                 |         | •     |               |       |
|      |                   |            |         |                 | INPUTS  | 0.000 | 0.000         | 0.000 |

## **LOOKUP TABLE**

| Code | Explosive          | Composition                                                  |              | Emission Factors  | 3            |
|------|--------------------|--------------------------------------------------------------|--------------|-------------------|--------------|
|      |                    |                                                              | Poun         | ds per ton of exp | losive       |
|      |                    |                                                              | CO           | NOx               | TOG          |
| (    | None               | None                                                         | 0.0          | 0.0               | 0.0          |
| ,    | Black Powder       | Potassium Nitrate, Charcoal and Sulfur                       | 170.0        | 0.0               | 4.2          |
| 2    | Smokeless Powder   | Nitrocellulose                                               | 77.0         | 0.0               | 1.1          |
| 3    | Dynamite, Straight | Nitroglycerine, Sodium Nitrate, Wood Pulp, Calcium Carbonate | 281.0        | 0.0               | 2.5          |
| 4    | Dynamite, Ammonia  | Nitroglycerine, Ammonium Nitrate, Sodium Nitrate, Wood Pulp  | 63.0         | 0.0               | 1.3          |
|      | Dynamite, Gelatin  | Nitroglycerine                                               | 104.0        | 53.0              | 0.7          |
| 6    | ANFO               | Ammonium Nitrate, Fuel Oil                                   | 67.0         | 17.0              | 0.0          |
| 1    | TNT                | Trinitrotoluene                                              | 796.0        | 0.0               | 14.3         |
| 8    | RDX                | Cyclotrimethylenetriittoamine                                | 196.0        | 0.0               | 0.0          |
| Ş    | PETN               | Pentaerythritol Tetranitrate                                 | 297.0        | 0.0               | 0.0          |
| 10   | User Defined       | User Defined                                                 | User Defined | User Defined      | User Defined |
| 11   | User Defined       | User Defined                                                 | User Defined | User Defined      | User Defined |
| 12   | User Defined       | User Defined                                                 | User Defined | User Defined      | User Defined |
| 13   | Out of Range       | Out of Range                                                 | Out of Range | Out of Range      | Out of Range |

## HARP / CEIDARS MINING OPERATIONS BULLDOZING, SCRAPING AND GRADING OF MATERIAL

FORM MINE BSG

| $D\Delta T\Delta$   | INPLIT                                               | RV F               | ACILITY |
|---------------------|------------------------------------------------------|--------------------|---------|
| $D\Lambda I\Lambda$ | $\mathbf{H}\mathbf{M}\mathbf{U}\mathbf{U}\mathbf{I}$ | $\mathbf{D} 1 1 1$ |         |

#### DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc
FACILITY NAME: Plant

COMPANY NUMBER: 90 FACILITY NUMBER: 461

Device ID# 90012a

| Name of Material | Material Hours of Operations (hours per year) |          |         |       | Controls |       |       |                  |             |
|------------------|-----------------------------------------------|----------|---------|-------|----------|-------|-------|------------------|-------------|
|                  | Bulldozing                                    | Scraping | Grading | Other | Total    | None  | Wa    | ter Spray        | Wind Screen |
|                  |                                               |          | _       |       |          | Check | Check | New Moisture (%) | Check       |
| Limestone        |                                               |          | 253     |       | 253      |       | X     | 3                |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |
| 0                |                                               |          |         |       | 0        |       |       |                  |             |

\_\_\_\_\_\_

# HARP / CEIDARS MINING OPERATIONS BULLDOZING, SCRAPING AND GRADING OF MATERIAL

FORM MINE BSG

## **EMISSIONS**

Device ID# 90012a

SCC 30502599

Emission Factors (pounds per hours of operations)

 $EmFac = 2.76 * k *(s)^1.5 / (M)^1.4$ 

k = Aerodynamic Factor

s = silt content (%)

M = Moisture content (%)

Aerodynamic factors

TSP =

 $PM_{10} = 0.36$  $PM_{2.5} = 0.11$ 

| Material          | Hours of Operations | Emission factors | s - Uncontrolled (pe | ounds per hour) |
|-------------------|---------------------|------------------|----------------------|-----------------|
|                   |                     | TSP              | $PM_{10}$            | $PM_{2.5}$      |
| Limestone         | 253                 | 2.127            | 1.035                | 0.316           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| 0                 | 0                   | 0.000            | 0.000                | 0.000           |
| TOTAL             | 253                 | 2.127            | 1.035                | 0.316           |
| Number of Devices | 1                   |                  |                      |                 |

| Fractionat | tion Value |
|------------|------------|
| $PM_{10}$  | $PM_{2.5}$ |
| 0.486      | 0.149      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.486      | 0.149      |
|            |            |

0.74

EMISSION YEAR

200 <u>8</u>

# HARP / CEIDARS MINING OPERATIONS BULLDOZING, SCRAPING AND GRADING OF MATERIAL

FORM MINE BSG

| Material  | Contr       | ol             | Emission factors - Controlled (pounds per hour) |           |            |  |  |  |
|-----------|-------------|----------------|-------------------------------------------------|-----------|------------|--|--|--|
|           | Type        | Efficiency (%) | TSP                                             | $PM_{10}$ | $PM_{2.5}$ |  |  |  |
| Limestone | Water Spray | 62.107         | 0.806                                           | 0.392     | 0.120      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |  |  |
|           | TOTAL       | 62.11          | 0.806                                           | 0.392     | 0.120      |  |  |  |

| Emissions - tons per year |           |                   |  |  |  |  |  |  |  |
|---------------------------|-----------|-------------------|--|--|--|--|--|--|--|
| TSP                       | $PM_{10}$ | PM <sub>2.5</sub> |  |  |  |  |  |  |  |
| 0.102                     | 0.050     | 0.015             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |  |
|                           |           |                   |  |  |  |  |  |  |  |

| TOTAL | 0.102 | 0.050 | 0.015 |
|-------|-------|-------|-------|

## HARP / CEIDARS MINING OPERATIONS LOADING OF MATERIAL(S) AT MINE / QUARRY / PIT

**FORM MINE** LOAD

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

FACILITY NAME: Plant

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90

FACILITY NUMBER: 461

DEVICE # 90006,7,8,9

| Name of Material | Amount |
|------------------|--------|
|                  | Loaded |
|                  | tpy    |
| Limestone        | 5,418  |
| 0                |        |
| 0                |        |
| 0                |        |
| 0                |        |
| 0                |        |
| 0                |        |
| 0                |        |
| 0                |        |
| 0                |        |
| 0                |        |
| 0                |        |
| 0                |        |
| 0                |        |
| 0                |        |

|       | Controls    |                  |             |       |         |                |  |  |  |  |  |
|-------|-------------|------------------|-------------|-------|---------|----------------|--|--|--|--|--|
| None  | Water Spray |                  | Wind Screen |       | Other   | Other          |  |  |  |  |  |
| Check | Check       | New Moisture (%) | Check       | Check | Specify | Efficiency (%) |  |  |  |  |  |
|       | X           | 2                |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |
|       |             |                  |             |       |         |                |  |  |  |  |  |

**EMISSION** YEAR 2008

## HARP / CEIDARS MINING OPERATIONS LOADING OF MATERIAL(S) AT MINE / QUARRY / PIT

**FORM MINE LOAD** 

## **EMISSIONS**

Device ID# 90006,7,8,9

30502506

Emission Factors (pounds per ton)

 $EmFac = 0.0032 * k * (U/5)^1.3 / (M/2)^1.4$ 

k = Aerodynamic Factor

U = Mean wind speed in miles per hour

M = Moisture content (%)

Aerodynamic factors

TSP =0.74

 $PM_{10} =$ 0.36 0.11

 $PM_{2.5} =$ 

| Material          | Amount |
|-------------------|--------|
|                   | Loaded |
|                   | tpy    |
| Limestone         | 5,418  |
| 0                 | 0      |
| 0                 | 0      |
| 0                 | 0      |
| 0                 | 0      |
| 0                 | 0      |
| 0                 | 0      |
| 0                 | 0      |
| 0                 | 0      |
| 0                 | 0      |
| 0                 | 0      |
| 0                 | 0      |
| 0                 | 0      |
| 0                 | 0      |
| 0                 | 0      |
| TOTAL             | 5,418  |
| Number of Devices | 1      |
|                   | _      |

| Emission factor | ors - Uncontrolled | (pounds per ton) |
|-----------------|--------------------|------------------|
| TSP             | $PM_{10}$          | $PM_{2.5}$       |
|                 |                    |                  |
| 0.002           | 0.001              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.000           | 0.000              | 0.000            |
| 0.002           | 0.001              | 0.000            |

| Fractionat | tion Value |
|------------|------------|
| $PM_{10}$  | $PM_{2.5}$ |
|            |            |
| 0.486      | 0.149      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.486      | 0.149      |

# HARP / CEIDARS MINING OPERATIONS LOADING OF MATERIAL(S) AT MINE / QUARRY / PIT

FORM MINE LOAD

| Material  | Cor         | itrol          | Emission factors - Controlled (pounds per ton) |           |            |  |  |  |  |
|-----------|-------------|----------------|------------------------------------------------|-----------|------------|--|--|--|--|
|           | Type        | Efficiency (%) | TSP                                            | $PM_{10}$ | $PM_{2.5}$ |  |  |  |  |
| Limestone | Water Spray | 33.152         | 0.001                                          | 0.001     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000      |  |  |  |  |
|           | TOTAL       | 33.15          | 0.001                                          | 0.001     | 0.000      |  |  |  |  |

| Emissions - tons per year |           |            |  |  |  |  |  |  |
|---------------------------|-----------|------------|--|--|--|--|--|--|
| TSP                       | $PM_{10}$ | $PM_{2.5}$ |  |  |  |  |  |  |
| 0.004                     | 0.002     | 0.001      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |

| TOTAL | 0.004 | 0.002 | 0.001 |
|-------|-------|-------|-------|

| EMISSION               | 1                                                                             | HARP / CEIDARS              |            |           |                              |                                 |                                                                                                                                 |                                                                                       |                                              |              |               | FO                   | RM                           |                       |           |                   |
|------------------------|-------------------------------------------------------------------------------|-----------------------------|------------|-----------|------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------|--------------|---------------|----------------------|------------------------------|-----------------------|-----------|-------------------|
| YEAR                   |                                                                               | MINING OPERATIONS           |            |           |                              |                                 |                                                                                                                                 |                                                                                       |                                              |              |               |                      | M                            | INE                   |           |                   |
| 200 8                  |                                                                               |                             |            |           | AGGRE                        | EGATE HAN                       | IDLING                                                                                                                          | , CR                                                                                  | USHING & SCREENIN                            | IG #1        |               |                      |                              |                       | A         | GG                |
|                        | ı                                                                             |                             |            | I         | - COLOR                      | CODE                            |                                                                                                                                 | II - MANDATORY INFORMA                                                                |                                              |              |               |                      |                              | NFORMAT               | ION       |                   |
| DATA                   | A INPUT B                                                                     | Y FACILITY                  |            |           |                              | HER WORKSHEET<br>FORMATION      | T OUTPUT DATA TO CEIDARS  FLOW DIAGRAM  BLOCK III - ALL ITEMS                                                                   |                                                                                       |                                              |              |               |                      |                              |                       |           |                   |
| COMPANY NA             | AME Om                                                                        | ya California Inc           |            | III - FAG |                              | PANY # 90                       |                                                                                                                                 |                                                                                       | PERMIT # B 0 0 2 0 0                         |              |               |                      | HOURS OP                     | ERATED                |           |                   |
| FACILITY NA            | AME Plan                                                                      | nt                          |            |           | FAC                          | ILITY # 461                     |                                                                                                                                 | D                                                                                     | DEVICE ID 2002                               | BLO          | CK IX - Al    | NNUAL TI             | HROUGHP                      | UT (tpy)              |           |                   |
| PROCESS NA             | PROCESS NAME Ball Mill #1 INVENTORY ID # 90  IV - MAP COORDINATES FOR PROCESS |                             |            |           |                              |                                 |                                                                                                                                 | PR                                                                                    | OCESS ID                                     | BLO          | CK X - MO     |                      |                              | (%) OF MA             | TERIAL    |                   |
| UTM ZONE               | UTM ZONE 11 UTM EAST (km)   5   0   5   .   3   1   6                         |                             |            |           |                              |                                 | RTH (km)                                                                                                                        | 3 8                                                                                   | 0 4 . 4 1 5                                  | BLO          | CK XIII. C    |                      | IG THE SY<br>'B', 'E', 'F' & |                       |           |                   |
|                        |                                                                               | 3 4 . 3 8 3 7               | 7          | LC        | NGITUDE                      | (deg.) 1 1 6                    | . 9 4 2                                                                                                                         | 2                                                                                     |                                              | DZ-0         | o <b></b> , o | 02011110             | 2, 2, 1 0                    | • 0                   |           |                   |
| V - TYPE OF            |                                                                               | VI - TYPE OF                |            |           |                              |                                 | - MATERIA                                                                                                                       |                                                                                       |                                              |              |               |                      |                              | PUT (tons p           |           | 0/.               |
| STATIONARY<br>PORTABLE |                                                                               | CRUSHERS SCREENS            | X          |           | RANSFER<br>STORAGE           | X                               | heck all that<br>ROCK                                                                                                           | applie                                                                                | B HOURS per DAY DAYS per WEEK                | 10           |               | CTUAL AN<br>URLY (av |                              |                       | 19,362 T  | ons/Yr.           |
| OTHE                   | R                                                                             | CONVEYORS                   | х          |           | DAD OUT                      |                                 | SAND                                                                                                                            |                                                                                       | WEEK per YEAR                                | 52           | MAX           | . DESIGN             |                              |                       | 50.0      | TPH               |
| COMMENT                | ΓS                                                                            | OTHERS COMMENTS             |            |           |                              |                                 | MESTONE                                                                                                                         |                                                                                       |                                              | 2600<br>2500 |               |                      |                              | l) / Actual Hour      |           | erated)           |
|                        |                                                                               | COMMENTS                    |            |           |                              | LA                              | VA ROCK<br>OTHER                                                                                                                |                                                                                       | ACT. HRS per YR  CAL. Hrs/Yr = Hr/Dy*Dy/Wk*W |              | - 1           |                      |                              | E CONTEN<br>NTERING S |           | 3 %               |
|                        |                                                                               | - TYPE OF OPERATI           |            |           |                              | .                               |                                                                                                                                 |                                                                                       | XII - TYPE                                   |              |               | TROL EQU             |                              |                       | '         | _                 |
| CODE NAMI  0 No Device |                                                                               | ICE OR SYSTEM               | CODE<br>11 |           |                              | CE OR SYSTEM<br>hing (Note 4)   | COD!                                                                                                                            | None                                                                                  | TYPE OF CONTROL                              |              | CODE 11 Gr    | avel Bed Fi          |                              | OF CONTR              | OL        |                   |
|                        |                                                                               | ruck, pile (Note 2)         | 12         |           | ing - Pneum                  |                                 | 1                                                                                                                               |                                                                                       | er Spray, Point of Application               |              |               |                      | Low Efficie                  | ency)                 |           |                   |
| 2 Grizzly              |                                                                               |                             | 13         |           | ing - Bucket                 |                                 | 2                                                                                                                               |                                                                                       | y with Additives, Point of Applicat          | ion          |               |                      | (Med Effici                  |                       |           |                   |
| 3 Hopper<br>4 Transfer | (Note 2) Point (No                                                            | ite 2)                      | 14<br>15   |           | charge to Co<br>charge to Ta | nk Truck                        | 3 4                                                                                                                             |                                                                                       | veyor with Half Cover                        |              |               |                      | ber (High E<br>h Multiple P  |                       |           |                   |
| 5 Conveyo              |                                                                               |                             |            |           |                              | Truck (Note 2)                  | 5                                                                                                                               | Con                                                                                   | veyor with Full Cover                        |              | 16 Ba         | ghouse with          | h Single Pic                 | kup (Unencle          |           |                   |
|                        | g, Dry - Pri                                                                  |                             | 17<br>18   | Feeder    | T-1-1- "                     | EmFac" for data                 | 7                                                                                                                               | _                                                                                     | ess Enclosure                                |              |               |                      |                              | kup (Partial l        |           |                   |
|                        | g, Dry - Se<br>g, Dry - Te                                                    |                             | 19         |           |                              | EmFac" for data EmFac" for data | 7 Gravity Separator 18 Baghouse with Single Pickup (Full Enclosed) 8 Cyclone - Simple 19 Baghouse with Single Pickup (Attached) |                                                                                       |                                              |              |               |                      |                              |                       |           |                   |
| 9 Crushing             | g, Wet (No                                                                    |                             | 20         | See Look  | kup Table "l                 | EmFac" for data                 | 9                                                                                                                               |                                                                                       |                                              |              |               |                      |                              |                       |           |                   |
| 10 Screening           | ıg, Dry                                                                       |                             | 21         | See Lool  | kup Table "l                 | EmFac" for data                 | 10                                                                                                                              | _                                                                                     | dscreen, Windward Side                       |              | 21 See        | e Lookup T           | able "ConEi                  | ff" for data          |           |                   |
| EQUIPMENT I            | DEVICE                                                                        | NAME OF I                   | DEVICE     |           | MOTOR                        | XIII - E                        |                                                                                                                                 |                                                                                       | ALCULATIONS MISSION CONTROL DEVICE           |              | EMIC          | CION EAC             | TORC                         | EMI                   | SSION RA  | TE                |
|                        | CODE                                                                          | NAME OF I                   | DEVICE     |           | BHP                          | TONS / YEAR                     |                                                                                                                                 | EMISSION CONTROL DEVICE EMISSION FACTORS CODE Dsf NAME OF DEVICE EFF % POUNDS PER TON |                                              |              |               | TONS PER YEAR        |                              |                       |           |                   |
| NUMBER                 | NO                                                                            |                             |            |           |                              |                                 |                                                                                                                                 |                                                                                       |                                              |              | $PM_{30}$     | $PM_{10}$            | PM <sub>2.5</sub>            | $PM_{30}$             | $PM_{10}$ | PM <sub>2.5</sub> |
| (A)                    | (B)                                                                           | (C)                         |            |           | (D)                          | (E)                             | (F)                                                                                                                             | (G)                                                                                   | (H)                                          | (I)          | (J)           | (K)                  | (L)                          | (M)                   | (N)       | (O)               |
| 43-001                 |                                                                               | Silo, Filling - Pneumatio   | с          |           | NA                           | 19,362                          | 18                                                                                                                              |                                                                                       | Baghouse with Single Pickup (Full En         | 99.0         | 0.270         | 0.016                | 0.005                        | 0.03                  | 0.00      | 0.00              |
| 43-005                 |                                                                               | Feeder                      |            |           | 1.5                          | 19,362                          | 18                                                                                                                              |                                                                                       | Baghouse with Single Pickup (Full En         | 99.0         | 0.002         | 0.001                | 0.000                        | 0.00                  | 0.00      | 0.00              |
| 43-006                 |                                                                               | Conveyor (Note 2)           |            |           | 10                           | 19,362                          | 18                                                                                                                              |                                                                                       | Baghouse with Single Pickup (Full En         | 99.0         | 0.002         | 0.001                | 0.000                        | 0.00                  | 0.00      | 0.00              |
| 43-007                 |                                                                               | Hopper (Note 2)             |            |           | NA<br>5                      | 19,362                          | 15                                                                                                                              |                                                                                       | Baghouse with Multiple Pickups               | 95.0<br>95.0 | 0.002         | 0.001                | 0.000                        | 0.00                  | 0.00      | 0.00              |
| 43-010                 |                                                                               | Feeder                      |            |           |                              | 19,362                          |                                                                                                                                 |                                                                                       | Baghouse with Multiple Pickups               |              | 0.002         | 0.001                | 0.000                        | 0.00                  |           | 0.00              |
| 43-011                 |                                                                               | Crushing, Dry - Tertiary    | у          |           | 500                          | 19,362                          | 15                                                                                                                              |                                                                                       | Baghouse with Multiple Pickups               | 95.0         | 1.850         | 0.112                | 0.035                        | 0.90                  | 0.05      | 0.02              |
| 43-027                 |                                                                               | Feeder                      |            |           | 2                            | 19,362                          | 15                                                                                                                              |                                                                                       | Baghouse with Multiple Pickups               | 95.0         | 0.002         | 0.001                | 0.000                        | 0.00                  | 0.00      | 0.00              |
| 43-035                 |                                                                               | Transfer Point (Note 2)     | ,          |           | 50                           | 19,362                          | 15                                                                                                                              |                                                                                       | Baghouse with Multiple Pickups               | 95.0         | 0.002         | 0.001                | 0.000                        | 0.00                  | 0.00      | 0.00              |
| 43-043                 |                                                                               | Transfer Point (Note 2)     | )          |           | NA                           | 19,362                          | 18                                                                                                                              |                                                                                       | Baghouse with Single Pickup (Full Er         | 99.0         | 0.002         | 0.001                | 0.000                        | 0.00                  | 0.00      | 0.00              |
| 43-049                 |                                                                               | Feeder                      |            |           | 1                            | 19,362                          | 18                                                                                                                              |                                                                                       | Baghouse with Single Pickup (Full Er         | 99.0         | 0.002         | 0.001                | 0.000                        | 0.00                  | 0.00      | 0.00              |
| 43-055                 |                                                                               | Transfer Point (Note 2)     | )          |           | 15                           | 19,362                          | 18                                                                                                                              |                                                                                       | Baghouse with Single Pickup (Full Er         | 99.0         | 0.002         | 0.001                | 0.000                        | 0.00                  | 0.00      | 0.00              |
| 43-050                 | 17                                                                            | Feeder                      |            |           | 1.5                          | 19,362                          | 18                                                                                                                              |                                                                                       | Baghouse with Single Pickup (Full Er         | 99.0         | 0.002         | 0.001                | 0.000                        | 0.00                  | 0.00      | 0.00              |
|                        |                                                                               | 17 Feeder                   |            |           | 1.5                          | 7,744                           | 18                                                                                                                              |                                                                                       | Baghouse with Single Pickup (Full Er         | 99.0         | 0.002         | 0.001                | 0.000                        | 0.00                  | 0.00      | 0.00              |
| 43-036                 | 17                                                                            | Feeder                      |            |           |                              |                                 |                                                                                                                                 |                                                                                       |                                              |              |               |                      |                              | 1                     |           |                   |
| 43-036<br>43-037       |                                                                               | Feeder Conveyor (Note 2)    |            |           | 10                           | 7,744                           | 18                                                                                                                              |                                                                                       | Baghouse with Single Pickup (Full Er         | 99.0         | 0.002         | 0.001                | 0.000                        | 0.00                  | 0.00      | 0.00              |
|                        | 5                                                                             |                             |            |           | 10                           | 7,744                           | 18                                                                                                                              |                                                                                       | Baghouse with Single Pickup (Full En         | 99.0         |               | 0.001                | 0.000                        | 0.00                  | 0.00      | 0.00              |
|                        | 5                                                                             | Conveyor (Note 2) No Device | L HORSE    | EPOWER    | 597.5                        | 7,744                           | 18                                                                                                                              |                                                                                       |                                              |              |               |                      |                              |                       |           |                   |

|                      |                 | EMISSION | N IN | VENTORY INPUTS                            |        |           |            |
|----------------------|-----------------|----------|------|-------------------------------------------|--------|-----------|------------|
| 1                    | DEVICE DATA     |          |      | EMISSION DATA                             |        |           |            |
| PERMIT ID            | B002002         |          |      | ANNUAL EMISSIONS (tpy)                    | PM     | $PM_{10}$ | $PM_{2.5}$ |
| NUMBER OF DEVICES    | 14              |          |      | UNCONTROLLED                              | 20.770 | 1.356     | 0.424      |
| EQUIPMENT SIZE (bhp) | 597.5           |          |      | CONTROLLED                                | 0.928  | 0.059     | 0.018      |
| P                    | ROCESS DATA     |          |      | EMISSION FACTOR (lb/ton)                  | ><     | ><        |            |
| PRO                  | CESS RATE (tpy) | 19,362   |      | UNCONTROLLED                              | 2.1454 | 0.1400    | 0.0438     |
| MAX. DE              | SIGN RATE (tph) | 50       |      | CONTROLLED                                | 0.0958 | 0.0061    | 0.0019     |
| MAX. HOURLY PRODUC   | TION RATE (tph) | 50       |      | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | ><     | 0.0632    | 0.0198     |
| AVE. HOURLY PRODUC   | TION RATE (tph) | 8        |      | OVERALL EFFICIENCY                        | 95.53  | 95.67     | 95.67      |

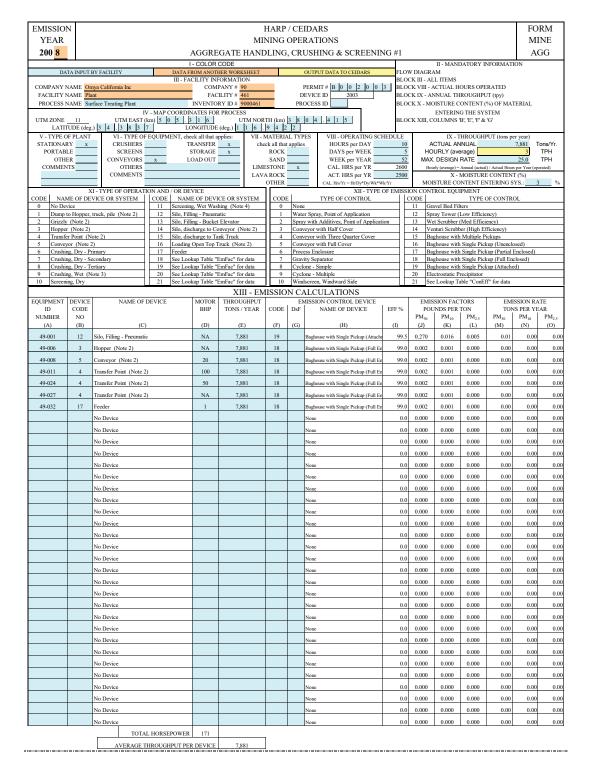
| EMISSION             |                            |                                   |          |                    |                    |                                         |                     |          |                                                     |               |              |                         |                               | FO                       | RM                         |                                       |                   |
|----------------------|----------------------------|-----------------------------------|----------|--------------------|--------------------|-----------------------------------------|---------------------|----------|-----------------------------------------------------|---------------|--------------|-------------------------|-------------------------------|--------------------------|----------------------------|---------------------------------------|-------------------|
| YEAR                 |                            |                                   |          |                    |                    | MI                                      | NING                | OPE      | RATIONS                                             |               |              |                         |                               |                          |                            | M                                     | NE                |
| 200 8                |                            |                                   |          | A                  | AGGRE              | GATE HANI                               | LING                | , CR     | USHING & SCRI                                       | EENING        | 3 #1         |                         |                               |                          |                            | A                                     | GG                |
|                      |                            |                                   |          |                    | - COLOR            | CODE                                    |                     |          |                                                     |               |              |                         |                               | ATORY I                  | NFORMAT                    | TON                                   |                   |
| DAT                  | TA INPUT I                 | BY FACILITY                       |          |                    |                    | HER WORKSHEET                           |                     | -        | OUTPUT DATA TO CEIDA                                | ARS           |              | DIAGR                   |                               |                          |                            |                                       |                   |
| COMPANY N            | AME On                     | nya California Inc                |          | III - FAC          |                    | FORMATION<br>PANY # 90                  |                     | 1        | PERMIT# B 0 0 0                                     | 7 5 7         |              |                         | LL ITEMS<br>ACTUAL H          | IOURS OF                 | ERATED                     |                                       |                   |
| FACILITY N           |                            |                                   |          |                    |                    | ILITY # 461                             |                     | D        | EVICE ID 757                                        |               |              |                         | NNUAL TI                      |                          |                            |                                       |                   |
| PROCESS N            | AME Ter                    | rtiary Crushing                   | . MAD C  |                    |                    | RY ID # 9000461                         |                     | PRO      | OCESS ID                                            |               | BLOC         | K X - M                 | DISTURE O<br>ENTERIN          |                          | (%) OF M.                  | ATERIAL                               |                   |
| UTM ZONE<br>LATIT    | 11<br>UDE (deg.            | UTM EAST (<br>)  3  4  .  3  8  3 | (km) 5 0 | 5 . 3              | 1 6                | R PROCESS<br>UTM NOR<br>(deg.) 1 1 6 1. |                     |          | 0 4 . 4 1 5                                         |               | BLOC         | K XIII, C               | OLUMNS                        |                          |                            |                                       |                   |
| V - TYPE O           |                            | VI - TYPE OF                      |          |                    |                    |                                         | MATERIA             |          |                                                     |               |              |                         |                               |                          | PUT (tons p                |                                       |                   |
| STATIONAR<br>PORTABI |                            | CRUSHERS<br>SCREENS               |          |                    | RANSFER<br>STORAGE | x che                                   | ck all that<br>ROCK | t applie | S HOURS per D.<br>DAYS per WE                       |               | 10           |                         | CTUAL AN<br>JRLY (ave         |                          | 30                         | 55,535 T                              | ons/Yr.<br>TPH    |
| OTHE                 | ER                         | CONVEYORS                         | x        |                    | DAD OUT            |                                         | SAND                |          | WEEK per YE                                         | AR            | 52           |                         | DESIGN I                      |                          |                            | 400.0                                 | TPH               |
| COMMEN               | TS                         | OTHERS                            |          |                    |                    |                                         | STONE               |          |                                                     |               | 2600<br>2500 | Hour                    |                               |                          | l) / Actual Hou            |                                       | perated)          |
|                      |                            | COMMENTS                          |          |                    |                    |                                         | A ROCK<br>OTHER     |          | ACT. HRS per<br>CAL. Hrs/Yr = Hr/Dy                 |               |              | MOIS                    |                               |                          | E CONTEN<br>ITERING S      |                                       | %                 |
|                      |                            | - TYPE OF OPERAT                  |          |                    |                    |                                         |                     |          |                                                     | - TYPE OF I   |              |                         | TROL EQU                      |                          |                            | · · · · · · · · · · · · · · · · · · · |                   |
| 0 No Dev             |                            | VICE OR SYSTEM                    | CODE     |                    |                    | CE OR SYSTEM<br>shing (Note 4)          | CODI<br>0           | None     | TYPE OF CONTR                                       | ROL           | C            | ODE Gr                  | avel Bed Fil                  |                          | OF CONTR                   | OL                                    |                   |
| 1 Dump t             | o Hopper,                  | truck, pile (Note 2)              | 12       | Silo, Fill         | ling - Pneur       | natic                                   | 1                   | Wate     | er Spray, Point of Applica                          |               |              | 12 Sp                   | ray Tower (                   | Low Effici               |                            |                                       |                   |
|                      | (Note 2)                   |                                   | 13<br>14 |                    | ling - Bucke       | et Elevator<br>onveyor (Note 2)         | 3                   |          | y with Additives, Point of<br>veyor with Half Cover | f Application | 1            |                         | et Scrubber<br>nturi Scrubl   |                          |                            |                                       |                   |
|                      | r Point (N                 | lote 2)                           | 15       | Silo, dise         | charge to T        | ank Truck                               | 4                   |          | eyor with Three Quarter                             | Cover         |              |                         | ghouse with                   |                          |                            |                                       |                   |
|                      | or (Note 2                 |                                   | 16<br>17 |                    | Open Top           | Truck (Note 2)                          | 5                   |          | veyor with Full Cover                               |               |              |                         |                               |                          | kup (Unenc<br>kup (Partial |                                       |                   |
|                      | ng, Dry - P<br>ng, Dry - S |                                   | 18       | Feeder<br>See Lool | kup Table "        | EmFac" for data                         | 7                   |          | ess Enclosure<br>rity Separator                     |               |              |                         |                               |                          | kup (Parua)<br>kup (Full E |                                       |                   |
|                      | ng, Dry - T                |                                   | 19       |                    |                    | EmFac" for data                         | 8                   |          | one - Simple                                        |               |              |                         |                               |                          | kup (Attach                | ed)                                   |                   |
| ,                    | ng, Wet (N<br>ng, Dry      | Note 3)                           | 21       |                    |                    | EmFac" for data<br>EmFac" for data      | 10                  |          | one - Multiple<br>dscreen, Windward Side            |               |              |                         | ectrostatic P<br>Lookup Ta    |                          | ff" for data               |                                       |                   |
|                      | <u> </u>                   | 1                                 |          |                    | •                  | XIII - EN                               | ISSIO               | N C      | ALCULATIONS                                         |               |              |                         |                               |                          |                            |                                       |                   |
|                      | DEVICE                     | NAME OF                           | DEVICE   |                    | MOTOR              | THROUGHPUT                              |                     | EN       | ISSION CONTROL DE                                   |               |              |                         | SION FAC                      |                          |                            | SSION RA                              |                   |
| ID<br>NUMBER         | CODE<br>NO                 |                                   |          |                    | BHP                | TONS / YEAR                             | CODE                | DsF      | NAME OF DEVIC                                       | CE E          | FF %         | POU<br>PM <sub>30</sub> | NDS PER '<br>PM <sub>10</sub> | TON<br>PM <sub>2.5</sub> | TON<br>PM <sub>30</sub>    | IS PER YE<br>PM <sub>10</sub>         | PM <sub>2.5</sub> |
| (A)                  | (B)                        | (C)                               | )        |                    | (D)                | (E)                                     | (F)                 | (G)      | (H)                                                 |               | (I)          | (J)                     | (K)                           | (L)                      | (M)                        | (N)                                   | (O)               |
| BH-1.1               | 4                          | Transfer Point (Note              | 2)       |                    | 1                  | 61,044                                  | 15                  |          | Baghouse with Multiple Pic                          | ckups         | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.00                       | 0.00                                  | 0.00              |
| BH-1.2               | 4                          | Transfer Point (Note              | 2)       |                    | 1                  | 61,044                                  | 15                  |          | Baghouse with Multiple Pie                          | ckups         | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.00                       | 0.00                                  | 0.00              |
| BH-1.3               | 4                          | Transfer Point (Note:             | 2)       |                    | 1                  | 61,044                                  | 15                  |          | Baghouse with Multiple Pic                          | ckups         | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.00                       | 0.00                                  | 0.00              |
| BH-1.4               | 4                          | Transfer Point (Note:             | 2)       |                    | 1                  | 61,044                                  | 15                  |          | Baghouse with Multiple Pic                          | ckups         | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.00                       | 0.00                                  | 0.00              |
| BH-1.5               | 4                          | Transfer Point (Note:             | 2)       |                    | 1                  | 61,044                                  | 15                  |          | Baghouse with Multiple Pic                          | ckups         | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.00                       | 0.00                                  | 0.00              |
| BH-1.6               | 4                          | Transfer Point (Note:             | 2)       |                    | 1                  | 61,044                                  | 15                  |          | Baghouse with Multiple Pic                          | ckups         | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.00                       | 0.00                                  | 0.00              |
| 40-118               | 5                          | Conveyor (Note 2)                 |          |                    | 10                 | 183,223                                 | 15                  |          | Baghouse with Multiple Pic                          | ckups         | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.01                       | 0.01                                  | 0.00              |
| 40-107               | 5                          | Conveyor (Note 2)                 |          |                    | 15                 | 366,445                                 | 15                  |          | Baghouse with Multiple Pic                          | ckups         | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.02                       | 0.01                                  | 0.00              |
| 40-014               | 8                          | Crushing, Dry - Tertia            | ıry      |                    | 300                | 366,445                                 | 15                  |          | Baghouse with Multiple Pic                          | ckups         | 95.0         | 1.850                   | 0.112                         | 0.035                    | 16.95                      | 1.03                                  | 0.32              |
| 40-015               | 5                          | Conveyor (Note 2)                 |          |                    | 10                 | 366,445                                 | 15                  |          | Baghouse with Multiple Pic                          |               | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.02                       | 0.01                                  | 0.00              |
| 40-017               | 4                          | Transfer Point (Note:             | 2)       |                    | NA                 | 366,445                                 | 15                  |          | Baghouse with Multiple Pic                          |               | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.02                       | 0.01                                  | 0.00              |
| 40-122               | 5                          | Conveyor (Note 2)                 | -)       |                    | 15                 | 40,563                                  | 15                  |          | Baghouse with Multiple Pic                          |               | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.00                       | 0.00                                  | 0.00              |
| 30                   | 4                          | •                                 | 2)       |                    | NA                 | 40,563                                  | 15                  |          |                                                     |               | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.00                       | 0.00                                  | 0.00              |
|                      | 5                          | Transfer Point (Note:             | 2)       |                    |                    |                                         | 15                  |          | Baghouse with Multiple Pic                          |               |              |                         |                               |                          |                            | 0.00                                  |                   |
| 40-001               |                            | Conveyor (Note 2)                 |          |                    | 10                 | 324,971                                 |                     |          | Baghouse with Multiple Pic                          | •             | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.02                       |                                       | 0.00              |
| 40-006               | 5                          | Conveyor (Note 2)                 |          |                    | 7.5                | 324,971                                 | 15                  |          | Baghouse with Multiple Pic                          | -             | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.02                       | 0.01                                  | 0.00              |
| 40-007               | 5                          | Conveyor (Note 2)                 |          |                    | 3                  | 324,971                                 | 15                  |          | Baghouse with Multiple Pic                          |               | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.02                       | 0.01                                  | 0.00              |
| 40-008               | 13                         | Silo, Filling - Bucket I          |          |                    | 30                 | 324,971                                 | 15                  |          | Baghouse with Multiple Pic                          | ckups         | 95.0         | 0.240                   | 0.015                         | 0.004                    | 1.95                       | 0.12                                  | 0.03              |
| 40-009               | 4                          | Transfer Point (Note:             | 2)       |                    | 0.5                | 324,971                                 | 15                  |          | Baghouse with Multiple Pic                          | ckups         | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.02                       | 0.01                                  | 0.00              |
| 40-010               | 4                          | Transfer Point (Note              | 2)       |                    | NA                 | 180,164                                 | 15                  |          | Baghouse with Multiple Pic                          | ckups         | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.01                       | 0.01                                  | 0.00              |
| 40-011               | 5                          | Conveyor (Note 2)                 |          |                    | 3                  | 86,309                                  | 15                  |          | Baghouse with Multiple Pic                          | ckups         | 95.0         | 0.002                   | 0.001                         | 0.000                    | 0.01                       | 0.00                                  | 0.00              |
|                      |                            | TOTAL                             | L HORSE  | POWER              | 410                |                                         | ,                   |          |                                                     |               |              |                         |                               |                          |                            |                                       |                   |
|                      |                            | AMEDACE TI                        | IDOLICII | DIT DEE            | DEVICE             | 100 207                                 | l                   |          |                                                     |               |              |                         |                               |                          |                            |                                       |                   |

|                      |                 | EMISSION | I IN | IVENTORY INPUTS                           |          |           |                   |
|----------------------|-----------------|----------|------|-------------------------------------------|----------|-----------|-------------------|
| I                    | DEVICE DATA     | <u> </u> |      | EMISSION DATA                             |          |           |                   |
| PERMIT ID            | B000757         |          |      | ANNUAL EMISSIONS (tpy)                    | PM       | $PM_{10}$ | PM <sub>2.5</sub> |
| NUMBER OF DEVICES    | 20              |          |      | UNCONTROLLED                              | 381.836  | 24.792    | 7.639             |
| EQUIPMENT SIZE (bhp) | 410             |          |      | CONTROLLED                                | 19.092   | 1.240     | 0.382             |
| P                    | ROCESS DATA     | A        |      | EMISSION FACTOR (lb/ton)                  | $>\!\!<$ | $>\!\!<$  |                   |
| PROG                 | CESS RATE (tpy) | 365,535  |      | UNCONTROLLED                              | 2.0892   | 0.1357    | 0.0418            |
| MAX. DES             | SIGN RATE (tph) | 400      |      | CONTROLLED                                | 0.1045   | 0.0068    | 0.0021            |
| MAX. HOURLY PRODUCT  | ΓΙΟΝ RATE (tph) | 400      |      | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | $>\!\!<$ | 0.0649    | 0.0200            |
| AVE. HOURLY PRODUCT  | TION RATE (tph) | 146      |      | OVERALL EFFICIENCY                        | 95.00    | 95.00     | 95.00             |

| EMISSI       | ION                            |                                        |                         |                               |                                                                                                                                                                     | HARP                    | / CE  | IDARS                                                        |        |          |                 |                      |                            |                               | FC                      | RM                    |
|--------------|--------------------------------|----------------------------------------|-------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|--------------------------------------------------------------|--------|----------|-----------------|----------------------|----------------------------|-------------------------------|-------------------------|-----------------------|
| YEA          | R                              |                                        |                         |                               | MI                                                                                                                                                                  | NING                    | OPEI  | RATIONS                                                      |        |          |                 |                      |                            |                               | M                       | INE                   |
| 200 8        | 3                              |                                        |                         | AGGRE                         | EGATE HANI                                                                                                                                                          | DLING                   | , CRI | JSHING & SCREENII                                            | NG #1  |          |                 |                      |                            |                               | A                       | GG                    |
| _            |                                |                                        |                         | - COLOR                       |                                                                                                                                                                     |                         |       |                                                              |        |          |                 |                      | DATORY I                   | NFORMAT                       | ION                     |                       |
|              | DATA INPUT                     | BY FACILITY                            |                         |                               | HER WORKSHEET<br>FORMATION                                                                                                                                          |                         | -     | OUTPUT DATA TO CEIDARS                                       |        | OW DI    |                 | M<br>L ITEMS         |                            |                               |                         |                       |
| COMPAN       | Y NAME C                       | mya California Inc                     | III - FA                |                               | PANY # 90                                                                                                                                                           |                         | 1     | PERMIT # B 0 0 0 7 6                                         |        |          |                 |                      | OURS OP                    | ERATED                        |                         |                       |
|              | Y NAME P                       |                                        |                         |                               | CILITY # 461                                                                                                                                                        |                         |       | EVICE ID 763                                                 |        |          |                 |                      | IROUGHP                    |                               |                         |                       |
| PROCES       | SS NAME R                      |                                        | V - MAP COORDI          |                               | RY ID # 9000461                                                                                                                                                     |                         | PRO   | OCESS ID                                                     | BI     | LOCK Y   |                 |                      | ONTENT<br>G THE SY         | (%) OF MA                     | TERIAL                  |                       |
|              | NE 11                          | UTM EAST (                             | km) 5 0 5 . 3           | 3 1 6                         | UTM NOR                                                                                                                                                             | TH (km)                 | 3 8   | 0 4 . 4 1 5                                                  | ві     | LOCK Y   |                 |                      | G 1HE SΥ<br>В', 'Е', 'F' δ |                               |                         |                       |
|              |                                | g.) 3 4 . 3 8 3                        | 7 LC                    | ONGITUDE                      | (deg.) 1 1 6 .                                                                                                                                                      |                         |       |                                                              |        | _        |                 |                      |                            |                               |                         |                       |
|              | E OF PLAN<br>NARY x            |                                        | F EQUIPMENT, cho        | eck all that a<br>RANSFER     |                                                                                                                                                                     | MATERIA<br>eck all that |       |                                                              |        | E<br>10  | AC              | IX - T<br>TUAL AN    |                            | PUT (tons p                   |                         | Tons/Yr.              |
| PORT         | ABLE                           | SCREENS                                | 5                       | STORAGE                       |                                                                                                                                                                     | ROCK                    |       | DAYS per WEEK                                                |        | 5        | HOL             | IRLY (ave            | erage)                     |                               | 15                      | TPH                   |
|              | THER<br>MENTS                  | CONVEYORS<br>OTHERS                    | x L                     | OAD OUT                       | LIM                                                                                                                                                                 | SAND<br>ESTONE          |       | WEEK per YEAR  CAL. HRS per YR                               | 26     | 52       |                 | DESIGN               |                            | D. / A                        | 50.0                    | TPH                   |
| COMIN        | TEN15                          | COMMENTS                               |                         |                               |                                                                                                                                                                     | A ROCK                  | Х     | ACT. HRS per YR                                              | 25     |          | Hour            |                      |                            | il) / Actual Hour<br>E CONTEN |                         | erated)               |
|              |                                |                                        |                         |                               |                                                                                                                                                                     | OTHER                   |       | CAL. Hrs/Yr = Hr/Dy*Dy/Wk*                                   |        |          |                 |                      |                            | NTERING S                     | YS.:                    | 3 %                   |
| CODE N       |                                | XI - TYPE OF OPERAT<br>EVICE OR SYSTEM |                         |                               | CE OR SYSTEM                                                                                                                                                        | CODE                    | 7 I   | XII - TYPE<br>TYPE OF CONTROL                                | OF EMI | COD      |                 | ROL EQU              |                            | OF CONTR                      | OI                      |                       |
|              | Device                         | EVICE OR STSTEM                        |                         |                               | hing (Note 4)                                                                                                                                                       | 0                       | None  |                                                              |        | 11       |                 | vel Bed Fil          |                            | or contri                     | OL                      |                       |
|              |                                | , truck, pile (Note 2)                 |                         | ling - Pneum                  |                                                                                                                                                                     | 1 2                     |       | r Spray, Point of Application                                |        | 12       |                 |                      | Low Efficie                |                               |                         |                       |
|              | zzly (Note 2)<br>pper (Note 2) |                                        |                         | ling - Bucket<br>charge to Co | nveyor (Note 2)                                                                                                                                                     | 3                       |       | with Additives, Point of Applicates<br>reyor with Half Cover | ition  | 13       |                 |                      | (Med Effic<br>oer (High E  |                               |                         |                       |
| 4 Tra        | nsfer Point (                  | Note 2)                                | 15 Silo, disc           | charge to Ta                  | ink Truck                                                                                                                                                           | 4                       | Conv  | eyor with Three Quarter Cover                                |        | 15       | Bag             | house with           | Multiple P                 | ickups                        |                         |                       |
|              | nveyor (Note<br>ishing, Dry -  |                                        | 16 Loading<br>17 Feeder | Open Top 7                    | Γruck (Note 2)                                                                                                                                                      | 5                       |       | ess Enclosure                                                |        | 16<br>17 |                 |                      |                            | kup (Unencle<br>kup (Partial) |                         |                       |
|              | shing, Dry -                   |                                        |                         | kup Table "l                  | EmFac" for data                                                                                                                                                     | 7                       |       | ity Separator                                                |        | 18       |                 |                      |                            | kup (Full En                  |                         |                       |
|              | shing, Dry -                   |                                        |                         |                               | tup Table "EmFac" for data 8 Cyclone - Simple 19 Baghouse with Single Pickup (Atta<br>tup Table "EmFac" for data 9 Cyclone - Multiple 20 Electrostatic Precipitator |                         |       |                                                              |        |          |                 |                      |                            |                               | ed)                     |                       |
|              | shing, Wet (<br>eening, Dry    | Note 3)                                |                         |                               | EmFac" for data EmFac" for data                                                                                                                                     | 10                      |       | one - Multiple<br>Iscreen, Windward Side                     |        | 20       |                 |                      | recipitator<br>able "ConE  | ff" for data                  |                         |                       |
|              |                                |                                        |                         |                               | XIII - EM                                                                                                                                                           | IISSIO                  | N CA  | ALCULATIONS                                                  |        |          |                 |                      |                            |                               |                         |                       |
| EQUIPMEN     |                                |                                        | DEVICE                  | MOTOR                         | THROUGHPUT                                                                                                                                                          |                         |       | MISSION CONTROL DEVICE                                       |        |          |                 | ION FAC              |                            |                               | SSION RA                |                       |
| ID<br>NUMBER | CODE<br>NO                     |                                        |                         | BHP                           | TONS / YEAR                                                                                                                                                         | CODE                    | DsF   | NAME OF DEVICE                                               | EFF %  |          | 1               | NDS PER              | 1                          | 1 0                           | IS PER YI               |                       |
| (A)          | (B)                            | (C)                                    | )                       | (D)                           | (E)                                                                                                                                                                 | (F)                     | (G)   | (H)                                                          | (I)    |          | M <sub>30</sub> | PM <sub>10</sub> (K) | PM <sub>2.5</sub><br>(L)   | PM <sub>30</sub><br>(M)       | PM <sub>10</sub><br>(N) | PM <sub>2.5</sub> (O) |
| 41-001       | 12                             | Silo, Filling - Pneumati               |                         | NA                            | 36,873                                                                                                                                                              | 15                      | ` '   | Baghouse with Multiple Pickups                               | 95     |          | 270             | 0.016                | 0.005                      | 0.25                          | 0.01                    | 0.00                  |
| 41-008       | 17                             | Feeder                                 |                         | 5                             | 36,873                                                                                                                                                              | 15                      |       | Baghouse with Multiple Pickups                               | 95     | 5.0 0.   | 002             | 0.001                | 0.000                      | 0.00                          | 0.00                    | 0.00                  |
| 41-009       | 8                              | Crushing, Dry - Tertian                | у                       | 250                           | 36,873                                                                                                                                                              | 15                      |       | Baghouse with Multiple Pickups                               | 95     | 5.0 1.   | 850             | 0.112                | 0.035                      | 1.71                          | 0.10                    | 0.03                  |
| 41-010,12    | 2 0                            | No Device                              | •                       | 300                           | 0                                                                                                                                                                   | 0                       |       | None                                                         | (      |          | 000             | 0.000                | 0.000                      | 0.00                          | 0.00                    | 0.00                  |
| 41-011       | 4                              | Transfer Point (Note 2                 | !)                      | NA                            | 36,873                                                                                                                                                              | 8                       |       | Cyclone - Simple                                             | 5(     | 0.0      | 002             | 0.001                | 0.000                      | 0.02                          | 0.01                    | 0.00                  |
| 41-024       | 4                              | Transfer Point (Note 2                 | 2)                      | 4.5                           | 36,873                                                                                                                                                              | 15                      |       | Baghouse with Multiple Pickups                               | 95     | 5.0 0.   | 002             | 0.001                | 0.000                      | 0.00                          | 0.00                    | 0.00                  |
| 41-025       | 5                              | Conveyor (Note 2)                      |                         | 2                             | 13,684                                                                                                                                                              | 15                      |       | Baghouse with Multiple Pickups                               | 95     | 5.0 0.   | 002             | 0.001                | 0.000                      | 0.00                          | 0.00                    | 0.00                  |
| 41-040       | 17                             | Feeder                                 |                         | NA                            | 13,684                                                                                                                                                              | 15                      |       | Baghouse with Multiple Pickups                               | 95     | 5.0 0.   | 002             | 0.001                | 0.000                      | 0.00                          | 0.00                    | 0.00                  |
| 41-042       | 4                              | Transfer Point (Note 2                 | 2)                      | 210                           | 13,684                                                                                                                                                              | 15                      |       | Baghouse with Multiple Pickups                               | 95     | 5.0 0.   | 002             | 0.001                | 0.000                      | 0.00                          | 0.00                    | 0.00                  |
| 41-029       | 4                              | Transfer Point (Note 2                 | 2)                      | 2                             | 36,873                                                                                                                                                              | 15                      |       | Baghouse with Multiple Pickups                               | 95     | 5.0 0.   | 002             | 0.001                | 0.000                      | 0.00                          | 0.00                    | 0.00                  |
| 41-044       | 4                              | Transfer Point (Note 2                 | !)                      | NA                            | 2,686                                                                                                                                                               | 9                       |       | Cyclone - Multiple                                           | 66     | 5.0 0.   | 002             | 0.001                | 0.000                      | 0.00                          | 0.00                    | 0.00                  |
| 41-051       | 4                              | Transfer Point (Note 2                 | 2)                      | 1.5                           | 2,686                                                                                                                                                               | 15                      |       | Baghouse with Multiple Pickups                               | 95     | 5.0 0.   | 002             | 0.001                | 0.000                      | 0.00                          | 0.00                    | 0.00                  |
| 41-041       | 4                              | Transfer Point (Note 2                 | 2)                      | 2                             | 2,686                                                                                                                                                               | 15                      |       | Baghouse with Multiple Pickups                               | 95     | 5.0 0.   | 002             | 0.001                | 0.000                      | 0.00                          | 0.00                    | 0.00                  |
|              |                                | TOTA                                   | L HORSEPOWER            | 777                           |                                                                                                                                                                     | _                       |       |                                                              |        |          |                 |                      |                            |                               |                         |                       |
|              |                                | AVERAGE T                              | HROUGHPUT PE            | R DEVICE                      | 20,796                                                                                                                                                              |                         |       |                                                              |        |          |                 |                      |                            |                               |                         |                       |

|                      |                 | EMISSION | N IN | IVENTORY INPUTS                           |        |           |                   |
|----------------------|-----------------|----------|------|-------------------------------------------|--------|-----------|-------------------|
| D                    | EVICE DATA      |          |      | EMISSION DATA                             |        |           |                   |
| PERMIT ID            | B000763         |          |      | ANNUAL EMISSIONS (tpy)                    | PM     | $PM_{10}$ | PM <sub>2.5</sub> |
| NUMBER OF DEVICES    | 13              |          |      | UNCONTROLLED                              | 39.317 | 2.469     | 0.772             |
| EQUIPMENT SIZE (bhp) | 777             |          |      | CONTROLLED                                | 1.986  | 0.133     | 0.042             |
| PF                   | ROCESS DATA     | L        |      | EMISSION FACTOR (lb/ton)                  | ><     | ><        |                   |
| PROC                 | CESS RATE (tpy) | 36,873   |      | UNCONTROLLED                              | 2.1325 | 0.1339    | 0.0419            |
| MAX. DES             | SIGN RATE (tph) | 50       |      | CONTROLLED                                | 0.1077 | 0.0072    | 0.0023            |
| MAX. HOURLY PRODUCT  | TON RATE (tph)  | 50       |      | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | ><     | 0.0670    | 0.0210            |
| AVE. HOURLY PRODUCT  | TON RATE (tph)  | 15       |      | OVERALL EFFICIENCY                        | 94.95  | 94.61     | 94.61             |

| EMISSIO    | N                           |                          |                                         |              |                  | HARP                                                                  | / CE  | IDARS                                |         |                  |              |                   |                  | FO        | RM                |  |
|------------|-----------------------------|--------------------------|-----------------------------------------|--------------|------------------|-----------------------------------------------------------------------|-------|--------------------------------------|---------|------------------|--------------|-------------------|------------------|-----------|-------------------|--|
| YEAR       |                             |                          |                                         |              | MI               | NING                                                                  | OPE   | RATIONS                              |         |                  |              |                   |                  | MI        | NE                |  |
| 200 8      |                             |                          |                                         | AGGRE        | EGATE HANI       | DLING                                                                 | , CRI | USHING & SCREENIN                    | IG #1   |                  |              |                   |                  | A         | GG                |  |
|            | - 1                         |                          | ı                                       | - COLOR      | CODE             |                                                                       |       |                                      |         |                  | II - MANI    | DATORY II         | NFORMAT          | ION       |                   |  |
| DA         | TA INPUT E                  | Y FACILITY               | DATA FI                                 | ROM ANOTI    | HER WORKSHEET    |                                                                       |       | OUTPUT DATA TO CEIDARS               | FLO     | OW DIAGRA        | AM           |                   |                  |           |                   |  |
|            |                             |                          | III - FA                                | CILITY IN    | FORMATION        |                                                                       |       |                                      |         | OCK III - AI     |              |                   |                  |           |                   |  |
|            |                             | ya California Inc        |                                         |              | PANY # 90        |                                                                       |       | PERMIT # B 0 0 0 7 6                 |         | OCK VIII - A     |              |                   |                  |           |                   |  |
| FACILITY   |                             |                          |                                         | -            | CILITY # 461     |                                                                       |       | EVICE ID 763                         |         | OCK IX - Al      |              |                   |                  |           |                   |  |
| PROCESS 1  | NAME Rol                    |                          |                                         |              | RY ID # 9000461  |                                                                       | PR    | OCESS ID                             | BL      | OCK X - MO       |              |                   |                  | TERIAL    |                   |  |
| UTM ZONE   | 11                          | IITM EAST (              | / - MAP COORDIN<br>km) 5 0 5 . 3        | ATES FOR     |                  | TII (1)                                                               | 2 0   | 0 4 . 4 1 5                          | DI.     | OCK XIII, C      |              | G THE SY          |                  |           |                   |  |
|            |                             | ) 3 4 . 3 8 3            | 7 J J J J J J J J J J J J J J J J J J J | NGITUDE      | (deg.) 1 1 6 .   | 0 4 2                                                                 | 2 0   | 0 4 . 4 1 5                          | BL      | JCK AIII, C      | OLUMNS       | Б, Е, Г о         | ı G              |           |                   |  |
| V - TYPE C |                             |                          | EQUIPMENT, che                          |              |                  | MATERIA                                                               |       | PES VIII - OPERATING SCI             | HEDULE  |                  | IX - 1       | THROUGH           | PUT (tons p      | er vear)  |                   |  |
| STATIONA   |                             | CRUSHERS                 |                                         | RANSFER      | * *              | ck all that                                                           |       |                                      | 1       |                  | CTUAL AN     |                   |                  |           | ons/Yr.           |  |
| PORTAB     |                             | SCREENS                  | S                                       | TORAGE       |                  | ROCK                                                                  | •     | DAYS per WEEK                        |         |                  | URLY (ave    |                   |                  | 59        | TPH               |  |
| OTH        | ER                          | CONVEYORS                | x Lo                                    | DAD OUT      |                  | SAND                                                                  |       | WEEK per YEAR                        | 5       |                  | DESIGN       | RATE              |                  | 100.0     | TPH               |  |
| COMMEN     | NTS                         | OTHERS                   |                                         |              |                  | ESTONE                                                                | х     |                                      | 260     | _                |              |                   | l) / Actual Hour |           | erated)           |  |
|            |                             | COMMENTS                 |                                         |              | LAV              | A ROCK                                                                |       | ACT. HRS per YR                      | 250     | _                |              |                   | E CONTEN         | ` /       |                   |  |
|            | 377                         | - TYPE OF OPERAT         | ION AND AND DE                          | THOE         |                  | OTHER                                                                 |       | CAL. Hrs/Yr = Hr/Dy*Dy/Wk*W          |         |                  |              |                   | NTERING S        | YS.: 3    | %                 |  |
| CODE NA    |                             | /ICE OR SYSTEM           |                                         |              | ICE OR SYSTEM    | CODE                                                                  | 2 I   | XII - TYPE OF CONTROL                | OF EMIS | CODE CONT        | ROL EQU      |                   | OF CONTR         | OI        |                   |  |
| 0 No De    |                             | ICL OK STSTEM            |                                         |              | hing (Note 4)    | 0                                                                     | None  |                                      |         |                  | avel Bed Fi  |                   | or contro        | OL        |                   |  |
|            |                             | ruck, pile (Note 2)      |                                         | ing - Pneum  |                  | 1                                                                     |       | er Spray, Point of Application       |         |                  |              | Low Efficie       |                  |           |                   |  |
|            | y (Note 2)                  |                          | 13 Silo, Fill                           | ing - Bucket | t Elevator       | 2                                                                     | Spra  | y with Additives, Point of Applicati | ion     |                  |              | (Med Effici       |                  |           |                   |  |
|            | r (Note 2)                  |                          |                                         |              | onveyor (Note 2) | 3                                                                     |       | veyor with Half Cover                |         |                  |              | ber (High E       |                  |           |                   |  |
|            | er Point (No                | /                        |                                         | charge to Ta |                  |                                                                       |       |                                      |         |                  |              |                   |                  |           |                   |  |
|            | yor (Note 2<br>ng, Dry - Pr |                          | 16 Loading<br>17 Feeder                 | Open 1 op 1  | Γruck (Note 2)   | 6 Process Enclosure 17 Baghouse with Single Pickup (Partial Enclosed) |       |                                      |         |                  |              |                   |                  |           |                   |  |
|            | ng, Dry - Se                | ,                        |                                         | cup Table "I | EmFac" for data  |                                                                       |       |                                      |         |                  |              |                   |                  |           |                   |  |
|            | ng, Dry - Te                |                          |                                         |              | EmFac" for data  | 8                                                                     |       | one - Simple                         |         |                  |              |                   | kup (Attache     |           |                   |  |
|            | ng, Wet (N                  | ote 3)                   |                                         |              | EmFac" for data  | 9                                                                     |       | one - Multiple                       |         |                  | ctrostatic P |                   |                  |           |                   |  |
| 10 Screen  | ing, Dry                    |                          | 21 See Lool                             | cup Table "I | EmFac" for data  | 10                                                                    | Wind  | dscreen, Windward Side               |         | 21 See           | Lookup T     | able "ConEf       | f" for data      |           |                   |  |
|            |                             |                          |                                         |              | XIII - EM        | 1ISSIO                                                                | N CA  | ALCULATIONS                          |         |                  |              |                   |                  |           |                   |  |
| EQUIPMENT  | DEVICE                      | NAME OF                  | DEVICE                                  | MOTOR        | THROUGHPUT       |                                                                       |       | MISSION CONTROL DEVICE               |         |                  | SION FAC     |                   |                  | SSION RA  |                   |  |
| ID         | CODE                        |                          |                                         | BHP          | TONS / YEAR      | CODE                                                                  | DsF   | NAME OF DEVICE                       | EFF %   |                  | NDS PER      |                   | l n              | IS PER YE |                   |  |
| NUMBER     | NO                          |                          |                                         |              |                  |                                                                       |       |                                      |         | PM <sub>30</sub> | $PM_{10}$    | PM <sub>2.5</sub> | $PM_{30}$        | $PM_{10}$ | PM <sub>2.5</sub> |  |
| (A)        | (B)                         | (C)                      | l                                       | (D)          | (E)              | (F)                                                                   | (G)   | (H)                                  | (I)     | (J)              | (K)          | (L)               | (M)              | (N)       | (O)               |  |
| 42-001     | 12                          | Silo, Filling - Pneumati | с                                       | NA           | 146,708          | 19                                                                    |       | Baghouse with Single Pickup (Attach  | 99.     | 5 0.270          | 0.016        | 0.005             | 0.10             | 0.01      | 0.00              |  |
| 42-003     | 4                           | Transfer Point (Note 2   | )                                       | 2            | 146,708          | 18                                                                    |       | Baghouse with Single Pickup (Full Er | 99.     | 0.002            | 0.001        | 0.000             | 0.00             | 0.00      | 0.00              |  |
| 42-008     | 17                          | Feeder                   |                                         | 5            | 146,708          | 18                                                                    |       | Baghouse with Single Pickup (Full Er | 99.     | 0.002            | 0.001        | 0.000             | 0.00             | 0.00      | 0.00              |  |
| 42-010, 12 | 0                           | No Device                |                                         | 300          | 0                | 0                                                                     |       | None                                 | 0.      | 0.000            | 0.000        | 0.000             | 0.00             | 0.00      | 0.00              |  |
| 42-009     | 8                           | Crushing, Dry - Tertiar  | у                                       | 350          | 146,708          | 18                                                                    |       | Baghouse with Single Pickup (Full E  | 99.     | 0 1.850          | 0.112        | 0.035             | 1.36             | 0.08      | 0.03              |  |
| 42-011     | 4                           | Transfer Point (Note 2   | )                                       | NA           | 146,708          | 18                                                                    |       | Baghouse with Single Pickup (Full Er | 99.     | 0.002            | 0.001        | 0.000             | 0.00             | 0.00      | 0.00              |  |
| 42-034     | 4                           | Transfer Point (Note 2   | )                                       | 1.5          | 146,708          | 18                                                                    |       | Baghouse with Single Pickup (Full E  | 99.     | 0.002            | 0.001        | 0.000             | 0.00             | 0.00      | 0.00              |  |
| 41-037     | 4                           | Transfer Point (Note 2   | )                                       | NA           | 146,708          | 18                                                                    |       | Baghouse with Single Pickup (Full E  | 99.     | 0.002            | 0.001        | 0.000             | 0.00             | 0.00      | 0.00              |  |
|            | ·                           | TOTA                     | L HORSEPOWER                            | 658.5        |                  | _                                                                     |       |                                      |         |                  |              |                   | ·                |           | _                 |  |
|            |                             | AVERAGE T                | HROUGHPUT PEI                           | R DEVICE     | 128,370          |                                                                       |       |                                      |         |                  |              |                   |                  |           |                   |  |


|                      |                 | EMISSION | IN IN | VENTORY INPUTS                            |          |           |                   |
|----------------------|-----------------|----------|-------|-------------------------------------------|----------|-----------|-------------------|
| I                    | DEVICE DATA     |          |       | EMISSION DATA                             |          |           |                   |
| PERMIT ID            | B000763         |          |       | ANNUAL EMISSIONS (tpy)                    | PM       | $PM_{10}$ | PM <sub>2.5</sub> |
| NUMBER OF DEVICES    | 8               |          |       | UNCONTROLLED                              | 156.374  | 9.798     | 3.062             |
| EQUIPMENT SIZE (bhp) | 658.5           |          |       | CONTROLLED                                | 1.465    | 0.092     | 0.029             |
| P                    | ROCESS DATA     |          |       | EMISSION FACTOR (lb/ton)                  | $>\!\!<$ | $\times$  |                   |
| PRO                  | CESS RATE (tpy) | 146,708  |       | UNCONTROLLED                              | 2.1318   | 0.1336    | 0.0417            |
| MAX. DE              | SIGN RATE (tph) | 100      |       | CONTROLLED                                | 0.0200   | 0.0013    | 0.0004            |
| MAX. HOURLY PRODUC   | TION RATE (tph) | 100      |       | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | ><       | 0.0629    | 0.0197            |
| AVE. HOURLY PRODUC   | TION RATE (tph) | 59       |       | OVERALL EFFICIENCY                        | 99.06    | 99.06     | 99.06             |

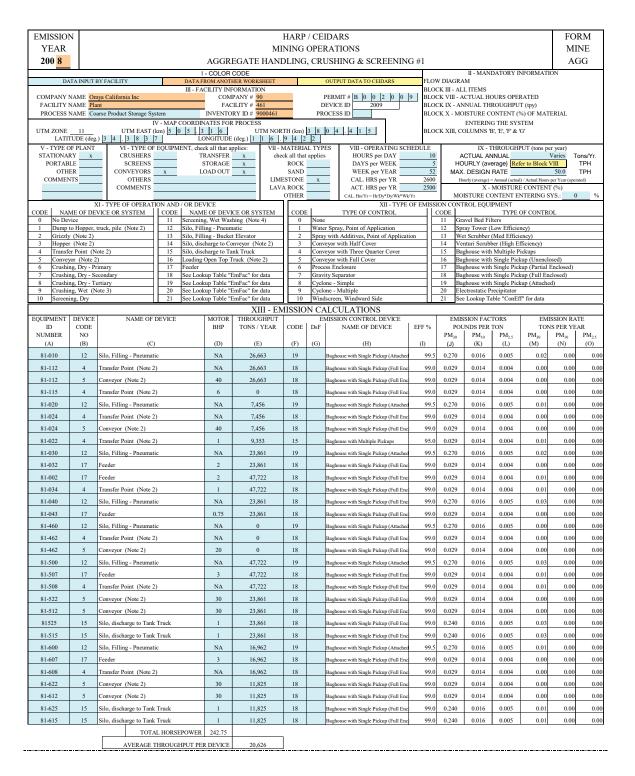
| EMISSION              | 1                          |                          |                |                  |                    |                           | HARI                                                 | ) / CE                                                                                                                                         | EIDA  | RS                                  |         |        |                  |                       |                   |                   | FC                     | RM                |
|-----------------------|----------------------------|--------------------------|----------------|------------------|--------------------|---------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|---------|--------|------------------|-----------------------|-------------------|-------------------|------------------------|-------------------|
| YEAR                  |                            |                          |                |                  |                    | M                         | INING                                                | OPE                                                                                                                                            | RAT   | TIONS                               |         |        |                  |                       |                   |                   | M                      | INE               |
| 200 8                 |                            |                          |                |                  | AGGRE              | EGATE HAN                 | IDLING                                               | G, CR                                                                                                                                          | USH   | IING & SCREEN                       | ING#    | 1      |                  |                       |                   |                   | A                      | GG                |
|                       |                            |                          |                | I                | - COLOR            | CODE                      |                                                      |                                                                                                                                                |       |                                     |         |        |                  | II - MANI             | DATORY I          | NFORMAT           | ION                    |                   |
| DATA                  | A INPUT E                  | BY FACILITY              |                |                  |                    | HER WORKSHEET             | '                                                    |                                                                                                                                                | OUTPU | UT DATA TO CEIDARS                  |         |        | DIAGRA           |                       |                   |                   |                        |                   |
| COMPANY N             | AME Om                     | ıya California Inc       |                | III - FAC        |                    | FORMATION<br>PANY # 90    |                                                      |                                                                                                                                                | PERM  | fit# B 0 0 3 9 1                    |         |        |                  | L ITEMS               | HOURS OP          | FRATED            |                        |                   |
| FACILITY NA           |                            |                          |                |                  |                    | ILITY # 461               |                                                      |                                                                                                                                                | DEVIC |                                     |         |        |                  |                       | HROUGHP           |                   |                        |                   |
| PROCESS NA            | AME Rol                    |                          |                |                  |                    | RY ID # 9000461           |                                                      | PR                                                                                                                                             | ROCES | S ID                                |         | BLOC   | K X - MC         | DISTURE O             | CONTENT           | (%) OF MA         | TERIAL                 |                   |
|                       |                            | IV                       | / - MAP C      | COORDIN          | NATES FOR          | R PROCESS                 |                                                      | 1. 1.                                                                                                                                          | 1. 1. |                                     |         |        |                  |                       | G THE SY          |                   |                        |                   |
| UTM ZONE _<br>LATITU  |                            | UTM EAST (               | km) [5  0<br>7 | ) [5 ]. [3<br>LC | 1 6<br>NGITUDE     | (deg.) 1 1 6              | RTH (km)                                             | 2 2                                                                                                                                            | 0 4   | . 4 1 5                             |         | BLOC   | K XIII, C        | OLUMNS                | 'Β', 'E', 'F' δ   | k 'G'             |                        |                   |
| V - TYPE OF           |                            | VI - TYPE OF             |                |                  |                    |                           | - MATER                                              |                                                                                                                                                |       | VIII - OPERATING                    | CHEDU   |        |                  |                       |                   | PUT (tons p       |                        |                   |
| STATIONAR' PORTABLE   |                            | CRUSHERS<br>SCREENS      | х              |                  | RANSFER<br>STORAGE |                           | heck all the<br>ROCK                                 |                                                                                                                                                | es    | HOURS per DAY<br>DAYS per WEEK      |         | 10     |                  | CTUAL AN<br>URLY (ave |                   |                   | 88,986<br>36           | Tons/Yr.          |
| OTHE                  |                            | CONVEYORS                | х              |                  | DAD OUT            | X                         | SANE                                                 |                                                                                                                                                |       | WEEK per YEAR                       |         | 52     |                  | DESIGN                | · ,               |                   | 100.0                  | TPH               |
| COMMENT               | ΓS                         | OTHERS                   |                |                  |                    |                           | MESTONE                                              |                                                                                                                                                |       | CAL. HRS per YR                     |         | 2600   | Hou              |                       |                   | il) / Actual Hour |                        | erated)           |
|                       |                            | COMMENTS                 |                |                  |                    | LA                        | VA ROCK                                              |                                                                                                                                                |       | ACT. HRS per YR                     |         | 2500   | 1.60%            |                       |                   | E CONTEN          |                        | 2 0/              |
|                       | V                          | - TYPE OF OPERAT         | ION AND        | /OP DE           | VICE               |                           | OTHER                                                |                                                                                                                                                |       | CAL. Hrs/Yr = Hr/Dy*Dy/Wh           |         | AICCIA |                  | ROL EQU               |                   | NTERING S         | YS.:                   | 3 %               |
| CODE NAM              |                            | VICE OR SYSTEM           | CODE           |                  |                    | CE OR SYSTEM              | COL                                                  | E                                                                                                                                              |       | TYPE OF CONTROL                     | E OF EN |        | ODE              | KOL EQU               |                   | OF CONTR          | OL                     |                   |
| 0 No Devi             |                            |                          | 11             |                  |                    | hing (Note 4)             | 0                                                    | Non                                                                                                                                            |       |                                     |         |        |                  | wel Bed Fi            |                   |                   |                        |                   |
|                       |                            | truck, pile (Note 2)     | 12             |                  | ing - Pneum        |                           | 1                                                    |                                                                                                                                                |       |                                     |         |        |                  |                       |                   |                   |                        |                   |
| 2 Grizzly<br>3 Hopper | (Note 2)                   |                          | 13<br>14       |                  | ing - Bucket       | nveyor (Note 2)           |                                                      | 2 Spray with Additives, Point of Application 13 Wet Scrubber (Med Efficiency) 3 Conveyor with Half Cover 14 Venturi Scrubber (High Efficiency) |       |                                     |         |        |                  |                       |                   |                   |                        |                   |
|                       | Point (No                  | ote 2)                   | 15             |                  | charge to Ta       |                           | 4                                                    | 4 Conveyor with Three Quarter Cover 15 Baghouse with Multiple Pickups                                                                          |       |                                     |         |        |                  |                       |                   |                   |                        |                   |
|                       | or (Note 2                 |                          | 16             |                  | Open Top T         | ruck (Note 2)             | 5                                                    |                                                                                                                                                |       | with Full Cover                     |         | ]      |                  |                       |                   | kup (Unencl       |                        |                   |
|                       | g, Dry - Pr<br>g, Dry - Se |                          | 17<br>18       | Feeder           | am Tabla "I        | EmFac" for data           | 6                                                    | 6 Process Enclosure 17 Baghouse with Single Pickup (Pa<br>7 Gravity Separator 18 Baghouse with Single Pickup (Fu                               |       |                                     |         |        |                  |                       |                   |                   |                        |                   |
|                       | g, Dry - Se<br>g, Dry - Te |                          | 19             |                  |                    | EmFac" for data           | 8 Cyclone - Simple 19 Baghouse with Single Pickup (A |                                                                                                                                                |       |                                     |         |        |                  |                       |                   |                   |                        |                   |
| 9 Crushing            | g, Wet (N                  |                          | 20             | See Lool         | kup Table "I       | EmFac" for data           | 9                                                    |                                                                                                                                                |       | Multiple                            |         |        | 20 Ele           | ctrostatic P          | recipitator       | •                 |                        |                   |
| 10 Screenin           | ıg, Dry                    |                          | 21             | See Lool         | kup Table "I       | EmFac" for data           | 10                                                   | _                                                                                                                                              |       | n, Windward Side                    |         |        | 21 See           | Lookup T              | able "ConE        | ff" for data      |                        |                   |
|                       |                            |                          |                |                  |                    |                           |                                                      |                                                                                                                                                |       | ULATIONS                            |         |        |                  |                       |                   |                   |                        |                   |
| EQUIPMENT ID          | DEVICE<br>CODE             | NAME OF                  | DEVICE         |                  | MOTOR<br>BHP       | THROUGHPUT<br>TONS / YEAR |                                                      |                                                                                                                                                |       | ON CONTROL DEVICE<br>NAME OF DEVICE | EFF     | 2.07   |                  | SION FAC<br>NDS PER   |                   |                   | ISSION RA<br>NS PER YI |                   |
| NUMBER                | NO                         |                          |                |                  | BHF                | TONS/ TEAK                | CODE                                                 | DSI                                                                                                                                            |       | NAME OF DEVICE                      | EFT     | /0     | PM <sub>30</sub> | PM <sub>10</sub>      | PM <sub>2.5</sub> | PM <sub>30</sub>  | PM <sub>10</sub>       | PM <sub>2.5</sub> |
| (A)                   | (B)                        | (C)                      | 1              |                  | (D)                | (E)                       | (F)                                                  | (G)                                                                                                                                            |       | (H)                                 | (I      | )      | (J)              | (K)                   | (L)               | (M)               | (N)                    | (O)               |
| 44-010                | 12                         | Silo, Filling - Pneumati | ic             |                  | NA                 | 88,986                    | 19                                                   |                                                                                                                                                | Bagho | ouse with Single Pickup (Att        | ıch     | 99.5   | 0.270            | 0.016                 | 0.005             | 0.06              | 0.00                   | 0.00              |
| 44-013                | 17                         | Feeder                   |                |                  | 5                  | 88,986                    | 18                                                   |                                                                                                                                                | Bagho | ouse with Single Pickup (Ful        | Eı      | 99.0   | 0.002            | 0.001                 | 0.000             | 0.00              | 0.00                   | 0.00              |
| 44-019                | 5                          | Conveyor (Note 2)        |                |                  | 5                  | 88,986                    | 18                                                   |                                                                                                                                                | Bagho | ouse with Single Pickup (Ful        | Ei      | 99.0   | 0.002            | 0.001                 | 0.000             | 0.00              | 0.00                   | 0.00              |
| 44-021,29             | 0                          | No Device                |                |                  | 310                | 0                         | 0                                                    |                                                                                                                                                | None  |                                     |         | 0.0    | 0.000            | 0.000                 | 0.000             | 0.00              | 0.00                   | 0.00              |
| 44-020                | 8                          | Crushing, Dry - Tertiar  | у              |                  | 250                | 88,986                    | 18                                                   |                                                                                                                                                | Bagho | ouse with Single Pickup (Ful        | Ei      | 99.0   | 1.850            | 0.112                 | 0.035             | 0.82              | 0.05                   | 0.02              |
| 44-037                | 4                          | Transfer Point (Note 2   | )              |                  | NA                 | 88,986                    | 18                                                   |                                                                                                                                                | Bagho | ouse with Single Pickup (Ful        | Ei      | 99.0   | 0.002            | 0.001                 | 0.000             | 0.00              | 0.00                   | 0.00              |
| 44-038                | 17                         | Feeder                   |                |                  | 1.5                | 88,986                    | 18                                                   |                                                                                                                                                | Bagho | ouse with Single Pickup (Ful        | Eı      | 99.0   | 0.002            | 0.001                 | 0.000             | 0.00              | 0.00                   | 0.00              |
| 44-039                | 5                          | Conveyor (Note 2)        |                |                  | 2.5                | 88,986                    | 18                                                   |                                                                                                                                                | Bagho | ouse with Single Pickup (Ful        | Eı      | 99.0   | 0.002            | 0.001                 | 0.000             | 0.00              | 0.00                   | 0.00              |
| 44-045                | 4                          | Transfer Point (Note 2   | )              |                  | 2.5                | 81,173                    | 18                                                   |                                                                                                                                                | Bagho | ouse with Single Pickup (Ful        | Eı      | 99.0   | 0.002            | 0.001                 | 0.000             | 0.00              | 0.00                   | 0.00              |
| 44-053                | 4                          | Transfer Point (Note 2   | )              |                  | 2.5                | 68,117                    | 18                                                   |                                                                                                                                                | Bagho | ouse with Single Pickup (Ful        | E       | 99.0   | 0.002            | 0.001                 | 0.000             | 0.00              | 0.00                   | 0.00              |
| 44-041                | 4                          | Transfer Point (Note 2   | )              |                  | 50                 | 68,117                    | 18                                                   |                                                                                                                                                | Bagho | ouse with Single Pickup (Ful        | Eı      | 99.0   | 0.002            | 0.001                 | 0.000             | 0.00              | 0.00                   | 0.00              |
| 44-043                | 17                         | Feeder                   |                |                  | 2.5                | 68,117                    | 18                                                   |                                                                                                                                                | Bagho | ouse with Single Pickup (Ful        |         | 99.0   | 0.002            | 0.001                 | 0.000             | 0.00              | 0.00                   | 0.00              |
| 44-047                | 4                          | Transfer Point (Note 2   | )              |                  | NA                 | 7,812                     | 18                                                   |                                                                                                                                                | Bagho | ouse with Single Pickup (Ful        |         | 99.0   | 0.002            | 0.001                 | 0.000             | 0.00              | 0.00                   | 0.00              |
| 44-050                | 17                         | Feeder                   |                |                  | 2.5                | 7,812                     | 18                                                   |                                                                                                                                                | Bagho | ouse with Single Pickup (Ful        | Ei      | 99.0   | 0.002            | 0.001                 | 0.000             | 0.00              | 0.00                   | 0.00              |
|                       |                            |                          | L HORSE        |                  | 634                |                           |                                                      |                                                                                                                                                |       |                                     |         |        |                  |                       |                   |                   |                        |                   |
|                       |                            | AVERAGE T                | HROUGH         | IPUT PEF         | R DEVICE           | 66,004                    |                                                      |                                                                                                                                                |       |                                     |         |        |                  |                       |                   |                   |                        |                   |

|                      |                 | EMISSION | I IN | VENTORY INPUTS                            |          |           |                   |
|----------------------|-----------------|----------|------|-------------------------------------------|----------|-----------|-------------------|
| I                    | DEVICE DATA     |          |      | EMISSION DATA                             |          |           |                   |
| PERMIT ID            | B003935         |          |      | ANNUAL EMISSIONS (tpy)                    | PM       | $PM_{10}$ | PM <sub>2.5</sub> |
| NUMBER OF DEVICES    | 14              |          |      | UNCONTROLLED                              | 95.203   | 6.110     | 1.910             |
| EQUIPMENT SIZE (bhp) | 634             |          |      | CONTROLLED                                | 0.892    | 0.058     | 0.018             |
| P                    | ROCESS DATA     |          |      | EMISSION FACTOR (lb/ton)                  | $>\!\!<$ | ><        |                   |
| PRO                  | CESS RATE (tpy) | 88,986   |      | UNCONTROLLED                              | 2.1397   | 0.1373    | 0.0429            |
| MAX. DE              | SIGN RATE (tph) | 100      |      | CONTROLLED                                | 0.0200   | 0.0013    | 0.0004            |
| MAX. HOURLY PRODUC   | TION RATE (tph) | 100      |      | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | $>\!\!<$ | 0.0645    | 0.0202            |
| AVE. HOURLY PRODUC   | TION RATE (tph) | 36       |      | OVERALL EFFICIENCY                        | 99.06    | 99.06     | 99.06             |

| EMISSION                             | 1                         |                                                                           |                                      |           |                               |                                      | HARP                  | / CE | IDARS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                                           |                                           |                                  |                              | FO                           | RM                           |  |  |
|--------------------------------------|---------------------------|---------------------------------------------------------------------------|--------------------------------------|-----------|-------------------------------|--------------------------------------|-----------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|------------------------------|------------------------------|------------------------------|--|--|
| YEAR                                 |                           |                                                                           |                                      |           |                               | M                                    | INING                 | OPE  | RATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                           |                                           |                                  |                              | MI                           | NE                           |  |  |
| 200 8                                |                           |                                                                           |                                      |           | AGGRE                         | EGATE HAN                            | DLING                 | , CR | USHING & SCREENIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IG #1                        |                                           |                                           |                                  |                              | A                            | GG                           |  |  |
|                                      |                           |                                                                           |                                      | I         | - COLOR                       | CODE                                 |                       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                                           | II - MANI                                 | DATORY I                         | NFORMAT                      | ION                          |                              |  |  |
| DAT                                  | A INPUT B                 | BY FACILITY                                                               |                                      |           |                               | HER WORKSHEET                        |                       |      | OUTPUT DATA TO CEIDARS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | W DIAGRA                                  |                                           |                                  |                              |                              |                              |  |  |
| COMPANY N                            | AME Om                    | ıya California İnc                                                        |                                      | III - FAC |                               | FORMATION<br>PANY # 90               |                       |      | PERMIT # B   0   0   7   6   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | CK III - AL<br>CK VIII - A                |                                           | HOURS OP                         | ERATED                       |                              |                              |  |  |
| FACILITY N.                          |                           | *                                                                         |                                      |           | _                             | ILITY # 461                          |                       |      | DEVICE ID 7674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |                                           | HROUGHP                          |                              |                              |                              |  |  |
| PROCESS N.                           | AME Roll                  |                                                                           |                                      |           |                               | RY ID # 9000461                      |                       | PR   | OCESS ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BLO                          |                                           |                                           |                                  | (%) OF MA                    | TERIAL                       |                              |  |  |
| UTM ZONE                             | 1.1                       | IV<br>UTM EAST (                                                          |                                      |           |                               | R PROCESS                            | DTIL (L.)             | 12 0 | 0 4 . 4 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DI O                         |                                           |                                           | G THE SY<br>'B', 'E', 'F' &      |                              |                              |                              |  |  |
|                                      |                           | ) 3 4 . 3 8 3                                                             | 7                                    | LC        | NGITUDE                       | (deg.) 1 1 6                         | . 9 4 2               | 2 2  | 0 4 . 4 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BLO                          | CK AIII, C                                | OLUMNS                                    | Б, Е, Г о                        | 2 G                          |                              |                              |  |  |
| V - TYPE OF                          |                           | VI - TYPE OF                                                              |                                      |           |                               |                                      | MATERIA               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                                           |                                           |                                  | PUT (tons p                  |                              |                              |  |  |
| STATIONAR' PORTABL                   |                           | CRUSHERS SCREENS                                                          | Х                                    |           | RANSFER<br>STORAGE            |                                      | neck all that<br>ROCK |      | B HOURS per DAY DAYS per WEEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                           |                                           | CTUAL AN<br>URLY (ave                     |                                  | 1                            | 88,119 T                     | ons/Yr.<br>TPH               |  |  |
| OTHE                                 |                           | _                                                                         | х                                    |           | DAD OUT                       | X                                    | SAND                  |      | WEEK per YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52                           |                                           | DESIGN                                    |                                  |                              | 100.0                        | TPH                          |  |  |
| COMMENT                              | ΓS                        | OTHERS                                                                    |                                      |           |                               |                                      | IESTONE               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2600                         |                                           |                                           |                                  | l) / Actual Hour             |                              | erated)                      |  |  |
|                                      |                           | COMMENTS                                                                  |                                      |           |                               | LA                                   | A ROCK<br>OTHER       | -    | ACT. HRS per YR  CAL. Hrs/Yr = Hr/Dy*Dy/Wk*W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2500                         |                                           |                                           |                                  | E CONTEN'<br>NTERING S       |                              | %                            |  |  |
|                                      | XI                        | - TYPE OF OPERAT                                                          | ION AND                              | / OR DE   | VICE                          |                                      |                       |      | XII - TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                                           |                                           |                                  | VILIUI VO D                  | 10                           | 70                           |  |  |
|                                      |                           | VICE OR SYSTEM                                                            | CODE                                 |           |                               | CE OR SYSTEM                         | COD                   | _    | TYPE OF CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (                            | CODE                                      |                                           |                                  | OF CONTR                     | OL                           |                              |  |  |
| 0 No Devi                            |                           | truck, pile (Note 2)                                                      | 11                                   |           | g, Wet Was<br>ing - Pneum     | hing (Note 4)                        | 0                     | Non  | er Spray, Point of Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           | avel Bed Fi                               | lters<br>Low Efficie             |                              |                              |                              |  |  |
|                                      | (Note 2)                  | nuck, pile (Note 2)                                                       | 13                                   |           | ing - Fliculi<br>ing - Bucket |                                      | 2                     |      | y with Additives, Point of Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ion                          |                                           |                                           | (Med Effici                      |                              |                              |                              |  |  |
|                                      | (Note 2)                  |                                                                           | 14                                   |           |                               | nveyor (Note 2)                      | 3                     |      | veyor with Half Cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                                           |                                           | ber (High E                      |                              |                              |                              |  |  |
|                                      | Point (No<br>or (Note 2)  |                                                                           | 15<br>16                             |           | charge to Ta                  | nk Truck<br>Truck (Note 2)           | 5                     |      | veyor with Three Quarter Cover<br>veyor with Full Cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del>                  |                                           |                                           | Multiple P                       | ickups<br>kup (Unenck        | nead)                        |                              |  |  |
|                                      | g, Dry - Pri              |                                                                           | 17                                   | Feeder    | Орен гор 1                    | ruck (Note 2)                        | 6                     |      | ess Enclosure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |                                           |                                           |                                  | kup (Partial l               |                              |                              |  |  |
|                                      | g, Dry - Se               |                                                                           | ndary 18 See Lookup Table "EmFac" fo |           |                               |                                      |                       |      | 7 Gravity Separator 18 Baghouse with Single Pickup (Full Er<br>8 Cyclone - Simple 19 Baghouse with Single Pickup (Attach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                                           |                                           |                                  |                              |                              |                              |  |  |
|                                      | g, Dry - Te<br>g, Wet (No |                                                                           | 19                                   |           |                               | EmFac" for data<br>EmFac" for data   | 8                     |      | one - Simple<br>one - Multiple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                  |                                           | ghouse with<br>ctrostatic P               |                                  | kup (Attache                 | ed)                          |                              |  |  |
| 10 Screenin                          |                           | 5,0                                                                       |                                      |           |                               | EmFac" for data                      | 10                    |      | dscreen, Windward Side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                           |                                           | able "ConE                       | ff" for data                 |                              |                              |  |  |
|                                      |                           |                                                                           |                                      |           |                               | XIII - El                            | MISSIO                | N C  | ALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                                           |                                           |                                  |                              |                              |                              |  |  |
| EQUIPMENT                            |                           | NAME OF                                                                   | DEVICE                               |           | MOTOR                         | THROUGHPUT                           |                       |      | MISSION CONTROL DEVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i                            |                                           | SION FAC                                  |                                  |                              | SSION RA                     |                              |  |  |
| ID<br>NUMBER                         | CODE<br>NO                |                                                                           |                                      |           | BHP                           | TONS / YEAR                          | CODE                  | DsF  | NAME OF DEVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EFF %                        |                                           | NDS PER                                   |                                  |                              | IS PER YE                    |                              |  |  |
| (A)                                  | (B)                       | (C)                                                                       |                                      |           | (D)                           | (E)                                  | (F)                   | (G)  | (H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (I)                          | PM <sub>30</sub><br>(J)                   | PM <sub>10</sub><br>(K)                   | PM <sub>2.5</sub><br>(L)         | PM <sub>30</sub><br>(M)      | PM <sub>10</sub><br>(N)      | PM <sub>2.5</sub><br>(O)     |  |  |
| 45-010                               |                           | Silo, Filling - Pneumati                                                  |                                      |           | NA                            | 88,119                               | 19                    |      | Baghouse with Single Pickup (Attach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.5                         | 0.270                                     | 0.016                                     | 0.005                            | 0.06                         | 0.00                         | 0.00                         |  |  |
| 45-013                               | 4                         | Transfer Point (Note 2                                                    | )                                    |           | 5                             | 88,119                               | 18                    |      | Baghouse with Single Pickup (Full E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.0                         | 0.002                                     | 0.001                                     | 0.000                            | 0.00                         | 0.00                         | 0.00                         |  |  |
| 45-019                               | 17                        | Feeder                                                                    |                                      |           | 2.7                           | 88,119                               | 18                    |      | Baghouse with Single Pickup (Full E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.0                         | 0.002                                     | 0.001                                     | 0.000                            | 0.00                         | 0.00                         | 0.00                         |  |  |
| 45-020,21                            | 0                         | No Device                                                                 |                                      |           | 325                           | 0                                    | 0                     |      | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                          | 0.000                                     | 0.000                                     | 0.000                            | 0.00                         | 0.00                         | 0.00                         |  |  |
| 45-020                               | 8                         | Crushing, Dry - Tertiar                                                   | у                                    |           | 250                           | 88,119                               | 18                    |      | Baghouse with Single Pickup (Full E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.0                         | 1.850                                     | 0.112                                     | 0.035                            | 0.82                         | 0.05                         | 0.02                         |  |  |
| 45-037                               | 4                         | Transfer Point (Note 2                                                    | )                                    |           | NA                            | 88,119                               | 18                    |      | Baghouse with Single Pickup (Full E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.0                         | 0.002                                     | 0.001                                     | 0.000                            | 0.00                         | 0.00                         | 0.00                         |  |  |
| 45-038                               | 4                         | Transfer Point (Note 2                                                    | )                                    |           | 0.5                           | 88,119                               | 18                    |      | Baghouse with Single Pickup (Full E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.0                         | 0.002                                     | 0.001                                     | 0.000                            | 0.00                         | 0.00                         | 0.00                         |  |  |
| 45-039                               | 5                         | Conveyor (Note 2)                                                         |                                      |           | 10                            | 88,119                               | 18                    |      | Baghouse with Single Pickup (Full E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.0                         | 0.002                                     | 0.001                                     | 0.000                            | 0.00                         | 0.00                         | 0.00                         |  |  |
| 45-053                               |                           |                                                                           |                                      |           |                               |                                      |                       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                                           |                                           |                                  |                              | 0.00                         | 0.00                         |  |  |
|                                      | 5                         | Conveyor (Note 2)                                                         |                                      |           | 3                             | 87,418                               | 18                    |      | Baghouse with Single Pickup (Full E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.0                         | 0.002                                     | 0.001                                     | 0.000                            | 0.00                         |                              |                              |  |  |
| 45-041                               |                           | Conveyor (Note 2) Transfer Point (Note 2)                                 | )                                    |           | 3<br>50                       | 87,418<br>76,675                     | 18<br>18              |      | Baghouse with Single Pickup (Full Education Baghouse With | 99.0<br>99.0                 | 0.002                                     | 0.001                                     | 0.000                            | 0.00                         | 0.00                         | 0.00                         |  |  |
| 45-041<br>45-043                     | 4                         | • , , ,                                                                   | )                                    |           |                               | ,                                    |                       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                                           |                                           |                                  |                              |                              | 0.00                         |  |  |
|                                      | 4<br>17                   | Transfer Point (Note 2                                                    | )                                    |           | 50                            | 76,675                               | 18                    |      | Baghouse with Single Pickup (Full E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.0                         | 0.002                                     | 0.001                                     | 0.000                            | 0.00                         | 0.00                         |                              |  |  |
| 45-043                               | 4<br>17                   | Transfer Point (Note 2                                                    | ,                                    |           | 50                            | 76,675<br>88,119                     | 18                    |      | Baghouse with Single Pickup (Full E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.0<br>99.0                 | 0.002<br>0.002                            | 0.001                                     | 0.000                            | 0.00                         | 0.00                         | 0.00                         |  |  |
| 45-043<br>45-045                     | 4<br>17<br>17<br>4        | Transfer Point (Note 2 Feeder Feeder                                      | ,                                    |           | 50<br>1<br>1.5                | 76,675<br>88,119<br>77,375           | 18<br>18<br>18        |      | Baghouse with Single Pickup (Full Ed<br>Baghouse with Single Pickup (Full Ed<br>Baghouse with Single Pickup (Full Ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.0<br>99.0<br>99.0         | 0.002<br>0.002<br>0.002                   | 0.001<br>0.001<br>0.001                   | 0.000<br>0.000<br>0.000          | 0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00         | 0.00                         |  |  |
| 45-043<br>45-045<br>45-047           | 4<br>17<br>17<br>4<br>17  | Transfer Point (Note 2 Feeder Feeder Transfer Point (Note 2               | ,                                    |           | 50<br>1<br>1.5<br>150         | 76,675<br>88,119<br>77,375<br>10,743 | 18<br>18<br>18<br>18  |      | Baghouse with Single Pickup (Full E<br>Baghouse with Single Pickup (Full E<br>Baghouse with Single Pickup (Full E<br>Baghouse with Single Pickup (Full E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99.0<br>99.0<br>99.0<br>99.0 | 0.002<br>0.002<br>0.002<br>0.002          | 0.001<br>0.001<br>0.001<br>0.001          | 0.000<br>0.000<br>0.000<br>0.000 | 0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00         |  |  |
| 45-043<br>45-045<br>45-047<br>45-048 | 4<br>17<br>17<br>4<br>17  | Transfer Point (Note 2 Feeder Feeder Transfer Point (Note 2 Feeder Feeder | ,                                    | POWER     | 50<br>1<br>1.5<br>150<br>0.75 | 76,675<br>88,119<br>77,375<br>10,743 | 18<br>18<br>18<br>18  |      | Baghouse with Single Pickup (Full E<br>Baghouse with Single Pickup (Full E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99.0<br>99.0<br>99.0<br>99.0 | 0.002<br>0.002<br>0.002<br>0.002<br>0.002 | 0.001<br>0.001<br>0.001<br>0.001<br>0.001 | 0.000<br>0.000<br>0.000<br>0.000 | 0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00 |  |  |

|                      |                 | EMISSIO | N IN | NVENTORY INPUTS                           |        |           |                   |
|----------------------|-----------------|---------|------|-------------------------------------------|--------|-----------|-------------------|
| Ī                    | EVICE DATA      | 1       |      | EMISSION DATA                             |        |           |                   |
| PERMIT ID            | B007674         |         |      | ANNUAL EMISSIONS (tpy)                    | PM     | $PM_{10}$ | PM <sub>2.5</sub> |
| NUMBER OF DEVICES    | 15              |         |      | UNCONTROLLED                              | 94.350 | 6.086     | 1.903             |
| EQUIPMENT SIZE (bhp) | 800.45          |         |      | CONTROLLED                                | 0.884  | 0.057     | 0.018             |
| PI                   | ROCESS DAT      | A       |      | EMISSION FACTOR (lb/ton)                  | ><     | ><        |                   |
| PROG                 | CESS RATE (tpy) | 88,119  |      | UNCONTROLLED                              | 2.1414 | 0.1381    | 0.0432            |
| MAX. DES             | SIGN RATE (tph) | 100     |      | CONTROLLED                                | 0.0201 | 0.0013    | 0.0004            |
| MAX. HOURLY PRODUCT  | TION RATE (tph) | 100     |      | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | ><     | 0.0649    | 0.0203            |
| AVE. HOURLY PRODUCT  | TION RATE (tph) | 35      |      | OVERALL EFFICIENCY                        | 99.06  | 99.06     | 99.06             |




|                      |                 | EMISSIO | N IN | IVENTORY INPUTS                           |             |           |                   |
|----------------------|-----------------|---------|------|-------------------------------------------|-------------|-----------|-------------------|
| I                    | DEVICE DATA     | A       |      | EMISSION DATA                             |             |           |                   |
| PERMIT ID            | B002003         |         |      | ANNUAL EMISSIONS (tpy)                    | PM          | $PM_{10}$ | PM <sub>2.5</sub> |
| NUMBER OF DEVICES    | 7               |         |      | UNCONTROLLED                              | 1.120       | 0.089     | 0.028             |
| EQUIPMENT SIZE (bhp) | 171             |         |      | CONTROLLED                                | 0.006       | 0.001     | 0.000             |
| P                    | ROCESS DAT      | A       |      | EMISSION FACTOR (lb/ton)                  | $\times$    | $\times$  |                   |
| PRO                  | CESS RATE (tpy) | 7,881   |      | UNCONTROLLED                              | 0.2841      | 0.0227    | 0.0071            |
| MAX. DE              | SIGN RATE (tph) | 25      |      | CONTROLLED                                | 0.0015      | 0.0001    | 0.0000            |
| MAX. HOURLY PRODUC   | TION RATE (tph) | 25      |      | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | $\geq \leq$ | 0.0984    | 0.0308            |
| AVE. HOURLY PRODUC   | TION RATE (tph) | 3       |      | OVERALL EFFICIENCY                        | 99.48       | 99.35     | 99.35             |

| EMISSION    | 1                                                                      | HARP / CEIDARS                                                                                                                                            |                |                             |                                                                               |              |                                   |                                                                      |             |                                                                               |                             |                   |                                 | FO               | RM                |  |
|-------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|-------------------------------------------------------------------------------|--------------|-----------------------------------|----------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------|-----------------------------|-------------------|---------------------------------|------------------|-------------------|--|
| YEAR        |                                                                        |                                                                                                                                                           |                |                             | M                                                                             | INING        | OPE                               | RATIONS                                                              |             |                                                                               |                             |                   |                                 | MI               | NE                |  |
| 200 8       |                                                                        |                                                                                                                                                           |                | AGGRE                       | GATE HAN                                                                      | DLING        | . CRI                             | USHING & SCREENI                                                     | NG #1       |                                                                               |                             |                   |                                 | A                | GG                |  |
|             |                                                                        |                                                                                                                                                           |                | - COLOR                     |                                                                               |              | ,                                 |                                                                      |             |                                                                               | II - MANI                   | DATORY I          | NFORMAT                         |                  |                   |  |
| DAT         | A INPUT B                                                              | Y FACILITY                                                                                                                                                |                |                             | HER WORKSHEET                                                                 |              |                                   | OUTPUT DATA TO CEIDARS                                               | FL          | OW DIAGR                                                                      |                             |                   |                                 |                  |                   |  |
|             |                                                                        |                                                                                                                                                           | III - FA       |                             | FORMATION                                                                     |              |                                   |                                                                      |             | OCK III - A                                                                   |                             |                   |                                 |                  |                   |  |
|             |                                                                        | ya California Inc                                                                                                                                         |                |                             | PANY # 90                                                                     |              |                                   | PERMIT # B 0 0 0 7 5                                                 | <del></del> | BLOCK VIII - ACTUAL HOURS OPERATED                                            |                             |                   |                                 |                  |                   |  |
| FACILITY N  |                                                                        |                                                                                                                                                           |                |                             | ILITY # 461                                                                   |              |                                   | EVICE ID 754                                                         |             | BLOCK IX - ANNUAL THROUGHPUT (tpy) BLOCK X - MOISTURE CONTENT (%) OF MATERIAL |                             |                   |                                 |                  |                   |  |
| PROCESS N.  | AME Roc                                                                | k Storage System/Plan                                                                                                                                     |                |                             | RY ID # 9000461                                                               | PROCESS ID   |                                   |                                                                      |             | OCK X - M                                                                     |                             |                   |                                 | TERIAL           |                   |  |
| LITM ZONE   | 11                                                                     |                                                                                                                                                           | - MAP COORDIN  |                             |                                                                               | DTII (1)     | 2 0                               | 0 4 4 1 5                                                            | DI          | OCK VIII (                                                                    |                             | G THE SY          |                                 |                  |                   |  |
| UTM ZONE 11 |                                                                        |                                                                                                                                                           |                |                             |                                                                               |              |                                   |                                                                      |             | OLUMINS                                                                       | В, Е, Го                    | 2 0               |                                 |                  |                   |  |
| V - TYPE OF |                                                                        |                                                                                                                                                           | EQUIPMENT, che |                             |                                                                               | MATERL       |                                   | PES VIII - OPERATING S                                               | CHEDIII     |                                                                               | IV . T                      | THROUGH           | PUT (tons p                     | er veer)         |                   |  |
| STATIONAR   |                                                                        | CRUSHERS                                                                                                                                                  |                | RANSFER                     |                                                                               | eck all that |                                   |                                                                      |             |                                                                               | CTUAL AN                    |                   | , ,                             | - /              | ons/Yr.           |  |
| PORTABL     |                                                                        | SCREENS                                                                                                                                                   |                | TORAGE                      |                                                                               | ROCK         |                                   | DAYS per WEEK                                                        |             |                                                                               | URLY (av                    |                   |                                 | 144              | TPH               |  |
| OTHE        |                                                                        | CONVEYORS                                                                                                                                                 |                | DAD OUT                     |                                                                               | SAND         |                                   | WEEK per YEAR                                                        |             |                                                                               | . DESIĞN                    | - ,               |                                 | 300.0            | TPH               |  |
| COMMENT     | ΓS                                                                     | OTHERS                                                                                                                                                    |                |                             | LIM                                                                           | ESTONE       | х                                 | CAL. HRS per YR                                                      | 260         | 00 но                                                                         | urly (average) =            | Annual (actua     | l) / Actual Hour                | s per Year (op   | erated)           |  |
|             | _                                                                      | COMMENTS                                                                                                                                                  |                |                             | LAV                                                                           | A ROCK       |                                   | ACT. HRS per YR                                                      | 250         | 00                                                                            | X -                         | MOISTUR           | E CONTEN                        | T (%)            |                   |  |
|             |                                                                        |                                                                                                                                                           |                |                             |                                                                               | OTHER        |                                   |                                                                      |             |                                                                               |                             |                   |                                 |                  | %                 |  |
|             | XI - TYPE OF OPERATION AND / OR DEVICE XII - TYPE OF CONTROL EQUIPMENT |                                                                                                                                                           |                |                             |                                                                               |              |                                   |                                                                      |             |                                                                               |                             |                   |                                 |                  |                   |  |
|             |                                                                        | DEVICE OR SYSTEM CODE NAME OF DEVICE OR SYSTEM CODE TYPE OF CONTROL CODE TYPE OF CONTROL  11 Screening, Wet Washing (Note 4) 0 None 11 Gravel Bed Filters |                |                             |                                                                               |              |                                   |                                                                      |             |                                                                               |                             | OL                |                                 |                  |                   |  |
| 0 No Devi   |                                                                        | 1 7 07 (2)                                                                                                                                                |                |                             |                                                                               | 0            | None                              |                                                                      |             |                                                                               | ravel Bed Fi                |                   |                                 |                  |                   |  |
|             | (Note 2)                                                               | ruck, pile (Note 2)                                                                                                                                       |                | ing - Pneum<br>ing - Bucket |                                                                               | 2            |                                   | er Spray, Point of Application<br>y with Additives, Point of Applica | ation       |                                                                               | ray Tower (<br>et Scrubber  |                   |                                 |                  |                   |  |
|             | (Note 2)                                                               |                                                                                                                                                           |                |                             | nveyor (Note 2)                                                               | 3            |                                   | eyor with Half Cover                                                 | ation       |                                                                               | enturi Scrub                |                   |                                 |                  |                   |  |
|             | Point (No                                                              | ite 2)                                                                                                                                                    |                | harge to Ta                 |                                                                               | 4            |                                   | eyor with Three Quarter Cover                                        |             |                                                                               | ghouse with                 |                   |                                 |                  |                   |  |
|             | or (Note 2)                                                            |                                                                                                                                                           |                |                             | ruck (Note 2)                                                                 |              |                                   |                                                                      |             |                                                                               |                             |                   |                                 |                  |                   |  |
|             | g, Dry - Pri                                                           | mary                                                                                                                                                      | 17 Feeder      |                             | 6 Process Enclosure 17 Baghouse with Single Pickup (F                         |              |                                   |                                                                      |             |                                                                               |                             |                   | kup (Partial                    | Enclosed)        |                   |  |
|             | g, Dry - Se                                                            |                                                                                                                                                           |                |                             | Table "EmFac" for data 7 Gravity Separator 18 Baghouse with Single Pickup (Fu |              |                                   |                                                                      |             |                                                                               |                             |                   |                                 |                  |                   |  |
|             | g, Dry - Te                                                            |                                                                                                                                                           |                |                             |                                                                               |              |                                   |                                                                      |             |                                                                               |                             |                   | e with Single Pickup (Attached) |                  |                   |  |
| ,           | g, Wet (No                                                             | ote 3)                                                                                                                                                    |                |                             | EmFac" for data                                                               | 9            | -                                 | one - Multiple<br>Iscreen, Windward Side                             |             |                                                                               | ectrostatic P<br>e Lookup T |                   | 001 C 1 4                       |                  |                   |  |
| 10 Screenin | ig, Dry                                                                |                                                                                                                                                           | 21 See Looi    | cup rable r                 |                                                                               |              |                                   |                                                                      |             | 21 50                                                                         | e Lookup 1                  | able Cone.        | ii for data                     |                  |                   |  |
|             |                                                                        |                                                                                                                                                           |                |                             |                                                                               |              |                                   | ALCULATIONS                                                          |             |                                                                               |                             |                   |                                 |                  |                   |  |
| `           | DEVICE                                                                 | NAME OF I                                                                                                                                                 | DEVICE         | MOTOR                       | THROUGHPUT                                                                    |              |                                   | MISSION CONTROL DEVICE                                               | 1           |                                                                               | SSION FAC                   |                   |                                 | ISSION RA        |                   |  |
| ID          | CODE                                                                   |                                                                                                                                                           |                | BHP                         | TONS / YEAR                                                                   | CODE         | DsF                               | NAME OF DEVICE                                                       | EFF %       |                                                                               | JNDS PER                    | 1                 | 1                               | NS PER YE        |                   |  |
| NUMBER      | NO (D)                                                                 | (6)                                                                                                                                                       |                | (D)                         | OFF)                                                                          | (Tr)         | (6)                               | an.                                                                  |             | PM <sub>30</sub>                                                              | PM <sub>10</sub>            | PM <sub>2.5</sub> | PM <sub>30</sub>                | PM <sub>10</sub> | PM <sub>2.5</sub> |  |
| (A)         | (B)                                                                    | (C)                                                                                                                                                       |                | (D)                         | (E)                                                                           | (F)          | (G)                               | (H)                                                                  | (I)         | (J)                                                                           | (K)                         | (L)               | (M)                             | (N)              | (O)               |  |
| 17          |                                                                        | Dump to Hopper, truck                                                                                                                                     |                | NA                          | 360,117                                                                       | 1            |                                   | Water Spray, Point of Application                                    | 75          |                                                                               | 0.014                       | 0.004             | 1.30                            | 0.62             | 0.19              |  |
| 18          |                                                                        | Transfer Point (Note 2)                                                                                                                                   | NA             | 360,117                     | 1                                                                             |              | Water Spray, Point of Application | 75                                                                   |             | 0.014                                                                         | 0.004                       | 1.30              | 0.62                            | 0.19             |                   |  |
| 18.1        |                                                                        | Grizzly (Note 2)                                                                                                                                          | 30             | 360,117                     | 1                                                                             |              | Water Spray, Point of Application | 75                                                                   | .0 0.029    | 0.014                                                                         | 0.004                       | 1.30              | 0.62                            | 0.19             |                   |  |
| 19          | 7 Crushing, Dry - Secondary 150 360,1                                  |                                                                                                                                                           |                |                             |                                                                               | 15           |                                   | Baghouse with Multiple Pickups                                       | 95          | .0 0.560                                                                      | 0.034                       | 0.010             | 5.04                            | 0.31             | 0.09              |  |
| 20          | 4                                                                      | Transfer Point (Note 2)                                                                                                                                   | )              | NA                          | 360,117                                                                       | 15           |                                   | Baghouse with Multiple Pickups                                       | 95          | .0 0.029                                                                      | 0.014                       | 0.004             | 0.26                            | 0.12             | 0.04              |  |
| 21          | 5                                                                      | Conveyor (Note 2)                                                                                                                                         |                | 20                          | 360,117                                                                       | 15           |                                   | Baghouse with Multiple Pickups                                       | 95          | .0 0.029                                                                      | 0.014                       | 0.004             | 0.26                            | 0.12             | 0.04              |  |
| 22          | 5                                                                      | Conveyor (Note 2)                                                                                                                                         |                | 43                          | 360,117                                                                       | 1            |                                   | Water Spray, Point of Application                                    | 75          | .0 0.029                                                                      | 0.014                       | 0.004             | 1.30                            | 0.62             | 0.19              |  |
|             |                                                                        | TOTAL                                                                                                                                                     | L HORSEPOWER   | 243                         |                                                                               | _            |                                   |                                                                      |             |                                                                               |                             |                   |                                 |                  |                   |  |
|             |                                                                        | AVERAGE TI                                                                                                                                                | HROUGHPUT PER  | DEVICE                      | 360.117                                                                       |              |                                   |                                                                      |             |                                                                               |                             |                   |                                 |                  |                   |  |

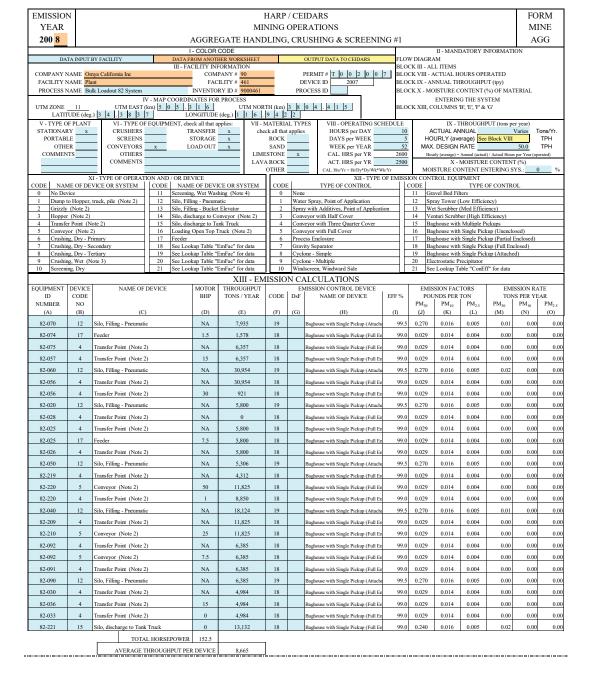
|                                       | EMISSION INVENTORY INPUTS |         |                                           |                          |         |           |                   |  |  |  |  |  |  |
|---------------------------------------|---------------------------|---------|-------------------------------------------|--------------------------|---------|-----------|-------------------|--|--|--|--|--|--|
| Ī                                     | DEVICE DATA               | ·       |                                           | EMISSION DATA            |         |           |                   |  |  |  |  |  |  |
| PERMIT ID                             | B000754                   |         |                                           | ANNUAL EMISSIONS (tpy)   | PM      | $PM_{10}$ | PM <sub>2.5</sub> |  |  |  |  |  |  |
| NUMBER OF DEVICES                     | 7                         |         |                                           | UNCONTROLLED             | 132.065 | 20.894    | 6.443             |  |  |  |  |  |  |
| EQUIPMENT SIZE (bhp)                  | 243                       |         |                                           | CONTROLLED               | 10.768  | 3.014     | 0.941             |  |  |  |  |  |  |
| Pl                                    | ROCESS DATA               | A       |                                           | EMISSION FACTOR (lb/ton) | ><      | ><        |                   |  |  |  |  |  |  |
| PROG                                  | CESS RATE (tpy)           | 360,117 |                                           | UNCONTROLLED             | 0.7335  | 0.1160    | 0.0358            |  |  |  |  |  |  |
| MAX. DES                              | SIGN RATE (tph)           | 300     |                                           | CONTROLLED               | 0.0598  | 0.0167    | 0.0052            |  |  |  |  |  |  |
| MAX. HOURLY PRODUCTION RATE (tph) 300 |                           |         | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | $>\!\!<$                 | 0.2799  | 0.0874    |                   |  |  |  |  |  |  |
| AVE. HOURLY PRODUCTION RATE (tph) 144 |                           |         |                                           | OVERALL EFFICIENCY       | 91.85   | 85.57     | 85.39             |  |  |  |  |  |  |

| EMISSIO                                                                            | N                             | HARP / CEIDARS                     |            |           |             |                                                                                                                                                   |                                                        |                                                                                                      |                                          |                                |                  |             |                                                                               |                                                                       | FO               | RM                        |                  |           |                   |
|------------------------------------------------------------------------------------|-------------------------------|------------------------------------|------------|-----------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------|------------------|-------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------|---------------------------|------------------|-----------|-------------------|
| YEAR                                                                               |                               |                                    |            |           |             |                                                                                                                                                   | MΠ                                                     | NING                                                                                                 | OPEI                                     | RATION                         | IS               |             |                                                                               |                                                                       |                  |                           |                  | MI        | NE                |
| 200 8                                                                              |                               |                                    |            | A         | GGRE        | GATE H                                                                                                                                            | IANI                                                   | LING                                                                                                 | , CRI                                    | USHING                         | & SCRE           | EENING      | G#1                                                                           |                                                                       |                  |                           |                  | A         | GG                |
|                                                                                    |                               |                                    |            | I - (     | COLOR       | CODE                                                                                                                                              |                                                        |                                                                                                      |                                          |                                |                  |             |                                                                               |                                                                       | II - MANI        | DATORY II                 | NFORMAT          | ION       |                   |
| DA                                                                                 | TA INPUT I                    | BY FACILITY                        |            |           |             | HER WORKS                                                                                                                                         |                                                        |                                                                                                      | -                                        | OUTPUT DA                      | TA TO CEIDA      | ARS         |                                                                               | W DIAGRA                                                              |                  |                           |                  |           |                   |
| COMPANY                                                                            | VIII O                        | C PC 1 Y                           | III        | I - FACII |             | ORMATION                                                                                                                                          |                                                        |                                                                                                      |                                          | nens are a la                  | в 0 0 0          |             |                                                                               | CK III - AL                                                           |                  | OVIDA ODI                 | ED A TEED        |           |                   |
| FACILITY 1                                                                         |                               | nya California Inc                 |            |           |             | PANY # 90<br>ILITY # 461                                                                                                                          |                                                        |                                                                                                      |                                          | EVICE ID                       | 763              | / 6 3       |                                                                               | BLOCK VIII - ACTUAL HOURS OPERATED BLOCK IX - ANNUAL THROUGHPUT (tpy) |                  |                           |                  |           |                   |
| PROCESS 1                                                                          |                               |                                    |            | IN        |             | RY ID # 900                                                                                                                                       |                                                        |                                                                                                      |                                          | OCESS ID                       | 703              |             | BLOCK IX - ANNUAL THROUGHPUT (tpy) BLOCK X - MOISTURE CONTENT (%) OF MATERIAL |                                                                       |                  |                           |                  |           |                   |
| TROCESS                                                                            | VAIVIL OP                     |                                    | - MAP COO  |           |             |                                                                                                                                                   | 00+01                                                  |                                                                                                      | 1100                                     | OCESS ID                       |                  |             | BLO                                                                           |                                                                       |                  | G THE SY:                 |                  | ILKIAL    |                   |
| UTM ZONE                                                                           | 11                            | UTM EAST (I                        |            | 5 . 3     | 1 6         | UTN                                                                                                                                               | M NOR                                                  | TH (km)                                                                                              | 3 8                                      | 0 4 . 4                        | 1 5              |             | BLO                                                                           | CK XIII, CO                                                           |                  |                           |                  |           |                   |
| LATITUDE (deg.) 3   4   3   8   3   7   LONGITUDE (deg.) 1   1   6   9   4   2   2 |                               |                                    |            |           |             |                                                                                                                                                   |                                                        |                                                                                                      |                                          |                                |                  |             |                                                                               |                                                                       |                  |                           |                  |           |                   |
| V - TYPE C                                                                         | OF PLANT                      | VI - TYPE OF                       | EQUIPMEN   | T, check  | all that ap | oplies:                                                                                                                                           | VII - N                                                | //ATERIA                                                                                             | L TYP                                    |                                | II - OPERAT      |             | EDULE                                                                         |                                                                       | IX - T           | HROUGH                    | PUT (tons p      | er year)  |                   |
| STATIONAL                                                                          |                               |                                    | X          | che       | ck all that | applies                                                                                                                                           |                                                        | HOURS per D                                                                                          |                                          | 10                             |                  | CTUAL AN    |                                                                               |                                                                       | 2,300 T          | ons/Yr.                   |                  |           |                   |
| PORTAB                                                                             |                               | SCREENS                            |            | X         |             | ROCK                                                                                                                                              |                                                        | _                                                                                                    | DAYS per WE                              |                                | 5                |             | JRLY (ave                                                                     | - /                                                                   |                  | 1                         | TPH              |           |                   |
| OTH                                                                                |                               | CONVEYORS OTHERS                   | X          | LOA       | AD OUT      |                                                                                                                                                   | I D (T                                                 | SAND                                                                                                 |                                          |                                | VEEK per YE      |             | 52                                                                            |                                                                       | DESIGN           |                           |                  |           | TPH               |
| COMMEN                                                                             | N15                           | COMMENTS                           |            |           |             |                                                                                                                                                   |                                                        | A ROCK                                                                                               | х                                        |                                | AL. HRS per      |             | 2600<br>2500                                                                  | Hou                                                                   |                  |                           | l) / Actual Hour |           | erated)           |
|                                                                                    |                               |                                    |            |           |             |                                                                                                                                                   |                                                        | A ROCK ACT. HRS per YR 2500 X - MOISTURE CON CAL. Hrs/Yr = Hr/Dy*Dy/Wk*Wk/Yr MOISTURE CONTENT ENTERI |                                          |                                |                  |             |                                                                               |                                                                       |                  |                           | %                |           |                   |
|                                                                                    | X                             | I - TYPE OF OPERATI                | ON AND / O | R DEVI    | ICE         |                                                                                                                                                   |                                                        | 1                                                                                                    | XII - TYPE OF EMISSION CONTROL EQUIPMENT |                                |                  |             |                                                                               |                                                                       |                  |                           |                  |           | -                 |
| CODE NAM                                                                           | ME OF DE                      | VICE OR SYSTEM                     | CODE       | NAME (    | OF DEVI     | CE OR SYS                                                                                                                                         | TEM                                                    | CODE                                                                                                 | 3                                        | TYPE                           | E OF CONTR       |             |                                                                               | CODE                                                                  |                  |                           | OF CONTR         | OL        |                   |
| 0 No De                                                                            |                               |                                    |            |           |             | ning (Note 4                                                                                                                                      | ł)                                                     | 0                                                                                                    |                                          |                                |                  |             |                                                                               |                                                                       |                  |                           |                  |           |                   |
|                                                                                    |                               | truck, pile (Note 2)               | atic       |           | 1           |                                                                                                                                                   |                                                        | nt of Applicati                                                                                      |                                          |                                |                  |             | Low Efficie                                                                   |                                                                       |                  |                           |                  |           |                   |
|                                                                                    | y (Note 2)<br>r (Note 2)      |                                    |            |           |             |                                                                                                                                                   |                                                        | 3                                                                                                    |                                          | y with Additi<br>reyor with Ha | ives, Point of   | Application | 1                                                                             |                                                                       |                  | (Med Effici<br>er (High E |                  |           |                   |
|                                                                                    | er Point (No                  | ote 2)                             |            |           | arge to Con |                                                                                                                                                   | C 2)                                                   | 4                                                                                                    |                                          |                                | hree Quarter C   | Cover       | <del></del>                                                                   |                                                                       |                  | Multiple P                |                  |           |                   |
|                                                                                    | yor (Note 2                   |                                    |            |           |             | ruck (Note 2                                                                                                                                      | 2)                                                     | 5                                                                                                    |                                          | eyor with Fu                   |                  |             |                                                                               |                                                                       |                  |                           | cup (Unencle     | osed)     |                   |
|                                                                                    | ng, Dry - Pr                  |                                    |            | eder      |             |                                                                                                                                                   | 6 Process Enclosure 17 Baghouse with Single Pickup (Pa |                                                                                                      |                                          |                                |                  |             |                                                                               |                                                                       |                  |                           |                  |           |                   |
|                                                                                    | ng, Dry - Se                  |                                    |            |           |             | mFac" for data 7 Gravity Separator 18 Baghouse with Single Pickup (F                                                                              |                                                        |                                                                                                      |                                          |                                |                  |             |                                                                               |                                                                       |                  |                           |                  |           |                   |
|                                                                                    | ng, Dry - Te<br>ng, Wet (N    |                                    |            |           |             | ble "EmFac" for data 8 Cyclone - Simple 19 Baghouse with Single Pickup (A ble "EmFac" for data 9 Cyclone - Multiple 20 Electrostatic Precipitator |                                                        |                                                                                                      |                                          |                                |                  |             |                                                                               | cup (Attache                                                          | ed)              |                           |                  |           |                   |
| ,                                                                                  | ing, Wet (N                   | 016 3)                             |            |           |             | mFac" for da                                                                                                                                      |                                                        | 10                                                                                                   |                                          | lscreen, Wine                  |                  |             |                                                                               |                                                                       |                  | ble "ConEf                | f" for data      |           |                   |
|                                                                                    |                               | <u></u>                            |            |           |             |                                                                                                                                                   |                                                        |                                                                                                      | _                                        | ALCULA                         |                  |             |                                                                               |                                                                       |                  |                           |                  |           |                   |
| EQUIPMENT                                                                          | DEVICE                        | NAME OF I                          | DEVICE     |           | MOTOR       | THROUGH                                                                                                                                           |                                                        | 113310                                                                                               |                                          |                                | ONTROL DE        | VICE        |                                                                               | EMIC                                                                  | SION FAC         | TORC                      | EMI              | ISSION RA | TE                |
| ID                                                                                 | CODE                          | NAME OF I                          | DEVICE     | IN        | BHP         | TONS / Y                                                                                                                                          |                                                        | CODE                                                                                                 | DsF                                      |                                | IE OF DEVIC      |             | EFF %                                                                         |                                                                       | NDS PER          |                           |                  | ISSION KA |                   |
| NUMBER                                                                             | NO                            |                                    |            |           |             |                                                                                                                                                   |                                                        |                                                                                                      |                                          |                                |                  |             |                                                                               | PM <sub>30</sub>                                                      | PM <sub>10</sub> | PM <sub>2.5</sub>         | $PM_{30}$        | $PM_{10}$ | PM <sub>2.5</sub> |
| (A)                                                                                | (B)                           | (C)                                |            |           | (D)         | (E)                                                                                                                                               |                                                        | (F)                                                                                                  | (G)                                      |                                | (H)              |             | (I)                                                                           | (J)                                                                   | (K)              | (L)                       | (M)              | (N)       | (O)               |
| 36-001                                                                             | 17                            | Feeder                             |            |           | 13          | 2,300                                                                                                                                             | )                                                      | 15                                                                                                   |                                          | Baghouse wit                   | th Multiple Picl | kups        | 95.0                                                                          | 0.002                                                                 | 0.001            | 0.000                     | 0.00             | 0.00      | 0.00              |
| 36-002                                                                             | 5                             | Conveyor (Note 2)                  |            |           | 15          | 2,300                                                                                                                                             | )                                                      | 15                                                                                                   |                                          | Baghouse wit                   | th Multiple Picl | kups        | 95.0                                                                          | 0.002                                                                 | 0.001            | 0.000                     | 0.00             | 0.00      | 0.00              |
| 36-003                                                                             | 10                            | Screening, Dry                     |            |           | 15          | 2,300                                                                                                                                             | )                                                      | 15                                                                                                   |                                          | Baghouse wit                   | th Multiple Picl | kups        | 95.0                                                                          | 0.160                                                                 | 0.120            | 0.038                     | 0.01             | 0.01      | 0.00              |
| 36-004                                                                             | 11                            | Screening, Wet Washing (Note 4) 25 |            |           | 899         |                                                                                                                                                   | 0                                                      |                                                                                                      | None                                     |                                |                  | 0.0         | 0.000                                                                         | 0.000                                                                 | 0.000            | 0.00                      | 0.00             | 0.00      |                   |
| 36-005                                                                             | 17                            | 17 Feeder 5                        |            |           |             | 899                                                                                                                                               |                                                        | 13                                                                                                   |                                          | Wet Scrubber                   | r (Med Efficien  | icy)        | 95.0                                                                          | 0.002                                                                 | 0.001            | 0.000                     | 0.00             | 0.00      | 0.00              |
| 36-006                                                                             | 4 Transfer Point (Note 2) N/A |                                    |            |           |             | 899                                                                                                                                               |                                                        | 13                                                                                                   |                                          | Wet Scrubber                   | r (Med Efficien  | icy)        | 95.0                                                                          | 0.002                                                                 | 0.001            | 0.000                     | 0.00             | 0.00      | 0.00              |
| 36-008                                                                             | 5                             | 5 Conveyor (Note 2) 10 1,          |            |           |             | 1,400                                                                                                                                             | )                                                      | 1                                                                                                    |                                          | Water Spray,                   | , Point of Appli | ication     | 75.0                                                                          | 0.002                                                                 | 0.001            | 0.000                     | 0.00             | 0.00      | 0.00              |
| 36-007                                                                             | 5                             | Conveyor (Note 2)                  |            |           | 10          | 1,400                                                                                                                                             | )                                                      | 1                                                                                                    |                                          | Water Spray,                   | , Point of Appli | ication     | 75.0                                                                          | 0.002                                                                 | 0.001            | 0.000                     | 0.00             | 0.00      | 0.00              |
|                                                                                    |                               | TOTAL                              | L HORSEPO  | WER       | 93          |                                                                                                                                                   |                                                        | ī                                                                                                    |                                          |                                |                  |             |                                                                               |                                                                       |                  |                           |                  |           |                   |
|                                                                                    |                               | AVERAGE TI                         | HROUGHPU'  | T PER I   | DEVICE      | 1,550                                                                                                                                             | )                                                      |                                                                                                      |                                          |                                |                  |             |                                                                               |                                                                       |                  |                           |                  |           |                   |

|                                   | EMISSION INVENTORY INPUTS           |       |  |                                           |          |           |                   |  |  |  |  |  |  |
|-----------------------------------|-------------------------------------|-------|--|-------------------------------------------|----------|-----------|-------------------|--|--|--|--|--|--|
| 1                                 | DEVICE DATA                         |       |  | EMISSION DATA                             |          |           |                   |  |  |  |  |  |  |
| PERMIT ID B000763                 |                                     |       |  | ANNUAL EMISSIONS (tpy)                    | PM       | $PM_{10}$ | PM <sub>2.5</sub> |  |  |  |  |  |  |
| NUMBER OF DEVICES                 | 8                                   |       |  | UNCONTROLLED                              | 0.195    | 0.143     | 0.045             |  |  |  |  |  |  |
| EQUIPMENT SIZE (bhp)              | 93                                  |       |  | CONTROLLED                                | 0.010    | 0.007     | 0.002             |  |  |  |  |  |  |
| P                                 | ROCESS DATA                         |       |  | EMISSION FACTOR (lb/ton)                  | $>\!\!<$ | $>\!\!<$  |                   |  |  |  |  |  |  |
| PRO                               | CESS RATE (tpy)                     | 2,300 |  | UNCONTROLLED                              | 0.1694   | 0.1245    | 0.0394            |  |  |  |  |  |  |
| MAX. DE                           | SIGN RATE (tph)                     | 0     |  | CONTROLLED                                | 0.0090   | 0.0065    | 0.0021            |  |  |  |  |  |  |
| MAX. HOURLY PRODUC                | MAX. HOURLY PRODUCTION RATE (tph) 0 |       |  | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | $>\!\!<$ | 0.7180    | 0.2272            |  |  |  |  |  |  |
| AVE. HOURLY PRODUCTION RATE (tph) |                                     |       |  | OVERALL EFFICIENCY                        | 94.66    | 94.78     | 94.78             |  |  |  |  |  |  |



|                                      | EMISSION INVENTORY INPUTS        |  |                                           |          |           |                   |  |  |  |  |  |  |  |  |
|--------------------------------------|----------------------------------|--|-------------------------------------------|----------|-----------|-------------------|--|--|--|--|--|--|--|--|
| DEVICE D                             | ATA                              |  | EMISSION DATA                             |          |           |                   |  |  |  |  |  |  |  |  |
| PERMIT ID B0020                      | 09                               |  | ANNUAL EMISSIONS (tpy)                    | PM       | $PM_{10}$ | PM <sub>2.5</sub> |  |  |  |  |  |  |  |  |
| NUMBER OF DEVICES 31                 |                                  |  | UNCONTROLLED                              | 34.438   | 4.625     | 1.450             |  |  |  |  |  |  |  |  |
| EQUIPMENT SIZE (bhp) 242.            | 5                                |  | CONTROLLED                                | 0.267    | 0.044     | 0.014             |  |  |  |  |  |  |  |  |
| PROCESS I                            | ATA                              |  | EMISSION FACTOR (lb/ton)                  | ${}$     | $>\!\!<$  |                   |  |  |  |  |  |  |  |  |
| PROCESS RATE                         | tpy) Varies                      |  | UNCONTROLLED                              | #VALUE!  | #VALUE!   | #VALUE!           |  |  |  |  |  |  |  |  |
| MAX. DESIGN RATE                     | tph) 50                          |  | CONTROLLED                                | #VALUE!  | #VALUE!   | #VALUE!           |  |  |  |  |  |  |  |  |
| MAX. HOURLY PRODUCTION RATE (tph) 50 |                                  |  | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | ${\sim}$ | 0.1644    | 0.0516            |  |  |  |  |  |  |  |  |
| AVE. HOURLY PRODUCTION RATE          | tph) Need Actual Hours in 'CD21' |  | OVERALL EFFICIENCY                        | #VALUE!  | #VALUE!   | #VALUE!           |  |  |  |  |  |  |  |  |


**EMISSION** HARP / CEIDARS **FORM** YEAR MINING OPERATIONS MINE AGGREGATE HANDLING, CRUSHING & SCREENING #2 2008 AGG II - MANDATORY INFORMATION I - COLOR CODE DATA INPUT BY FACILITY OUTPUT DATA TO CEIDARS FLOW DIAGRAM DATA FROM ANOTHER WORKSHEET III - FACILITY INFORMATION BLOCK III - ALL ITEMS COMPANY NAME Omya California Inc COMPANY # 90 PERMIT # T 0 0 4 9 6 7 BLOCK VIII - ACTUAL HOURS OPERATED FACILITY NAME Plant BLOCK IX - ANNUAL THROUGHPUT (tpy) FACILITY # 461 DEVICE ID PROCESS NAME Silo 81-70c INVENTORY ID # 900046 PROCESS ID BLOCK X - MOISTURE CONTENT (%) OF MATERIAL IV - MAP COORDINATES FOR PROCESS ENTERING THE SYSTEM UTM ZONE 11 UTM NORTH (km) UTM EAST (km) BLOCK XIII, COLUMNS 'B', 'E', 'F' & 'G' LATITUDE (deg.) LONGITUDE (deg.) - TYPE OF PLANT VI - TYPE OF EQUIPMENT, check all that applies: VIII - OPERATING SCHEDULE IX - THROUGHPUT (tons per year) VII - MATERIAL TYPES TRANSFER x HOURS per DAY STATIONARY CRUSHERS ACTUAL ANNUAL check all that applies Tons/Yr. PORTABLE SCREENS STORAGE ROCK DAYS per WEEK HOURLY (average) TPH OTHER CONVEYORS LOAD OUT x SAND WEEK per YEAR 52 MAX. DESIGN RATE 100.0 TPH COMMENTS OTHERS LIMESTONE x CAL. HRS per YR 2600 Hourly (average) = Annual (a ctual) / Actual Hours per Year COMMENTS LAVA ROCK ACT. HRS per YR 2500 X - MOISTURE CONTENT (%) OTHER MOISTURE CONTENT ENTERING SYS. CAL. Hrs/Yr = Hr/Dv\*Dv/Wk\*Wk/YrXI - TYPE OF OPERATION AND / OR DEVICE XII - TYPE OF EMISSION CONTROL EQUIPMENT CODE NAME OF DEVICE OR SYSTEM NAME OF DEVICE OR SYSTEM TYPE OF CONTROL TYPE OF CONTROL CODE CODE CODE Gravel Bed Filters No Device 11 Screening, Wet Washing (Note 4) 0 None 11 Dump to Hopper, truck, pile (Note 2) Silo, Filling - Pneumatic Water Spray, Point of Application Spray Tower (Low Efficiency) Silo, Filling - Bucket Elevator Spray with Additives, Point of Application Grizzly (Note 2) 13 13 Wet Scrubber (Med Efficiency) Hopper (Note 2) 14 Silo, discharge to Conveyor (Note 2) Conveyor with Half Cover 14 Venturi Scrubber (High Efficiency) 4 Transfer Point (Note 2) 15 Silo, discharge to Tank Truck 4 Conveyor with Three Quarter Cover 15 Baghouse with Multiple Pickups 5 Conveyor (Note 2) 16 Loading Open Top Truck (Note 2) Conveyor with Full Cover 16 Baghouse with Single Pickup (Unenclosed) 17 17 Baghouse with Single Pickup (Partial Enclosed) 6 Crushing, Dry - Primary Feeder 6 Process Enclosure Crushing, Dry - Secondary 18 See Lookup Table "EmFac" for data Baghouse with Single Pickup (Full Enclosed) Gravity Separator Crushing, Dry - Tertiary 19 See Lookup Table "EmFac" for data 19 Baghouse with Single Pickup (Attached) 8 Cyclone - Simple 9 Crushing, Wet (Note 3) 20 See Lookup Table "EmFac" for data 9 Cyclone - Multiple 20 Electrostatic Precipitator See Lookup Table "ConEff" for data 10 Screening, Dry See Lookup Table "EmFac" for data 10 Windscreen, Windward Side XIII - EMISSION CALCULATIONS EQUIPMENT DEVICE NAME OF DEVICE MOTOR THROUGHPUT EMISSION CONTROL DEVICE EMISSION FACTORS EMISSION RATE CODE EFF % ID CODE RHP TONS / YEAR DsF NAME OF DEVICE POUNDS PER TON TONS PER YEAR NUMBER NO  $PM_{30}$  $PM_{10} \\$  $PM_{2.5}$  $PM_{30}$  $PM_{10}$  $PM_{2.5}$ (B) (D) (F) (G) (H) (I) (J) (K) (M) (N) (O) (A) (C) (E) (L) 138,527 81-700 12 Silo, Filling - Pneumatic NA 19 Baghouse with Single Pickup (Attach 0.270 0.016 0.005 0.09 0.0 0.00 18 138,527 0.029 0.014 81-707 4 Transfer Point (Note 2) NA 99.0 0.004 0.02 0.01 0.00 Baghouse with Single Pickup (Full F 81-708 Transfer Point (Note 2) NA 138,527 18 99. 0.029 0.014 0.004 0.02 0.01 0.00 Baghouse with Single Pickup (Full 81-722 30 18 0.029 0.014 0.004 0.01 0.00 Conveyor (Note 2) 69,263 Baghouse with Single Pickup (Full l 99.0 0.00 30 18 81-712 Conveyor (Note 2) 69,263 Baghouse with Single Pickup (Full F 99.0 0.029 0.014 0.004 0.01 0.00 0.00 Silo, discharge to Tank Truck 81-725 15 69,263 18 Baghouse with Single Pickup (Full E 99.0 0.240 0.016 0.005 0.08 0.01 0.00 81-715 15 Silo, discharge to Tank Truck 69,263 18 Baghouse with Single Pickup (Full E 99.0 0.240 0.016 0.005 0.08 0.01 0.00 1 No Device 0.0 0.000 0.000 0.000 0.00 0.00 0.00

| EMISSION | HARP / CEIDARS                              | FORM |  |  |  |  |  |  |  |  |
|----------|---------------------------------------------|------|--|--|--|--|--|--|--|--|
| YEAR     | MINING OPERATIONS                           | MINE |  |  |  |  |  |  |  |  |
| 200 8    | AGGREGATE HANDLING, CRUSHING & SCREENING #2 |      |  |  |  |  |  |  |  |  |
|          | TOTAL HODGEDOUS (A                          |      |  |  |  |  |  |  |  |  |

TOTAL HORSEPOWER 62

AVERAGE THROUGHPUT PER DEVICE 98,948

|                                      | EMISSION INVENTORY INPUTS |                                              |  |                                           |             |             |                   |  |  |  |  |  |  |  |
|--------------------------------------|---------------------------|----------------------------------------------|--|-------------------------------------------|-------------|-------------|-------------------|--|--|--|--|--|--|--|
| I                                    | DEVICE DATA               | <u>.                                    </u> |  | EMISSION DATA                             |             |             |                   |  |  |  |  |  |  |  |
| PERMIT ID T004967                    |                           |                                              |  | ANNUAL EMISSIONS (tpy)                    | PM          | $PM_{10}$   | PM <sub>2.5</sub> |  |  |  |  |  |  |  |
| NUMBER OF DEVICES                    | 7                         |                                              |  | UNCONTROLLED                              | 41.331      | 5.058       | 1.586             |  |  |  |  |  |  |  |
| EQUIPMENT SIZE (bhp)                 | 62                        |                                              |  | CONTROLLED                                | 0.320       | 0.045       | 0.014             |  |  |  |  |  |  |  |
| P                                    | ROCESS DAT                | A                                            |  | EMISSION FACTOR (lb/ton)                  | $\geq \leq$ | $\geq \leq$ |                   |  |  |  |  |  |  |  |
| PROC                                 | CESS RATE (tpy)           | 138,527                                      |  | UNCONTROLLED                              | 0.5967      | 0.0730      | 0.0229            |  |  |  |  |  |  |  |
| MAX. DES                             | SIGN RATE (tph)           | 100                                          |  | CONTROLLED                                | 0.0046      | 0.0007      | 0.0002            |  |  |  |  |  |  |  |
| MAX. HOURLY PRODUCT                  | TION RATE (tph)           | 100                                          |  | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | $\geq <$    | 0.1408      | 0.0442            |  |  |  |  |  |  |  |
| AVE. HOURLY PRODUCTION RATE (tph) 55 |                           |                                              |  | OVERALL EFFICIENCY                        | 99.23       | 99.11       | 99.11             |  |  |  |  |  |  |  |



|                                                               | EMISSION INVENTORY INPUTS |        |  |                                           |          |                  |                   |  |  |  |  |  |  |  |
|---------------------------------------------------------------|---------------------------|--------|--|-------------------------------------------|----------|------------------|-------------------|--|--|--|--|--|--|--|
| I                                                             | DEVICE DATA               | 1      |  | EMISSION DATA                             |          |                  |                   |  |  |  |  |  |  |  |
| PERMIT ID                                                     | T002007                   |        |  | ANNUAL EMISSIONS (tpy)                    | PM       | PM <sub>10</sub> | PM <sub>2.5</sub> |  |  |  |  |  |  |  |
| NUMBER OF DEVICES                                             | 27                        |        |  | UNCONTROLLED                              | 13.749   | 1.701            | 0.533             |  |  |  |  |  |  |  |
| EQUIPMENT SIZE (bhp)                                          | 152.5                     |        |  | CONTROLLED                                | 0.087    | 0.014            | 0.004             |  |  |  |  |  |  |  |
| P                                                             | ROCESS DAT                | A      |  | EMISSION FACTOR (lb/ton)                  | $\geq <$ | $>\!\!<$         |                   |  |  |  |  |  |  |  |
| PRO                                                           | CESS RATE (tpy)           | Varies |  | UNCONTROLLED                              | #VALUE!  | #VALUE!          | #VALUE!           |  |  |  |  |  |  |  |
| MAX. DE                                                       | SIGN RATE (tph)           | 50     |  | CONTROLLED                                | #VALUE!  | #VALUE!          | #VALUE!           |  |  |  |  |  |  |  |
| MAX. HOURLY PRODUC                                            | ΠΟΝ RATE (tph)            | 50     |  | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | > <      | 0.1609           | 0.0505            |  |  |  |  |  |  |  |
| AVE. HOURLY PRODUCTION RATE (tph) Need Actual Hours in 'CD21' |                           |        |  | OVERALL EFFICIENCY                        | #VALUE!  | #VALUE!          | #VALUE!           |  |  |  |  |  |  |  |

| EMISSIC                                                                                                                                                                                                                                         | N                                                                               | HARP / CEIDARS          |           |                   |                    |                                    |                      |                                                                                                                     |                                                     |              |              |                         |                         |                            | FO                          | RM                      |                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------|-----------|-------------------|--------------------|------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------|--------------|-------------------------|-------------------------|----------------------------|-----------------------------|-------------------------|--------------------------|
| YEAR                                                                                                                                                                                                                                            | 2                                                                               |                         |           |                   |                    | N                                  | /ININC               | OPE                                                                                                                 | RATIONS                                             |              |              |                         |                         |                            |                             | M                       | INE                      |
| 200 8                                                                                                                                                                                                                                           |                                                                                 |                         |           |                   | AGGRI              | EGATE HAI                          | NDLIN                | G, CR                                                                                                               | USHING & SCR                                        | EENING       | G#1          |                         |                         |                            |                             | A                       | GG                       |
|                                                                                                                                                                                                                                                 |                                                                                 |                         |           |                   | - COLOR            |                                    |                      |                                                                                                                     |                                                     |              |              |                         |                         | DATORY I                   | NFORMAT                     | ION                     |                          |
| D.                                                                                                                                                                                                                                              | ATA INPU                                                                        | T BY FACILITY           |           |                   |                    | HER WORKSHEET<br>FORMATION         | Γ                    |                                                                                                                     | OUTPUT DATA TO CEID                                 | DARS         |              | V DIAGRA<br>CK III - AL |                         |                            |                             |                         |                          |
|                                                                                                                                                                                                                                                 |                                                                                 | mya California Inc      |           | 111 1111          | COM                | PANY # 90                          |                      |                                                                                                                     | PERMIT # T 0 0 2                                    |              | BLO          | CK VIII - A             | ACTUAL H                | OURS OPE                   |                             |                         |                          |
| FACILITY                                                                                                                                                                                                                                        |                                                                                 |                         |           |                   |                    | CILITY # 461                       |                      |                                                                                                                     | DEVICE ID 2009                                      |              |              |                         |                         | ROUGHPU                    |                             | TEDIAL                  |                          |
| PROCESS                                                                                                                                                                                                                                         | NAME I                                                                          | tulk Loadout 83 System  | V - MAP ( |                   |                    | RY ID# 900046<br>R PROCESS         | 1                    | PK                                                                                                                  | OCESS ID                                            | 7            | BLOG         | JK X - MC               |                         | G THE SY:                  | (%) OF MA<br>STEM           | TERIAL                  |                          |
| UTM ZONE<br>LAT                                                                                                                                                                                                                                 |                                                                                 | UTM EAST                | (km) 5 (  | 5 . 3             | 1 6                |                                    |                      |                                                                                                                     |                                                     |              |              |                         |                         |                            |                             |                         |                          |
| V - TYPE                                                                                                                                                                                                                                        |                                                                                 |                         | F EQUIPM  |                   |                    |                                    | - MATER              |                                                                                                                     |                                                     |              |              | Ι.                      |                         |                            | PUT (tons p                 |                         | - 04                     |
| STATIONA<br>PORTAL                                                                                                                                                                                                                              |                                                                                 | CRUSHERS<br>SCREENS     |           |                   | RANSFER<br>STORAGE |                                    | check all th<br>ROCI |                                                                                                                     | B HOURS per I<br>DAYS per W                         |              | 10           |                         | CTUAL AN                |                            | Block VIII                  |                         | Γons/Yr.<br>TPH          |
|                                                                                                                                                                                                                                                 | HER                                                                             | CONVEYORS               | х         | LC                | OAD OUT            |                                    | SANI                 |                                                                                                                     | WEEK per Y                                          |              | 52           | MAX                     | . DESIGN                | RATE                       |                             | 50.0                    | TPH                      |
| COMME                                                                                                                                                                                                                                           | ENTS                                                                            | OTHERS<br>COMMENTS      |           |                   |                    |                                    | MESTON<br>VA ROCI    |                                                                                                                     | CAL. HRS pe<br>ACT. HRS pe                          |              | 2600<br>2500 | Hou                     |                         |                            | l) / Actual Hou<br>E CONTEN |                         | perated)                 |
|                                                                                                                                                                                                                                                 |                                                                                 | COMMENTS                |           |                   |                    | 2.0                                | OTHE                 |                                                                                                                     | CAL. Hrs/Yr = Hr/D                                  | y*Dy/Wk*Wk   | /Yr          |                         | STURE CO                | NTENT E                    | NTERING S                   |                         | %                        |
| CODE                                                                                                                                                                                                                                            | XI - TYPE OF OPERATION AND / OR DEVICE XII - TYPE OF EMISSION CONTROL EQUIPMENT |                         |           |                   |                    |                                    |                      |                                                                                                                     |                                                     |              |              | or                      |                         |                            |                             |                         |                          |
| CODE     NAME OF DEVICE OR SYSTEM     CODE     NAME OF DEVICE OR SYSTEM     CODE     TYPE OF CONTROL     CODE     TYPE OF CONTROL       0     No Device     11     Screening, Wet Washing (Note 4)     0     None     11     Gravel Bed Filters |                                                                                 |                         |           |                   |                    |                                    |                      |                                                                                                                     |                                                     |              |              | OL                      |                         |                            |                             |                         |                          |
|                                                                                                                                                                                                                                                 |                                                                                 | r, truck, pile (Note 2) | 12        |                   | ing - Pneum        |                                    | 1                    |                                                                                                                     | er Spray, Point of Applica                          |              |              |                         |                         | Low Efficie                |                             |                         |                          |
|                                                                                                                                                                                                                                                 | ely (Note 2<br>er (Note 2                                                       |                         | 13<br>14  |                   | ing - Bucke        | t Elevator<br>onveyor (Note 2)     | 3                    |                                                                                                                     | y with Additives, Point or<br>veyor with Half Cover | f Applicatio | on           |                         |                         | (Med Effici<br>ber (High E |                             |                         |                          |
| 4 Trans                                                                                                                                                                                                                                         | sfer Point (                                                                    | Note 2)                 | 15        | Silo, disc        | harge to Ta        | ınk Truck                          | 4                    | Con                                                                                                                 | veyor with Three Quarter                            | Cover        |              | 15 Ba                   | ghouse with             | Multiple P                 | ickups                      |                         |                          |
|                                                                                                                                                                                                                                                 | eyor (Note<br>ning, Dry -                                                       |                         | 16<br>17  | Loading<br>Feeder | Open Top           | Truck (Note 2)                     |                      | 5 Conveyor with Full Cover 16 Baghouse with Single Pickup (Un Process Enclosure 17 Baghouse with Single Pickup (Par |                                                     |              |              |                         |                         |                            |                             |                         |                          |
|                                                                                                                                                                                                                                                 | ning, Dry -                                                                     |                         |           | cup Table "       | EmFac" for data    | 7                                  |                      | ity Separator                                                                                                       |                                                     |              |              |                         |                         | kup (Full En               |                             |                         |                          |
|                                                                                                                                                                                                                                                 | ning, Dry -                                                                     |                         |           |                   | EmFac" for data    | 8                                  |                      | one - Simple                                                                                                        |                                                     |              |              |                         |                         | kup (Attache               | ed)                         |                         |                          |
|                                                                                                                                                                                                                                                 | ning, Wet                                                                       | Note 3)                 | 20        |                   |                    | EmFac" for data<br>EmFac" for data | 10                   |                                                                                                                     | one - Multiple<br>dscreen, Windward Side            |              |              |                         | ectrostatic P           | recipitator<br>able "ConEi | ff" for data                |                         |                          |
|                                                                                                                                                                                                                                                 | <u> </u>                                                                        |                         |           | 4                 | •                  |                                    | MISSI                |                                                                                                                     | ALCULATIONS                                         |              |              |                         |                         |                            |                             |                         |                          |
| EQUIPMENT                                                                                                                                                                                                                                       |                                                                                 |                         | DEVICE    |                   | MOTOR              | THROUGHPU                          | T                    | E                                                                                                                   | MISSION CONTROL D                                   |              |              |                         | SION FAC                |                            |                             | EMISSION RATE           |                          |
| ID                                                                                                                                                                                                                                              | CODE                                                                            |                         |           |                   | BHP                | TONS / YEAR                        | CODI                 | DsF                                                                                                                 | NAME OF DEVI                                        | ICE          | EFF %        |                         | JNDS PER                |                            |                             | NS PER YE               |                          |
| NUMBER<br>(A)                                                                                                                                                                                                                                   | (B)                                                                             | (C                      | )         |                   | (D)                | (E)                                | (F)                  | (G)                                                                                                                 | (H)                                                 |              | (I)          | PM <sub>30</sub> (J)    | PM <sub>10</sub><br>(K) | PM <sub>2.5</sub><br>(L)   | PM <sub>30</sub><br>(M)     | PM <sub>10</sub><br>(N) | PM <sub>2.5</sub><br>(O) |
| 83-001                                                                                                                                                                                                                                          | 12                                                                              | Silo, Filling - Pneumat | ic        |                   | NA                 | 3,710                              | 19                   |                                                                                                                     | Baghouse with Single Pick                           | cup (Attache | 99.5         | 0.270                   | 0.016                   | 0.005                      | 0.00                        | 0.00                    | 0.00                     |
| 83-005                                                                                                                                                                                                                                          | 17                                                                              | Feeder                  |           |                   | 2                  | 3,650                              | 18                   |                                                                                                                     | Baghouse with Single Pick                           | cup (Full En | 99.0         | 0.029                   | 0.014                   | 0.004                      | 0.00                        | 0.00                    | 0.00                     |
| 83-005/006                                                                                                                                                                                                                                      | 4                                                                               | Transfer Point (Note 2  | 2)        |                   | NA                 | 3,650                              | 18                   |                                                                                                                     | Baghouse with Single Pick                           | cup (Full En | 99.0         | 0.029                   | 0.014                   | 0.004                      | 0.00                        | 0.00                    | 0.00                     |
| 83-096                                                                                                                                                                                                                                          | 17                                                                              | Feeder                  |           |                   | 2                  | 60                                 | 18                   |                                                                                                                     | Baghouse with Single Pick                           | cup (Full En | 99.0         | 0.029                   | 0.014                   | 0.004                      | 0.00                        | 0.00                    | 0.00                     |
| 82-316                                                                                                                                                                                                                                          | 4                                                                               | Transfer Point (Note 2  | 2)        |                   | NA                 | 60                                 | 18                   |                                                                                                                     | Baghouse with Single Pick                           | cup (Full En | 99.0         | 0.029                   | 0.014                   | 0.004                      | 0.00                        | 0.00                    | 0.00                     |
| 83-031                                                                                                                                                                                                                                          | 12                                                                              | Silo, Filling - Pneumat | ic        |                   | NA                 | 5,885                              | 19                   |                                                                                                                     | Baghouse with Single Pick                           | cup (Attache | 99.5         | 0.270                   | 0.016                   | 0.005                      | 0.00                        | 0.00                    | 0.00                     |
| 83-093                                                                                                                                                                                                                                          | 4                                                                               | Transfer Point (Note 2  | 2)        |                   | NA                 | 4,554                              | 18                   |                                                                                                                     | Baghouse with Single Pick                           | cup (Full En | 99.0         | 0.029                   | 0.014                   | 0.004                      | 0.00                        | 0.00                    | 0.00                     |
| 83-111                                                                                                                                                                                                                                          | 17                                                                              | Feeder                  |           |                   | 1                  | 4,554                              | 18                   |                                                                                                                     | Baghouse with Single Pick                           | cup (Full En | 99.0         | 0.029                   | 0.014                   | 0.004                      | 0.00                        | 0.00                    | 0.00                     |
| 83-112                                                                                                                                                                                                                                          | 5                                                                               | Conveyor (Note 2)       |           |                   | 7.5                | 4,554                              | 18                   |                                                                                                                     | Baghouse with Single Pick                           | cup (Full En | 99.0         | 0.029                   | 0.014                   | 0.004                      | 0.00                        | 0.00                    | 0.00                     |
| 83-112                                                                                                                                                                                                                                          | 15                                                                              | Silo, discharge to Tanl | Truck     |                   | 1                  | 4,554                              | 18                   |                                                                                                                     | Baghouse with Single Pick                           | cup (Full En | 99.0         | 0.240                   | 0.016                   | 0.005                      | 0.01                        | 0.00                    | 0.00                     |
| 83-035                                                                                                                                                                                                                                          | 17 Feeder                                                                       |                         |           | 2                 | 2,074              | 18                                 |                      | Baghouse with Single Pick                                                                                           | cup (Full En                                        | 99.0         | 0.029        | 0.014                   | 0.004                   | 0.00                       | 0.00                        | 0.00                    |                          |
| 83-035/036                                                                                                                                                                                                                                      | 4 Transfer Point (Note 2) NA 2,                                                 |                         |           |                   | 2,074              | 18                                 |                      | Baghouse with Single Pick                                                                                           | cup (Full En                                        | 99.0         | 0.029        | 0.014                   | 0.004                   | 0.00                       | 0.00                        | 0.00                    |                          |
| 83-095                                                                                                                                                                                                                                          | 17                                                                              |                         |           |                   |                    | 18                                 |                      | Baghouse with Single Pick                                                                                           | cup (Full En                                        | 99.0         | 0.029        | 0.014                   | 0.004                   | 0.00                       | 0.00                        | 0.00                    |                          |
| 83-101                                                                                                                                                                                                                                          | 4                                                                               |                         |           |                   |                    | 18                                 |                      | Baghouse with Single Pick                                                                                           |                                                     | 99.0         | 0.029        | 0.014                   | 0.004                   | 0.00                       | 0.00                        | 0.00                    |                          |
| No Device                                                                                                                                                                                                                                       |                                                                                 |                         |           |                   |                    |                                    | None                 |                                                                                                                     | 0.0                                                 | 0.000        | 0.000        | 0.000                   | 0.00                    | 0.00                       | 0.00                        |                         |                          |
|                                                                                                                                                                                                                                                 |                                                                                 | ·                       | AL HORSE  | EPOWED            | 18.5               |                                    |                      | -                                                                                                                   | 12.000                                              | -            | 0.0          | 5.000                   | 0.000                   | 0.000                      | 0.00                        | 3.00                    | 0.50                     |
|                                                                                                                                                                                                                                                 |                                                                                 | '                       |           |                   | DEVICE             | 2 867                              |                      |                                                                                                                     |                                                     |              |              |                         |                         |                            |                             |                         |                          |

| EMISSION INVENTORY INPUTS            |                 |                             |     |                                           |          |           |                   |  |  |  |  |  |
|--------------------------------------|-----------------|-----------------------------|-----|-------------------------------------------|----------|-----------|-------------------|--|--|--|--|--|
| т                                    | DEVICE DATA     |                             | 111 | EMISSION DATA                             |          |           |                   |  |  |  |  |  |
| 1                                    | DEVICE DATA     | 1                           |     | EMISSION DATA                             | 1        |           |                   |  |  |  |  |  |
| PERMIT ID T002009                    |                 |                             |     | ANNUAL EMISSIONS (tpy)                    | PM       | $PM_{10}$ | PM <sub>2.5</sub> |  |  |  |  |  |
| NUMBER OF DEVICES                    | 14              |                             |     | UNCONTROLLED                              | 2.218    | 0.291     | 0.091             |  |  |  |  |  |
| EQUIPMENT SIZE (bhp)                 | 18.5            |                             |     | CONTROLLED                                | 0.016    | 0.003     | 0.001             |  |  |  |  |  |
| P                                    | ROCESS DAT.     | A                           |     | EMISSION FACTOR (lb/ton)                  | $>\!\!<$ | >>        |                   |  |  |  |  |  |
| PRO                                  | CESS RATE (tpy) | Varies                      |     | UNCONTROLLED                              | #VALUE!  | #VALUE!   | #VALUE!           |  |  |  |  |  |
| MAX. DE                              | SIGN RATE (tph) | 50                          |     | CONTROLLED                                | #VALUE!  | #VALUE!   | #VALUE!           |  |  |  |  |  |
| MAX. HOURLY PRODUCTION RATE (tph) 50 |                 |                             |     | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | ><       | 0.1609    | 0.0505            |  |  |  |  |  |
| AVE. HOURLY PRODUC                   | TION RATE (tph) | Need Actual Hours in 'CD21' |     | OVERALL EFFICIENCY                        | #VALUE!  | #VALUE!   | #VALUE!           |  |  |  |  |  |

## HARP / CEIDARS MINING OPERATIONS **STOCKPILES**

**FORM** MINE S-PILES

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

OUTPUT DATA TO CEIDARS

FACILITY NAME: Plant

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90 FACILITY NUMBER: 461

Device ID#

90015A

|                     |               | Stockpile       |              |                                 |
|---------------------|---------------|-----------------|--------------|---------------------------------|
| Name of /<br>Number | Material Type | Exposed Surface | Silt Loading | Moisture<br>(uncontrolled)<br>% |
| Feeders 1-6         | Limestone     | 1.9000          | 1.5          | 1.5                             |
| White & Blend       | Limestone     | 3.2000          | 1.5          | 1.5                             |
| titan               | Limestone     | 1.3000          | 1.5          | 1.5                             |
| OM 100              | Limestone     | 2.3000          | 1.5          | 1.5                             |
| Fines Pile          | Limestone     | 0.7000          | 1.5          | 1.5                             |
| Optical Sorter      | Limestone     | 0.5000          | 1.5          | 1.5                             |
|                     |               |                 | 30           | 0.5                             |
|                     |               |                 | 30           | 0.5                             |
|                     |               |                 | 30           | 0.5                             |
|                     |               |                 | 30           | 0.5                             |
|                     |               |                 | 30           | 0.5                             |
|                     |               |                 | 30           | 0.5                             |
|                     |               |                 | 30           | 0.5                             |
|                     |               |                 | 30           | 0.5                             |
|                     |               |                 | 30           | 0.5                             |
|                     |               |                 | 30           | 0.5                             |

| Ct 1 1         | 1     |              | D + 6       | 3 4 1    |             |                |
|----------------|-------|--------------|-------------|----------|-------------|----------------|
| Stockpile      |       | _            | •           | Controls |             |                |
| Name / Number  |       | r Spray      | Wind Screen |          | Other       |                |
|                | check | gal/acre/day | check       | check    | Specify     | Efficiency (%) |
| Feeders 1-6    |       |              |             | X        | Water Spray | 75             |
| White & Blend  |       |              |             | X        | Water Spray | 75             |
| titan          |       |              |             | X        | Water Spray | 75             |
| OM 100         |       |              |             | X        | Water Spray | 75             |
| Fines Pile     |       |              |             | X        | Water Spray | 75             |
| Optical Sorter |       |              |             | X        | Water Spray | 75             |
| 0              |       |              |             |          |             |                |
| 0              |       |              |             |          |             |                |
| 0              |       |              |             |          |             |                |
| 0              |       |              |             |          |             |                |
| 0              |       |              |             |          |             |                |
| 0              |       |              |             |          |             |                |
| 0              |       |              |             |          |             |                |
| 0              |       |              |             |          |             |                |
| 0              |       |              |             |          |             |                |
| 0              |       |              |             |          |             |                |

## HARP / CEIDARS MINING OPERATIONS STOCKPILES

FORM MINE S-PILES

## **EMISSIONS**

Device ID# 90015

SCC 30502507

Emission Factors (pounds per acres)

EmFac = J \*1.7 \* s/1.5 \* (365 - P)/235 \* I/15 \* 365

|                   | Throughput (acres) |              |
|-------------------|--------------------|--------------|
| Stockpile         | Material Type      | Size (acres) |
| Feeders 1-6       | Limestone          | 1.9000       |
| White & Blend     | Limestone          | 3.2000       |
| titan             | Limestone          | 1.3000       |
| OM 100            | Limestone          | 2.3000       |
| Fines Pile        | Limestone          | 0.7000       |
| Optical Sorter    | Limestone          | 0.5000       |
| 0                 | 0                  | 0.0000       |
| 0                 | 0                  | 0.0000       |
| 0                 | 0                  | 0.0000       |
| 0                 | 0                  | 0.0000       |
| 0                 | 0                  | 0.0000       |
| 0                 | 0                  | 0.0000       |
| 0                 | 0                  | 0.0000       |
| 0                 | 0                  | 0.0000       |
| 0                 | 0                  | 0.0000       |
| 0                 | 0                  | 0.0000       |
|                   | TOTAL              | 9.9          |
| Number of Devices | 6                  |              |

| Emission Factor - Uncontrolled (pounds/acre) |           |                   |  |  |  |  |
|----------------------------------------------|-----------|-------------------|--|--|--|--|
| TSP                                          | $PM_{10}$ | PM <sub>2.5</sub> |  |  |  |  |
| 854.530                                      | 427.265   | 170.906           |  |  |  |  |
| 854.530                                      | 427.265   | 170.906           |  |  |  |  |
| 854.530                                      | 427.265   | 170.906           |  |  |  |  |
| 854.530                                      | 427.265   | 170.906           |  |  |  |  |
| 854.530                                      | 427.265   | 170.906           |  |  |  |  |
| 854.530                                      | 427.265   | 170.906           |  |  |  |  |
| 0.000                                        | 0.000     | 0.000             |  |  |  |  |
| 0.000                                        | 0.000     | 0.000             |  |  |  |  |
| 0.000                                        | 0.000     | 0.000             |  |  |  |  |
| 0.000                                        | 0.000     | 0.000             |  |  |  |  |
| 0.000                                        | 0.000     | 0.000             |  |  |  |  |
| 0.000                                        | 0.000     | 0.000             |  |  |  |  |
| 0.000                                        | 0.000     | 0.000             |  |  |  |  |
| 0.000                                        | 0.000     | 0.000             |  |  |  |  |
| 0.000                                        | 0.000     | 0.000             |  |  |  |  |
| 0.000                                        | 0.000     | 0.000             |  |  |  |  |
| 854.530                                      | 427.265   | 170.906           |  |  |  |  |

| Fractionati | ion Value  |
|-------------|------------|
| $PM_{10}$   | $PM_{2.5}$ |
| 0.500       | 0.200      |
| 0.500       | 0.200      |
| 0.500       | 0.200      |
| 0.500       | 0.200      |
| 0.500       | 0.200      |
| 0.500       | 0.200      |
| 0.000       | 0.000      |
| 0.000       | 0.000      |
| 0.000       | 0.000      |
| 0.000       | 0.000      |
| 0.000       | 0.000      |
| 0.000       | 0.000      |
| 0.000       | 0.000      |
| 0.000       | 0.000      |
| 0.000       | 0.000      |
| 0.000       | 0.000      |
| 0.500       | 0.200      |

| Stockpile      | Con         | trols          | Emission F | actor - Controlled (po | ounds/acre)       |
|----------------|-------------|----------------|------------|------------------------|-------------------|
|                | Type        | Efficiency (%) | TSP        | $PM_{10}$              | PM <sub>2.5</sub> |
| Feeders 1-6    | Water Spray | 75.00          | 213.632    | 106.816                | 42.726            |
| White & Blend  | Water Spray | 75.00          | 213.632    | 106.816                | 42.726            |
| titan          | Water Spray | 75.00          | 213.632    | 106.816                | 42.726            |
| OM 100         | Water Spray | 75.00          | 213.632    | 106.816                | 42.726            |
| Fines Pile     | Water Spray | 75.00          | 213.632    | 106.816                | 42.726            |
| Optical Sorter | Water Spray | 75.00          | 213.632    | 106.816                | 42.726            |
| 0              | None        | 0.00           | 0.000      | 0.000                  | 0.000             |
| 0              | None        | 0.00           | 0.000      | 0.000                  | 0.000             |
| 0              | None        | 0.00           | 0.000      | 0.000                  | 0.000             |
| 0              | None        | 0.00           | 0.000      | 0.000                  | 0.000             |
| 0              | None        | 0.00           | 0.000      | 0.000                  | 0.000             |
| 0              | None        | 0.00           | 0.000      | 0.000                  | 0.000             |
| 0              | None        | 0.00           | 0.000      | 0.000                  | 0.000             |
| 0              | None        | 0.00           | 0.000      | 0.000                  | 0.000             |
| 0              | None        | 0.00           | 0.000      | 0.000                  | 0.000             |
| 0              | None        | 0.00           | 0.000      | 0.000                  | 0.000             |
|                | TOTAL       | 75.00          | 213.632    | 106.816                | 42.726            |

| Emissions (tpy) = Area * EmFac |           |                   |  |  |  |  |
|--------------------------------|-----------|-------------------|--|--|--|--|
| TSP                            | $PM_{10}$ | PM <sub>2.5</sub> |  |  |  |  |
| 0.203                          | 0.101     | 0.041             |  |  |  |  |
| 0.342                          | 0.171     | 0.068             |  |  |  |  |
| 0.139                          | 0.069     | 0.028             |  |  |  |  |
| 0.246                          | 0.123     | 0.049             |  |  |  |  |
| 0.075                          | 0.037     | 0.015             |  |  |  |  |
| 0.053                          | 0.027     | 0.011             |  |  |  |  |
| 0.000                          | 0.000     | 0.000             |  |  |  |  |
| 0.000                          | 0.000     | 0.000             |  |  |  |  |
| 0.000                          | 0.000     | 0.000             |  |  |  |  |
| 0.000                          | 0.000     | 0.000             |  |  |  |  |
| 0.000                          | 0.000     | 0.000             |  |  |  |  |
| 0.000                          | 0.000     | 0.000             |  |  |  |  |
| 0.000                          | 0.000     | 0.000             |  |  |  |  |
| 0.000                          | 0.000     | 0.000             |  |  |  |  |
| 0.000                          | 0.000     | 0.000             |  |  |  |  |
| 0.000                          | 0.000     | 0.000             |  |  |  |  |
| •                              | •         | -                 |  |  |  |  |

| TOTAL | 1.057 | 0.529 | 0.211 |
|-------|-------|-------|-------|
|       |       |       |       |

## HARP / CEIDARS MINING OPERATIONS EXHAUST FROM STATIONARY AND PORTABLE FUEL COMBUSTION

**FORM** MINE EX-S&P

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

OUTPUT DATA TO CEIDARS

COMPANY NAME: Omya California Inc FACILITY NAME: Plant

COMPANY NUMBER: 90 FACILITY NUMBER: 461

| DISTRICT<br>PERMIT NO. | DEVICE ID | CODE<br>(See Code below) | EQUIPMENT TYPE     | FUEL TYPE              | UNITS OF<br>USAGE | UNITS USED<br>PER YEAR |
|------------------------|-----------|--------------------------|--------------------|------------------------|-------------------|------------------------|
| b000767                | 41-014    | 14                       | INDUSTRIAL PROCESS | FUEL OIL #2 @ 0.05 % S |                   | 0.2                    |
| b000767                | 41-014    | 15                       | INDUSTRIAL PROCESS | PROPANE, LPG           | 1000 GAL          | 0.000                  |
| B002001                | 42-014    | 14                       | INDUSTRIAL PROCESS | FUEL OIL #2 @ 0.05 % S | 1000 GAL          | 24.8                   |
| B002001                | 42-014    | 15                       | INDUSTRIAL PROCESS | PROPANE, LPG           | 1000 GAL          | 0.0                    |
| B003936                | 44-027    | 15                       | INDUSTRIAL PROCESS | PROPANE, LPG           | 1000 GAL          | 0.813                  |
| B003936                | 44-027    | 14                       | INDUSTRIAL PROCESS | FUEL OIL #2 @ 0.05 % S | 1000 GAL          | 0.183                  |
| B007678                | 37678     | 14                       | INDUSTRIAL PROCESS | FUEL OIL #2 @ 0.05 % S | 1000 GAL          | 0.731                  |
| B007678                | 37678     | 15                       | INDUSTRIAL PROCESS | PROPANE, LPG           | 1000 GAL          | 0.165                  |
|                        |           |                          | #N/A               | #N/A                   | #N/A              |                        |
|                        |           |                          | #N/A               | #N/A                   | #N/A              |                        |
|                        |           |                          | #N/A               | #N/A                   | #N/A              |                        |
|                        |           |                          | #N/A               | #N/A                   | #N/A              |                        |
|                        |           |                          | #N/A               | #N/A                   | #N/A              |                        |
|                        |           |                          | #N/A               | #N/A                   | #N/A              |                        |
|                        |           |                          | #N/A               | #N/A                   | #N/A              |                        |

EQUIDMENT TVDE

ь000767 Roller Mill #1 B002001 Roller Mill #2 B003936 Roller Mill #3 B007678 Roller Mill #4

| CODE | EQUIPMENT TYPE                    | FUEL TYPE              | SCC         |
|------|-----------------------------------|------------------------|-------------|
| 1    | BOILER > 100 MMBTU/HR             | NATURAL GAS            | 1-02-006-01 |
| 2    | BOILER 10 - 100 MMBTU/HR          | NATURAL GAS            | 1-02-006-02 |
| 3    | BOILER <10 MMBTU/HR               | NATURAL GAS            | 1-02-006-03 |
| 4    | BOILER, COGENERATION              | NATURAL GAS            | 1-02-006-06 |
| 5    | BOILER                            | FUEL OIL #2 @ 0.5 % S  | 1-02-005-01 |
| 6    | BOILER                            | FUEL OIL #2 @ 0.05 % S | 1-02-005-01 |
| 7    | BOILER                            | PROPANE, LPG           | 1-02-010-02 |
| 8    | SPACE HEATER                      | NATURAL GAS            | 1-05-001-06 |
| 9    | SPACE HEATER                      | FUEL OIL #2 @ 0.5 % S  | 1-05-001-05 |
| 10   | SPACE HEATER                      | FUEL OIL #2 @ 0.05 % S | 1-05-001-05 |
| 11   | SPACE HEATER                      | PROPANE, LPG           | 1-05-001-10 |
| 12   | INDUSTRIAL PROCESS                | NATURAL GAS            | 3-05-900-03 |
| 13   | INDUSTRIAL PROCESS                | FUEL OIL #2 @ 0.5 % S  | 3-05-900-01 |
| 14   | INDUSTRIAL PROCESS                | FUEL OIL #2 @ 0.05 % S | 3-05-900-01 |
| 15   | INDUSTRIAL PROCESS                | PROPANE, LPG           | 3-05-900-99 |
| 16   | I. C. ENGINES                     | NATURAL GAS            | 2-03-002-04 |
| 17   | I. C. ENGINES                     | FUEL OIL #2 @ 0.5 % S  | 2-02-017-xx |
| 18   | I. C. ENGINES                     | FUEL OIL #2 @ 0.05 % S | 2-02-017-xx |
| 19   | I. C. ENGINES                     | PROPANE, LPG           | 2-02-017-xx |
| 20   | I. C. ENGINES                     | GASOLINE               | 2-02-017-20 |
| 21   | GAS TURBINES                      | NATURAL GAS            | 2-02-002-01 |
| 22   | GAS TURBINES - COGEN.             | NATURAL GAS            | 2-02-002-03 |
| 23   | GAS TURBINE                       | FUEL OIL #2 @ 0.5 % S  | 2-02-001-01 |
| 24   | GAS TURBINE                       | FUEL OIL #2 @ 0.05 % S | 2-02-001-01 |
| 25   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 26   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 27   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 28   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 29   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 30   | User defined, see Worksheet "SFB" | 0                      | 0           |

## HARP / CEIDARS MINING OPERATIONS EXHAUST FROM STATIONARY AND PORTABLE FUEL COMBUSTION

FORM MINE EX-S&P

## **EMISSIONS**

#### EXHAUST FROM STATIONARY EQUIPMENT

| PERMIT NO. | DEVICE ID | EQUIPMENT TYPE                  | PROCESS RATE<br>UNITS PER YEAR | SOURCES<br>CLASSIFICATION       | EMISSIONS FACTORS (pounds per unit of usage) ANNUAL EMISSIONS (tons per year) |               |               |               |               |               |                      |
|------------|-----------|---------------------------------|--------------------------------|---------------------------------|-------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|----------------------|
| CODE       |           | 10221112                        | OTTITUTE TEATR                 | CODE                            | ORGANIO                                                                       | GASES         | CO            | NOx           | SOx           | PARTICULA     | TE MATTER            |
|            |           |                                 | UNITS                          | SCC                             | TOG                                                                           | FRAC          |               |               |               | PM            | FRAC                 |
|            |           |                                 |                                | /CAS#                           | 43101                                                                         | ROG/VOC       | 42101         | 42603         | 42401         | 11101         | $PM_{10} / PM_{2.5}$ |
| ь000767    | 41-014    | INDUSTRIAL PROCESS              | 0.2                            | 3-05-900-01                     | 0.21                                                                          | 0.950         | 5             | 20            | 5.35          | 2             | 0.975                |
| 14         |           | FUEL OIL #2 @ 0.05 % S          | 1000 GAL                       | Annual Emissions                | 0.000                                                                         | 0.000         | 0.000         | 0.002         | 0.000         | 0.000         | 0.000                |
| b000767    | 41-014    | INDUSTRIAL PROCESS              | 0.0                            | 3-05-900-99                     | 0.65                                                                          | 0.924         | 1.8           | 8.8           | 1.5           | 0.26          | 0.962                |
| 15         | 11 011    | PROPANE, LPG                    |                                | Annual Emissions                | 0.000                                                                         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000                |
|            |           | ,                               |                                |                                 |                                                                               |               |               |               |               |               |                      |
| B002001    | 42-014    | INDUSTRIAL PROCESS              | 24.8                           | 3-05-900-01                     | 0.21                                                                          | 0.950         | 5             | 20            | 5.35          | 2             | 0.975                |
| 14         |           | FUEL OIL #2 @ 0.05 % S          | 1000 GAL                       | Annual Emissions                | 0.003                                                                         | 0.002         | 0.062         | 0.248         | 0.066         | 0.025         | 0.024                |
| D002001    | 42.014    | DIDUCTRIAL PROCESS              | 0.0                            | 2.05.000.00                     | 0.65                                                                          | 0.024         | 1.0           | 0.0           | 1.5           | 0.26          | 0.062                |
| B002001    | 42-014    | INDUSTRIAL PROCESS PROPANE, LPG | 0.0                            | 3-05-900-99<br>Annual Emissions | 0.65                                                                          | 0.924         | 0.000         | 8.8<br>0.000  | 0.000         | 0.26<br>0.000 | 0.962<br>0.000       |
| 13         |           | 1 ROFANE, EFG                   | 1000 GAL                       | Aliiuai EliiiSSIOIIS            | 0.000                                                                         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000                |
| B003936    | 44-027    | INDUSTRIAL PROCESS              | 0.8                            | 3-05-900-99                     | 0.65                                                                          | 0.924         | 1.8           | 8.8           | 1.5           | 0.26          | 0.962                |
| 15         |           | PROPANE, LPG                    | 1000 GAL                       | Annual Emissions                | 0.000                                                                         | 0.000         | 0.001         | 0.004         | 0.001         | 0.000         | 0.000                |
|            |           |                                 |                                |                                 |                                                                               |               |               | •             |               |               |                      |
| B003936    | 44-027    | INDUSTRIAL PROCESS              | 0.2                            | 3-05-900-01                     | 0.21                                                                          | 0.950         | 5             | 20            | 5.35          | 2             | 0.975                |
| 14         |           | FUEL OIL #2 @ 0.05 % S          | 1000 GAL                       | Annual Emissions                | 0.000                                                                         | 0.000         | 0.000         | 0.002         | 0.000         | 0.000         | 0.000                |
| B007678    | 37678     | INDUSTRIAL PROCESS              | 0.7                            | 3-05-900-01                     | 0.21                                                                          | 0.950         | -             | 20            | 5.35          | 2             | 0.975                |
| 14         | 3/6/8     | FUEL OIL #2 @ 0.05 % S          |                                | Annual Emissions                | 0.21                                                                          | 0.950         | 0.002         | 0.007         | 0.002         | 0.001         | 0.975                |
| 14         |           | 1 OLE OIL #2 (# 0.05 70 5       | 1000 GAL                       | Alliuai Ellissiolis             | 0.000                                                                         | 0.000         | 0.002         | 0.007         | 0.002         | 0.001         | 0.001                |
| B007678    | 37678     | INDUSTRIAL PROCESS              | 0.2                            | 3-05-900-99                     | 0.65                                                                          | 0.924         | 1.8           | 8.8           | 1.5           | 0.26          | 0.962                |
| 15         |           | PROPANE, LPG                    | 1000 GAL                       | Annual Emissions                | 0.000                                                                         | 0.000         | 0.000         | 0.001         | 0.000         | 0.000         | 0.000                |
|            |           |                                 |                                |                                 |                                                                               |               |               |               |               |               |                      |
| 0          |           | #N/A                            | 0.0                            | #N/A                            | #N/A                                                                          | #N/A          | #N/A          | #N/A          | #N/A          | #N/A          | #N/A                 |
| 0          |           | #N/A                            | #N/A                           | Annual Emissions                | 0.000                                                                         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000                |
| 0          |           | #N/A                            | 0.0                            | #N/A                            | #N/A                                                                          | #N/A          | #N/A          | #N/A          | #N/A          | #N/A          | #N/A                 |
| 0          |           |                                 | #N/A                           | Annual Emissions                | 0.000                                                                         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000                |
|            |           |                                 |                                |                                 |                                                                               |               |               | 0.000         | 0.000         |               |                      |
| 0          |           | #N/A                            | 0.0                            | #N/A                            | #N/A                                                                          | #N/A          | #N/A          | #N/A          | #N/A          | #N/A          | #N/A                 |
| 0          |           | #N/A                            | #N/A                           | Annual Emissions                | 0.000                                                                         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000                |
| 0          |           | LIDATA                          | 0.0                            | 10.7/1                          | (27/4                                                                         | 10.7/4        | (0.7/4        | 107/4         | 107/4         | 10.774        | 10.7/4               |
| 0          |           | #N/A                            | #N/A                           | #N/A<br>Annual Emissions        | #N/A<br>0.000                                                                 | #N/A<br>0.000 | #N/A<br>0.000 | #N/A<br>0.000 | #N/A<br>0.000 | #N/A<br>0.000 | #N/A<br>0.000        |
| U          |           | #IV/A                           | #1N/A                          | Annual Emissions                | 0.000                                                                         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000                |
| 0          |           | #N/A                            | 0.0                            | #N/A                            | #N/A                                                                          | #N/A          | #N/A          | #N/A          | #N/A          | #N/A          | #N/A                 |
| 0          |           |                                 | #N/A                           | Annual Emissions                | 0.000                                                                         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000                |
| •          |           |                                 | •                              |                                 |                                                                               |               | •             | •             | •             |               |                      |
| 0          |           | #N/A                            | 0.0                            | #N/A                            | #N/A                                                                          | #N/A          | #N/A          | #N/A          | #N/A          | #N/A          | #N/A                 |
| 0          |           | #N/A                            | #N/A                           | Annual Emissions                | 0.000                                                                         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000                |
| 0          |           | IINI/A                          |                                | (O.1/A                          | (87)                                                                          | 10714         | (0.7/1        | 1037          | 1077.         | 10.774        | (0.774               |
| 0          |           | #N/A #N/A                       | 0.0<br>#N/A                    | #N/A<br>Annual Emissions        | #N/A<br>0.000                                                                 | #N/A<br>0.000 | #N/A<br>0.000 | #N/A<br>0.000 | #N/A<br>0.000 | #N/A<br>0.000 | #N/A<br>0.000        |
| 0          |           | #IN/A                           | #1N/A                          | Annuai Emissions                | 0.000                                                                         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000         | 0.000                |
|            |           |                                 |                                |                                 |                                                                               |               |               |               |               |               |                      |

| TOTAL EMISSIONS | TOG   | ROG / VOC | CO    | NOx   | SOx   | PM    | $PM_{10} / PM_{2.5}$ |
|-----------------|-------|-----------|-------|-------|-------|-------|----------------------|
| Tons per Year   | 0.003 | 0.003     | 0.066 | 0.263 | 0.070 | 0.026 | 0.025                |

#### HARP / CEIDARS MINING OPERATIONS EXHAUST FROM MOBILE AND VEHICULAR EQUIPMENT

**FORM** MINE EX-M

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

OUTPUT DATA TO CEIDARS

COMPANY NAME: Omya California Inc FACILITY NAME: Plant

COMPANY NUMBER: 90 FACILITY NUMBER: 461

DEVICE # 90001,2

| PROCESS | CODE             | EQUIPMENT TYPE               | FUEL TYPE | UNITS OF   | UNITS USED |
|---------|------------------|------------------------------|-----------|------------|------------|
| NUMBER  | (See Code below) |                              |           | USAGE      | PER YEAR   |
| 1       | 1                | HEAVY DUTY - OFF ROAD *      | DIESEL    | 1000 hp-hr | 329.0      |
| 2       | 5                | LIGHT DUTY VEHICLES ***      | GASOLINE  | 1000 VMT   | 19.0       |
| 3       | 7                | Terex low Emission Retro-Fit | Diesel    | 1000 hp-hr | 3,297.0    |
| 20      |                  | #N/A                         | #N/A      | #N/A       |            |

| CODE | EQUIPMENT TYPE                 | FUEL TYPE |            | SCC         |
|------|--------------------------------|-----------|------------|-------------|
| 1    | HEAVY DUTY - OFF ROAD *        | DIESEL    | 1000 hp-hr | 3-05-025-99 |
| 2    | HEAVY DUTY - OFF ROAD *        | GASOLINE  | 1000 hp-hr | 3-05-025-99 |
| 3    | MISC - OFF ROAD **             | NG / LPG  | 1000 hp-hr | 3-05-025-99 |
| 4    | LOCOMOTIVES                    | DIESEL    | 1000 GAL   | 3-05-025-99 |
| 5    | LIGHT DUTY VEHICLES ***        | GASOLINE  | 1000 VMT   | 3-05-025-99 |
| 6    | HEAVY DUTY - ON ROAD ****      | DIESEL    | 1000 VMT   | 3-05-025-99 |
| 7    | Terex low Emission Retro-Fit   | Diesel    | 1000 hp-hr | 3-05-025-99 |
| 15   | User defined, see Lookup Table | 0         | 0          | 0           |

- \* OFF ROAD INCLUDES MINING AND EARTH MOVING EQUIPMENT

  \*\* MISC OFF ROAD INCLUDES NGLPG LOADER, FORKLIFTS, ETC.

  \*\*\* LIGHT DUTY INCLUDES CARS, VAS, SMALL TRUCKS, ECT.

  \*\*\* ON ROAD INCLUDES TRUCKS, ETC.

1000 hp-hr = THOUSAND OF HORSEPOWER HOURS 1000 GAL = THOUSAND OF GALLONS OF LIQUID FUEL 1000 VTM = THOUSAND VEHICLE MILES TRAVELED MMCF = MILLION OF CUBIC FEET OF NATURAL GAS

#### **EMISSIONS**

DEVICE # 90001,2

| PROCESS | CODE                        | EQUIPMENT TYPE               | PROCESS RATE   |                  | EMISSIONS FACTORS (pounds per unit of usage) |           |       |                   |           |                |                      |  |
|---------|-----------------------------|------------------------------|----------------|------------------|----------------------------------------------|-----------|-------|-------------------|-----------|----------------|----------------------|--|
| ID      |                             |                              | UNITS PER YEAR | CLASSIFICATION   |                                              |           | ANNUA | L EMISSIONS (tons | per year) |                |                      |  |
|         |                             |                              |                | CODE             | ORGANI                                       | C GASES   | CO    | NOx               | SOx       | PARTICULATE MA | TTER                 |  |
|         |                             |                              | UNITS          | SCC              | TOG                                          | FRAC      |       |                   |           | PM             | FRAC                 |  |
|         |                             |                              |                | /CAS #           | 43101                                        | ROG / VOC | 42101 | 42603             | 42401     | 11101          | $PM_{10} / PM_{2.5}$ |  |
| 1       | 1 1 HEAVY DUTY - OFF ROAD * | 329                          | 3-05-025-99    | 2.42             | 0.9676                                       | 7.50      | 24.25 | 2.91              | 1.54      | 0.994          |                      |  |
| 1       |                             | HEAV I DUTT - OFF ROAD       | 1000 hp-hr     | Annual Emissions | 0.398                                        | 0.385     | 1.234 | 3.989             | 0.479     | 0.253          | 0.252                |  |
| 2       | 5                           | LIGHT DUTY VEHICLES ***      | 19             | 3-05-025-99      | 2.92                                         | 0.914     | 18.79 | 2.32              | 0.12      | 0.47           | 0.45                 |  |
| 2       | 3                           | LIGHT DUTY VEHICLES          | 1000 VMT       | Annual Emissions | 0.028                                        | 0.025     | 0.179 | 0.022             | 0.001     | 0.004          | 0.002                |  |
|         |                             | Terex low Emission Retro-Fit | 3297           | 3-05-025-99      | 0.44                                         | 0.97      | 1.1   | 15.2              | 2.9       | 0.24           | 0.99                 |  |
| 3       | 7                           |                              | 1000 hp-hr     | Annual Emissions | 0.725                                        | 0.704     | 1.813 | 25.057            | 4.781     | 0.396          | 0.392                |  |

| TOTAL EMISSIONS | TOG   | ROG / VOC | CO    | NOx    | SOx   | PM    | PM <sub>10</sub> / PM <sub>2.5</sub> |
|-----------------|-------|-----------|-------|--------|-------|-------|--------------------------------------|
|                 | 1.151 | 1.114     | 3,226 | 29,068 | 5,260 | 0.653 | 0.646                                |

## HARP / CEIDARS MINING OPERATIONS PAVED ROADS - ENTRAINED DUST

**FORM MINE PROAD** 

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90

FACILITY NAME: Plant

FACILITY NUMBER: 461

DEVICE #

DEVICE #

| Process | Vehicle type |       | Weigh (tons) |      |                  |               | Silt Loading  |                |                  |
|---------|--------------|-------|--------------|------|------------------|---------------|---------------|----------------|------------------|
| Number  |              | Empty | Loaded       | Mean | Round Trip miles | Trips per Day | Days per Year | Miles per Year | grams / sq meter |
| 1       |              |       |              | 0.0  |                  |               |               | 0.0            | 100              |
| 2       |              |       |              | 0.0  |                  |               |               | 0.0            | 100              |
| 3       |              |       |              | 0.0  |                  |               |               | 0.0            | 100              |
| 4       |              |       |              | 0.0  |                  |               |               | 0.0            | 100              |
| 5       |              |       |              | 0.0  |                  |               |               | 0.0            | 100              |
| 6       |              |       |              | 0.0  |                  |               |               | 0.0            | 100              |
| 7       |              |       |              | 0.0  |                  |               |               | 0.0            | 100              |
| 8       |              |       |              | 0.0  |                  |               |               | 0.0            | 100              |
| 9       |              |       |              | 0.0  |                  |               |               | 0.0            | 100              |
| 10      |              |       |              | 0.0  |                  |               |               | 0.0            | 100              |
| 11      |              |       |              | 0.0  |                  |               |               | 0.0            | 100              |
| 12      |              |       |              | 0.0  |                  |               |               | 0.0            | 100              |

| Vehicle Type |      |               |                  | Dust Control Method | 1              |                        |
|--------------|------|---------------|------------------|---------------------|----------------|------------------------|
| 31           | None | Boom Sweeping | Vacuum           | Control Meth        | od (check one) | Number of Vehicle Pass |
|              |      |               | Sweeping with at | Water Only          | Water+Sweeping | Since Last Treatment   |
|              |      |               | lease 12,000 cfm | -                   |                |                        |
| 0            | X    |               |                  |                     |                | 100                    |
| 0            | X    |               |                  |                     |                | 100                    |
| 0            | X    |               |                  |                     |                | 100                    |
| 0            | X    |               |                  |                     |                | 100                    |
| 0            | X    |               |                  |                     |                | 100                    |
| 0            | X    |               |                  |                     |                | 100                    |
| 0            | X    |               |                  |                     |                | 100                    |
| 0            | X    |               |                  |                     |                | 100                    |
| 0            | X    |               |                  |                     |                | 100                    |
| 0            | X    |               |                  |                     |                | 100                    |
| 0            | X    |               |                  |                     |                | 100                    |
| 0            | X    |               |                  |                     |                | 100                    |

| Topical Sil          | t Loading        |
|----------------------|------------------|
| Paved Surface        | gram / meter sq. |
| Freeway              | 0.1              |
| Heavy Traffic        | 0.1              |
| Low Traffic Road     | 0.4              |
| Solid Waste Landfill | 7.4              |
| Quarry               | 8.2              |
| Concrete Batching    | 12               |
| Sand & Gravel Plant  | 70               |
| Industrial Site      | 100              |
| District Default     | 100              |
| Asphalt Batching     | 120              |
| Site - Specific      |                  |
| Site - Specific      |                  |
| Site - Specific      |                  |
| Site - Specific      | •                |

**EMISSIONS** 

SCC

Emission Factors pounds / vmt

 $EmFac = [k*(sL/2)^0.65*(W/3)^1.5-C](1-P/(4*N))$ 

k = Aerodynamic Factor

sL = Silt Loading (%)

W = Mean weight (tons)

C = Correction factor for fleet exhaust, brake, wear and tire wear - lbs/vmt

3-05-025-99

| Factors      |             |            |  |  |  |  |  |  |  |
|--------------|-------------|------------|--|--|--|--|--|--|--|
|              | Aerodynamic | Correction |  |  |  |  |  |  |  |
| TSP =        | 0.082       | 0.00047    |  |  |  |  |  |  |  |
| $PM_{10} =$  | 0.016       | 0.00047    |  |  |  |  |  |  |  |
| $PM_{2.5} =$ | 0.004       | 0.00036    |  |  |  |  |  |  |  |

## HARP / CEIDARS MINING OPERATIONS PAVED ROADS - ENTRAINED DUST

FORM MINE PROAD

P = Day per year with at least 0.01 inches of precipitation - See MetData

N = Number of days in averaging period or 365

| Throu             | ghput | Emission Fa | Emission Factors Uncontrolled (pounds/vmt) |           |  |  |  |  |
|-------------------|-------|-------------|--------------------------------------------|-----------|--|--|--|--|
| Vehicle Type      | vmt   | PM          | $PM_{10}$                                  | $PM_{10}$ |  |  |  |  |
| 0                 | 0.0   | 0.000       | 0.000                                      | 0.000     |  |  |  |  |
| 0                 | 0.0   | 0.000       | 0.000                                      | 0.000     |  |  |  |  |
| 0                 | 0.0   | 0.000       | 0.000                                      | 0.000     |  |  |  |  |
| 0                 | 0.0   | 0.000       | 0.000                                      | 0.000     |  |  |  |  |
| 0                 | 0.0   | 0.000       | 0.000                                      | 0.000     |  |  |  |  |
| 0                 | 0.0   | 0.000       | 0.000                                      | 0.000     |  |  |  |  |
| 0                 | 0.0   | 0.000       | 0.000                                      | 0.000     |  |  |  |  |
| 0                 | 0.0   | 0.000       | 0.000                                      | 0.000     |  |  |  |  |
| 0                 | 0.0   | 0.000       | 0.000                                      | 0.000     |  |  |  |  |
| 0                 | 0.0   | 0.000       | 0.000                                      | 0.000     |  |  |  |  |
| 0                 | 0.0   | 0.000       | 0.000                                      | 0.000     |  |  |  |  |
| 0                 | 0.0   | 0.000       | 0.000                                      | 0.000     |  |  |  |  |
| TOTAL             | 0.0   | #DIV/0!     | #DIV/0!                                    | #DIV/0!   |  |  |  |  |
| Number of Devices | 0     |             |                                            |           |  |  |  |  |

Broom Sweeping Vacuum Sweeping C = 20 - (0.231\*V) C = 45 - (0.236\*V)

Water Flushing Water Flushing + Sweeping C = 69 - (0.231 \* V) C = 96 - (0.263 \* V)

C = Control Efficiency (%)

V = Number of Vehicles passes since last treatment

| Vehicle Type | Efficiency | Emission F | Factor - Controlled (pe | ounds/vmt) |
|--------------|------------|------------|-------------------------|------------|
|              | (%)        | PM         | $PM_{10}$               | $PM_{10}$  |
| 0            | 0.000      | 0.000      | 0.000                   | 0.000      |
| 0            | 0.000      | 0.000      | 0.000                   | 0.000      |
| 0            | 0.000      | 0.000      | 0.000                   | 0.00       |
| 0            | 0.000      | 0.000      | 0.000                   | 0.00       |
| 0            | 0.000      | 0.000      | 0.000                   | 0.00       |
| 0            | 0.000      | 0.000      | 0.000                   | 0.00       |
| 0            | 0.000      | 0.000      | 0.000                   | 0.00       |
| 0            | 0.000      | 0.000      | 0.000                   | 0.00       |
| 0            | 0.000      | 0.000      | 0.000                   | 0.00       |
| 0            | 0.000      | 0.000      | 0.000                   | 0.00       |
| 0            | 0.000      | 0.000      | 0.000                   | 0.00       |
| 0            | 0.000      | 0.000      | 0.000                   | 0.00       |
|              | TOTAL      | #DIV/01    | #DIV/0!                 | #DIV/01    |

| Fractionat | ion Value |
|------------|-----------|
| $PM_{10}$  | $PM_{10}$ |
| 1.000      | 0.766     |
| 1.000      | 0.766     |
| 1.000      | 0.766     |
| 1.000      | 0.766     |
| 1.000      | 0.766     |
| 1.000      | 0.766     |
| 1.000      | 0.766     |
| 1.000      | 0.766     |
| 1.000      | 0.766     |
| 1.000      | 0.766     |
| 1.000      | 0.766     |
| 1.000      | 0.766     |
| #DIV/0!    | #DIV/0!   |

Emissions

EmFac \* vmt / 2000

| Emissions (tpy) |                                                                                        |  |  |  |  |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| $PM_{10}$       | $PM_{10}$                                                                              |  |  |  |  |  |  |  |  |  |
| 0.000           | 0.000                                                                                  |  |  |  |  |  |  |  |  |  |
| 0.000           | 0.000                                                                                  |  |  |  |  |  |  |  |  |  |
| 0.000           | 0.000                                                                                  |  |  |  |  |  |  |  |  |  |
| 0.000           | 0.000                                                                                  |  |  |  |  |  |  |  |  |  |
| 0.000           | 0.000                                                                                  |  |  |  |  |  |  |  |  |  |
| 0.000           | 0.000                                                                                  |  |  |  |  |  |  |  |  |  |
| 0.000           | 0.000                                                                                  |  |  |  |  |  |  |  |  |  |
| 0.000           | 0.000                                                                                  |  |  |  |  |  |  |  |  |  |
| 0.000           | 0.000                                                                                  |  |  |  |  |  |  |  |  |  |
| 0.000           | 0.000                                                                                  |  |  |  |  |  |  |  |  |  |
| 0.000           | 0.000                                                                                  |  |  |  |  |  |  |  |  |  |
| 0.000           | 0.000                                                                                  |  |  |  |  |  |  |  |  |  |
|                 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 |  |  |  |  |  |  |  |  |  |

TOTAL 0.000 0.000 0.000

#### HARP / CEIDARS MINING OPERATIONS UNPAVED ROADS - ENTRAINED DUST

FORM MINE UPR

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

OUTPUT DATA TO CEIDARS

COMPANY NAME: Omya California Inc FACILITY NAME: Plant

COMPANY NUMBER: 90 FACILITY NUMBER: 461

DEVICE # 90013

| Process Number | Vehicle type                                                                                                                                         | Road Type * |                       | Vehicle Weigh (ton:  | s)                    |                  | Distance Travele | ed per Year (vmt) |                | Mean Vehicle | Silt Loading *        | Moisture         |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|----------------------|-----------------------|------------------|------------------|-------------------|----------------|--------------|-----------------------|------------------|
|                |                                                                                                                                                      | Ind / Pub   | Empty                 | Loaded               | Mean                  | Round Trip Miles | Trips per Day    | Days per Year     | Miles per Year | Sped (mph)   | %                     | %                |
| 1              | Loader                                                                                                                                               | Ind         | 100                   | 116                  | 108.0                 | 0.03             | 25               | 260               | 195.0          | 15           | 10                    | 0                |
| 2              | Vacum Truck                                                                                                                                          | Ind         | 22.75                 | 22.75                | 22.8                  | 0.1              | 3.7              | 260               | 96.2           | 15           | 10                    | 0                |
| 3              | Forklift                                                                                                                                             | Ind         | 8.5                   | 9.5                  | 9.0                   | 0.05             | 9.5              | 260               | 123.5          | 15           | 10                    | 0                |
| 4              | Dump Truck                                                                                                                                           | Ind         | 27.5                  | 47.6                 | 37.6                  | 0.24             | 5.2              | 260               | 324.5          | 15           | 10                    | 0                |
| 5              | Lube van                                                                                                                                             | Ind         | 20                    | 20                   | 20.0                  | 9.1              | 1.6              | 130               | 1,892.8        | 15           | 10                    | 0.               |
| 6              | Fuel truck                                                                                                                                           | Ind         | 10                    | 20                   | 15.0                  | 7.2              | 0.9              | 52                | 337.0          | 15           | 10                    | 0.               |
| 7              | WaterTruck                                                                                                                                           | Ind         | 50                    | 80                   | 65.0                  | 4.8              | 1.4              | 260               | 1,747.2        | 15           | 10                    | 0                |
| 8              |                                                                                                                                                      |             |                       |                      | 0.0                   |                  |                  |                   | 0.0            |              | 11                    | 0                |
| 9              |                                                                                                                                                      |             |                       |                      | 0.0                   |                  |                  |                   | 0.0            |              | 11                    | 0.               |
| 10             |                                                                                                                                                      |             |                       |                      | 0.0                   |                  |                  |                   | 0.0            |              | 11                    | 0                |
| 11             |                                                                                                                                                      |             |                       |                      | 0.0                   |                  |                  |                   | 0.0            |              | 11                    | 0                |
| 12             |                                                                                                                                                      |             |                       |                      | 0.0                   |                  |                  |                   | 0.0            |              | 11                    | 0                |
|                |                                                                                                                                                      | * Road Type |                       |                      |                       |                  |                  |                   |                |              | * For other Silt Load | lings % is cells |
|                | Ind = Unpaved road surfaces a industrial sites                                                                                                       |             |                       |                      |                       |                  |                  |                   |                |              | 'A167' through 'D178  | 3'.              |
|                |                                                                                                                                                      | Pub =       | Publicly accessible i | oadways dominated by | y light duty vehicles |                  |                  |                   |                |              |                       |                  |
|                |                                                                                                                                                      |             |                       |                      |                       |                  |                  |                   |                |              |                       |                  |
| Process Number | Process Number Vehicle Type Road Type Dust Control Method (Check "X" only one method per emission source (row) and complete appropriate cells below) |             |                       |                      |                       |                  |                  |                   |                |              |                       |                  |

| Process Number | Vehicle Type | Road Type | Du           | st Control Method (Cl | heck "X" only one metho | d per emission sour | ce (row) and complet | e appropriate cells bel | ow)       |
|----------------|--------------|-----------|--------------|-----------------------|-------------------------|---------------------|----------------------|-------------------------|-----------|
|                |              |           | Method       | None                  | Water                   | Water with          | Surface              | Wind Screens or         | Other     |
|                |              |           |              |                       |                         | Suppressants        | Improvement          | Wind Breaks             |           |
|                |              |           | Cells        | none                  | D52-D63 or E52-G63      | H52 - M63           | D70 - E 81           | G70 - H81               | 170 - M81 |
| 1              | Loader       | Ind       | $\mathbb{N}$ |                       | X                       |                     |                      |                         |           |
| 2              | Vacum Truck  | Ind       | $\mathbb{N}$ |                       | x                       |                     |                      |                         |           |
| 3              | Forklift     | Ind       | $\mathbb{N}$ |                       | x                       |                     |                      |                         |           |
| 4              | Dump Truck   | Ind       | $\mathbb{N}$ |                       |                         | x                   |                      |                         |           |
| 5              | Lube van     | Ind       | $\mathbb{N}$ |                       |                         | x                   |                      |                         |           |
| 6              | Fuel truck   | Ind       | X            |                       |                         | X                   |                      |                         |           |
| 7              | WaterTruck   | Ind       | $\sim$       |                       |                         | X                   |                      |                         |           |
| 8              | 0            | 0         | >            |                       |                         |                     |                      |                         |           |
| 9              | 0            | 0         | $>\!<$       |                       |                         |                     |                      |                         |           |
| 10             | 0            | 0         | $>\!\!<$     |                       |                         |                     |                      |                         |           |
| 11             | 0            | 0         | $>\!\!<$     |                       |                         |                     |                      |                         |           |
| 12             | 0            | 0         | $\mathbb{N}$ |                       |                         |                     |                      |                         |           |

| Process Number | Vehicle Type | Road Type |     |                                                         |               |                    | Dust Contro  | l Method                                                  |             |               |                    |              |  |
|----------------|--------------|-----------|-----|---------------------------------------------------------|---------------|--------------------|--------------|-----------------------------------------------------------|-------------|---------------|--------------------|--------------|--|
|                |              |           |     | Water (Either new moisture content or application rate) |               |                    |              | Water with Suppressant                                    |             |               |                    |              |  |
|                |              |           |     |                                                         |               | Type or Name of    | Intensity of | Intensity of Frequency of Application (Check (X) only one |             |               | ie)                |              |  |
|                |              |           |     | Traffic Rate vehicles                                   | Hours between | Intensity of water | Suppressant  | Suppressant                                               | Weekly      | Bi-Weekly     | Monthly            | Bi-Monthly   |  |
|                |              |           | (%) | per hour                                                | Application   | gallons / sq yd of |              | Gallons / sq yd of                                        |             |               |                    |              |  |
|                |              |           |     |                                                         |               | Roadway *          |              | Roadway *                                                 | Ever 7 days | Every 14 days | Every 30 - 31 days | Every 61 day |  |
| 1              | Loader       | Ind       |     | 4.4                                                     | 4             |                    | MgCI         | 0.15                                                      |             |               | x                  |              |  |
| 2              | Vacum Truck  | Ind       |     | 3                                                       | 4             |                    | MgCI         | 0.15                                                      |             |               | x                  |              |  |
| 3              | Forklift     | Ind       |     | 1.3                                                     | 4             |                    | MgCI         | 0.15                                                      |             |               | x                  |              |  |
| 4              | Dump Truck   | Ind       |     | 4.7                                                     | 4             |                    | MgCI         | 0.15                                                      |             |               | x                  |              |  |
| 5              | Lube van     | Ind       | 3   | 58.7                                                    | 4             | 0.2                |              |                                                           |             |               |                    |              |  |
| 6              | Fuel truck   | Ind       | 1.5 | 3                                                       | 4             | 0.1                |              |                                                           |             |               |                    |              |  |
| 7              | WaterTruck   | Ind       |     |                                                         |               |                    |              |                                                           |             |               |                    |              |  |
| 8              | 0            | 0         |     |                                                         |               |                    |              |                                                           |             |               |                    |              |  |
| 9              | 0            | 0         |     |                                                         |               |                    |              |                                                           |             |               |                    |              |  |
| 10             | 0            | 0         |     |                                                         |               |                    |              |                                                           |             |               |                    |              |  |
| 11             | 0            | 0         |     |                                                         |               |                    |              |                                                           |             |               |                    |              |  |
| 12             | 0            | 0         |     |                                                         |               |                    |              |                                                           |             |               |                    |              |  |

(\* 0.1 gallons of water or suppressant per square yard of road = 1760 gallons per mile of a 30 foot wide road.)

| Process Number | Vehicle Type | Road Type |                |                      |         |                             | Dust Contro  | l Method  |             |                    |  |
|----------------|--------------|-----------|----------------|----------------------|---------|-----------------------------|--------------|-----------|-------------|--------------------|--|
|                |              |           |                | Surface Improveme    | nt      | Wind Screens or Wind Breaks |              |           | Other       |                    |  |
|                |              |           |                | New Silt Content (%) |         |                             | Width (feet) | Name/Type | Description | Control Efficiency |  |
|                |              |           | 3 Months after | 6 Months after       | Average |                             |              |           | _           | (%)                |  |
|                |              |           | Application    | Application          | _       |                             |              |           |             |                    |  |
| 1              | Loader       | Ind       |                |                      | 10      |                             |              |           | MgCI        | 75                 |  |
| 2              | Vacum Truck  | Ind       |                |                      | 10      |                             |              |           | MgCI        | 75                 |  |
| 3              | Forklift     | Ind       |                |                      | 10      |                             |              |           | MgCI        | 75                 |  |
| 4              | Dump Truck   | Ind       |                |                      | 10      |                             |              |           | MgCI        | 75                 |  |
| 5              | Lube van     | Ind       |                |                      | 10      |                             |              |           | Water Truck | 50                 |  |
| 6              | Fuel truck   | Ind       |                |                      | 10      |                             |              |           | Water truck | 50                 |  |
| 7              | WaterTruck   | Ind       |                |                      | 10      |                             |              |           |             |                    |  |
| 8              | 0            | 0         |                |                      | 11      |                             |              |           |             |                    |  |
| 9              | 0            | 0         |                |                      | 11      |                             |              |           |             |                    |  |
| 10             | 0            | 0         |                |                      | 11      |                             |              |           |             |                    |  |
| 11             | 0            | 0         |                |                      | 11      |                             |              |           |             |                    |  |
| 12             | 0            | 0         |                |                      | 11      |                             |              |           |             |                    |  |

#### HARP / CEIDARS MINING OPERATIONS UNPAVED ROADS - ENTRAINED DUST

FORM MINE UPR

#### **EMISSIONS**

DEVICE #

90014

Emission Factor pounds per vehicle miles traveled Industrial Roads

EmFac = k \* (s / 12)^a \* (W / 3)^b

Public Road

- $$\begin{split} EmFac = & \ k*(\{[(s/12)^na*(S/30)^nd]/(M/0.5)^nc\} C)^n\{[(365-P)/365]\} \\ & \ k,a,b,c,\&d = Constants See Lookup Table entitled "Constants for Emission Factor Equations" \\ & \ s = Silt content of unpaved surface in percent (%) \\ & \ W = \ Average vehicle weight in tons \\ & \ S = Mean vehicle speed (mph) \\ & \ M = \ Moisture content of unpaved surface in percent (%) \\ & \ P = \ Number of days per year with at least 0.01 inches of precipitation see MetData worksheet Cell 'C16. \end{split}$$

| Process |              | Throughput |         | Emission Fa | actors Uncontrolled (pour | ids / vmt) |
|---------|--------------|------------|---------|-------------|---------------------------|------------|
| Number  | Vehicle Type | Road Type  | vmt     | PM          | $PM_{10}$                 | $PM_{10}$  |
| 1       | Loader       | Ind        | 195.0   | 21.632      | 6.385                     | 0.9        |
| 2       | Vacum Truck  | Ind        | 96.2    | 10.733      | 3.168                     | 0.4        |
| 3       | Forklift     | Ind        | 123.5   | 7.071       | 2.087                     | 0.3        |
| 4       | Dump Truck   | Ind        | 324.5   | 13.447      | 3.969                     | 0.6        |
| 5       | Lube van     | Ind        | 1,892.8 | 10.128      | 2.989                     | 0.4        |
| 6       | Fuel truck   | Ind        | 337.0   | 8.898       | 2.626                     | 0.4        |
| 7       | WaterTruck   | Ind        | 1,747.2 | 17.214      | 5.081                     | 0.7        |
| 8       | 0            | 0          | 0.0     | 0.000       | 0.000                     | 0.0        |
| 9       | 0            | 0          | 0.0     | 0.000       | 0.000                     | 0.0        |
| 10      | 0            | 0          | 0.0     | 0.000       | 0.000                     | 0.0        |
| 11      | 0            | 0          | 0.0     | 0.000       | 0.000                     | 0.0        |
| 12      | 0            | 0          | 0.0     | 0.000       | 0.000                     | 0.0        |
|         |              | TOTAL      | 4,716.1 | 13.302      | 3.926                     | 0.0        |
|         | N. I CD .    | -          |         |             |                           |            |

| Fractiona | tion Value |
|-----------|------------|
| $PM_{10}$ | $PM_{10}$  |
| 0.295     | 0.045      |
| 0.295     | 0.045      |
| 0.295     | 0.045      |
| 0.295     | 0.045      |
| 0.295     | 0.045      |
| 0.295     | 0.045      |
| 0.295     | 0.045      |
| 0.000     | 0.000      |
| 0.000     | 0.000      |
| 0.000     | 0.000      |
| 0.000     | 0.000      |
| 0.000     | 0.000      |
| 0.295     | 0.045      |

| Process Number | Vehicle Type | Road Type | 1    |                  | Efficie           | ncy percentage (%) o | f Dust Control Meth | ods             |       |         |
|----------------|--------------|-----------|------|------------------|-------------------|----------------------|---------------------|-----------------|-------|---------|
|                |              |           | None | W                | ater              | Water with           | Surface             | Wind Screens or | Other | Overall |
|                |              |           |      |                  |                   | Suppressants         | Improvement         | Wind Breaks     |       |         |
|                |              |           |      | New Surface      | Water Application |                      |                     |                 |       |         |
|                |              |           |      | Moisture Content | Rate *            |                      |                     |                 |       |         |
|                |              |           |      | (%)              |                   |                      |                     |                 |       |         |
| 1              | Loader       | Ind       | 0.00 | 0.00             | 0.00              | 75.00                | 0.00                | 0.00            | 75.00 | 75.00   |
| 2              | Vacum Truck  | Ind       | 0.00 |                  |                   | 75.00                | 0.00                | 0.00            | 75.00 | 75.00   |
| 3              | Forklift     | Ind       | 0.00 |                  |                   | 75.00                | 0.00                | 0.00            | 75.00 | 75.00   |
| 4              | Dump Truck   | Ind       | 0.00 |                  |                   | 75.00                | 0.00                | 0.00            | 75.00 | 75.00   |
| 5              | Lube van     | Ind       | 0.00 |                  |                   |                      | 0.00                | 0.00            | 50.00 | 95.00   |
| 6              | Fuel truck   | Ind       | 0.00 |                  | 89.20             | E                    | 0.00                | 0.00            | 50.00 | 89.20   |
| 7              | WaterTruck   | Ind       | 0.00 |                  |                   | E                    | 0.00                | 0.00            | 0.00  | 0.00    |
| 8              | 0            | 0         | 0.00 |                  |                   | E                    | 0.00                | 0.00            | 0.00  | 0.00    |
| 9              | 0            | 0         | 0.00 |                  |                   | E                    | 0.00                | 0.00            | 0.00  | 0.00    |
| 10             | 0            | 0         | 0.00 |                  |                   | E                    | 0.00                | 0.00            | 0.00  | 0.00    |
| 11             | 0            | 0         | 0.00 |                  |                   |                      | 0.00                |                 | 0.00  | 0.00    |
| 12             | 0            | 0         | 0.00 | 0.00             | 0.00              | E                    | 0.00                | 0.00            | 0.00  | 0.00    |

- \* Dust Controls Water Application Rate

  C = 100 (0.0012 \* A \* D \* T ) / I

  C = Control efficiency (%)

  A = pan evaporation rate (inches)

  D = Vehicles per hour

  T = Hours Setvene watering

  I = Gallons / sq. yd (Note 0.1 gallon/sq yd = 1760 gallons per mile for a 30 foot wide road.)

| Process | Vehicle Type | Road Type | Efficiency | Emission | Factor - Controlled (pou | nds/vmt)   |
|---------|--------------|-----------|------------|----------|--------------------------|------------|
| Number  |              |           | (%)        | PM       | $PM_{10}$                | $PM_{2.5}$ |
| 1       | Loader       | Ind       | 75.00      | 5.408    | 1.596                    | 0.245      |
| 2       | Vacum Truck  | Ind       | 75.00      | 2.683    | 0.792                    | 0.121      |
| 3       | Forklift     | Ind       | 75.00      | 1.768    | 0.522                    | 0.080      |
| 4       | Dump Truck   | Ind       | 75.00      | 3.362    | 0.992                    | 0.152      |
| 5       | Lube van     | Ind       | 95.00      | 0.506    | 0.149                    | 0.023      |
| 6       | Fuel truck   | Ind       | 89.20      | 0.961    | 0.284                    | 0.043      |
| 7       | WaterTruck   | Ind       | 0.00       | 17.214   | 5.081                    | 0.779      |
| 8       | 0            | 0         | 0.00       | 0.000    | 0.000                    | 0.000      |
| 9       | 0            | 0         | 0.00       | 0.000    | 0.000                    | 0.000      |
| 10      | 0            | 0         | 0.00       | 0.000    | 0.000                    | 0.000      |
| 11      | 0            | 0         | 0.00       | 0.000    | 0.000                    | 0.000      |
| 12      | 0            | 0         | 0.00       | 0.000    | 0.000                    | 0.000      |
|         |              | TOTAL     | 56.26      | 7.205    | 2.127                    | 0.326      |

| PM     | $PM_{10}$ | $PM_{2.5}$ |
|--------|-----------|------------|
| 0.527  | 0.156     | 0.024      |
| 0.129  | 0.038     | 0.006      |
| 0.109  | 0.032     | 0.005      |
| 0.545  | 0.161     | 0.025      |
| 0.479  | 0.141     | 0.022      |
| 0.162  | 0.048     | 0.007      |
| 15.038 | 4.439     | 0.681      |
| 0.000  | 0.000     | 0.000      |
| 0.000  | 0.000     | 0.000      |
| 0.000  | 0.000     | 0.000      |
| 0.000  | 0.000     | 0.000      |
| 0.000  | 0.000     | 0.000      |

| TOTAL | 16.990 | 5.015 | 0.769 |
|-------|--------|-------|-------|

#### HARP / CEIDARS MINING OPERATIONS WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROADS

**FORM** MINE **ERO** 

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

OUTPUT DATA TO CEIDARS

COMPANY NAME: Omya California Inc

FACILITY NAME: Plant

COMPANY NUMBER: 90 FACILITY NUMBER: 461

DEVICE# 90014a

| Process | Parking Areas | Disturbed Areas | Vegetative | Moisture | Th          | reshold Friction Velocity | Ratio of V | Wind Speed to Friction Velocity |
|---------|---------------|-----------------|------------|----------|-------------|---------------------------|------------|---------------------------------|
| Number  |               |                 | cover      | Natural  | Area Use    | Usage                     | Area Use   | Usage                           |
|         | acres         | acres           | fraction   | %        | Code * Name |                           | Code **    | Name                            |
| 1       | 0             | 1.8             | 0          | 0.5      | 3           | Construction Site         | 3          | Moderate Industrial / Mining    |
| 2       | 0             | 0.28            | 0          | 0.5      | 3           | Construction Site         | 3          | Moderate Industrial / Mining    |
| 3       | 0             | 2.9             | 0          | 0.5      | 3           | Construction Site         | 3          | Moderate Industrial / Mining    |
| 4       |               |                 |            | 0.5      |             | None                      |            | None                            |
| 5       |               |                 |            | 0.5      |             | None                      |            | None                            |
| 6       |               |                 |            | 0.5      |             | None                      |            | None                            |
| 7       |               |                 |            | 0.5      |             | None                      |            | None                            |
| 8       |               |                 |            | 0.5      |             | None                      |            | None                            |
| 9       |               |                 |            | 0.5      |             | None                      |            | None                            |
| 10      |               |                 |            | 0.5      |             | None                      |            | None                            |

|      | * Threshold Friction Velocity | ** Rati | on of Wind Speed to Friction Velocity |
|------|-------------------------------|---------|---------------------------------------|
| Code | Area Usage                    | Code    | Area Usage                            |
| 0    | None                          | 0       | None                                  |
| 1    | Mine Tailings                 | 1       | Open Space                            |
| 2    | Abandoned Agricultural Land   | 2       | Light Industrial / Mining             |
| 3    | Construction Site             | 3       | Moderate Industrial / Mining          |
| 4    | Disturbed Desert              | 4       | Heavy Industrial / Mining             |
| 5    | Scrub Desert                  | 5       | User Defined                          |
| 6    | Coal Dust                     | 6       | User Defined                          |
| 7    | Active Agricultural Land      | 7       | User Defined                          |
| 8    | Coal Pile                     | 8       | User Defined                          |
| 9    | User Defined                  | 9       | User Defined                          |
| 10   | User Defined                  | 10      | User Defined                          |
| 11   | User Defined                  |         |                                       |
| 12   | Hear Defined                  |         |                                       |

| Process Number | Total Parking and |           |           |                      |             | Dust Cont           | rols (Check 'x' only on | ne method)  |           |         |                |
|----------------|-------------------|-----------|-----------|----------------------|-------------|---------------------|-------------------------|-------------|-----------|---------|----------------|
|                | Disturbed Areas   | None      |           | Water Spray          |             |                     |                         | Wind Screen |           | Other   |                |
|                |                   | check (x) | check (x) | Water Added          |             | ırface Moisture Con |                         | check (x)   | check (x) | Specify | Efficiency (%) |
|                |                   |           |           | gallons per acre per |             | As Measured (%)     |                         |             |           |         |                |
|                |                   |           |           | day                  | Added Water |                     | for Calculation         |             |           |         |                |
| 1              | 1.8               |           |           |                      | -0.32       |                     | 0.00                    |             | X         | MgCl    | 75             |
| 2              | 0.28              |           | х         | 800                  | 7.04        |                     | 7.04                    |             |           |         |                |
| 3              | 2.9               |           |           |                      | -0.32       |                     | 0.00                    |             | x         | MgCl    | 75             |
| 4              | 0                 | X         |           |                      | -0.32       |                     | 0.00                    |             |           |         |                |
| 5              | 0                 | X         |           |                      | -0.32       |                     | 0.00                    |             |           |         |                |
| 6              | 0                 | X         |           |                      | -0.32       |                     | 0.00                    |             |           |         |                |
| 7              | 0                 | X         |           |                      | -0.32       |                     | 0.00                    |             |           |         |                |
| 8              | 0                 | X         |           |                      | -0.32       |                     | 0.00                    |             |           |         |                |
| 9              | 0                 | X         |           |                      | -0.32       |                     | 0.00                    |             |           |         |                |
| 10             | 0                 | X         |           |                      | -0.32       |                     | 0.00                    |             |           |         |                |

#### HARP / CEIDARS MINING OPERATIONS WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROADS

**FORM** MINE **ERO** 

## **EMISSIONS**

DEVICE # 90014a

$$\begin{split} & \text{Emission Factor - pounds per acre} \\ & \text{EmFac} = 2.814 * k *(1 - v) * (u / u) ^3 * C(x) *2000 \\ & k = \text{ Aerodynamic Factor for Particulate Size} \\ & v = \text{ Amount of Vegetative cover as a Fraction} \\ & u = \text{ Mean Wind Speed in Meters per Second (m/s)} \\ & \text{ The Meters of Meters} \end{aligned}$$

u<sub>t</sub> = Threshold Value of Wind Speed (m/s) C(x) = Correction Factor

Aerodynamic Factor  $\begin{array}{cc} TSP = \ 1.0 \\ PM_{10} = \ 0.5 \end{array}$ 

 $PM_{2.5} = 0.2$ 

Threshold Value of Wind Speed -  $u_t$ 

 $u_t = u \underset{t}{*} * u *$ 

| Process | Throughput        |                | Emission Factor                           |     |                           |      |        |             |             |             |
|---------|-------------------|----------------|-------------------------------------------|-----|---------------------------|------|--------|-------------|-------------|-------------|
| Number  | Parking Areas     | Disturbed Area | Area Threshold Ratio Threshold Correction |     | Emission Factors          |      |        |             |             |             |
|         |                   |                | Friction Velocity                         |     | Wind Speed                |      | Factor | TSP         | $PM_{10}$   | $PM_{2.5}$  |
|         |                   |                | u* <sub>t</sub>                           | u*  | $\mathbf{u}_{\mathrm{t}}$ | x    | C(x)   |             |             |             |
|         | Acres             | Acres          | m/s                                       |     | m/s                       |      |        | pounds/acre | pounds/acre | pounds/acre |
| 1       | 0                 | 1.8            | 0.26                                      | 6.5 | 1.69                      | 0.44 | 1.90   | 90,332.145  | 45,166.072  | 18,066.429  |
| 2       | 0                 | 0.28           | 0.26                                      | 6.5 | 1.69                      | 0.44 | 1.90   | 90,332.145  | 45,166.072  | 18,066.429  |
| 3       | 0                 | 2.9            | 0.26                                      | 6.5 | 1.69                      | 0.44 | 1.90   | 90,332.145  | 45,166.072  | 18,066.429  |
| 4       | 0                 | 0              | 0                                         | 0   | 0                         | 0.00 | 0.00   | 0.000       | 0.000       | 0.000       |
| 5       | 0                 | 0              | 0                                         | 0   | 0                         | 0.00 | 0.00   | 0.000       | 0.000       | 0.000       |
| 6       | 0                 | 0              | 0                                         | 0   | 0                         | 0.00 | 0.00   | 0.000       | 0.000       | 0.000       |
| 7       | 0                 | 0              | 0                                         | 0   | 0                         | 0.00 | 0.00   | 0.000       | 0.000       | 0.000       |
| 8       | 0                 | 0              | 0                                         | 0   | 0                         | 0.00 | 0.00   | 0.000       | 0.000       | 0.000       |
| 9       | 0                 | 0              | 0                                         | 0   | 0                         | 0.00 | 0.00   | 0.000       | 0.000       | 0.000       |
| 10      | 0                 | 0              | 0                                         | 0   | 0                         | 0.00 | 0.00   | 0.000       | 0.000       | 0.000       |
|         | INPUTS            | 4.98           |                                           |     |                           |      |        | 90,332.145  | 45,166.072  | 18,066.429  |
|         | Number of Devices | 0              |                                           |     |                           |      | !      |             |             |             |

| Process | Total Parking and<br>Disturbed Areas | Fractionation Value |                   |  |
|---------|--------------------------------------|---------------------|-------------------|--|
| Number  | Acres                                | $PM_{10}$           | PM <sub>2.5</sub> |  |
| 1       | 1.8                                  | 0.5                 | 0.2               |  |
| 2       | 0.28                                 | 0.5                 | 0.2               |  |
| 3       | 2.9                                  | 0.5                 | 0.2               |  |
| 4       | 0                                    | 0                   | 0                 |  |
| 5       | 0                                    | 0                   | 0                 |  |
| 6       | 0                                    | 0                   | 0                 |  |
| 7       | 0                                    | 0                   | 0                 |  |
| 8       | 0                                    | 0                   | 0                 |  |
| 9       | 0                                    | 0                   | 0                 |  |
| 10      | 0                                    | 0                   | 0                 |  |
|         | INPUTS                               | 0.5                 | 0.2               |  |

| Process | Total Parking and<br>Disturbed Areas | Com         | tuala          | Emission I | Controlled (m.                        | over de /o one) |  |
|---------|--------------------------------------|-------------|----------------|------------|---------------------------------------|-----------------|--|
|         |                                      | Controls    |                |            | ion Factor - Controlled (pounds/acre) |                 |  |
| Number  | Acres                                | Type        | Efficiency (%) | TSP        | $PM_{10}$                             | $PM_{2.5}$      |  |
| 1       |                                      | MgCl        | 75.0           | 22,583.036 | 11,291.518                            | 4,516.607       |  |
| 2       | 0.28                                 | Water Spray | 95.0           | 4,516.607  | 2,258.304                             | 903.321         |  |
| 3       | 2.9                                  | MgCl        | 75.0           | 22,583.036 | 11,291.518                            | 4,516.607       |  |
| 4       | 0                                    | None        | 0.0            | 0.000      | 0.000                                 | 0.000           |  |
| 5       | 0                                    | None        | 0.0            | 0.000      | 0.000                                 | 0.000           |  |
| 6       | 0                                    | None        | 0.0            | 0.000      | 0.000                                 | 0.000           |  |
| 7       | 0                                    | None        | 0.0            | 0.000      | 0.000                                 | 0.000           |  |
| 8       | 0                                    | None        | 0.0            | 0.000      | 0.000                                 | 0.000           |  |
| 9       | 0                                    | None        | 0.0            | 0.000      | 0.000                                 | 0.000           |  |
| 10      | 0                                    | None        | 0.0            | 0.000      | 0.000                                 | 0.000           |  |
|         |                                      | INPUTS      | 76.12          | 21,567.253 | 10,783.626                            | 4,313.451       |  |

| Emissions (tpy) = Area * EmFac |           |            |  |  |  |  |  |
|--------------------------------|-----------|------------|--|--|--|--|--|
| TSP                            | $PM_{10}$ | $PM_{2.5}$ |  |  |  |  |  |
| 20.325                         | 10.162    | 4.06       |  |  |  |  |  |
| 0.632                          | 0.316     | 0.12       |  |  |  |  |  |
| 32.745                         | 16.373    | 6.54       |  |  |  |  |  |
| 0.000                          | 0.000     | 0.00       |  |  |  |  |  |
| 0.000                          | 0.000     | 0.00       |  |  |  |  |  |
| 0.000                          | 0.000     | 0.00       |  |  |  |  |  |
| 0.000                          | 0.000     | 0.00       |  |  |  |  |  |
| 0.000                          | 0.000     | 0.00       |  |  |  |  |  |
| 0.000                          | 0.000     | 0.00       |  |  |  |  |  |
| 0.000                          | 0.000     | 0.00       |  |  |  |  |  |

| TOTAL | 53.702 | 26.851 | 10.740 |
|-------|--------|--------|--------|
|       |        |        |        |

 $x = \ u_t\!/\!u$ 

## HARP / CEIDARS MINING OPERATIONS **TOTAL EMISSIONS**

**FORM MINE TOTAL** 

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc FACILITY NAME: Sentinel Quarry

COMPANY NUMBER: 90

FACILITY NUMBER: 461

## **TOTAL**

| EMISSION SOURCE / OPERATION / ACTIVITY                | DEVICE ID # |         | DEVICE ID# CRITERIA EMISSIONS (tons per year) |            |       |        |       |           |       |
|-------------------------------------------------------|-------------|---------|-----------------------------------------------|------------|-------|--------|-------|-----------|-------|
|                                                       |             | TSP     | $PM_{10}$                                     | $PM_{2.5}$ | CO    | NOx    | TOG   | ROG / VOC | SOx   |
| DRILLING                                              | 90010       | 0.225   | 0.180                                         | 0.180      |       |        |       |           |       |
| BLASTING                                              | 90011       | 10.417  | 5.417                                         | 0.312      |       |        |       |           |       |
| EXPLOSIVES                                            | 30502514    |         |                                               |            | 2.948 | 0.748  | 0.000 |           |       |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL          | 90012       | 0.049   | 0.024                                         | 0.007      |       |        |       |           |       |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT            | 90006,7,8,9 | 0.278   | 0.135                                         | 0.041      |       |        |       |           |       |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1        | 751         | 6.075   | 1.064                                         | 0.330      |       |        |       |           |       |
| STOCKPILES - WIND EROSION                             | 90015       | 0.671   | 0.336                                         | 0.134      |       |        |       |           |       |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT           | VARIOUS     | 0.027   | 0.026                                         | 0.026      | 0.082 | 0.375  | 0.030 | 0.026     | 0.00  |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT              | 90001,2     | 0.634   | 0.630                                         | 0.630      | 5.205 | 13.581 | 1.679 | 1.625     | 2.020 |
| UNPAVED ROADS - ENTRAINED DUST                        | 90013       | 104.891 | 29.916                                        | 4.587      |       |        |       |           |       |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROADS | 90014       | 37.262  | 18.631                                        | 7.452      |       |        |       |           |       |

GRAND TOTAL 160.528 56.358 13.700 8.235 14.704 1.709 1.652 2.021

# HARP / CEIDARS MINING OPERATIONS FACILITY INFORMATION

FORM MINE FAC

| DATA INPUT BY FACILITY         | Z D                          | OATA FROM ANOTHER ' | WORKSHEET | OU      | TPUT DATA TO CEII | DARS |
|--------------------------------|------------------------------|---------------------|-----------|---------|-------------------|------|
|                                |                              |                     |           |         |                   |      |
| COMPANY NAME: Omya Californ    | nia Inc                      |                     | COMPANY   | NUMBER: | 90                |      |
| FACILITY NAME: Sentinel Quart  | ry                           |                     | FACILITY  | NUMBER: | 461               |      |
| FACILITY LOCATION (address): 7 | 7225 Crystal Creek Road      |                     |           | FACID:  | 9000461           |      |
| CITY: I                        | Lucerne Valley               |                     |           |         |                   |      |
| STATE: 0                       | CA                           | ZIP: 92356          |           |         |                   |      |
| _                              |                              |                     |           |         |                   |      |
| MAILING ADDRESS: F             | P.O. Box 825                 |                     |           |         |                   |      |
| CITY: I                        | Lucerne Valley               |                     |           |         |                   |      |
| STATE: C                       | CA                           | ZIP: 92356          |           |         |                   |      |
| _                              |                              |                     |           |         |                   |      |
| CONTACT PERSON: (              | Christine Granquist          |                     |           |         |                   |      |
| TELEPHONE NUMBER: 7            | 760-248-5223                 | EXT:                |           |         |                   |      |
| FAX NUMBER: 7                  | 760-248-9115                 |                     |           |         |                   |      |
| EMAIL: o                       | christine.granquist@omya.com |                     |           |         |                   |      |
| <del>-</del>                   |                              |                     |           |         |                   |      |

### MINE TYPE AND PARAMETERS

| TYPE OF MINE           | Quarry (Quarry, Surface, Pit, Bank Run, Shaft, I | ētc.)                                                                                                    |
|------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| TYPE OF MATERIAL MINED | Limestone                                        | (Limestone, Talc, Salts, Sand, Gravel, Rock, Volcanic Cinders, Gold, Silver, Iron Ore, Rear Earth, Etc.) |
| OVERBURDEN RATIO       | 1.2:1 Tons of Overburden per Ton of Ore          |                                                                                                          |

## **EMISSION** YEAR

**200 8** 

## HARP / CEIDARS MINING OPERATIONS MINERALS HANDLED - AMOUNT & CHARACTERISTICS

**FORM MINE** MIN

## DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc

FACILITY NAME: Sentinel Quarry

COMPANY NUMBER: 90

FACILITY NUMBER: 461

| Name of   | Amounts             | (tpv)   | Characte | ristics |
|-----------|---------------------|---------|----------|---------|
| Minerals  | Shifted by Blasting |         |          |         |
| Limestone | 449,672             | 449,672 | 1.5      | 4.4     |
|           |                     |         | 0.5      | 30.0    |
|           |                     |         | 0.5      | 30.0    |
|           |                     |         | 0.5      | 30.0    |
|           |                     |         | 0.5      | 30.0    |
|           |                     |         | 0.5      | 30.0    |
|           |                     |         | 0.5      | 30.0    |
|           |                     |         | 0.5      | 30.0    |
|           |                     |         | 0.5      | 30.0    |
|           |                     |         | 0.5      | 30.0    |
|           |                     |         | 0.5      | 30.0    |
|           |                     |         | 0.5      | 30.0    |
|           |                     |         | 0.5      | 30.0    |
|           |                     |         | 0.5      | 30.0    |
|           |                     |         | 0.5      | 30.0    |
| TOTAL     | 449,672             | 449,672 |          |         |

# HARP / CEIDARS MINING OPERATIONS METEOROLOGICAL DATA

FORM MINE MET-D

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc COMPANY NUMBER: 90
FACILITY NAME: Sentinel Quarry FACILITY NUMBER: 461

| Parameter       | Value | Description                                             | Default Value |
|-----------------|-------|---------------------------------------------------------|---------------|
| Mean Wind Speed | 7.7   | mph                                                     | 7.7           |
| u               | 3.4   | meters per second                                       | $\searrow$    |
| Precipitation   | 40.0  | Day per year with at least 0.01 inches of precipitation | 20.0          |
| Wind Speed      | 13.3  | Percent of time with wind speed >12mph (%)              | 13.3          |
| Evaporation     | 75.0  | Annual Pan Evaporation Rate in inches                   | 75.0          |

#### HARP / CEIDARS MINING OPERATIONS DRILLING AND BLASTING

FORM MINE D&B

DATA INPUT BY FACILITY DATA FROM ANOTHER WORKSHEET OUTPUT DATA TO CEIDARS COMPANY NAME: Omya California Inc COMPANY NUMBER: 90 FACILITY NAME: Sentinel Quarry FACILITY NUMBER: 461 Device ID# DRILLING 90010 Device ID# 90011 BLASTING Blast per year 12 number Ioles per Blast - Average 948 Number of holes per year loles drilled per year rea Shifted per Blast - Averag 2,930 square foot per blast - average rea Shifted per Year square foot per year Tons Ore. Waste & Overburder mount shifted by blasting **EMISSIONS** DRILLING 30502514 30502514 Device ID# 90010 SCC SCC By Amount Shifted By Number of Holes Drilled Annual Throughput 449,672 Tons Shifted nnual Throughput Emission Factors (pounds per tons shifted) Fractionation Value Emission Factors (pounds per hole drilled) Fractionation Value Controls Controls None, assumed wet drilling None, assumed wet drilling Emissions - tons per yea Emissions - tons per yea PM<sub>2</sub>  $PM_{10}$ BLASTING Device ID# 90011 By Tons Shifted Area Shifted per Blast - Average quare foot per blast - average Annual Throughpu ons Shifted Area Shifted per Year quare foot per year Emission Factors (pounds per on shifted) ctors (pounds per blast) Fractionation Value  $PM_2$  $PM_{10}$  $PM_{2.5}$ TSP  $PM_1$  $PM_1$  $PM_2$ \*  $EmFac = k * 0.0005 * A^{1.5}$ 35.71428571 TSP = 1.00 PM<sub>10</sub>= PM<sub>2.5</sub>= 0.03 Area Shifted per Blast - Average A = Controls Controls None Emissions - tons per year Em = EmFac \* Blast per Year Emissions - tons per year Em = EmFac \* Amount Shift  $PM_1$  $PM_{10}$ 

## HARP / CEIDARS MINING OPERATIONS **EXPLOSIVES**

**FORM MINE EXPL** 

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90

FACILITY NAME: Sentinel Quarry

FACILITY NUMBER: 461

Device ID# 90011

| Code *<br>See Codes below | Туре | Composition                | Amount<br>tons/ year |
|---------------------------|------|----------------------------|----------------------|
| 6                         | ANFO | Ammonium Nitrate, Fuel Oil | 88                   |
|                           | None | None                       |                      |

| * Codes for | Explosive          |
|-------------|--------------------|
| Code        | Explosive          |
| 0           | None               |
| 1           | Black Powder       |
| 2           | Smokeless Powder   |
| 3           | Dynamite, Straight |
| 4           | Dynamite, Ammonia  |
| 5           | Dynamite, Gelatin  |
| 6           | ANFO               |
| 7           | TNT                |
| 8           | RDX                |
| 9           | PETN               |
| 10          | User Defined       |
| 11          | User Defined       |
| 12          | User Defined       |

## **EMISSIONS**

Device ID# 90011 SCC 30502514

|      | Explosive |                   |            | Emission Factor |        |        | Emission Rate |       |       |
|------|-----------|-------------------|------------|-----------------|--------|--------|---------------|-------|-------|
| Code |           | Type              | Amount     | pounds per ton  |        |        | ton per year  |       |       |
|      |           |                   | tons/ year | CO              | NOx    | TOG    | CO            | NOx   | TOG   |
|      | 6         | ANFO              | 88.000     | 67              | 17     | 0      | 2.948         | 0.748 | 0.000 |
|      | 0         | None              | 0.000      | 0               | 0      | 0      | 0.000         | 0.000 | 0.000 |
|      |           | INPUTS            | 88.000     | 67.000          | 17.000 | 0.000  |               |       |       |
|      |           | Number of Devices | 1          |                 |        |        | •             |       |       |
|      |           |                   | -          | •               |        | INPUTS | 2.948         | 0.748 | 0.000 |

## HARP / CEIDARS MINING OPERATIONS BULLDOZING, SCRAPING AND GRADING OF MATERIAL

**FORM MINE BSG** 

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

FACILITY NAME: Sentinel Quarry

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90

FACILITY NUMBER: 461

Device ID# 90012

| Name of Material | Hours of Operations (hours per year) |          |         |       |       |       | Co             | ntrols           |             |
|------------------|--------------------------------------|----------|---------|-------|-------|-------|----------------|------------------|-------------|
|                  | Bulldozing                           | Scraping | Grading | Other | Total | None  | Water Spray Wi |                  | Wind Screen |
|                  |                                      |          |         |       |       | Check | Check          | New Moisture (%) | Check       |
| Limestone        | 24                                   |          |         |       | 24    |       | X              | 3                |             |
| 0                |                                      |          |         |       | 0     |       |                |                  |             |

## **EMISSIONS**

Device ID#

90012

SCC 30502599

Emission Factors (pounds per hours of operations)

 $EmFac = 2.76 * k *(s)^1.5 / (M)^1.4$ 

k = Aerodynamic Factor

s = silt content (%)

M = Moisture content (%)

Aerodynamic factors

TSP =

 $PM_{10} =$ 0.36

 $PM_{2.5} =$ 0.11

| Material          | Hours of Operations | Emission factors - Uncontrolled (pounds per hour) |           |                   |  |  |
|-------------------|---------------------|---------------------------------------------------|-----------|-------------------|--|--|
|                   |                     | TSP                                               | $PM_{10}$ | PM <sub>2.5</sub> |  |  |
| Limestone         | 24                  | 10.685                                            | 5.198     | 1.588             |  |  |
| 0                 | 0                   | 0.000                                             | 0.000     | 0.000             |  |  |
| TOTAL             | 24                  | 10.685                                            | 5.198     | 1.588             |  |  |
| Number of Devices | 1                   |                                                   |           |                   |  |  |

| Fractionation Value |            |  |  |  |  |  |
|---------------------|------------|--|--|--|--|--|
| $PM_{10}$           | $PM_{2.5}$ |  |  |  |  |  |
| 0.486               | 0.149      |  |  |  |  |  |
| 0.000               | 0.000      |  |  |  |  |  |
| 0.486               | 0.149      |  |  |  |  |  |

0.74

| Material  | Contr       | rol            | Emission factors - Controlled (pounds per hour) |           |            |  |
|-----------|-------------|----------------|-------------------------------------------------|-----------|------------|--|
|           | Type        | Efficiency (%) | TSP                                             | $PM_{10}$ | $PM_{2.5}$ |  |
| Limestone | Water Spray | 62.107         | 4.049                                           | 1.970     | 0.602      |  |
| 0         | None        | 0.000          | 0.000                                           | 0.000     | 0.000      |  |
|           | TOTAL       | 62.11          | 4.049                                           | 1.970     | 0.602      |  |

| Emissions - tons per year |           |                   |  |  |  |  |  |  |
|---------------------------|-----------|-------------------|--|--|--|--|--|--|
| TSP                       | $PM_{10}$ | PM <sub>2.5</sub> |  |  |  |  |  |  |
| 0.049                     | 0.024     | 0.007             |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000             |  |  |  |  |  |  |

| TOTAL | 0.049 | 0.024 | 0.007 |
|-------|-------|-------|-------|

## HARP / CEIDARS MINING OPERATIONS LOADING OF MATERIAL(S) AT MINE / QUARRY / PIT

**FORM MINE LOAD** 

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

FACILITY NAME: Sentinel Quarry

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90

FACILITY NUMBER: 461

DEVICE # 90006,7,8,9

| Name of Material | Amount  |
|------------------|---------|
|                  | Loaded  |
|                  | tpy     |
| Limestone        | 672,384 |
| 0                |         |

| Controls |       |                  |             |       |                |  |  |  |  |  |  |
|----------|-------|------------------|-------------|-------|----------------|--|--|--|--|--|--|
| None     | Wate  | er Spray         | Wind Screen |       |                |  |  |  |  |  |  |
| Check    | Check | New Moisture (%) | Check       | Check | Efficiency (%) |  |  |  |  |  |  |
|          | X     | 3                |             |       |                |  |  |  |  |  |  |
|          |       |                  |             |       |                |  |  |  |  |  |  |

## **EMISSIONS**

Device ID# 90006,7,8,9

30502506

Emission Factors (pounds per ton)

EmFac =0.0032 \* k \*(U/5)^1.3 / (M/2)^1.4

k = Aerodynamic Factor

U = Mean wind speed in miles per hour

M = Moisture content (%)

Aerodynamic factors

0.74 TSP =

 $PM_{10} =$ 0.36 0.11

 $PM_{2.5} =$ 

| Material          | Amount  |
|-------------------|---------|
|                   | Loaded  |
|                   | tpy     |
| Limestone         | 672,384 |
| 0                 | 0       |
| TOTAL             | 672,384 |
| Number of Devices | 1       |

| Emission factors - Uncontrolled (pounds per ton) |           |            |  |  |  |  |  |  |  |  |
|--------------------------------------------------|-----------|------------|--|--|--|--|--|--|--|--|
| TSP                                              | $PM_{10}$ | $PM_{2.5}$ |  |  |  |  |  |  |  |  |
|                                                  |           |            |  |  |  |  |  |  |  |  |
| 0.002                                            | 0.001     | 0.000      |  |  |  |  |  |  |  |  |
| 0.000                                            | 0.000     | 0.000      |  |  |  |  |  |  |  |  |
| 0.002                                            | 0.001     | 0.000      |  |  |  |  |  |  |  |  |

| Fractionation Value |            |  |  |  |  |  |  |  |  |
|---------------------|------------|--|--|--|--|--|--|--|--|
| $PM_{10}$           | $PM_{2.5}$ |  |  |  |  |  |  |  |  |
|                     |            |  |  |  |  |  |  |  |  |
| 0.486               | 0.149      |  |  |  |  |  |  |  |  |
| 0.000               | 0.000      |  |  |  |  |  |  |  |  |
| 0.486               | 0.149      |  |  |  |  |  |  |  |  |

| Material  | Cor         | itrol          | Emission factors - Controlled (pounds per ton) |           |                   |  |  |
|-----------|-------------|----------------|------------------------------------------------|-----------|-------------------|--|--|
|           | Type        | Efficiency (%) | TSP                                            | $PM_{10}$ | PM <sub>2.5</sub> |  |  |
| Limestone | Water Spray | 62.107         | 0.001                                          | 0.000     | 0.000             |  |  |
| 0         | None        | 0.000          | 0.000                                          | 0.000     | 0.000             |  |  |
|           | TOTAL       | 62.11          | 0.001                                          | 0.000     | 0.000             |  |  |

| Emissions - tons per year |           |            |  |  |  |  |  |  |
|---------------------------|-----------|------------|--|--|--|--|--|--|
| TSP                       | $PM_{10}$ | $PM_{2.5}$ |  |  |  |  |  |  |
| 0.278                     | 0.135     | 0.041      |  |  |  |  |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |  |  |  |  |

| TOTAL | 0.278 | 0.135 | 0.041 |
|-------|-------|-------|-------|

| EMISSIO                                                                                                                                                                          | N                                                                                                                                                                                                                                                                                                                                                                     | HARP / CEIDARS         |                                             |                    |                            |                                    |                 |        |                                                      |             |            | FO                      | RM                          |                          |                                |                        |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------|--------------------|----------------------------|------------------------------------|-----------------|--------|------------------------------------------------------|-------------|------------|-------------------------|-----------------------------|--------------------------|--------------------------------|------------------------|-------------------------|
| YEAR                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       | MINING OPERATIONS      |                                             |                    |                            |                                    |                 |        |                                                      |             |            |                         | M                           | INE                      |                                |                        |                         |
| 200 8                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                       |                        | AGGREGATE HANDLING, CRUSHING & SCREENING #1 |                    |                            |                                    |                 |        |                                                      |             |            |                         | AC                          | G-1                      |                                |                        |                         |
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                        |                                             |                    | - COLOR                    |                                    |                 |        |                                                      |             |            |                         |                             | DATORY I                 | NFORMAT                        | ION                    |                         |
| DA                                                                                                                                                                               | TA INPUT                                                                                                                                                                                                                                                                                                                                                              | BY FACILITY            | 000000<br>000000<br>000000                  |                    |                            | HER WORKSHEET<br>FORMATION         |                 |        | OUTPUT DATA TO CEIDAR                                | RS          |            | DIAGRA<br>K III - AL    |                             |                          |                                |                        |                         |
|                                                                                                                                                                                  | COMPANY NAME Omya California Inc COMPANY # 90                                                                                                                                                                                                                                                                                                                         |                        |                                             |                    |                            |                                    |                 |        | PERMIT # B 0 0 0                                     | 7 5 1       | BLOC       | K VIII - A              | CTUAL H                     |                          |                                |                        |                         |
| FACILITY NAME Sentinel Quarry FACILITY # 461 DEVICE ID 751 BLOCK IX - ANNUAL THR PROCESS NAME Crushing Screening Circuit INVENTORY ID # 9000461 PROCESS ID BLOCK X - MOISTURE CO |                                                                                                                                                                                                                                                                                                                                                                       |                        |                                             |                    |                            |                                    |                 |        | TEDIAL                                               |             |            |                         |                             |                          |                                |                        |                         |
| PROCESS NAME Crushing Screening Circuit INVENTORY ID # 9000461 PROCESS ID BLOCK X - MOISTURE CONTENT (%) OF MATE  IV - MAP COORDINATES FOR PROCESS  ENTERING THE SYSTEM          |                                                                                                                                                                                                                                                                                                                                                                       |                        |                                             |                    |                            |                                    |                 | LKIAL  |                                                      |             |            |                         |                             |                          |                                |                        |                         |
| UTM ZONE                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                       | UTM EAST (             | km) 5 0                                     | 5 . 3              | 1 6                        | UTM NO                             | RTH (km)        | 3 8    | 0 4 . 4 1 5                                          |             | BLOC       | K XIII, C               | OLUMNS '                    | B', 'E', 'F' &           | : 'G'                          |                        |                         |
|                                                                                                                                                                                  | LATITUDE (deg.)         3         4         1         8         3         7         LONGITUDE (deg.)         1         1         6         9         4         2         2           V - TYPE OF PLANT         VI - TYPE OF EQUIPMENT, check all that applies:         VII - MATERIAL TYPES         VIII - OPERATING SCHEDULE         IX - THROUGHPUT (tons per year) |                        |                                             |                    |                            |                                    |                 |        |                                                      |             |            |                         |                             |                          |                                |                        |                         |
| STATIONAL                                                                                                                                                                        | RY x                                                                                                                                                                                                                                                                                                                                                                  | CRUSHERS               | X                                           | TI                 | RANSFER                    | x ch                               | eck all that    | applie | s HOURS per DA                                       | AY          | 10         |                         | CTUAL AN                    | NUAL                     | 2:                             | 22,712                 | ons/Yr.                 |
| PORTAB<br>OTH                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                       | SCREENS<br>CONVEYORS   |                                             |                    | TORAGE<br>DAD OUT          |                                    | ROCK<br>SAND    |        | DAYS per WEI WEEK per YEA                            |             | 52         |                         | URLY (ave                   |                          |                                | 250.0                  | TPH<br>TPH              |
| COMMEN                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                       | OTHERS                 |                                             | E.                 | SALD OUT                   | LIM                                | ESTONE          | х      | CAL. HRS per Y                                       | YR          | 2600       |                         | ly (average) =              | Annual (actua            | l) / Actual Hour               | s per Year (op         |                         |
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       | COMMENTS               |                                             |                    |                            | LAV                                | A ROCK<br>OTHER |        | ACT. HRS per Y CAL. Hrs/Yr = Hr/Dy*I                 |             | 2500       | MOI                     |                             |                          | E CONTEN<br>NTERING S          |                        | 3 %                     |
|                                                                                                                                                                                  | Х                                                                                                                                                                                                                                                                                                                                                                     | I - TYPE OF OPERAT     | ION AND                                     | OR DE              | VICE                       |                                    |                 |        |                                                      | TYPE OF E   | MISSIG     |                         |                             |                          | TTERMING S                     | ,15                    | 70                      |
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       | VICE OR SYSTEM         | CODE                                        |                    |                            | CE OR SYSTEM                       | COD             |        | TYPE OF CONTRO                                       | OL          |            | ODE                     | 1D 1E3                      |                          | OF CONTR                       | OL                     |                         |
| 0 No Dev<br>1 Dump t                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       | truck, pile (Note 2)   | 11                                          |                    | g, wet was:<br>ing - Pneum | hing (Note 4)<br>atic              | 1               | None   | er Spray, Point of Application                       | on          | -    -     |                         | vel Bed Fil<br>ay Tower (   |                          | ency)                          |                        |                         |
| 2 Grizzly                                                                                                                                                                        | (Note 2)                                                                                                                                                                                                                                                                                                                                                              |                        | 13                                          |                    | ing - Bucket               |                                    | 2               |        | y with Additives, Point of A                         | Application |            |                         | t Scrubber                  |                          |                                |                        |                         |
| 3 Hopper<br>4 Transfe                                                                                                                                                            | r (Note 2)<br>er Point (N                                                                                                                                                                                                                                                                                                                                             | ote 2)                 | 14<br>15                                    |                    | harge to Co                | nveyor (Note 2)<br>nk Truck        | 3               |        | veyor with Half Cover<br>veyor with Three Quarter Co | over        |            |                         | nturi Scrubb<br>ghouse with |                          |                                |                        |                         |
| 5 Convey                                                                                                                                                                         | yor (Note 2                                                                                                                                                                                                                                                                                                                                                           | !)                     | 16                                          | Loading            |                            | ruck (Note 2)                      | 5               |        | veyor with Full Cover                                |             |            | 16 Bag                  | ghouse with                 | Single Picl              | kup (Unenclo                   |                        |                         |
|                                                                                                                                                                                  | ng, Dry - Pr<br>ng, Dry - Se                                                                                                                                                                                                                                                                                                                                          |                        | 17<br>18                                    | Feeder<br>See Look | cup Table "I               | EmFac" for data                    | 7               |        | ess Enclosure<br>vity Separator                      |             |            |                         |                             |                          | kup (Partial l<br>kup (Full En |                        |                         |
| 8 Crushii                                                                                                                                                                        | ng, Dry - To                                                                                                                                                                                                                                                                                                                                                          | ertiary                | 19                                          | See Look           | cup Table "I               | EmFac" for data                    | 8               | Cycl   | one - Simple                                         |             | <b>]</b> [ |                         |                             |                          | kup (Attache                   | ed)                    |                         |
|                                                                                                                                                                                  | ng, Wet (N<br>ing, Dry                                                                                                                                                                                                                                                                                                                                                | ote 3)                 | 20                                          |                    |                            | EmFac" for data<br>EmFac" for data | 9               |        | one - Multiple<br>dscreen, Windward Side             |             |            |                         | ctrostatic P                |                          | ff" for data                   |                        |                         |
|                                                                                                                                                                                  | 8/ 1                                                                                                                                                                                                                                                                                                                                                                  |                        |                                             |                    |                            |                                    | MISSIO          | N C    | ALCULATIONS                                          |             |            |                         |                             |                          |                                |                        |                         |
| EQUIPMENT                                                                                                                                                                        | DEVICE                                                                                                                                                                                                                                                                                                                                                                | NAME OF I              | DEVICE                                      |                    | MOTOR                      | THROUGHPUT                         |                 | . El   | MISSION CONTROL DEV                                  |             |            |                         | SION FAC                    |                          |                                | ISSION RA              |                         |
| ID<br>NUMBER                                                                                                                                                                     | CODE<br>NO                                                                                                                                                                                                                                                                                                                                                            |                        |                                             |                    | BHP                        | TONS / YEAR                        | CODE            | DsF    | NAME OF DEVICE                                       | E EF        | F %        | POU<br>PM <sub>30</sub> | NDS PER<br>PM <sub>10</sub> | TON<br>PM <sub>2.5</sub> | TON<br>PM <sub>30</sub>        | NS PER YE<br>$PM_{10}$ | AR<br>PM <sub>2.5</sub> |
| (A)                                                                                                                                                                              | (B)                                                                                                                                                                                                                                                                                                                                                                   | (C)                    |                                             |                    | (D)                        | (E)                                | (F)             | (G)    | (H)                                                  | (           | I)         | (J)                     | (K)                         | (L)                      | (M)                            | (N)                    | (O)                     |
| 1                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                     | Dump to Hopper, truck  | , pile (No                                  | te 2)              | NA                         | 222,712                            | 0               |        | None                                                 |             | 0.0        | 0.002                   | 0.001                       | 0.000                    | 0.26                           | 0.12                   | 0.04                    |
| 2                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                     | Transfer Point (Note 2 | )                                           |                    | NA                         | 222,712                            | 1               |        | Water Spray, Point of Applica                        | ation       | 75.0       | 0.002                   | 0.001                       | 0.000                    | 0.07                           | 0.03                   | 0.01                    |
| 31-120                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                     | Grizzly (Note 2)       |                                             |                    | 50                         | 222,712                            | 1               |        | Water Spray, Point of Applica                        | ation       | 75.0       | 0.002                   | 0.001                       | 0.000                    | 0.07                           | 0.03                   | 0.01                    |
| 3                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                     | Transfer Point (Note 2 | )                                           |                    | NA                         | 222,712                            | 1               |        | Water Spray, Point of Applica                        | ation       | 75.0       | 0.002                   | 0.001                       | 0.000                    | 0.07                           | 0.03                   | 0.01                    |
| 3.1                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                    | Screening, Dry         |                                             |                    | 40                         | 222,712                            | 16              |        | Baghouse with Single Pickup                          | (Unencl     | 97.0       | 0.160                   | 0.120                       | 0.038                    | 0.53                           | 0.40                   | 0.13                    |
| 4                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                     | Transfer Point (Note 2 | )                                           |                    | NA                         | 41,844                             | 1               |        | Water Spray, Point of Applica                        | ation       | 75.0       | 0.002                   | 0.001                       | 0.000                    | 0.01                           | 0.01                   | 0.00                    |
| 5                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                     | Conveyor (Note 2)      |                                             |                    | 15                         | 41,844                             | 1               |        | Water Spray, Point of Applica                        | ation       | 75.0       | 0.002                   | 0.001                       | 0.000                    | 0.01                           | 0.01                   | 0.00                    |
| 6                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                     | Transfer Point (Note 2 | )                                           |                    | NA                         | 11,304                             | 1               |        | Water Spray, Point of Applica                        | ation       | 75.0       | 0.002                   | 0.001                       | 0.000                    | 0.00                           | 0.00                   | 0.00                    |
| 7                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                     | Transfer Point (Note 2 | )                                           |                    | NA                         | 264                                | 0               |        | None                                                 |             | 0.0        | 0.002                   | 0.001                       | 0.000                    | 0.00                           | 0.00                   | 0.00                    |
| 8                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                     | Conveyor (Note 2)      |                                             |                    | 15                         | 264                                | 0               |        | None                                                 |             | 0.0        | 0.002                   | 0.001                       | 0.000                    | 0.00                           | 0.00                   | 0.00                    |
| 9                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                     | Transfer Point (Note 2 | )                                           |                    | NA                         | 11,304                             | 1               |        | Water Spray, Point of Applica                        | ation       | 75.0       | 0.002                   | 0.001                       | 0.000                    | 0.00                           | 0.00                   | 0.00                    |
| 10                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                     | Transfer Point (Note 2 | -                                           |                    | NA                         | 33,911                             | 1               |        | Water Spray, Point of Applica                        |             | 75.0       | 0.002                   | 0.001                       | 0.000                    | 0.01                           | 0.00                   | 0.00                    |
| 11                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                     | Transfer Point (Note 2 |                                             |                    | NA                         | 135,650                            | 1               |        | Water Spray, Point of Applica                        |             | 75.0       | 0.002                   | 0.001                       | 0.000                    | 0.04                           | 0.02                   | 0.01                    |
| 11.1                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                     | Crushing, Dry - Primar |                                             |                    | 200                        | 135,650                            | 1               |        | Water Spray, Point of Applica                        |             | 75.0       | 0.280                   | 0.017                       | 0.005                    | 4.75                           | 0.29                   | 0.08                    |
| 12                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                     | Transfer Point (Note 2 |                                             |                    | NA                         | 135,650                            | 1               |        | Water Spray, Point of Applica                        |             | 75.0       | 0.002                   | 0.001                       | 0.000                    | 0.04                           | 0.02                   | 0.01                    |
| 13                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                     | Conveyor (Note 2)      | ,                                           |                    | 25                         | 180,867                            | 1               |        | Water Spray, Point of Applica                        |             | 75.0       | 0.002                   | 0.001                       | 0.000                    | 0.04                           | 0.02                   | 0.01                    |
| 14                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                     | 1                      |                                             |                    | 20                         | 180,867                            | 1               |        |                                                      |             | 75.0       | 0.002                   | 0.001                       | 0.000                    | 0.05                           | 0.03                   | 0.01                    |
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       | Conveyor (Note 2)      |                                             |                    |                            | ,                                  | 1               |        | Water Spray, Point of Applica                        |             |            |                         |                             | 0.000                    |                                | 0.03                   |                         |
| 15                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                     | Conveyor (Note 2)      |                                             |                    | 25                         | 180,867                            | 1               |        | Water Spray, Point of Applica                        |             | 75.0       | 0.002                   | 0.001                       |                          | 0.05                           |                        | 0.01                    |
| 16                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                     | Conveyor (Note 2)      |                                             | nou                | 25                         | 180,867                            | 1               |        | Water Spray, Point of Applica                        | ation       | 75.0       | 0.002                   | 0.001                       | 0.000                    | 0.05                           | 0.03                   | 0.01                    |
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                        | L HORSE                                     |                    | 415                        |                                    | T               |        |                                                      |             |            |                         |                             |                          |                                |                        |                         |
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       | AVERAGE T              | HROUGI                                      | 1PUT PEF           | R DEVICE                   | 125,511                            | <u> </u>        |        |                                                      |             |            |                         |                             |                          |                                |                        |                         |

## **BLOCK XIV - EMISSIONS & HARP INPUTS**

| EMISSION INVENTORY INPUTS             |                 |         |                                           |                          |          |           |            |  |  |  |  |
|---------------------------------------|-----------------|---------|-------------------------------------------|--------------------------|----------|-----------|------------|--|--|--|--|
|                                       | ELTOP B. T.     |         | N III                                     |                          |          |           |            |  |  |  |  |
| <u> </u>                              | EVICE DATA      |         |                                           | EMISSION DATA            |          |           |            |  |  |  |  |
| PERMIT ID                             | B000751         |         |                                           | ANNUAL EMISSIONS (tpy)   | PM       | $PM_{10}$ | $PM_{2.5}$ |  |  |  |  |
| NUMBER OF DEVICES                     | 19              | 19      |                                           | UNCONTROLLED             | 39.192   | 15.643    | 4.925      |  |  |  |  |
| EQUIPMENT SIZE (bhp)                  | 415             |         |                                           | CONTROLLED               | 6.075    | 1.064     | 0.330      |  |  |  |  |
| PI                                    | PROCESS DATA    |         |                                           | EMISSION FACTOR (lb/ton) | $>\!\!<$ | $\times$  |            |  |  |  |  |
| PROC                                  | CESS RATE (tpy) | 222,712 |                                           | UNCONTROLLED             | 0.3520   | 0.1405    | 0.0442     |  |  |  |  |
| MAX. DESIGN RATE (tph)                |                 | 250     |                                           | CONTROLLED               | 0.0546   | 0.0096    | 0.0030     |  |  |  |  |
| MAX. HOURLY PRODUCTION RATE (tph) 250 |                 |         | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | > <                      | 0.1752   | 0.0543    |            |  |  |  |  |
| AVE. HOURLY PRODUCT                   | TION RATE (tph) | 89      |                                           | OVERALL EFFICIENCY       | 84.50    | 93.20     | 93.31      |  |  |  |  |

## HARP / CEIDARS MINING OPERATIONS **STOCKPILES**

**FORM** MINE S-PILES

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: FACILITY NAME:

Omya California Inc

Sentinel Quarry

COMPANY NUMBER: 90 FACILITY NUMBER: 461

Device ID#

90015

|            |               | Stockpile       |              |                |
|------------|---------------|-----------------|--------------|----------------|
| Name of /  | Material Type | Exposed Surface | Silt Loading | Moisture       |
| Number     |               |                 |              | (uncontrolled) |
|            |               | acres           | %            | %              |
| Overburden | Limestone     | 2.0000          | 1.5          | 1.5            |
|            |               |                 | 30           | 0.5            |

| Stockpile     |             | Dust Controls |             |       |         |                |  |  |  |  |
|---------------|-------------|---------------|-------------|-------|---------|----------------|--|--|--|--|
| Name / Number | Water Spray |               | Wind Screen |       |         |                |  |  |  |  |
|               | check       | gal/acre/day  | check       | check | Specify | Efficiency (%) |  |  |  |  |
| Overburden    | X           | 800           |             |       |         |                |  |  |  |  |
| 0             |             |               |             |       |         |                |  |  |  |  |

## **EMISSIONS**

Device ID#

90015

Stockpile

Overburden

0

Number of Devices

30502507

Emission Factors (pounds per acres)

Material Type

Limestone

TOTAL

EmFac = J \*1.7 \* s/1.5 \* (365 - P)/235 \* I/15 \* 365

Size (acres)

2.0000

0.0000

J = Aerodynamic factor Aerodynamic factor s = Silt Loading (%) TSP = P = Day per year with at least 0.01 inches of precipitation  $PM_{10} =$  $PM_{2.5} =$ 

I = Percent of time with wind speed >12mph (%)

| •                  | 1 ereem or mine | with will speed | 12mpii (/0) |         |
|--------------------|-----------------|-----------------|-------------|---------|
| Throughput (acres) |                 |                 |             | Emissio |

| Emission Factor - Uncontrolled (pounds/acre) |           |                   |  |  |  |  |  |
|----------------------------------------------|-----------|-------------------|--|--|--|--|--|
| TSP                                          | $PM_{10}$ | PM <sub>2.5</sub> |  |  |  |  |  |
| 760.883                                      | 380.441   | 152.177           |  |  |  |  |  |
| 0.000                                        | 0.000     | 0.000             |  |  |  |  |  |
| 760.883                                      | 380.441   | 152.177           |  |  |  |  |  |
|                                              |           |                   |  |  |  |  |  |

1.0 0.5

0.2

| Fractionation Value |            |  |  |  |  |  |
|---------------------|------------|--|--|--|--|--|
| $PM_{10}$           | $PM_{2.5}$ |  |  |  |  |  |
| 0.500               | 0.200      |  |  |  |  |  |
| 0.000               | 0.000      |  |  |  |  |  |
| 0.500               | 0.200      |  |  |  |  |  |

|   | Stockpile  | Con         | trols          | Emission Factor - Controlled (pounds/acre) |           |                   |  |  |
|---|------------|-------------|----------------|--------------------------------------------|-----------|-------------------|--|--|
|   |            | Type        | Efficiency (%) | TSP                                        | $PM_{10}$ | PM <sub>2.5</sub> |  |  |
| Г | Overburden | Water Spray | 11.81          | 671.035                                    | 335.517   | 134.207           |  |  |
|   | 0          | None        | 0.00           | 0.000                                      | 0.000     | 0.000             |  |  |
|   |            | TOTAL       | 11.81          | 671.035                                    | 335.517   | 134.207           |  |  |

| Emissions (tpy) = Area * EmFac |           |                   |  |  |  |  |
|--------------------------------|-----------|-------------------|--|--|--|--|
| TSP                            | $PM_{10}$ | PM <sub>2.5</sub> |  |  |  |  |
| 0.671                          | 0.336     | 0.134             |  |  |  |  |
| 0.000                          | 0.000     | 0.000             |  |  |  |  |

| TOTAL | 0.671 | 0.336 | 0.134 |
|-------|-------|-------|-------|

### HARP / CEIDARS MINING OPERATIONS EXHAUST FROM STATIONARY AND PORTABLE FUEL COMBUSTION

FORM MINE EX-S&P

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

OUTPUT DATA TO CEIDARS

FACILITY NAME: Sentinel Quarry

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90 FACILITY NUMBER: 461

| DISTRICT   | DEVICE ID | CODE             | EQUIPMENT TYPE | FUEL TYPE              | UNITS OF | UNITS USED |
|------------|-----------|------------------|----------------|------------------------|----------|------------|
| PERMIT NO. |           | (See Code below) |                |                        | USAGE    | PER YEAR   |
|            | 543406    | 18               | I. C. ENGINES  | FUEL OIL #2 @ 0.05 % S | 1000 GAL | 1.1        |
|            | 543407    | 18               | I. C. ENGINES  | FUEL OIL #2 @ 0.05 % S | 1000 GAL | 0.5        |
|            |           |                  | #N/A           | #N/A                   | #N/A     |            |

| CODE | EQUIPMENT TYPE                    | FUEL TYPE              | SCC         |
|------|-----------------------------------|------------------------|-------------|
| 1    | BOILER > 100 MMBTU/HR             | NATURAL GAS            | 1-02-006-01 |
| 2    | BOILER 10 - 100 MMBTU/HR          | NATURAL GAS            | 1-02-006-02 |
| 3    | BOILER <10 MMBTU/HR               | NATURAL GAS            | 1-02-006-03 |
| 4    | BOILER, COGENERATION              | NATURAL GAS            | 1-02-006-06 |
| 5    | BOILER                            | FUEL OIL #2 @ 0.5 % S  | 1-02-005-01 |
| 6    | BOILER                            | FUEL OIL #2 @ 0.05 % S | 1-02-005-01 |
| 7    | BOILER                            | PROPANE, LPG           | 1-02-010-02 |
| 8    | SPACE HEATER                      | NATURAL GAS            | 1-05-001-06 |
| 9    | SPACE HEATER                      | FUEL OIL #2 @ 0.5 % S  | 1-05-001-05 |
| 10   | SPACE HEATER                      | FUEL OIL #2 @ 0.05 % S | 1-05-001-05 |
| 11   | SPACE HEATER                      | PROPANE, LPG           | 1-05-001-10 |
| 12   | INDUSTRIAL PROCESS                | NATURAL GAS            | 3-05-900-03 |
| 13   | INDUSTRIAL PROCESS                | FUEL OIL #2 @ 0.5 % S  | 3-05-900-01 |
| 14   | INDUSTRIAL PROCESS                | FUEL OIL #2 @ 0.05 % S | 3-05-900-01 |
| 15   | INDUSTRIAL PROCESS                | PROPANE, LPG           | 3-05-900-99 |
| 16   | I. C. ENGINES                     | NATURAL GAS            | 2-03-002-04 |
| 17   | I. C. ENGINES                     | FUEL OIL #2 @ 0.5 % S  | 2-02-017-xx |
| 18   | I. C. ENGINES                     | FUEL OIL #2 @ 0.05 % S | 2-02-017-xx |
| 19   | I. C. ENGINES                     | PROPANE, LPG           | 2-02-017-xx |
| 20   | I. C. ENGINES                     | GASOLINE               | 2-02-017-20 |
| 21   | GAS TURBINES                      | NATURAL GAS            | 2-02-002-01 |
| 22   | GAS TURBINES - COGEN.             | NATURAL GAS            | 2-02-002-03 |
| 23   | GAS TURBINE                       | FUEL OIL #2 @ 0.5 % S  | 2-02-001-01 |
| 24   | GAS TURBINE                       | FUEL OIL #2 @ 0.05 % S | 2-02-001-01 |
| 25   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 26   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 27   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 28   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 29   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 30   | User defined, see Worksheet "SFB" | 0                      | 0           |

## **EMISSIONS**

EXHAUST FROM STATIONARY EQUIPMENT

| PERMIT NO.                                                                        | DEVICE ID | EQUIPMENT TYPE         | PROCESS RATE   | SOURCES          | EMISSIONS FACTORS (pounds per unit of usage) |         |            |                     |          |       |                      |
|-----------------------------------------------------------------------------------|-----------|------------------------|----------------|------------------|----------------------------------------------|---------|------------|---------------------|----------|-------|----------------------|
|                                                                                   |           | FUEL TYPE              | UNITS PER YEAR | CLASSIFICATION   |                                              |         | ANNUAI     | L EMISSIONS (tons p | er year) |       |                      |
| CODE                                                                              |           |                        |                | CODE             | ORGANIC GASES CO NOX SOX F                   |         | PARTICULAT | ΓΕ MATTER           |          |       |                      |
|                                                                                   |           |                        | UNITS          | SCC              | TOG                                          | FRAC    |            |                     |          | PM    | FRAC                 |
|                                                                                   |           |                        |                | /CAS #           | 43101                                        | ROG/VOC | 42101      | 42603               | 42401    | 11101 | $PM_{10} / PM_{2.5}$ |
| 0                                                                                 | 543406    | I. C. ENGINES          | 1.1            | 2-02-017-xx      | 37.42                                        | 0.884   | 102        | 469                 | 1.56     | 33.5  | 0.976                |
| 18 FUEL OIL #2 @ 0.05 % S 1000 GAL Annual Emissions 0.021 0.018 0.056 0.258 0.001 |           |                        |                | 0.018            | 0.018                                        |         |            |                     |          |       |                      |
|                                                                                   |           |                        |                |                  |                                              |         |            |                     |          |       |                      |
| 0                                                                                 | 543407    | I. C. ENGINES          | 0.5            | 2-02-017-xx      | 37.42                                        | 0.884   | 102        | 469                 | 1.56     | 33.5  | 0.970                |
| 18                                                                                |           | FUEL OIL #2 @ 0.05 % S | 1000 GAL       | Annual Emissions | 0.009                                        | 0.008   | 0.026      | 0.117               | 0.000    | 0.008 | 0.00                 |

| TOTAL EMISSIONS | TOG   | ROG / VOC | CO    | NOx   | SOx   | PM    | PM <sub>10</sub> / PM <sub>2.5</sub> |
|-----------------|-------|-----------|-------|-------|-------|-------|--------------------------------------|
| Tons per Year   | 0.030 | 0.026     | 0.082 | 0.375 | 0.001 | 0.027 | 0.026                                |

## HARP / CEIDARS MINING OPERATIONS EXHAUST FROM MOBILE AND VEHICULAR EQUIPMENT

**FORM MINE** EX-M

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

FACILITY NAME:

COMPANY NAME: Omya California Inc

Sentinel Quarry

COMPANY NUMBER: 90 FACILITY NUMBER: 461

DEVICE # 90001,2

| PROCESS | CODE             | EQUIPMENT TYPE          | FUEL TYPE | UNITS OF   | UNITS USED |
|---------|------------------|-------------------------|-----------|------------|------------|
| NUMBER  | (See Code below) |                         |           | USAGE      | PER YEAR   |
| 1       | 1                | HEAVY DUTY - OFF ROAD * | DIESEL    | 1000 hp-hr | 670.0      |
| 2       | 8                | Low emission Tier I     | DIESEL    | 1000 hp-hr | 718.0      |
| 20      |                  | #N/A                    | #N/A      | #N/A       |            |

| CODE | EQUIPMENT TYPE                 | FUEL TYPE |            | SCC         |
|------|--------------------------------|-----------|------------|-------------|
| 1    | HEAVY DUTY - OFF ROAD *        | DIESEL    | 1000 hp-hr | 3-05-025-99 |
| 2    | HEAVY DUTY - OFF ROAD *        | GASOLINE  | 1000 hp-hr | 3-05-025-99 |
| 3    | MISC - OFF ROAD **             | NG / LPG  | 1000 hp-hr | 3-05-025-99 |
| 4    | LOCOMOTIVES                    | DIESEL    | 1000 GAL   | 3-05-025-99 |
| 5    | LIGHT DUTY VEHICLES ***        | GASOLINE  | 1000 VMT   | 3-05-025-99 |
| 6    | HEAVY DUTY - ON ROAD ****      | DIESEL    | 1000 VMT   | 3-05-025-99 |
| 7    | Low Emission Retrofit-Loaders  | DIESEL    | 1000 hp-hr | 3-05-025-99 |
| 8    | Low emission Tier I            | DIESEL    | 1000 hp-hr | 3-05-025-99 |
| 9    | User defined, see Lookup Table | 0         | 0          | 0           |
| 10   | User defined, see Lookup Table | 0         | 0          | 0           |
| 11   | User defined, see Lookup Table | 0         | 0          | 0           |
| 12   | User defined, see Lookup Table | 0         | 0          | 0           |
| 13   | User defined, see Lookup Table | 0         | 0          | 0           |
| 14   | User defined, see Lookup Table | 0         | 0          | 0           |
| 15   | User defined, see Lookup Table | 0         | 0          | 0           |

<sup>\*</sup> OFF ROAD INCLUDES MINING AND EARTH MOVING EQUIPMENT

1000 hp-hr = THOUSAND OF HORSEPOWER HOURS 1000 GAL = THOUSAND OF GALLONS OF LIQUID FUEL

1000 VTM = THOUSAND VEHICLE MILES TRAVELED

MMCF = MILLION OF CUBIC FEET OF NATURAL GAS

### **EMISSIONS**

DEVICE # 90001,2

| PROCESS | CODE | EQUIPMENT TYPE                  | PROCESS RATE   |                  | 4 1 87 |           |       |                   |           |                |                      |  |
|---------|------|---------------------------------|----------------|------------------|--------|-----------|-------|-------------------|-----------|----------------|----------------------|--|
| ID      |      |                                 | UNITS PER YEAR | CLASSIFICATION   |        |           | ANNUA | L EMISSIONS (tons | per year) |                |                      |  |
|         |      |                                 |                | CODE             | ORGANI | C GASES   | CO    | NOx               | SOx       | PARTICULATE MA | TTER                 |  |
|         |      |                                 | UNITS          | SCC              | TOG    | FRAC      |       |                   |           | PM             | FRAC                 |  |
|         |      |                                 |                | /CAS #           | 43101  | ROG / VOC | 42101 | 42603             | 42401     | 11101          | $PM_{10} / PM_{2.5}$ |  |
| 1       | 1    | HEAVY DUTY - OFF ROAD *         | 670.0          | 3-05-025-99      | 2.42   | 0.9676    | 7.50  | 24.25             | 2.91      | 1.54           | 0.994                |  |
| 1       | 1    | HEAVI BOTT - OTT ROAD           | 1000 hp-hr     | Annual Emissions | 0.811  | 0.784     | 2.513 | 8.124             | 0.975     | 0.516          | 0.513                |  |
| 2       | 7    | Low Emission Retrofit-Loaders   | 718.0          | 3-05-025-99      | 2.42   | 0.9676    | 7.5   | 15.2              | 2.91      | 0.33           | 0.99                 |  |
| 2       | /    | / Low Emission Retrofit-Loaders |                | Annual Emissions | 0.869  | 0.841     | 2.693 | 5.457             | 1.045     | 0.118          | 0.117                |  |

| TOTAL EMISSIONS  | TOG   | ROG / VOC | CO    | NOx    | SOx   | PM    | $PM_{10} / PM_{2.5}$ |
|------------------|-------|-----------|-------|--------|-------|-------|----------------------|
| TOTAL LIMISSIONS | 1.679 | 1.625     | 5.205 | 13.581 | 2.020 | 0.634 | 0.630                |

<sup>\*\*</sup> MISC - OFF ROAD INCLUDES NG/LPG LOADER, FORKLIFTS, ETC.

<sup>\*\*\*</sup> LIGHT DUTY INCLUDES CARS, VAS, SMALL TRUCKS, ECT.

<sup>\*\*\*\*</sup> ON ROAD INCLUDES TRUCKS, ETC .

#### HARP / CEIDARS MINING OPERATIONS UNPAVED ROADS - ENTRAINED DUST

FORM MINE UPR

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

OUTPUT DATA TO CEIDARS

COMPANY NAME: Omya California Inc FACILITY NAME: Sentinel Quarry

COMPANY NUMBER: 90 FACILITY NUMBER: 461

DEVICE # 90013

| Process Number                                                      | Vehicle type                                                                                                                                         | Road Type * |       | Vehicle Weigh (tons | s)    |                  | Distance Travele | d per Year (vmt) |                | Mean Vehicle | Silt Loading *        | Moisture        |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|---------------------|-------|------------------|------------------|------------------|----------------|--------------|-----------------------|-----------------|
|                                                                     |                                                                                                                                                      | Ind / Pub   | Empty | Loaded              | Mean  | Round Trip Miles | Trips per Day    | Days per Year    | Miles per Year | Sped (mph)   | %                     | %               |
| 1                                                                   | T. Haul Ore to Crusher                                                                                                                               | Ind         | 70    | 150                 | 110.0 | 0.9              | 10.8             | 260              | 2,527.2        | 25           | 8                     | 1.:             |
| 2                                                                   | T. Haul Ore to Plant                                                                                                                                 | Ind         | 70    | 150                 | 110.0 | 16               | 10.2             | 260              | 42,432.0       | 25           | 8.3                   | 1.:             |
| 3                                                                   | Haul Crush to Waste                                                                                                                                  | Ind         | 70    | 150                 | 110.0 | 0.25             | 0.6              | 260              | 39.0           | 25           | 10                    | 1.:             |
| 4                                                                   | <ul> <li>Γ. Haul Quarry to Waste</li> </ul>                                                                                                          | Ind         | 43.31 | 123.31              | 83.3  | 1.15             | 11               | 260              | 3,289.0        | 25           | 10                    | 1.:             |
| 5                                                                   | Load Trucks                                                                                                                                          | Ind         | 100   | 116                 | 108.0 | 0.02             | 162              | 260              | 842.4          | 5            | 10                    | 1.:             |
| 6                                                                   | Drill Rig                                                                                                                                            | Ind         | 36    | 36                  | 36.0  | 0.02             | 18               | 260              | 93.6           | 5            | 10                    | 1.:             |
| 12                                                                  |                                                                                                                                                      |             |       |                     | 0.0   |                  |                  |                  | 0.0            |              | 11                    | 0.2             |
|                                                                     |                                                                                                                                                      | * Road Type |       |                     |       |                  |                  |                  |                |              | * For other Silt Load | ings % is cells |
| Ind = Unpaved road surfaces a industrial sites 'A167' through       |                                                                                                                                                      |             |       |                     |       |                  |                  |                  |                |              | 'A167' through 'D178  |                 |
| Pub = Publicly accessible roadways dominated by light duty vehicles |                                                                                                                                                      |             |       |                     |       |                  |                  |                  |                |              |                       |                 |
|                                                                     |                                                                                                                                                      |             | •     |                     |       |                  |                  |                  |                |              |                       |                 |
| Process Number                                                      | Process Number Vehicle Type Road Type Dust Control Method (Check "X" only one method nor emission source (row) and complete appropriate cells below) |             |       |                     |       |                  |                  |                  |                |              |                       |                 |

| Process Number | Vehicle Type                                | Road Type | Ι            | Oust Control Method (C | Check "X" only one method | od per emission sourc | e (row) and complete | appropriate cells below | v)        |
|----------------|---------------------------------------------|-----------|--------------|------------------------|---------------------------|-----------------------|----------------------|-------------------------|-----------|
|                |                                             |           | Method       | None                   | Water                     | Water with            | Surface              | Wind Screens or         | Other     |
|                |                                             |           |              |                        |                           | Suppressants          | Improvement          | Wind Breaks             |           |
|                |                                             |           | Cells        | none                   | D52-D63 or E52-G63        | H52 - M63             | D70 - E 81           | G70 - H81               | I70 - M81 |
| 1              | T. Haul Ore to Crusher                      | Ind       | $\mathbb{N}$ |                        |                           | x                     |                      |                         |           |
| 2              | T. Haul Ore to Plant                        | Ind       | $\mathbb{N}$ |                        |                           | x                     |                      |                         |           |
| 3              | Haul Crush to Waste                         | Ind       | $\mathbb{N}$ |                        |                           | x                     |                      |                         |           |
| 4              | <ul> <li>Γ. Haul Quarry to Waste</li> </ul> | Ind       | $\mathbb{N}$ |                        |                           | x                     |                      |                         |           |
| 5              | Load Trucks                                 | Ind       | $\mathbb{N}$ |                        | x                         |                       |                      |                         |           |
| 6              | Drill Rig                                   | Ind       | $\mathbb{N}$ |                        | x                         |                       |                      |                         |           |
| 12             | 0                                           | 0         |              | X                      |                           |                       |                      |                         |           |

| Process Number | Vehicle Type                                | Road Type |                  |                                                        |                          |                    | Dust Contro         | l Method           |             |                        |                       |              |
|----------------|---------------------------------------------|-----------|------------------|--------------------------------------------------------|--------------------------|--------------------|---------------------|--------------------|-------------|------------------------|-----------------------|--------------|
|                |                                             |           | Wa               | ter (Either new moistur                                | e content or application | rate)              |                     |                    | Water with  | Suppressant            |                       |              |
|                |                                             |           | New Surface      |                                                        |                          |                    | Type or Name of     | Intensity of       | Fr          | equency of Application | on (Check (X) only on | e)           |
|                |                                             |           | Moisture Content | Traffic Rate vehicles Hours between Intensity of water |                          | Suppressant        | Suppressant Gallons | Weekly             | Bi-Weekly   | Monthly                | Bi-Monthly            |              |
|                |                                             |           | (%)              | per hour                                               | Application              | gallons / sq yd of |                     | / sq yd of Roadway |             |                        |                       |              |
|                |                                             |           |                  |                                                        |                          | Roadway *          |                     | *                  | Ever 7 days | Every 14 days          | Every 30 - 31 days    | Every 61 day |
| 1              | T. Haul Ore to Crusher                      | Ind       |                  | 4.4                                                    | 4                        |                    | MgCI                | 0.15               |             |                        | X                     |              |
| 2              | T. Haul Ore to Plant                        | Ind       |                  | 3                                                      | 4                        |                    | MgCI                | 0.15               |             |                        | X                     |              |
| 3              | Haul Crush to Waste                         | Ind       |                  | 1.3                                                    | 4                        |                    | MgCI                | 0.15               |             |                        | X                     |              |
| 4              | <ul> <li>Γ. Haul Quarry to Waste</li> </ul> | Ind       |                  |                                                        | 4                        |                    | MgCI                | 0.15               |             |                        | X                     |              |
| 5              | Load Trucks                                 | Ind       | 3                | 58.7                                                   | 4                        | 0.2                |                     |                    |             |                        |                       |              |
| 6              | Drill Rig                                   | Ind       | 1.5              | 3                                                      | 4                        | 0.1                |                     |                    |             |                        |                       |              |
| 12             | 0                                           | 0         |                  |                                                        |                          |                    |                     |                    |             |                        |                       | ,            |

(\* 0.1 gallons of water or suppressant per square yard of road = 1760 gallons per mile of a 30 foot wide road.)

| Process Number | Vehicle Type            | Road Type |                |                     |         |               | Dust Contro    | l Method  |             |                    |
|----------------|-------------------------|-----------|----------------|---------------------|---------|---------------|----------------|-----------|-------------|--------------------|
|                |                         |           |                | Surface Improvement |         |               | or Wind Breaks |           | Other       |                    |
|                |                         |           |                | New Silt Content (% | (o)     | Height (feet) | Width (feet)   | Name/Type | Description | Control Efficiency |
|                |                         |           | 3 Months after | 6 Months after      | Average |               |                |           |             | (%)                |
|                |                         |           | Application    | Application         |         |               |                |           |             |                    |
| 1              | T. Haul Ore to Crusher  | Ind       |                |                     | 8       |               |                |           | MgCI        | 75                 |
| 2              | T. Haul Ore to Plant    | Ind       |                |                     | 8.3     |               |                |           | MgCI        | 75                 |
| 3              | Haul Crush to Waste     | Ind       |                |                     | 10      |               |                |           | MgCI        | 75                 |
| 4              | Γ. Haul Quarry to Waste | Ind       |                |                     | 10      |               |                |           | MgCI        | 75                 |
| 5              | Load Trucks             | Ind       |                |                     | 10      |               |                |           | Water Truck | 50                 |
| 6              | Drill Rig               | Ind       |                |                     | 10      |               |                |           | Water truck | 50                 |
| 12             | 0                       | 0         |                |                     | 11      |               |                |           |             |                    |

#### HARP / CEIDARS MINING OPERATIONS UNPAVED ROADS - ENTRAINED DUST

FORM MINE **UPR** 

#### **EMISSIONS**

DEVICE #

90014

Emission Factor pounds per vehicle miles traveled Industrial Roads

 $EmFac = k * (s / 12)^a * (W / 3)^b$ 

Public Road

 $EmFac = k * (\{[(s/12)^a * (s/30)^d]/(M/0.5)^c\} - C)^*[(365 - P)/365] \\ k_a, b, c, \& d = Constants - See Lookup Table entitled "Constants for Emission Factor Equations" | Constants - Constants | Constants - Constants | Constants - Constants | Constants | Constants - C$ 

- s = Silt content of unpaved surface in percent (%)
  W = Average vehicle weight in tons
  S = Mean vehicle speed (mph)

- M = Moisture content of unpaved surface in percent (%)
  P = Number of days per year with at least 0.01 inches of precipitation see MetData worksheet Cell 'C16.

| Process |                        | Throughput |          | Emission Fa | actors Uncontrolled (pound | ls / vmt) |
|---------|------------------------|------------|----------|-------------|----------------------------|-----------|
| Number  | Vehicle Type           | Road Type  | vmt      | PM          | $PM_{10}$                  | $PM_{10}$ |
| 1       | T. Haul Ore to Crusher | Ind        | 2,527.2  | 16.613      | 4.689                      | 0.7       |
| 2       | T. Haul Ore to Plant   | Ind        | 42,432.0 | 17.047      | 4.847                      | 0.7       |
| 3       | Haul Crush to Waste    | Ind        | 39.0     | 19.421      | 5.732                      | 0.8       |
| 4       | T. Haul Quarry to Wast | Ind        | 3,289.0  | 17.138      | 5.059                      | 0.7       |
| 5       | Load Trucks            | Ind        | 842.4    | 19.262      | 5.685                      | 0.8       |
| 6       | Drill Rig              | Ind        | 93.6     | 11.749      | 3.468                      | 0.5       |
| 7       | 0                      | 0          | 0.0      | 0.000       | 0.000                      | 0.0       |
| 8       | 0                      | 0          | 0.0      | 0.000       | 0.000                      | 0.0       |
| 9       | 0                      | 0          | 0.0      | 0.000       | 0.000                      | 0.0       |
| 10      | 0                      | 0          | 0.0      | 0.000       | 0.000                      | 0.0       |
| 11      | 0                      | 0          | 0.0      | 0.000       | 0.000                      | 0.0       |
| 12      | 0                      | 0          | 0.0      | 0.000       | 0.000                      | 0.0       |
|         |                        | TOTAL      | 49,223.2 | 17.060      | 4.866                      | 0.7       |
|         | Number of Devices      | 6          |          |             |                            |           |

| Fractionat | tion Value |
|------------|------------|
| $PM_{10}$  | $PM_{10}$  |
| 0.282      | 0.043      |
| 0.284      | 0.044      |
| 0.295      | 0.045      |
| 0.295      | 0.045      |
| 0.295      | 0.045      |
| 0.295      | 0.045      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.000      | 0.000      |
| 0.285      | 0.044      |

| Process Number | Vehicle Type            | Road Type |      |                  | Efficie                | ency percentage (%) o | f Dust Control Metho | ds              |       |         |
|----------------|-------------------------|-----------|------|------------------|------------------------|-----------------------|----------------------|-----------------|-------|---------|
|                |                         |           | None | W                | /ater                  | Water with            | Surface              | Wind Screens or | Other | Overall |
|                |                         |           |      |                  |                        | Suppressants          | Improvement          | Wind Breaks     |       |         |
|                |                         |           |      | New Surface      | Water Application Rate |                       |                      |                 |       |         |
|                |                         |           |      | Moisture Content | *                      |                       |                      |                 |       |         |
|                |                         |           |      | (%)              |                        |                       |                      |                 |       |         |
| 1              | T. Haul Ore to Crusher  | Ind       | 0.00 | 0.00             | 0.00                   | 75.00                 | 0.00                 | 0.00            | 75.00 | 75.00   |
| 2              | T. Haul Ore to Plant    | Ind       | 0.00 | 0.00             | 0.00                   | 75.00                 | 0.00                 | 0.00            | 75.00 | 75.00   |
| 3              | Haul Crush to Waste     | Ind       | 0.00 | 0.00             | 0.00                   | 75.00                 | 0.00                 | 0.00            | 75.00 |         |
| 4              | Γ. Haul Quarry to Waste | Ind       | 0.00 | 0.00             | 0.00                   | 75.00                 | 0.00                 | 0.00            | 75.00 | 75.00   |
| 5              | Load Trucks             | Ind       | 0.00 | 75.00            | -5.66                  | E                     | 0.00                 | 0.00            | 50.00 |         |
| 6              | Drill Rig               | Ind       | 0.00 | 0.00             | 89.20                  | E                     | 0.00                 | 0.00            | 50.00 | 89.20   |
| 7              | 0                       | 0         | 0.00 | 0.00             | 0.00                   | E                     | 0.00                 | 0.00            | 0.00  | 0.00    |
| 8              | 0                       | 0         | 0.00 | 0.00             | 0.00                   | E                     | 0.00                 | 0.00            | 0.00  | 0.00    |
| 9              | 0                       | 0         | 0.00 | 0.00             | 0.00                   | E                     | 0.00                 | 0.00            | 0.00  | 0.00    |
| 10             | 0                       | 0         | 0.00 | 0.00             | 0.00                   | E                     | 0.00                 | 0.00            | 0.00  | 0.00    |
| 11             | 0                       | 0         | 0.00 | 0.00             | 0.00                   | E                     | 0.00                 | 0.00            | 0.00  | 0.00    |
| 12             | 0                       | 0         | 0.00 | 0.00             | 0.00                   | E                     | 0.00                 | 0.00            | 0.00  | 0.00    |

- \* Dust Controls Water Application Rate

  C = 100 (0.0012 \* A \* D \* T) / 1

  C = Control efficiency (%)

  A = pan evaporation rate (inches)

  D = Vehicles per hour

  T = Hours between watering

  I = Gallons / sq. yd (Note 0.1 gallon/sq yd = 1760 gallons per mile for a 30 foot wide road.)

| Process | Vehicle Type           | Road Type | Efficiency | Emission | Factor - Controlled (pour | nds/vmt)   |
|---------|------------------------|-----------|------------|----------|---------------------------|------------|
| Number  |                        |           | (%)        | PM       | $PM_{10}$                 | $PM_{2.5}$ |
| 1       | T. Haul Ore to Crusher | Ind       | 75.00      | 4.153    | 1.172                     | 0.180      |
| 2       | T. Haul Ore to Plant   | Ind       | 75.00      | 4.262    | 1.212                     | 0.186      |
| 3       | Haul Crush to Waste    | Ind       | 75.00      | 4.855    | 1.433                     | 0.220      |
| 4       | T. Haul Quarry to Wast | Ind       | 75.00      | 4.285    | 1.265                     | 0.194      |
| 5       | Load Trucks            | Ind       | 75.00      | 4.815    | 1.421                     | 0.218      |
| 6       | Drill Rig              | Ind       | 89.20      | 1.269    | 0.375                     | 0.057      |
| 7       | 0                      | 0         | 0.00       |          | 0.000                     |            |
| 8       | 0                      | 0         | 0.00       | 0.000    | 0.000                     | 0.000      |
| 9       | 0                      | 0         | 0.00       | 0.000    | 0.000                     | 0.000      |
| 10      | 0                      | 0         | 0.00       | 0.000    | 0.000                     | 0.000      |
| 11      | 0                      | 0         | 0.00       | 0.000    | 0.000                     | 0.000      |
| 12      | 0                      | 0         | 0.00       | 0.000    | 0.000                     | 0.000      |
|         |                        | TOTAL     | 75.03      | 4.262    | 1.216                     | 0.186      |

| m.,    | Emissions (tpy)<br>PM <sub>10</sub> | PM <sub>2.5</sub> |
|--------|-------------------------------------|-------------------|
| PM     |                                     |                   |
| 5.248  | 1.481                               | 0.227             |
| 90.415 | 25.711                              | 3.942             |
| 0.095  | 0.028                               | 0.004             |
| 7.046  | 2.080                               | 0.319             |
| 2.028  | 0.599                               | 0.092             |
| 0.059  | 0.018                               | 0.003             |
| 0.000  | 0.000                               | 0.000             |
| 0.000  | 0.000                               | 0.000             |
| 0.000  | 0.000                               | 0.000             |
| 0.000  | 0.000                               | 0.000             |
| 0.000  | 0.000                               | 0.000             |
| 0.000  | 0.000                               | 0.000             |

TOTAL 104.891

## HARP / CEIDARS MINING OPERATIONS WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROADS

**FORM MINE ERO** 

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

OUTPUT DATA TO CEIDARS

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90

FACILITY NAME: Sentinel Quarry

FACILITY NUMBER: 461

DEVICE # 90014

| Process | Parking Areas | Disturbed Areas | Vegetative | Moisture | Th       | reshold Friction Velocity | Ratio of Wind Speed to Friction Velocity |                              |  |
|---------|---------------|-----------------|------------|----------|----------|---------------------------|------------------------------------------|------------------------------|--|
| Number  |               |                 | cover      | Natural  | Area Use | Usage                     | Area Use                                 | Usage                        |  |
|         | acres         | acres           | fraction   | %        | Code *   | Name                      | Code **                                  | Name                         |  |
| 1       |               | 1.9             |            | 0.5      | 3        | Construction Site         | 3                                        | Moderate Industrial / Mining |  |
| 2       |               | 7               |            | 0.5      | 3        | Construction Site         | 3                                        | Moderate Industrial / Mining |  |
| 10      |               |                 |            | 0.5      |          | None                      |                                          | None                         |  |

|      | * Threshold Friction Velocity | ** Rati | on of Wind Speed to Friction Velocity |
|------|-------------------------------|---------|---------------------------------------|
| Code | Area Usage                    | Code    | Area Usage                            |
| 0    | None                          | 0       | None                                  |
| 1    | Mine Tailings                 | 1       | Open Space                            |
| 2    | Abandoned Agricultural Land   | 2       | Light Industrial / Mining             |
| 3    | Construction Site             | 3       | Moderate Industrial / Mining          |
| 4    | Disturbed Desert              | 4       | Heavy Industrial / Mining             |
| 5    | Scrub Desert                  | 5       | User Defined                          |
| 6    | Coal Dust                     | 6       | User Defined                          |
| 7    | Active Agricultural Land      | 7       | User Defined                          |
| 8    | Coal Pile                     | 8       | User Defined                          |
| 9    | User Defined                  | 9       | User Defined                          |
| 10   | User Defined                  | 10      | User Defined                          |
| 11   | User Defined                  |         |                                       |
| 12   | User Defined                  |         |                                       |

| Process Number | Total Parking and |           | Dust Controls (Check 'x' only one method) |                      |                 |                     |                  |             |           |         |                |
|----------------|-------------------|-----------|-------------------------------------------|----------------------|-----------------|---------------------|------------------|-------------|-----------|---------|----------------|
|                | Disturbed Areas   | None      |                                           |                      | Water Spray     |                     |                  | Wind Screen |           | Other   |                |
|                |                   | check (x) | check (x)                                 | Water Added          | New Su          | ırface Moisture Con | tent (%)         | check (x)   | check (x) | Specify | Efficiency (%) |
|                |                   |           |                                           | gallons per acre per | Calculated from | As Measured (%)     | Moisture Content |             |           |         |                |
|                |                   |           |                                           | day                  | Added Water     |                     | for Calculation  |             |           |         |                |
| 1              | 1.9               |           |                                           |                      | -0.32           |                     | 0.00             |             | X         | MgCl    | 75             |
| 2              | 7                 |           | X                                         | 500                  | 4.28            |                     | 4.28             |             |           |         |                |
| 10             | 0                 | X         |                                           |                      | -0.32           |                     | 0.00             |             |           |         |                |

## HARP / CEIDARS MINING OPERATIONS WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROADS

FORM MINE ERO

## **EMISSIONS**

DEVICE #

90014

Emission Factor - pounds per acre

 $EmFac = 2.814 * k *(1 - v) * (u / u_t)^3 * C(x)*2000$ 

k = Aerodynamic Factor for Particulate Size

v = Amount of Vegetative cover as a Fraction

u = Mean Wind Speed in Meters per Second (m/s)

u<sub>t</sub> = Threshold Value of Wind Speed (m/s)

C(x) = Correction Factor

Aerodynamic Factor

TSP = 1.0

 $PM_{10} = 0.5$ 

 $PM_{2.5} = 0.2$ 

Threshold Value of Wind Speed - ut

 $u_t = u^*_t * u^*$ 

| Process | Throu             | ıghput         |                   |       | Emission Factor  |      |            |             |                  |             |
|---------|-------------------|----------------|-------------------|-------|------------------|------|------------|-------------|------------------|-------------|
| Number  | Parking Areas     | Disturbed Area | Threshold         | Ratio | Threshold        |      | Correction |             | Emission Factors |             |
|         |                   |                | Friction Velocity |       | Wind Speed       |      | Factor     | TSP         | $PM_{10}$        | $PM_{2.5}$  |
|         |                   |                | u* <sub>t</sub>   | u*    | $\mathbf{u}_{t}$ | x    | C(x)       |             |                  |             |
|         | Acres             | Acres          | m/s               |       | m/s              |      |            | pounds/acre | pounds/acre      | pounds/acre |
| 1       | 0                 | 1.9            | 0.26              | 6.5   | 1.69             | 0.44 | 1.90       | 90,332.145  | 45,166.072       | 18,066.429  |
| 2       | 0                 | 7              | 0.26              | 6.5   | 1.69             | 0.44 | 1.90       | 90,332.145  | 45,166.072       | 18,066.429  |
| 10      | 0                 | 0              | 0                 | 0     | 0                | 0.00 | 0.00       | 0.000       | 0.000            | 0.000       |
|         | INPUTS            | 8.9            |                   |       |                  |      |            | 90,332.145  | 45,166.072       | 18,066.429  |
|         | Number of Devices | 0              |                   |       |                  |      |            |             |                  |             |

| I | Process | Total Parking and | Fractional          | ion Value  |  |
|---|---------|-------------------|---------------------|------------|--|
|   | Nl      | Disturbed Areas   | $PM_{10}$           | DM         |  |
|   | Number  | Acres             | r ivi <sub>10</sub> | $PM_{2.5}$ |  |
| ı | 1       | 1.9               | 0.5                 | 0.2        |  |
| ı | 2       | 7                 | 0.5                 | 0.2        |  |
| ı | 10      | 0                 | 0                   | 0          |  |
|   |         | INPUTS            | 0.5                 | 0.2        |  |

|         | Total Parking and |             |                |                    |            |                   |                        |             |
|---------|-------------------|-------------|----------------|--------------------|------------|-------------------|------------------------|-------------|
| Process | Disturbed Areas   | Controls    |                | bed Areas Controls |            | Emission F        | actor - Controlled (pe | ounds/acre) |
| Number  | Acres             | Type        | Efficiency (%) | TSP                | $PM_{10}$  | PM <sub>2.5</sub> |                        |             |
| 1       | 1.9               | MgCl        | 75.0           | 22,583.036         | 11,291.518 | 4,516.607         |                        |             |
| 2       | 7                 | Water Spray | 95.0           | 4,516.607          | 2,258.304  | 903.321           |                        |             |
| 10      | 0                 | None        | 0.0            | 0.000              | 0.000      | 0.000             |                        |             |
|         |                   | INPUTS      | 90.73          | 8,373.485          | 4,186.743  | 1,674.697         |                        |             |

| Emissions (tpy) = Area * EmFac |           |                   |  |  |  |  |
|--------------------------------|-----------|-------------------|--|--|--|--|
| TSP                            | $PM_{10}$ | PM <sub>2.5</sub> |  |  |  |  |
| 21.454                         | 10.727    | 4.291             |  |  |  |  |
| 15.808                         | 7.904     | 3.162             |  |  |  |  |
| 0.000                          | 0.000     | 0.000             |  |  |  |  |

| TOTAL | 37.262 | 18.631 | 7.452 |
|-------|--------|--------|-------|

 $x = u_t/u$ 

## HARP / CEIDARS MINING OPERATIONS **TOTAL EMISSIONS**

**FORM MINE TOTAL** 

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90

FACILITY NAME: White Knob Quarry

FACILITY NUMBER: 461

## **TOTAL**

| EMISSION SOURCE / OPERATION / ACTIVITY                | DEVICE ID#  |        |           | C          | RITERIA EMISSI | ONS (tons per year) |       |           |       |
|-------------------------------------------------------|-------------|--------|-----------|------------|----------------|---------------------|-------|-----------|-------|
|                                                       |             | TSP    | $PM_{10}$ | $PM_{2.5}$ | CO             | NOx                 | TOG   | ROG / VOC | SOx   |
| DRILLING                                              | 90010       | 0.122  | 0.097     | 0.097      |                |                     |       |           |       |
| BLASTING                                              | 90011       | 2.836  | 1.475     | 0.085      |                |                     |       |           |       |
| EXPLOSIVES                                            | 90011       |        |           |            | 1.943          | 0.493               | 0.000 |           |       |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL          | 90012a      | 11.006 | 5.354     | 1.636      |                |                     |       |           |       |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT            | 90006,7,8,9 | 0.868  | 0.422     | 0.129      |                |                     |       |           |       |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1        | 2456        | 6.204  | 2.009     | 0.631      |                |                     |       |           |       |
| STOCKPILES - WIND EROSION                             | 90015       | 0.178  | 0.089     | 0.036      |                |                     |       |           |       |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT           | VARIOUS     | 0.317  | 0.309     | 0.309      | 0.964          | 4.432               | 0.354 | 0.313     | 0.015 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT              | 90001,2     | 0.860  | 0.855     | 0.855      | 4.190          | 13.986              | 1.355 | 1.311     | 1.720 |
| UNPAVED ROADS - ENTRAINED DUST                        | 90013       | 63.121 | 17.990    | 2.758      |                |                     | _     |           |       |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROADS | 90014a      | 68.088 | 34.044    | 13.618     |                |                     |       |           |       |

GRAND TOTAL 153.600 62.644 20.154 7.097 18.911 1.708 1.623 1.735



# HARP / CEIDARS MINING OPERATIONS FACILITY INFORMATION

FORM MINE FAC

| DATA INPUT BY FACILITY               | DATA FROM ANOTHER | WORKSHEET | OU      | TPUT DATA TO CEID | ARS |
|--------------------------------------|-------------------|-----------|---------|-------------------|-----|
|                                      |                   |           |         |                   |     |
| COMPANY NAME: Omya California Inc    |                   | COMPANY   | NUMBER: | 90                |     |
| FACILITY NAME: White Knob Quarry     |                   | FACILITY  | NUMBER: | 461               |     |
| FACILITY LOCATION (address): 7225 Co | ystal Creek Road  |           | FACID:  | 9000461           |     |
| CITY: Lucerne                        | Valley            |           |         |                   |     |
| STATE: CA                            | ZIP: 92356        |           |         |                   |     |
|                                      |                   |           |         |                   |     |
| MAILING ADDRESS: P.O. Bo             | x 825             |           |         |                   |     |
| CITY: Lucerno                        | · Valley          |           |         |                   |     |
| STATE: CA                            | ZIP: 92356        |           |         |                   |     |
|                                      |                   |           |         |                   |     |
| CONTACT PERSON: Christin             | e Granquist       |           |         |                   |     |
| TELEPHONE NUMBER: 760-248            | 3-5223 EXT:       |           |         |                   |     |
| FAX NUMBER: 760-248                  | 3-9115            |           |         |                   |     |
| EMAIL: christine.gr                  | anquist@omya.com  |           |         |                   |     |
|                                      |                   |           |         |                   |     |

### MINE TYPE AND PARAMETERS

| TYPE OF MINE           | Quarry (Quarry, Surface, Pit, Bank Run, Shaft, I | Etc.)                                                                                                    |
|------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| TYPE OF MATERIAL MINED | Limestone                                        | (Limestone, Tale, Salts, Sand, Gravel, Rock, Volcanic Cinders, Gold, Silver, Iron Ore, Rear Earth, Etc.) |
| OVERBURDEN RATIO       | 0.66:1 Tons of Overburden per Ton of Ore         |                                                                                                          |

## **EMISSION** YEAR

**200 8** 

## HARP / CEIDARS MINING OPERATIONS MINERALS HANDLED - AMOUNT & CHARACTERISTICS

**FORM MINE** MIN

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc

FACILITY NAME: White Knob Quarry

COMPANY NUMBER: 90

FACILITY NUMBER: 461

| Name of   | Amounts             | (tpy)         | Characte     | ristics  |
|-----------|---------------------|---------------|--------------|----------|
| Minerals  | Shifted by Blasting | Total Handled | Moisture (%) | Silt (%) |
| Limestone | 243,036             | 243,036       | 0.5          | 5.0      |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
|           |                     |               | 0.5          | 30.0     |
| TOTAL     | 243,036             | 243,036       |              |          |

# HARP / CEIDARS MINING OPERATIONS METEOROLOGICAL DATA

FORM MINE MET-D

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc

FACILITY NAME: White Knob Quarry

COMPANY NUMBER: 90

FACILITY NUMBER: 461

| Parameter       | Value | Description                                             | Default Value                    |
|-----------------|-------|---------------------------------------------------------|----------------------------------|
| Mean Wind Speed | 7.7   | mph                                                     | 7.7                              |
| u               | 3.4   | meters per second                                       | $ \bigg    \bigg               $ |
| Precipitation   | 20.0  | Day per year with at least 0.01 inches of precipitation | 20.0                             |
| Wind Speed      | 13.3  | Percent of time with wind speed >12mph (%)              | 13.3                             |
| Evaporation     | 75.0  | Annual Pan Evaporation Rate in inches                   | 75.0                             |

#### HARP / CEIDARS MINING OPERATIONS DRILLING AND BLASTING

FORM MINE D&B

DATA INPUT BY FACILITY DATA FROM ANOTHER WORKSHEET OUTPUT DATA TO CEIDARS COMPANY NAME: Omya California Inc COMPANY NUMBER: 90 FACILITY NAME: White Knob Quarry FACILITY NUMBER: 461 Device ID# DRILLING 90010 Device ID# 90011 BLASTING Blast per year 22 number Ioles per Blast - Average 21 number 462 Number of holes per year loles drilled per year rea Shifted per Blast - Averag 6,431 square foot per blast - average rea Shifted per Year 11,482 square foot per year Tons Ore. Waste & Overburder mount shifted by blasting **EMISSIONS** DRILLING 30502514 30502514 Device ID# 90010 SCC SCC By Amount Shifted By Number of Holes Drilled Annual Throughput 243,036 Tons Shifted nnual Throughput Emission Factors (pounds per tons shifted) Fractionation Value Emission Factors (pounds per hole drilled) Fractionation Value Controls Controls None, assumed wet drilling None, assumed wet drilling Emissions - tons per yea Emissions - tons per yea PM<sub>2</sub>  $PM_{10}$ BLASTING Device ID# 90011 By Tons Shifted Area Shifted per Blast - Average quare foot per blast - average Annual Throughpu ons Shifted Area Shifted per Year quare foot per year Emission Factors (pounds per on shifted) ctors (pounds per blast) Fractionation Value  $PM_2$  $PM_{10}$  $PM_{2.5}$  $PM_{10}$ TSP  $PM_1$  $PM_1$  $PM_2$ \*  $EmFac = k * 0.0005 * A^{1.5}$ 35.71428571 TSP = 1.00 PM<sub>10</sub>= PM<sub>2.5</sub>= 0.03 Area Shifted per Blast - Average A = Controls Controls None Emissions - tons per year Em = EmFac \* Blast per Year Emissions - tons per year Em = EmFac \* Amount Shift  $PM_{10}$  $PM_{10}$ 

## HARP / CEIDARS MINING OPERATIONS **EXPLOSIVES**

**FORM MINE EXPL** 

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90

FACILITY NAME: White Knob Quarry

FACILITY NUMBER: 461

Device ID# 90011

| Code *<br>See Codes below | Туре | Composition                | Amount<br>tons/ year |
|---------------------------|------|----------------------------|----------------------|
| 6                         | ANFO | Ammonium Nitrate, Fuel Oil | 58                   |
|                           | None | None                       |                      |

| * Codes fo | r Explosive        |
|------------|--------------------|
| Code       | Explosive          |
| 0          | None               |
| 1          | Black Powder       |
| 2          | Smokeless Powder   |
| 3          | Dynamite, Straight |
| 4          | Dynamite, Ammonia  |
| 5          | Dynamite, Gelatin  |
| 6          | ANFO               |
| 7          | TNT                |
| 8          | RDX                |
| 9          | PETN               |
| 10         | User Defined       |
| 11         | User Defined       |
| 12         | User Defined       |

## **EMISSIONS**

Device ID# 30502514 90011

|      | Explosive         |            |        | Emission Factor |           |        | Emission Rate |       |
|------|-------------------|------------|--------|-----------------|-----------|--------|---------------|-------|
| Code | Type              | Amount     |        | pounds per ton  |           |        | ton per year  |       |
|      |                   | tons/ year | CO     | NOx             | TOG       | CO     | NOx           | TOG   |
| 6    | ANFO              | 58.000     | 67     | 17              | 0         | 1.943  | 0.493         | 0.000 |
| 0    | None              | 0.000      | 0      | 0               | 0         | 0.000  | 0.000         | 0.000 |
| 0    | None              | 0.000      | 0      | 0               | 0         | 0.000  | 0.000         | 0.000 |
| 0    | None              | 0.000      | 0      | 0               | 0         | 0.000  | 0.000         | 0.000 |
| 0    | None              | 0.000      | 0      | 0               | 0         | 0.000  | 0.000         | 0.000 |
| 0    | None              | 0.000      | 0      | 0               | 0         | 0.000  | 0.000         | 0.000 |
| 0    | None              | 0.000      | 0      | 0               | 0         | 0.000  | 0.000         | 0.000 |
|      | INPUTS            | 58.000     | 67.000 | 17.000          | 0.000     |        |               |       |
|      | Number of Devices | 1          |        |                 |           | •      |               |       |
|      |                   |            |        |                 | D IDI IMO | 1.0.10 | 0.402         | 0.000 |

## HARP / CEIDARS MINING OPERATIONS BULLDOZING, SCRAPING AND GRADING OF MATERIAL

**FORM MINE BSG** 

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc

FACILITY NAME: White Knob Quarry

COMPANY NUMBER: 90

FACILITY NUMBER: 461

Device ID# 90012a

| Name of Material | of Material Hours of Operations (hours per year) |          |         |       |       | Co    | ntrols |                  |             |
|------------------|--------------------------------------------------|----------|---------|-------|-------|-------|--------|------------------|-------------|
|                  | Bulldozing                                       | Scraping | Grading | Other | Total | None  | Wate   | er Spray         | Wind Screen |
|                  |                                                  |          |         |       |       | Check | Check  | New Moisture (%) | Check       |
| Limestone        | 101                                              |          |         | 863   | 964   |       | X      | 1                |             |
| 0                |                                                  |          |         |       | 0     |       |        |                  |             |

## **EMISSIONS**

Device ID# 90012a 30502599

Emission Factors (pounds per hours of operations)

 $EmFac = 2.76 * k *(s)^1.5 / (M)^1.4$ 

k = Aerodynamic Factor

s = silt content (%)

M = Moisture content (%)

Aerodynamic factors TSP =

0.74 0.36

 $PM_{10} =$ 0.11

 $PM_{2.5} =$ 

| Material          | Hours of Operations | Emission factors | s - Uncontrolled (pe | ounds per hour)   |
|-------------------|---------------------|------------------|----------------------|-------------------|
|                   |                     | TSP              | $PM_{10}$            | PM <sub>2.5</sub> |
| Limestone         | 964                 | 60.261           | 29.316               | 8.958             |
| 0                 | 0                   | 0.000            | 0.000                | 0.000             |
| TOTAL             | 964                 | 60.261           | 29.316               | 8.958             |
| Number of Devices | 1                   |                  |                      |                   |

| Fractionation Value |            |  |  |  |
|---------------------|------------|--|--|--|
| $PM_{10}$           | $PM_{2.5}$ |  |  |  |
| 0.486               | 0.149      |  |  |  |
| 0.000               | 0.000      |  |  |  |
| 0.486               | 0.149      |  |  |  |

| Material  | Contr       | ol             | Emission factor | ors - Controlled (po | unds per hour)    |
|-----------|-------------|----------------|-----------------|----------------------|-------------------|
|           | Type        | Efficiency (%) | TSP             | $PM_{10}$            | PM <sub>2.5</sub> |
| Limestone | Water Spray | 62.107         | 22.835          | 11.109               | 3.394             |
| 0         | None        | 0.000          | 0.000           | 0.000                | 0.000             |
|           | TOTAL       | 62.11          | 22.835          | 11.109               | 3.394             |

| Emissions - tons per year |           |            |  |  |
|---------------------------|-----------|------------|--|--|
| TSP                       | $PM_{10}$ | $PM_{2.5}$ |  |  |
| 11.006                    | 5.354     | 1.636      |  |  |
| 0.000                     | 0.000     | 0.000      |  |  |

| TOTAL. | 11 006 | 5 354 |  |
|--------|--------|-------|--|

## HARP / CEIDARS MINING OPERATIONS LOADING OF MATERIAL(S) AT MINE / QUARRY / PIT

FORM MINE LOAD

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME:

Omya California Inc

COMPANY NUMBER: 90

FACILITY NAME: White Knob Quarry

FACILITY NUMBER: 461

DEVICE # 90006,7,8,9

| Name of Material | Amount  |
|------------------|---------|
|                  | Loaded  |
|                  | tpy     |
| Limestone        | 451,252 |
| 0                |         |

| Controls |             |                  |             |       |         |                |  |
|----------|-------------|------------------|-------------|-------|---------|----------------|--|
| None     | Water Spray |                  | Wind Screen | Other |         |                |  |
| Check    | Check       | New Moisture (%) | Check       | Check | Specify | Efficiency (%) |  |
|          | X           | 1                |             |       |         |                |  |
|          |             |                  |             |       |         |                |  |

## **EMISSIONS**

Device ID# 90006,7,8,9

SCC 30502506

Emission Factors (pounds per ton) EmFac =0.0032 \* k \*(U/5) $^1.3$  / (M/2) $^1.4$ 

k = Aerodynamic Factor

U = Mean wind speed in miles per hour

M = Moisture content (%)

Aerodynamic factors

TSP = 0.74

 $PM_{10} = 0.36$ 

 $PM_{2.5} = 0.11$ 

| Material          | Amount  |
|-------------------|---------|
|                   | Loaded  |
|                   | tpy     |
| Limestone         | 451,252 |
| 0                 | 0       |
| TOTAL             | 451,252 |
| Number of Devices | 1       |

| Emission factors - Uncontrolled (pounds per ton) |           |            |  |  |  |  |  |  |  |
|--------------------------------------------------|-----------|------------|--|--|--|--|--|--|--|
| TSP                                              | $PM_{10}$ | $PM_{2.5}$ |  |  |  |  |  |  |  |
|                                                  |           |            |  |  |  |  |  |  |  |
| 0.010                                            | 0.005     | 0.002      |  |  |  |  |  |  |  |
| 0.000                                            | 0.000     | 0.000      |  |  |  |  |  |  |  |
| 0.010                                            | 0.005     | 0.002      |  |  |  |  |  |  |  |

| Fractionation Value |                   |  |  |  |  |  |
|---------------------|-------------------|--|--|--|--|--|
| $PM_{10}$           | PM <sub>2.5</sub> |  |  |  |  |  |
|                     |                   |  |  |  |  |  |
| 0.486               | 0.149             |  |  |  |  |  |
| 0.000               | 0.000             |  |  |  |  |  |
| 0.486               | 0.149             |  |  |  |  |  |

| ľ | Material  | Cor         | itrol               | Emission factors - Controlled (pounds per ton) |           |            |  |  |
|---|-----------|-------------|---------------------|------------------------------------------------|-----------|------------|--|--|
| ı |           | Type        | Type Efficiency (%) |                                                | $PM_{10}$ | $PM_{2.5}$ |  |  |
| ı | Limestone | Water Spray | 62.107              | 0.004                                          | 0.002     | 0.001      |  |  |
| I | 0         | None        | 0.000               | 0.000                                          | 0.000     | 0.000      |  |  |
|   |           | TOTAL       | 62.11               | 0.004                                          | 0.002     | 0.001      |  |  |

| Emissions - tons per year |       |       |  |  |  |  |  |  |  |
|---------------------------|-------|-------|--|--|--|--|--|--|--|
| TSP $PM_{10}$ $PM_{2.5}$  |       |       |  |  |  |  |  |  |  |
| 0.868                     | 0.422 | 0.129 |  |  |  |  |  |  |  |
| 0.000                     | 0.000 | 0.000 |  |  |  |  |  |  |  |

| TOTAL | 0.000 | 0.422 | 0.120 |
|-------|-------|-------|-------|
| IOIAL | 0.868 | 0.422 | 0.129 |
|       |       |       |       |

| EMISSIO         | N                              | HARP / CEIDARS                              |          |                    |                        |                                  |                     |        |                                                       | FC           | DRM                      |                              |                   |                               |                  |                   |
|-----------------|--------------------------------|---------------------------------------------|----------|--------------------|------------------------|----------------------------------|---------------------|--------|-------------------------------------------------------|--------------|--------------------------|------------------------------|-------------------|-------------------------------|------------------|-------------------|
| YEAR            |                                | MINING OPERATIONS                           |          |                    |                        |                                  |                     |        |                                                       | M            | INE                      |                              |                   |                               |                  |                   |
| 200 8           |                                | AGGREGATE HANDLING, CRUSHING & SCREENING #1 |          |                    |                        |                                  |                     |        |                                                       | AC           | GG-1                     |                              |                   |                               |                  |                   |
|                 |                                |                                             |          |                    | - COLOR                |                                  |                     |        |                                                       |              |                          |                              | DATORY I          | NFORMAT                       | ION              |                   |
| D.              | ATA INPUT I                    | BY FACILITY                                 |          |                    |                        | HER WORKSHEET<br>FORMATION       |                     |        | OUTPUT DATA TO CEIDARS                                |              | W DIAGRA<br>OCK III - AL |                              |                   |                               |                  |                   |
|                 |                                | ya California Inc<br>ite Knob Quarry        |          |                    |                        | PANY # 90<br>ILITY # 461         |                     |        | PERMIT # B 0 0 2 4 5<br>EVICE ID 2456                 |              | CK VIII - A              |                              |                   |                               |                  |                   |
|                 |                                | shing \$ Screening Circu                    | it       |                    |                        | RY ID # 9000461                  |                     |        | OCESS ID                                              |              | OCK IX - AN              |                              |                   | 1 (фу)<br>%) OF MAT           | ERIAL            |                   |
|                 |                                | Г                                           | V - MAP  |                    | NATES FOR              | PROCESS                          |                     |        |                                                       |              |                          | ENTERIN                      | G THE SYS         | STEM                          |                  |                   |
| UTM ZONE<br>LAT | ITUDE (deg                     | UTM EAST (I                                 | km) 5 (  |                    |                        | UTM NO<br>(deg.) 1 1 6           |                     |        | 0 4 4 1 5                                             | BLC          | CK XIII, C               | OLUMNS 'I                    | B', 'E', 'F' &    | 'G'                           |                  |                   |
| V - TYPE        | OF PLANT                       | VI - TYPE OF                                | EQUIPM   | IENT, che          | ck all that a          | oplies: VII                      | MATERL              | AL TYP |                                                       |              |                          |                              |                   | PUT (tons p                   |                  |                   |
| PORTAL          | RY x<br>BLE                    | CRUSHERS<br>SCREENS                         | X<br>X   |                    | RANSFER<br>STORAGE     |                                  | eck all tha<br>ROCK |        | HOURS per DAY DAYS per WEEK                           | 10           |                          | ACTUAL AI<br>OURLY (av       |                   | 2                             | 08,216<br>83     | Tons/Yr.<br>TPH   |
| OTI             |                                | CONVEYORS                                   | х        | L                  | OAD OUT                |                                  | SAND                |        | WEEK per YEAR                                         | 52           |                          | K. DESIĞN                    |                   |                               | 250.0            | TPH               |
| COMME           | NIS                            | OTHERS<br>COMMENTS                          |          |                    |                        |                                  | MESTONE<br>VA ROCK  |        | CAL. HRS per YR<br>ACT. HRS per YR                    | 2600<br>2500 |                          |                              |                   | l) / Actual Hour<br>E CONTEN  |                  | perated)          |
|                 |                                |                                             |          |                    |                        |                                  | OTHER               |        | CAL. Hrs/Yr = Hr/Dy*Dy/Wk*W                           |              |                          |                              |                   | NTERING S                     | SYS.:            | 3 %               |
| CODE NA         |                                | II - TYPE OF OPERATI<br>VICE OR SYSTEM      | CODE     |                    |                        | CE OR SYSTEM                     | COD                 | Е      | XII - TYPE<br>TYPE OF CONTROL                         | OF EMISS     | SION CONT                | ROL EQUI                     |                   | OF CONTR                      | OL               |                   |
| 0 No Do         |                                | ruck, pile (Note 2)                         | 11       |                    | g, Wet Wasling - Pneum | hing (Note 4)                    | 0                   | None   | r Spray, Point of Application                         |              |                          | avel Bed Fil<br>ray Tower (  |                   |                               |                  |                   |
| 2 Grizzl        | y (Note 2)                     | ruck, pile (Note 2)                         | 13       | Silo, Fill         | ing - Bucket           | Elevator                         | 2                   | Spray  | with Additives, Point of Applicat                     | ion          | 13 W                     | et Scrubber                  | (Med Effici       | ency)                         |                  |                   |
|                 | er (Note 2)<br>fer Point (N    | ate 2)                                      | 14       |                    | harge to Co            | nveyor (Note 2)                  | 3 4                 |        | eyor with Half Cover<br>eyor with Three Quarter Cover |              |                          | nturi Scrubl<br>ghouse with  |                   |                               |                  |                   |
| 5 Conve         | yor (Note 2                    | )                                           | 16       | Loading            |                        | ruck (Note 2)                    | - 5                 | Conv   | reyor with Full Cover                                 |              | 16 Ba                    | ghouse with                  | Single Pick       | kup (Unencle                  |                  |                   |
|                 | ing, Dry - Pr<br>ing, Dry - Se |                                             | 17<br>18 | Feeder<br>See Look | cun Table "F           | mFac" for data                   | 6                   |        | ess Enclosure<br>ity Separator                        |              |                          |                              |                   | kup (Partial)<br>kup (Full En |                  |                   |
| 8 Crush         | ing, Dry - To                  | rtiary                                      | 19       | See Look           | cup Table "I           | mFac" for data                   | 8                   | Cycle  | one - Simple                                          |              | 19 Ba                    | ghouse with                  | Single Pick       | kup (Attache                  |                  |                   |
|                 | ing, Wet (N<br>ning, Dry       | ote 3)                                      | 20       |                    |                        | mFac" for data<br>mFac" for data | 10                  |        | one - Multiple<br>Iscreen, Windward Side              |              |                          | ectrostatic P<br>e Lookup Ta |                   | ff" for data                  |                  |                   |
|                 |                                |                                             |          | •                  |                        | XIII - E                         | MISSIC              | N CA   | ALCULATIONS                                           |              |                          |                              |                   |                               |                  |                   |
| EQUIPMENT<br>ID | DEVICE                         | NAME OF I                                   | DEVICE   |                    | MOTOR<br>BHP           | THROUGHPUT<br>TONS / YEAR        | CODE                | DsF    | MISSION CONTROL DEVICE<br>NAME OF DEVICE              | EFF %        |                          | SSION FAC                    |                   |                               | ISSION R.        |                   |
| NUMBER          | NO                             |                                             |          |                    | DHF                    | TONS/ TEAK                       | CODE                | DSF    | NAME OF DEVICE                                        | EFF 76       | PM <sub>30</sub>         | PM <sub>10</sub>             | PM <sub>2.5</sub> | PM <sub>30</sub>              | PM <sub>10</sub> | PM <sub>2.5</sub> |
| (A)             | (B)                            | (C)                                         |          |                    | (D)                    | (E)                              | (F)                 | (G)    | (H)                                                   | (I)          | (J)                      | (K)                          | (L)               | (M)                           | (N)              | (O)               |
| 32              | 1                              | Dump to Hopper, truck,                      | pile (No | ote 2)             | NA                     | 208,216                          | 1                   |        | Water Spray, Point of Application                     | 75.0         |                          | 0.001                        | 0.000             | 0.06                          | 0.03             | 0.01              |
| 33              | 2                              | Grizzly (Note 2)                            |          |                    | 50                     | 208,216                          | 1                   |        | Water Spray, Point of Application                     | 75.0         |                          | 0.001                        | 0.000             | 0.06                          | 0.03             | 0.01              |
| 34              | 5                              | Conveyor (Note 2)                           |          |                    | 15                     | 104,108                          | 1                   |        | Water Spray, Point of Application                     | 75.0         |                          | 0.001                        | 0.000             | 0.03                          | 0.01             | 0.00              |
| 35              | 5                              | Conveyor (Note 2)                           |          |                    | 10                     | 104,108                          | 1                   |        | Water Spray, Point of Application                     | 75.0         |                          | 0.001                        | 0.000             | 0.03                          | 0.01             | 0.00              |
| 36              | 4                              | Transfer Point (Note 2)                     | )        |                    | NA                     | 104,108                          | 1                   |        | Water Spray, Point of Application                     | 75.0         |                          | 0.001                        | 0.000             | 0.03                          | 0.01             | 0.00              |
| 36.1            | 10                             | Screening, Dry                              |          |                    | 50                     | 104,108                          | 1                   |        | Water Spray, Point of Application                     | 75.0         |                          | 0.120                        | 0.038             | 2.08                          | 1.56             | 0.49              |
| 37              | 5                              | Conveyor (Note 2)                           |          |                    | 7.5                    | 72,876                           | 1                   |        | Water Spray, Point of Application                     | 75.0         |                          | 0.001                        | 0.000             | 0.02                          | 0.01             | 0.00              |
| 38              | 5                              | Conveyor (Note 2)                           |          |                    | 25                     | 72,876                           | 1                   |        | Water Spray, Point of Application                     | 75.0         |                          | 0.001                        | 0.000             | 0.02                          | 0.01             | 0.00              |
| 39              | 4                              | Transfer Point (Note 2)                     |          |                    | NA                     | 72,876                           | 1                   |        | Water Spray, Point of Application                     | 75.0         |                          | 0.001                        | 0.000             | 0.02                          | 0.01             | 0.00              |
| 40              | 4                              | Transfer Point (Note 2)                     |          |                    | NA                     | 31,190                           | 1                   |        | Water Spray, Point of Application                     | 75.0         |                          | 0.001                        | 0.000             | 0.01                          | 0.00             | 0.00              |
| 41              | 4                              | Transfer Point (Note 2)                     |          |                    | NA                     | 104,108                          | 1                   |        | Water Spray, Point of Application                     | 75.0         |                          | 0.001                        | 0.000             | 0.03                          | 0.01             | 0.00              |
| 41.1            | 6                              | Crushing, Dry - Primary                     | <i>y</i> |                    | 250                    | 104,108                          | 1                   |        | Water Spray, Point of Application                     | 75.0         |                          | 0.017                        | 0.005             | 3.64                          | 0.22             | 0.07              |
| 42              | 5                              | Conveyor (Note 2)                           |          |                    | 25                     | 135,319                          | 1                   |        | Water Spray, Point of Application                     | 75.0         |                          | 0.001                        | 0.000             | 0.04                          | 0.02             | 0.01              |
| 43              | 5                              | Transfer Point (Note 2)                     | )        |                    | NA<br>50               | 135,319                          | <u> </u>            |        | Water Spray, Point of Application                     | 75.0         |                          | 0.001                        | 0.000             | 0.04                          | 0.02             | 0.01              |
| 44              | 4                              | Conveyor (Note 2)                           |          |                    | 50                     | 135,319                          | 1                   |        | Water Spray, Point of Application                     | 75.0<br>75.0 |                          | 0.001                        | 0.000             | 0.04                          | 0.02             | 0.01              |
| 45              | 4                              | Transfer Point (Note 2)                     |          | CBOWER             | NA<br>482.5            | 135,319                          | 1                   |        | Water Spray, Point of Application                     | 75.0         | u.002                    | 0.001                        | 0.000             | 0.04                          | 0.02             | 0.01              |
|                 |                                |                                             |          | EPOWER             |                        | 114.611                          | 1                   |        |                                                       |              |                          |                              |                   |                               |                  |                   |
|                 |                                | AVERAGE T                                   | HKOUG    | HPUTPE             | R DEVICE               | 114,511                          |                     |        |                                                       |              |                          |                              |                   |                               |                  |                   |

#### BLOCK XIV - EMISSIONS & HARP INPUTS

| EMISSION INVENTORY INPUTS             |                            |         |                                           |                          |        |           |                   |  |
|---------------------------------------|----------------------------|---------|-------------------------------------------|--------------------------|--------|-----------|-------------------|--|
| DI                                    | EVICE DATA                 | _       |                                           | EMISSION DATA            |        |           |                   |  |
| PERMIT ID                             | B002456                    |         |                                           | ANNUAL EMISSIONS (tpy)   | PM     | $PM_{10}$ | PM <sub>2.5</sub> |  |
| NUMBER OF DEVICES                     | 16                         |         |                                           | UNCONTROLLED             | 24.814 | 8.035     | 2.522             |  |
| EQUIPMENT SIZE (bhp)                  | 482.5                      |         |                                           | CONTROLLED               | 6.204  | 2.009     | 0.631             |  |
| PR                                    | OCESS DATA                 |         |                                           | EMISSION FACTOR (lb/ton) | ><     | $>\!\!<$  |                   |  |
| PROC                                  | ESS RATE (tpy)             | 208,216 |                                           | UNCONTROLLED             | 0.2384 | 0.0772    | 0.0242            |  |
| MAX. DESI                             | MAX. DESIGN RATE (tph) 250 |         |                                           | CONTROLLED               | 0.0596 | 0.0193    | 0.0061            |  |
| MAX. HOURLY PRODUCTION RATE (tph) 250 |                            |         | FRACTIONATION VALUE ( PM10 or PM2.5 / PM) | ><                       | 0.3238 | 0.1016    |                   |  |
| AVE. HOURLY PRODUCTION RATE (tph) 83  |                            |         | OVERALL EFFICIENCY                        | 75.00                    | 75.00  | 75.00     |                   |  |

## HARP / CEIDARS MINING OPERATIONS **STOCKPILES**

**FORM MINE** S-PILES

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME:

Omya California Inc

FACILITY NAME: White Knob Quarry COMPANY NUMBER: 90 FACILITY NUMBER: 461

Device ID#

90015A

|            |               | Stockpile       |              |                |
|------------|---------------|-----------------|--------------|----------------|
| Name of /  | Material Type | Exposed Surface | Silt Loading | Moisture       |
| Number     |               |                 |              | (uncontrolled) |
|            |               | acres           | %            | %              |
| Overburden | Limestone     | 0.5000          | 1.5          | 1.5            |
|            |               |                 | 30           | 0.5            |

| Stockpile     | Dust Controls |              |             |       |         |                |  |  |  |
|---------------|---------------|--------------|-------------|-------|---------|----------------|--|--|--|
| Name / Number | Water         | Spray        | Wind Screen |       |         |                |  |  |  |
|               | check         | gal/acre/day | check       | check | Specify | Efficiency (%) |  |  |  |
| Overburden    | X             | 800          |             |       |         |                |  |  |  |
| 0             |               |              |             |       |         |                |  |  |  |

## **EMISSIONS**

Device ID#

90015

30502507

Emission Factors (pounds per acres)

EmFac = J \*1.7 \* s/1.5 \* (365 - P)/235 \* I/15 \* 365

J = Aerodynamic factor Aerodynamic factor s = Silt Loading (%) TSP = 1.0 0.5 P = Day per year with at least 0.01 inches of precipitation  $PM_{10} =$  $PM_{2.5} =$ 0.2

I = Percent of time with wind speed >12mph (%)

| Throughput (acres) |               |              |  |  |  |  |  |
|--------------------|---------------|--------------|--|--|--|--|--|
| Stockpile          | Material Type | Size (acres) |  |  |  |  |  |
| Overburden         | Limestone     | 0.5000       |  |  |  |  |  |
| 0                  | 0             | 0.0000       |  |  |  |  |  |
|                    | TOTAL         | 0.5          |  |  |  |  |  |
| Number of Devices  | 1             |              |  |  |  |  |  |

| Emission Factor - Uncontrolled (pounds/acre) |           |                   |  |  |  |  |  |  |  |  |
|----------------------------------------------|-----------|-------------------|--|--|--|--|--|--|--|--|
| TSP                                          | $PM_{10}$ | PM <sub>2.5</sub> |  |  |  |  |  |  |  |  |
| 807.706                                      | 403.853   | 161.541           |  |  |  |  |  |  |  |  |
| 0.000                                        | 0.000     | 0.000             |  |  |  |  |  |  |  |  |
| 807.706                                      | 403.853   | 161.541           |  |  |  |  |  |  |  |  |

| Fractional | tion Value        |
|------------|-------------------|
| $PM_{10}$  | PM <sub>2.5</sub> |
| 0.500      | 0.200             |
| 0.000      | 0.000             |
| 0.500      | 0.200             |

| Г | Stockpile  | Con         | trols          | Emission F | actor - Controlled (po | ounds/acre)       |
|---|------------|-------------|----------------|------------|------------------------|-------------------|
|   |            | Type        | Efficiency (%) | TSP        | $PM_{10}$              | PM <sub>2.5</sub> |
| Г | Overburden | Water Spray | 11.81          | 712.329    | 356.165                | 142.466           |
|   | 0          | None        | 0.00           | 0.000      | 0.000                  | 0.000             |
|   |            | TOTAL       | 11.81          | 712.329    | 356.165                | 142.466           |

| Emissions (tpy) = Area $*$ EmFac |           |  |  |  |  |  |  |  |  |
|----------------------------------|-----------|--|--|--|--|--|--|--|--|
| TSP $PM_{10}$ $PM_{2.5}$         |           |  |  |  |  |  |  |  |  |
| 0.089                            | 0.036     |  |  |  |  |  |  |  |  |
| 0.000                            | 0.000     |  |  |  |  |  |  |  |  |
|                                  | $PM_{10}$ |  |  |  |  |  |  |  |  |

| TOTAL 0.178 0.089 0.036 |       |       |       |       |
|-------------------------|-------|-------|-------|-------|
|                         | TOTAL | 0.178 | 0.089 | 0.036 |

## HARP / CEIDARS MINING OPERATIONS EXHAUST FROM STATIONARY AND PORTABLE FUEL COMBUSTION

FORM **MINE** EX-S&P

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc

FACILITY NAME: White Knob Quarry

COMPANY NUMBER: 90 FACILITY NUMBER: 461

| DISTRICT   | DEVICE ID | CODE             | EQUIPMENT TYPE | FUEL TYPE              | UNITS OF | UNITS USED |
|------------|-----------|------------------|----------------|------------------------|----------|------------|
| PERMIT NO. |           | (See Code below) |                |                        | USAGE    | PER YEAR   |
| b003294    | 23294     | 18               | I. C. ENGINES  | FUEL OIL #2 @ 0.05 % S | 1000 GAL | 18.9       |
|            |           |                  | #N/A           | #N/A                   | #N/A     |            |

| CODE | EQUIPMENT TYPE                    | FUEL TYPE              | SCC         |
|------|-----------------------------------|------------------------|-------------|
| 1    | BOILER > 100 MMBTU/HR             | NATURAL GAS            | 1-02-006-01 |
| 2    | BOILER 10 - 100 MMBTU/HR          | NATURAL GAS            | 1-02-006-02 |
| 3    | BOILER < 10 MMBTU/HR              | NATURAL GAS            | 1-02-006-03 |
| 4    | BOILER, COGENERATION              | NATURAL GAS            | 1-02-006-06 |
| 5    | BOILER                            | FUEL OIL #2 @ 0.5 % S  | 1-02-005-01 |
| 6    | BOILER                            | FUEL OIL #2 @ 0.05 % S | 1-02-005-01 |
| 7    | BOILER                            | PROPANE, LPG           | 1-02-010-02 |
| 8    | SPACE HEATER                      | NATURAL GAS            | 1-05-001-06 |
| 9    | SPACE HEATER                      | FUEL OIL #2 @ 0.5 % S  | 1-05-001-05 |
| 10   | SPACE HEATER                      | FUEL OIL #2 @ 0.05 % S | 1-05-001-05 |
| 11   | SPACE HEATER                      | PROPANE, LPG           | 1-05-001-10 |
| 12   | INDUSTRIAL PROCESS                | NATURAL GAS            | 3-05-900-03 |
| 13   | INDUSTRIAL PROCESS                | FUEL OIL #2 @ 0.5 % S  | 3-05-900-01 |
| 14   | INDUSTRIAL PROCESS                | FUEL OIL #2 @ 0.05 % S | 3-05-900-01 |
| 15   | INDUSTRIAL PROCESS                | PROPANE, LPG           | 3-05-900-99 |
| 16   | I. C. ENGINES                     | NATURAL GAS            | 2-03-002-04 |
| 17   | I. C. ENGINES                     | FUEL OIL #2 @ 0.5 % S  | 2-02-017-xx |
| 18   | I. C. ENGINES                     | FUEL OIL #2 @ 0.05 % S | 2-02-017-xx |
| 19   | I. C. ENGINES                     | PROPANE, LPG           | 2-02-017-xx |
| 20   | I. C. ENGINES                     | GASOLINE               | 2-02-017-20 |
| 21   | GAS TURBINES                      | NATURAL GAS            | 2-02-002-01 |
| 22   | GAS TURBINES - COGEN.             | NATURAL GAS            | 2-02-002-03 |
| 23   | GAS TURBINE                       | FUEL OIL #2 @ 0.5 % S  | 2-02-001-01 |
| 24   | GAS TURBINE                       | FUEL OIL #2 @ 0.05 % S | 2-02-001-01 |
| 25   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 26   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 27   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 28   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 29   | User defined, see Worksheet "SFB" | 0                      | 0           |
| 30   | User defined, see Worksheet "SFB" | 0                      | 0           |

## **EMISSIONS**

EXHAUST FROM STATIONARY EQUIPMENT

| PERMIT NO. | DEVICE ID | EQUIPMENT TYPE         | PROCESS RATE   | SOURCES          | EMISSIONS FACTORS (pounds per unit of usage) |                                  |       |       |       |            |                      |
|------------|-----------|------------------------|----------------|------------------|----------------------------------------------|----------------------------------|-------|-------|-------|------------|----------------------|
|            |           | FUEL TYPE              | UNITS PER YEAR | CLASSIFICATION   |                                              | ANNUAL EMISSIONS (tons per year) |       |       |       |            |                      |
| CODE       |           |                        |                | CODE             | ORGANIO                                      | C GASES                          | CO    | NOx   | SOx   | PARTICULA' | TE MATTER            |
|            |           |                        | UNITS          | SCC              | TOG                                          | FRAC                             |       |       |       | PM         | FRAC                 |
|            |           |                        |                | /CAS #           | 43101                                        | ROG/VOC                          | 42101 | 42603 | 42401 | 11101      | $PM_{10} / PM_{2.5}$ |
| b003294    | 23294     | I. C. ENGINES          | 18.9           | 2-02-017-xx      | 37.42                                        | 0.884                            | 102   | 469   | 1.56  | 33.5       | 0.976                |
| 18         |           | FUEL OIL #2 @ 0.05 % S | 1000 GAL       | Annual Emissions | 0.354                                        | 0.313                            | 0.964 | 4.432 | 0.015 | 0.317      | 0.309                |
|            |           |                        |                |                  |                                              |                                  |       |       |       |            |                      |

| TOTAL EMISSIONS | TOG   | ROG / VOC | CO    | NOx   | SOx   | PM    | PM <sub>10</sub> / PM <sub>2.5</sub> |
|-----------------|-------|-----------|-------|-------|-------|-------|--------------------------------------|
| Tons per Year   | 0.354 | 0.313     | 0.964 | 4.432 | 0.015 | 0.317 | 0.309                                |

## HARP / CEIDARS MINING OPERATIONS EXHAUST FROM MOBILE AND VEHICULAR EQUIPMENT

**FORM MINE** EX-M

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90

FACILITY NAME: White Knob Quarry

FACILITY NUMBER: 461

DEVICE # 90001,2

| PROCESS<br>NUMBER | CODE<br>(See Code below) | EQUIPMENT TYPE          | FUEL TYPE | UNITS OF<br>USAGE | UNITS USED<br>PER YEAR |
|-------------------|--------------------------|-------------------------|-----------|-------------------|------------------------|
| NUMBER            | (See Code Below)         |                         |           |                   |                        |
| 1                 | 1                        | HEAVY DUTY - OFF ROAD * | DIESEL    | 1000 hp-hr        | 1,105.0                |
| 2                 | 7                        | Low emission Tier I     | DIESEL    | 1000 hp-hr        | 77.3                   |
| 3                 | 5                        | LIGHT DUTY VEHICLES *** | GASOLINE  | 1000 VMT          | 0.42                   |
| 20                |                          | #N/A                    | #N/A      | #N/A              |                        |

| CODE | EQUIPMENT TYPE                 | FUEL TYPE |            | SCC         |
|------|--------------------------------|-----------|------------|-------------|
| 1    | HEAVY DUTY - OFF ROAD *        | DIESEL    | 1000 hp-hr | 3-05-025-99 |
| 2    | HEAVY DUTY - OFF ROAD *        | GASOLINE  | 1000 hp-hr | 3-05-025-99 |
| 3    | MISC - OFF ROAD **             | NG / LPG  | 1000 hp-hr | 3-05-025-99 |
| 4    | LOCOMOTIVES                    | DIESEL    | 1000 GAL   | 3-05-025-99 |
| 5    | LIGHT DUTY VEHICLES ***        | GASOLINE  | 1000 VMT   | 3-05-025-99 |
| 6    | HEAVY DUTY - ON ROAD ****      | DIESEL    | 1000 VMT   | 3-05-025-99 |
| 7    | Low emission Tier I            | DIESEL    | 1000 hp-hr | 3-05-025-99 |
| 8    | Low Emission Retrofit-Loaders  | DIESEL    | 1001 hp-hr | 3-05-025-99 |
| 15   | User defined, see Lookup Table | 0         | 0          | 0           |

<sup>\*</sup> OFF ROAD INCLUDES MINING AND EARTH MOVING EQUIPMENT

1000 hp-hr = THOUSAND OF HORSEPOWER HOURS 1000 GAL = THOUSAND OF GALLONS OF LIQUID FUEL

1000 VTM = THOUSAND VEHICLE MILES TRAVELED

MMCF = MILLION OF CUBIC FEET OF NATURAL GAS

### **EMISSIONS**

DEVICE #

90001,2

| PROCESS<br>ID | CODE                        | EQUIPMENT TYPE          | PROCESS RATE<br>UNITS PER YEAR | SOURCES<br>CLASSIFICATION | EMISSIONS FACTORS (pounds per unit of usage) ANNUAL EMISSIONS (tons per year) |           |       |        |       |                |                      |
|---------------|-----------------------------|-------------------------|--------------------------------|---------------------------|-------------------------------------------------------------------------------|-----------|-------|--------|-------|----------------|----------------------|
|               |                             |                         |                                | CODE                      | ORGANIO                                                                       | CGASES    | CO    | NOx    | SOx   | PARTICULATE MA | TTER                 |
|               |                             |                         | UNITS                          | SCC                       | TOG                                                                           | FRAC      |       |        |       | PM             | FRAC                 |
|               |                             |                         |                                | /CAS #                    | 43101                                                                         | ROG / VOC | 42101 | 42603  | 42401 | 11101          | $PM_{10} / PM_{2.5}$ |
| 1             | 1 1 HEAVY DUTY - OFF ROAD * | 1,105.0                 | 3-05-025-99                    | 2.42                      | 0.9676                                                                        | 7.50      | 24.25 | 2.91   | 1.54  | 0.994          |                      |
| 1             |                             | HEAVI DOTI - OFF ROAD   | 1000 hp-hr                     | Annual Emissions          | 1.337                                                                         | 1.294     | 4.144 | 13.398 | 1.608 | 0.851          | 0.846                |
| 2             | 7                           | Low emission Tier I     | 77.3                           | 3-05-025-99               | 0.44                                                                          | 0.97      | 1.1   | 15.2   | 2.9   | 0.24           | 0.99                 |
| 2             | /                           | Low emission 1 ier 1    | 1000 hp-hr                     | Annual Emissions          | 0.017                                                                         | 0.016     | 0.043 | 0.587  | 0.112 | 0.009          | 0.009                |
| 2             |                             | LIGHT DUTY VEHICLES *** | 0.42                           | 3-05-025-99               | 2.92                                                                          | 0.914     | 18.79 | 2.32   | 0.12  | 0.47           | 0.45                 |
| 3             | 5 LIGHT DUTY VEHICLES ***   | 1000 VMT                | Annual Emissions               | 0.001                     | 0.001                                                                         | 0.004     | 0.000 | 0.000  | 0.000 | 0.000          |                      |

|                 | TOG   | ROG / VOC | CO    | NOx | SOx | PM | PM <sub>10</sub> / PM <sub>2.5</sub> |
|-----------------|-------|-----------|-------|-----|-----|----|--------------------------------------|
| TOTAL EMISSIONS | 1.355 | 1.311     | 4.190 |     |     |    | 10 2.3                               |

<sup>\*\*</sup> MISC - OFF ROAD INCLUDES NG/LPG LOADER, FORKLIFTS, ETC.

<sup>\*\*\*</sup> LIGHT DUTY INCLUDES CARS, VAS, SMALL TRUCKS, ECT.

<sup>\*\*\*\*</sup> ON ROAD INCLUDES TRUCKS, ETC .

#### HARP / CEIDARS MINING OPERATIONS UNPAVED ROADS - ENTRAINED DUST

FORM **MINE** UPR

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

COMPANY NAME: Omya California Inc FACILITY NAME: White Knob Quarry

COMPANY NUMBER: 90 FACILITY NUMBER: 461

DEVICE # 90013

| Process Number | Vehicle type           | Road Type * | Vehicle Weigh (tons) |        |       |                  | Distance Traveled per Year (vmt) |               |                |            | Silt Loading * | Moisture |
|----------------|------------------------|-------------|----------------------|--------|-------|------------------|----------------------------------|---------------|----------------|------------|----------------|----------|
|                |                        | Ind / Pub   | Empty                | Loaded | Mean  | Round Trip Miles | Trips per Day                    | Days per Year | Miles per Year | Sped (mph) | %              | %        |
| 1              | T. Haul Ore to Crusher | Ind         | 70                   | 145    | 107.5 | 0.6              | 10.7                             | 260           | 1,669.2        | 25         | 8              | 1.5      |
| 2              | T. Haul Ore to Plant   | Ind         | 70                   | 150    | 110.0 | 13               | 7.2                              | 260           | 24,336.0       | 25         | 8.3            | 1.5      |
| 3              | Haul Crush to Waste    | Ind         | 100                  | 150    | 125.0 | 0.03             | 4.5                              | 260           | 35.1           | 25         | 10             | 1.5      |
| 4              | Haul Quarry to Waste   | Ind         | 43.3                 | 93.3   | 68.3  | 1.95             | 2.7                              | 260           | 1,368.9        | 25         | 10             | 1.5      |
| 5              | Loader                 | Ind         | 100                  | 116    | 108.0 | 0.02             | 109                              | 260           | 566.8          | 5          | 10             | 1.5      |
| 6              | Drill rig              | ind         | 35                   | 35     | 35.0  | 0.02             | 12                               | 260           | 62.4           |            | 10             | 1.5      |
| 12             |                        |             |                      |        | 0.0   |                  |                                  |               | 0.0            |            | 11             | 0.2      |

\* Road Type

Ind = Unpaved road surfaces a industrial sites

Pub = Publicly accessible roadways dominated by light duty vehicles

\* For other Silt Loadings % is cells 'A167' through 'D178'.

| Process Number | Vehicle Type           | Road Type | Γ            | Oust Control Method (C | heck "X" only one metho | od per emission source | e (row) and complete | appropriate cells below | v)        |
|----------------|------------------------|-----------|--------------|------------------------|-------------------------|------------------------|----------------------|-------------------------|-----------|
|                |                        |           | Method       | None                   | Water                   | Water with             | Surface              | Wind Screens or         | Other     |
|                |                        |           |              |                        |                         | Suppressants           | Improvement          | Wind Breaks             |           |
|                |                        |           | Cells        | none                   | D52-D63 or E52-G63      | H52 - M63              | D70 - E 81           | G70 - H81               | I70 - M81 |
| 1              | T. Haul Ore to Crusher | Ind       | $\langle$    |                        |                         | X                      |                      |                         |           |
| 2              | T. Haul Ore to Plant   | Ind       | $\langle$    |                        |                         | X                      |                      |                         |           |
| 3              | Haul Crush to Waste    | Ind       | $\mathbb{N}$ |                        |                         | X                      |                      |                         |           |
| 4              | Haul Quarry to Waste   | Ind       | $\mathbb{N}$ |                        |                         | X                      |                      |                         |           |
| 5              | Loader                 | Ind       | $\sim$       |                        | X                       |                        |                      |                         |           |
| 6              | Drill rig              | ind       | $\mathbb{N}$ |                        | X                       |                        |                      |                         |           |
| 12             | 0                      | 0         | $\mathbb{N}$ | X                      |                         |                        |                      |                         |           |

| Process Number | Vehicle Type           | Road Type |                  | Dust Control Method                |                          |                    |                        |                    |             |                       |                       |              |
|----------------|------------------------|-----------|------------------|------------------------------------|--------------------------|--------------------|------------------------|--------------------|-------------|-----------------------|-----------------------|--------------|
|                | · -                    |           | Wa               |                                    | e content or application |                    | Water with Suppressant |                    |             |                       |                       |              |
|                |                        |           | New Surface      | New Surface Water Application Rate |                          |                    | Type or Name of        | Intensity of       | F           | requency of Applicati | on (Check (X) only on | e)           |
|                |                        |           | Moisture Content | Traffic Rate vehicles              | Hours between            | Intensity of water | Suppressant            | Suppressant        | Weekly      | Bi-Weekly             | Monthly               | Bi-Monthly   |
|                |                        |           | (%)              | per hour                           | Application              | gallons / sq yd of |                        | Gallons / sq yd of |             |                       |                       |              |
|                |                        |           |                  |                                    |                          | Roadway *          |                        | Roadway *          | Ever 7 days | Every 14 days         | Every 30 - 31 days    | Every 61 day |
| 1              | T. Haul Ore to Crusher | Ind       |                  | 4.4                                | 4                        |                    | MgCI                   | 0.15               |             |                       | X                     |              |
| 2              | T. Haul Ore to Plant   | Ind       |                  | 3                                  | 4                        |                    | MgCI                   | 0.15               |             |                       | X                     |              |
| 3              | Haul Crush to Waste    | Ind       |                  | 1.3                                | 4                        |                    | MgCI                   | 0.15               |             |                       | X                     |              |
| 4              | Haul Quarry to Waste   | Ind       |                  | 4.7                                | 4                        |                    | MgCI                   | 0.15               |             |                       | X                     |              |
| 5              | Loader                 | Ind       | 3                | 58.7                               | 4                        | 0.2                |                        |                    |             |                       |                       |              |
| 6              | Drill rig              | ind       | 1.5              | 3                                  | 4                        | 0.1                |                        |                    |             |                       |                       |              |
| 12             | 0                      | 0         |                  |                                    |                          |                    |                        |                    |             |                       |                       |              |

<sup>(\* 0.1</sup> gallons of water or suppressant per square yard of road = 1760 gallons per mile of a 30 foot wide road.)

| Process Number | Vehicle Type           | Road Type |                | Dust Control Method |         |               |                |           |             |                    |
|----------------|------------------------|-----------|----------------|---------------------|---------|---------------|----------------|-----------|-------------|--------------------|
|                | · -                    |           |                | Surface Improvemen  | nt      | Wind Screens  | or Wind Breaks |           | Other       |                    |
|                |                        |           |                | New Silt Content (% | i)      | Height (feet) | Width (feet)   | Name/Type | Description | Control Efficiency |
|                |                        |           | 3 Months after | 6 Months after      | Average |               |                |           |             | (%)                |
|                |                        |           | Application    | Application         |         |               |                |           |             |                    |
| 1              | T. Haul Ore to Crusher | Ind       |                |                     | 8       |               |                |           | MgCI        | 75                 |
| 2              | T. Haul Ore to Plant   | Ind       |                |                     | 8.3     |               |                |           | MgCI        | 75                 |
| 3              | Haul Crush to Waste    | Ind       |                |                     | 10      |               |                |           | MgCI        | 75                 |
| 4              | Haul Quarry to Waste   | Ind       |                |                     | 10      |               |                |           | MgCI        | 75                 |
| 5              | Loader                 | Ind       |                |                     | 10      |               |                |           | Water Truck | 50                 |
| 6              | Drill rig              | ind       |                |                     | 10      |               |                |           | Water truck | 50                 |
| 12             | 0                      | 0         |                |                     | 11      |               |                |           |             |                    |

#### HARP / CEIDARS MINING OPERATIONS UNPAVED ROADS - ENTRAINED DUST

FORM MINE UPR

### **EMISSIONS**

DEVICE #

90014

Emission Factor pounds per vehicle miles traveled Industrial Roads

 $EmFac = k * (s / 12)^a * (W / 3)^b$ 

Public Road

 $EmFac = k * (\{[(s / 12)^a * (S / 30)^d] / (M / 0.5)^c\} -C)*[(365 - P)/365]$ 

 $k,\,a,\,b,\,c,\,\&\,\,d = \text{Constants - See Lookup Table entitled "Constants for Emission Factor Equations"}$ 

s = Silt content of unpaved surface in percent (%)

W = Average vehicle weight in tons

S = Mean vehicle speed (mph)

M = Moisture content of unpaved surface in percent (%)

P = Number of days per year with at least 0.01 inches of precipitation - see MetData worksheet Cell 'C16.

| Process |                        | Throughput |          | Emission F | actors Uncontrolled (pou | nds / vmt) |
|---------|------------------------|------------|----------|------------|--------------------------|------------|
| Number  | Vehicle Type           | Road Type  | vmt      | PM         | $PM_{10}$                | $PM_{10}$  |
| 1       | T. Haul Ore to Crusher | Ind        | 1,669.2  | 17.454     | 4.927                    | 0.755      |
| 2       | T. Haul Ore to Plant   | Ind        | 24,336.0 | 18.096     | 5.146                    | 0.789      |
| 3       | Haul Crush to Waste    | Ind        | 35.1     | 21.837     | 6.446                    | 0.988      |
| 4       | Haul Quarry to Waste   | Ind        | 1,368.9  | 16.637     | 4.911                    | 0.753      |
| 5       | Loader                 | Ind        | 566.8    | 20.447     | 6.035                    | 0.925      |
| 6       | Drill rig              | ind        | 62.4     | 12.315     | 3.635                    | 0.557      |
| 12      | 0                      | 0          | 0.0      | 0.000      | 0.000                    | 0.000      |
|         |                        | TOTAL      | 28,038.4 | 18.026     | 5.137                    | 0.788      |
|         | Number of Devices      | 6          |          |            |                          |            |

| Fractionat | ion Value |
|------------|-----------|
| $PM_{10}$  | $PM_{10}$ |
| 0.282      | 0.043     |
| 0.284      | 0.044     |
| 0.295      | 0.045     |
| 0.295      | 0.045     |
| 0.295      | 0.045     |
| 0.295      | 0.045     |
| 0.000      | 0.000     |
| 0.285      | 0.044     |
|            |           |

| Process Number | Vehicle Type           | Road Type |      | Efficiency percentage (%) of Dust Control Methods |                        |              |             |                 |       |         |
|----------------|------------------------|-----------|------|---------------------------------------------------|------------------------|--------------|-------------|-----------------|-------|---------|
|                |                        |           | None | W                                                 | ater                   | Water with   | Surface     | Wind Screens or | Other | Overall |
|                |                        |           |      |                                                   |                        | Suppressants | Improvement | Wind Breaks     |       |         |
|                |                        |           |      |                                                   | Water Application Rate |              |             |                 |       |         |
|                |                        |           |      | Moisture Content                                  | *                      |              |             |                 |       |         |
|                |                        |           |      | (%)                                               |                        |              |             |                 |       |         |
| 1              | T. Haul Ore to Crusher | Ind       | 0.00 |                                                   |                        |              |             | 0.00            | 75.00 | 75.00   |
| 2              | T. Haul Ore to Plant   | Ind       | 0.00 |                                                   |                        | 75.00        | 0.00        | 0.00            | 75.00 | 75.00   |
| 3              | Haul Crush to Waste    | Ind       | 0.00 | 0.00                                              | 0.00                   | 75.00        | 0.00        | 0.00            | 75.00 | 75.00   |
| 4              | Haul Quarry to Waste   | Ind       | 0.00 | 0.00                                              | 0.00                   | 75.00        | 0.00        | 0.00            | 75.00 | 75.00   |
| 5              | Loader                 | Ind       | 0.00 | 75.00                                             | -5.66                  | E            | 0.00        | 0.00            | 50.00 | 75.00   |
| 6              | Drill rig              | ind       | 0.00 | 0.00                                              | 89.20                  | E            | 0.00        | 0.00            | 50.00 | 89.20   |
| 12             | 0                      | 0         | 0.00 | 0.00                                              | 0.00                   | E            | 0.00        | 0.00            | 0.00  | 0.00    |

<sup>\*</sup> Dust Controls - Water Application Rate

C = 100 - (0.0012 \* A \* D \* T) / I

C = Control efficiency (%)

A = pan evaporation rate (inches)

D = Vehicles per hour

T = Hours between watering

I = Gallons / sq. yd (Note 0.1 gallon/sq yd = 1760 gallons per mile for a 30 foot wide road.)

| Process | Vehicle Type           | Road Type | Efficiency | Emission Factor - Controlled (pounds/vmt) |           |                   |  |
|---------|------------------------|-----------|------------|-------------------------------------------|-----------|-------------------|--|
| Number  |                        |           | (%)        | PM                                        | $PM_{10}$ | PM <sub>2.5</sub> |  |
| 1       | T. Haul Ore to Crusher | Ind       | 75.00      |                                           | 1.232     | 0.189             |  |
| 2       | T. Haul Ore to Plant   | Ind       | 75.00      | 4.524                                     | 1.286     | 0.197             |  |
| 3       | Haul Crush to Waste    | Ind       | 75.00      | 5.459                                     | 1.611     | 0.247             |  |
| 4       | Haul Quarry to Waste   | Ind       | 75.00      |                                           | 1.228     | 0.188             |  |
| 5       | Loader                 | Ind       | 75.00      | 5.112                                     | 1.509     | 0.231             |  |
| 12      | 0                      | 0         | 0.00       | 0.000                                     | 0.000     | 0.000             |  |
|         | <u> </u>               | TOTAL     | 75.03      | 4.502                                     | 1.283     | 0.197             |  |

| Emissions (tpy) |                                                 |  |  |  |  |  |  |  |  |
|-----------------|-------------------------------------------------|--|--|--|--|--|--|--|--|
| $PM_{10}$       | $PM_{2.5}$                                      |  |  |  |  |  |  |  |  |
| 1.028           | 0.158                                           |  |  |  |  |  |  |  |  |
| 15.653          | 2.400                                           |  |  |  |  |  |  |  |  |
| 0.028           | 0.004                                           |  |  |  |  |  |  |  |  |
| 0.840           | 0.129                                           |  |  |  |  |  |  |  |  |
| 0.428           | 0.066                                           |  |  |  |  |  |  |  |  |
| 0.000           | 0.000                                           |  |  |  |  |  |  |  |  |
|                 | PM <sub>10</sub> 1.028 15.653 0.028 0.840 0.428 |  |  |  |  |  |  |  |  |

| TOTAL | 63.121 | 17.990 | 2,758 |
|-------|--------|--------|-------|
|       |        |        |       |

## HARP / CEIDARS MINING OPERATIONS WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROADS

**FORM MINE ERO** 

DATA INPUT BY FACILITY

DATA FROM ANOTHER WORKSHEET

**OUTPUT DATA TO CEIDARS** 

FACILITY NAME: White Knob Quarry

COMPANY NAME: Omya California Inc

COMPANY NUMBER: 90

FACILITY NUMBER: 461

DEVICE # 90014a

| Process | Parking Areas | Disturbed Areas | Vegetative | Moisture | Threshold Friction Velocity |                   | Ratio of Wind Speed to Friction Velocity |                              |
|---------|---------------|-----------------|------------|----------|-----------------------------|-------------------|------------------------------------------|------------------------------|
| Number  |               |                 | cover      | Natural  | Area Use                    | Usage             | Area Use                                 | Usage                        |
|         | acres         | acres           | fraction   | %        | Code *                      | Name              | Code **                                  | Name                         |
| 1       |               | 5.25            |            | 0.5      | 3                           | Construction Site | 3                                        | Moderate Industrial / Mining |
| 2       |               | 3.9             |            | 0.5      | 3                           | Construction Site | 3                                        | Moderate Industrial / Mining |
| 10      |               |                 |            | 0.5      |                             | None              |                                          | None                         |

| :    | * Threshold Friction Velocity | ** Rati | ** Ration of Wind Speed to Friction Velocity |  |  |  |  |
|------|-------------------------------|---------|----------------------------------------------|--|--|--|--|
| Code | Area Usage                    | Code    | Area Usage                                   |  |  |  |  |
| 0    | None                          | 0       | None                                         |  |  |  |  |
| 1    | Mine Tailings                 | 1       | Open Space                                   |  |  |  |  |
| 2    | Abandoned Agricultural Land   | 2       | Light Industrial / Mining                    |  |  |  |  |
| 3    | Construction Site             | 3       | Moderate Industrial / Mining                 |  |  |  |  |
| 4    | Disturbed Desert              | 4       | Heavy Industrial / Mining                    |  |  |  |  |
| 5    | Scrub Desert                  | 5       | User Defined                                 |  |  |  |  |
| 6    | Coal Dust                     | 6       | User Defined                                 |  |  |  |  |
| 7    | Active Agricultural Land      | 7       | User Defined                                 |  |  |  |  |
| 8    | Coal Pile                     | 8       | User Defined                                 |  |  |  |  |
| 9    | User Defined                  | 9       | User Defined                                 |  |  |  |  |
| 10   | User Defined                  | 10      | User Defined                                 |  |  |  |  |
| 11   | User Defined                  |         |                                              |  |  |  |  |
| 12   | User Defined                  |         |                                              |  |  |  |  |

| Process Number | Total Parking and |           | Dust Controls (Check 'x' only one method) |                      |                                             |                 |                  |           |           |         |                |
|----------------|-------------------|-----------|-------------------------------------------|----------------------|---------------------------------------------|-----------------|------------------|-----------|-----------|---------|----------------|
|                | Disturbed Areas   | None      | one Water Spray                           |                      |                                             |                 | Wind Screen      | Other     |           |         |                |
|                |                   | check (x) | check (x)                                 | Water Added          | ater Added New Surface Moisture Content (%) |                 |                  | check (x) | check (x) | Specify | Efficiency (%) |
|                |                   |           |                                           | gallons per acre per | Calculated from                             | As Measured (%) | Moisture Content |           |           |         |                |
|                |                   |           |                                           | day                  | Added Water                                 |                 | for Calculation  |           |           |         |                |
| 1              | 5.25              |           |                                           |                      | -0.32                                       |                 | 0.00             |           | X         | MgCl    | 75             |
| 2              | 3.9               |           | х                                         | 1000                 | 8.87                                        |                 | 8.87             |           |           |         |                |
| 10             | 0                 | Х         |                                           |                      | -0.32                                       |                 | 0.00             |           |           |         |                |

## HARP / CEIDARS MINING OPERATIONS WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROADS

FORM MINE ERO

## **EMISSIONS**

DEVICE #

90014a

Emission Factor - pounds per acre

 $EmFac = 2.814 * k *(1 - v) * (u / u_t)^3 * C(x)*2000$ 

k = Aerodynamic Factor for Particulate Size

v = Amount of Vegetative cover as a Fraction

u = Mean Wind Speed in Meters per Second (m/s)

u<sub>t</sub> = Threshold Value of Wind Speed (m/s)

C(x) = Correction Factor

Aerodynamic Factor

TSP = 1.0

 $PM_{10} = 0.5$ 

 $PM_{2.5} = 0.2$ 

Threshold Value of Wind Speed  $\,$  -  $\,$   $u_t$ 

 $u_t = u^*_t * u^*$ 

| Process | Throu             | ıghput         |                   | Emission Factor |                  |      |            |             |                  |             |  |
|---------|-------------------|----------------|-------------------|-----------------|------------------|------|------------|-------------|------------------|-------------|--|
| Number  | Parking Areas     | Disturbed Area | Threshold         | Ratio           | Threshold        |      | Correction |             | Emission Factors |             |  |
|         |                   |                | Friction Velocity |                 | Wind Speed       |      | Factor     | TSP         | $PM_{10}$        | $PM_{2.5}$  |  |
|         |                   |                | u* <sub>t</sub>   | u*              | $\mathbf{u}_{t}$ | x    | C(x)       |             |                  |             |  |
|         | Acres             | Acres          | m/s               |                 | m/s              |      |            | pounds/acre | pounds/acre      | pounds/acre |  |
| 1       | 0                 | 5.25           | 0.26              | 6.5             | 1.69             | 0.44 | 1.90       | 90,332.145  | 45,166.072       | 18,066.429  |  |
| 2       | 0                 | 3.9            | 0.26              | 6.5             | 1.69             | 0.44 | 1.90       | 90,332.145  | 45,166.072       | 18,066.429  |  |
| 10      | 0                 | 0              | 0                 | 0               | 0                | 0.00 | 0.00       | 0.000       | 0.000            | 0.000       |  |
|         | INPUTS            | 9.15           |                   |                 |                  |      |            | 90,332.145  | 45,166.072       | 18,066.429  |  |
|         | Number of Devices | 0              |                   |                 |                  |      | '          |             |                  |             |  |

| Process | Total Parking and | Fractionation Value |                   |
|---------|-------------------|---------------------|-------------------|
|         | Disturbed Areas   |                     |                   |
| Number  | Acres             | $PM_{10}$           | PM <sub>2.5</sub> |
| 1       | 5.25              | 0.5                 | 0.2               |
| 2       | 3.9               | 0.5                 | 0.2               |
| 10      | 0                 | 0                   | 0                 |
|         | INPUTS            | 0.5                 | 0.2               |

| Process | Total Parking and<br>Disturbed Areas | Con         | trols          | Emission F | actor - Controlled (pe | ounds/acre)       |
|---------|--------------------------------------|-------------|----------------|------------|------------------------|-------------------|
| Number  | Acres                                | Type        | Efficiency (%) | TSP        | $PM_{10}$              | PM <sub>2.5</sub> |
| 1       | 5.25                                 | MgCl        | 75.0           | 22,583.036 | 11,291.518             | 4,516.607         |
| 2       | 3.9                                  | Water Spray | 95.0           | 4,516.607  | 2,258.304              | 903.321           |
| 10      | 0                                    | None        | 0.0            | 0.000      | 0.000                  | 0.000             |
|         |                                      | INPUTS      | 83.52          | 14,882.591 | 7,441.296              | 2,976.518         |

| Emissions (tpy) = Area * EmFac |           |                   |  |  |  |  |  |  |  |
|--------------------------------|-----------|-------------------|--|--|--|--|--|--|--|
| TSP                            | $PM_{10}$ | PM <sub>2.5</sub> |  |  |  |  |  |  |  |
| 59.280                         | 29.640    | 11.856            |  |  |  |  |  |  |  |
| 8.807                          | 4.404     | 1.761             |  |  |  |  |  |  |  |
| 0.000                          | 0.000     | 0.000             |  |  |  |  |  |  |  |

| TOTAL | 68.088 | 13.618 |
|-------|--------|--------|

 $x = u_t/u$ 

|                  |         |         |         |             |            |         |         |         |         |         |         | AVG - ALL | AVG -       |
|------------------|---------|---------|---------|-------------|------------|---------|---------|---------|---------|---------|---------|-----------|-------------|
|                  |         |         | (       | Ore to Prim | ary Crushe | r       |         |         |         |         | MAX     | YEARS     | 2004,2005,2 |
| USDT             | 2002    | 2003    | 2004    | 2005        | 2006       | 2007    | 2008    | 2009    | 2010    | 2011    |         |           |             |
| Sentinel         | 325,951 | 377,760 | 386,835 | 467,520     | 309,880    | 237,946 | 189,453 | 154,967 | 280,363 | 210,316 | 467,520 | 294,099   | 388,078     |
| Butterfield      | -       | -       | -       | 41,701      | 128,948    | 97,601  | 80,575  | 50,018  | 47,628  | 48,972  | 128,948 | 49,544    | 56,883      |
| <b>White Kno</b> | 261,244 | 274,193 | 309,168 | 311,999     | 350,895    | 212,999 | 190,274 | 52,758  | 228,414 | 144,075 | 350,895 | 233,602   | 324,021     |
|                  |         |         |         |             |            |         |         |         |         |         |         |           |             |
|                  |         |         |         | Ore Haule   | d to Plant |         |         |         |         |         |         |           |             |
| USDT             | 2002    | 2003    | 2004    | 2005        | 2006       | 2007    | 2008    | 2009    | 2010    | 2011    |         |           |             |
| Sentinel         | 277,058 | 321,096 | 328,810 | 397,392     | 263,398    | 202,254 | 161,035 | 131,722 | 238,309 | 178,768 | 397,392 | 249,984   | 329,867     |
| Butterfield      | -       | -       | -       | 35,446      | 109,606    | 82,961  | 68,489  | 42,515  | 40,483  | 41,627  | 109,606 | 42,113    | 48,351      |
| White Kno        | 222,057 | 233,064 | 262,793 | 265,199     | 298,261    | 181,049 | 161,733 | 44,844  | 194,152 | 122,463 | 298,261 | 198,562   | 275,418     |
|                  |         |         |         |             |            |         |         |         |         |         |         |           |             |
|                  |         |         |         | Wa          | ste        |         |         |         |         |         |         |           |             |
| USDT             | 2002    | 2003    | 2004    | 2005        | 2006       | 2007    | 2008    | 2009    | 2010    | 2011    |         |           |             |
| Sentinel         | 178,260 | 171,504 | 204,702 | 184,440     | 207,780    | 203,074 | 165,940 | 109,181 | 305,832 | 782,285 | 782,285 | 251,300   | 198,974     |
| Butterfield      | -       | -       | -       | 59,376      | 81,624     | 185,546 | 34,820  | 15,256  | 85,687  | 116,028 | 185,546 | 57,834    | 47,000      |
| White Kno        | 164,666 | 159,728 | 151,860 | 281,698     | 130,590    | 169,776 | 61,020  | 1,250   | 85,766  | 103,348 | 281,698 | 130,970   | 188,049     |

#### j:\accounting\california\ca 2002\fuel\diesel2004

**DIESEL DISTRIBUTION** includes Amboy

2004 YEAR:

MONTH: December

PAGE 1 OF 2

BEGINNING 88372.0 RECEIVED 45932.0

CALCULATED **GALLONS** 

ENDING READING 100414.0 includes Sentinel fuel tank and

510602.0

GALLONS USED - MONTH 33890.0

GALLONS USED - Y.T.D.

MONTH 24354.0 374701.7 Y.T.D.

|        |      |           |                 | -                      |                          |                |                        | <del>-</del>              |                 |
|--------|------|-----------|-----------------|------------------------|--------------------------|----------------|------------------------|---------------------------|-----------------|
| EQUIP# | YEAR | MFG       | DESCRIPTION     | UNLOADED<br>WEIGHT/TON | MONTH<br>GALLONS<br>USED | MONTH<br>HOURS | GALLONS<br>PER<br>HOUR | Y.T.D.<br>GALLONS<br>USED | Y.T.D.<br>HOURS |
| 205300 | 1978 | GROVE     | CRANE           | 25.00                  | 2.7                      | 1.0            | 2.7                    | 124.2                     | 46.0            |
| 208252 | 1987 | CAT       | FORKLIFT        | 5.50                   | 0.0                      | 0.0            | 0.6                    | 54.6                      | 91.0            |
| 213400 | 1990 | CHAMP     | FORKLIFT        | 8.00                   | 18.0                     | 9.0            | 2.0                    | 210.0                     | 105.0           |
| 293413 | 1984 | I.H.      | ROAD SWEEPER    |                        | 0.0                      |                | 0.6                    | 0.6                       | 1.0             |
| 298600 | 1992 | CAT       | 966F LOADER     | 22.00                  | 118.4                    | 16.0           | 7.4                    | 1916.6                    | 259.0           |
| 293301 | 1988 |           | BOBCAT          | 2.00                   | 0.0                      |                | 0.6                    | 0.0                       | 0.0             |
| 299000 |      |           | DUMP TRUCK      |                        | 65.0                     | 13.0           | 5.0                    | 687.5                     | 137.5           |
| 330200 | 1985 | CAT       | 992C LOADER     | 100.00                 | 1098.0                   | 45.0           | 24.4                   | 13517.6                   | 554.0           |
| 330500 | 1987 | CAT       | 992C LOADER     |                        | 512.4                    | 21.0           | 24.4                   | 14932.8                   | 612.0           |
| 330600 |      |           | BOBCAT          |                        | 6.0                      | 10.0           | 0.6                    | 66.0                      | 110.0           |
| 330700 |      |           | BOBCAT          |                        | 3.0                      | 5.0            | 0.6                    | 30.6                      | 51.0            |
| 330800 |      | CAT       | 992C CAT LOADER | 1                      | 39.0                     | 65.0           | 0.6                    | 383.4                     | 639.0           |
| 330900 |      | TEREX     | 94 TON HAUL TRU | CK                     | 0.6                      | 1.0            | 0.6                    | 831.6                     | 1386.0          |
| 331200 |      | CAT       | 988 LOADER      |                        | 0.0                      |                | 24.4                   | 24.4                      | 1.0             |
| 332102 | 1970 | KENWORTH  | GREASE TRUCK    | 20.00                  | 5.0                      | 1.0            | 5.0                    | 158.5                     | 31.7            |
| 332132 | 1988 |           | LUBE VAN        | 20.00                  | 105.0                    | 21.0           | 5.0                    | 1600.0                    | 320.0           |
| 332136 | 1974 |           | FUEL TRUCK      |                        | 35.0                     | 7.0            | 5.0                    | 325.0                     | 65.0            |
| 333018 |      |           | TD 25 DOZER     |                        | 0.0                      | 0.0            | 10.7                   | 246.1                     | 23.0            |
| 333046 | 1989 | CAT       | 992C LOADER     | 100.00                 | 2293.6                   | 94.0           | 24.4                   | 33964.8                   | 1392.0          |
| 333053 | 1983 | PAYHAULER | 350B TRUCK      | 36.00                  | 823.2                    | 98.0           | 8.4                    | 3956.4                    | 471.0           |
| 333060 | 1987 | CAT       | 992C LOADER     | 100.00                 | 2537.6                   | 104.0          | 24.4                   | 31720.0                   | 1300.0          |
| 333062 | 1990 | CAT       | D9N DOZER       | 46.00                  | 25.0                     | 2.0            | 12.5                   | 2725.0                    | 218.0           |
| 333064 |      |           | EXCAVATOR       | 46.00                  | 73.0                     | 10.0           | 7.3                    | 1905.3                    | 261.0           |
| 333091 | 1985 | PAYHAULER | 350B TRUCK      | 36.00                  | 966.0                    | 115.0          | 8.4                    | 7593.6                    | 904.0           |
| 333098 | 1985 | PAYHAULER | 350B TRUCK      | 36.00                  | 268.8                    | 32.0           | 8.4                    | 3511.2                    | 418.0           |
| 333251 | 1983 | TEREX     | 85 TON TRUCK    | 70.00                  | 1646.4                   | 98.0           | 16.8                   | 39765.6                   | 2367.0          |
| 333252 | 1984 | _TEREX    | 85 TON TRUCK    | 70.00                  | 2990.4                   | 178.0          | 16.8                   | 44788.8                   | 2666.0          |
| 333257 |      | TEREX     |                 |                        | 1797.6                   | 107.0          | 16.8                   | 8541.2                    | 510.8           |
| 333254 | 1986 | TEREX     | 85 TON TRUCK    | 70.00                  | 2284.8                   | 136.0          | 16.8                   | 34591.2                   | 2059.0          |
| 333255 | 1987 | TEREX     | 85 TON TRUCK    | 70.00                  | 772.8                    | 46.0           | 16.8                   | 39597.6                   | 2357.0          |
| 333256 | 1991 | TEREX     | 85 TON TRUCK    | 70.00                  | 3024.0                   | 180.0          | 16.8                   | 22411.2                   | 1334.0          |
| 333410 | 1978 |           | GRADER          | 16.00                  | 144.0                    | 24.0           | 6.0                    | 3450.0                    | 575.0           |
| 333411 | 1978 | PAYHAULER | WATER TRUCK     | 50.00                  | 25.2                     | 3.0            | 8.4                    | 4006.8                    | 477.0           |

#### DIESEL

YEAR: 2004 MONTH: December

PAGE 2 OF 2

| EQUIP#      | YEAR    | MFG            | DESCRIPTION | UNLOADED<br>WEIGHT/TON | MONTH<br>GALLONS<br>USED | MONTH<br>HOURS | GALLONS<br>PER<br>HOUR | Y.T.D.<br>GALLONS<br>USED | Y.T.D.<br>HOURS |
|-------------|---------|----------------|-------------|------------------------|--------------------------|----------------|------------------------|---------------------------|-----------------|
| 825700      | 1991    | CAT            | FORKLIFT    | 5.50                   | 0.0                      | 0.0            | 0.6                    | 75.6                      | 126.0           |
| 825400      | 1992    | CAT            | FORKLIFT    | 5.50                   | 5.4                      | 9.0            | 0.6                    | 77.4                      | 129.0           |
| 825900      | 1993    | CAT            | FORKLIFT    | 5.50                   | 0.0                      | 0.0            | 0.6                    | 0.0                       | 0.0             |
| 826000      | 1993    | AMERICAN LINC  | SWEEPER     |                        | 0.6                      | 1.0            | 0.6                    | 40.2                      | 67.0            |
| 826100      | 1994    | CAT            | FORKLIFT    | 5.50                   | 0.0                      | 0.0            | 0.6                    | 146.4                     | 244.0           |
| 826300      | 1995    | BAKER          | FORKLIFT    |                        | 14.4                     | 24.0           | 0.6                    | 390.0                     | 650.0           |
| 826400      | 1995    | BAKER          | FORKLIFT    |                        | 3.6                      | 6.0            | 0.6                    | 124.2                     | 207.0           |
| 826500      | 1997    | BAKER          | FORKLIFT    |                        | 97.2                     | 162.0          | 0.6                    | 1008.6                    | 1681.0          |
| 826600      | 1998    | BAKER          | FORKLIFT    |                        | 0.0                      | 0.0            | 0.6                    | 225.6                     | 376.0           |
| 826700      | 1999    | BAKER          | FORKLIFT    |                        | 66.0                     | 110.0          | 0.6                    | 1445.4                    | 2409.0          |
| 826800      | 2000    | BAKER          | FORKLIFT    |                        | 155.4                    | 259.0          | 0.6                    | 1773.0                    | 2955.0          |
| 826900      | 2001    | LINDE H300-03  | FORKLIFT    |                        | 164.4                    | 274.0          | 0.6                    | 2347.8                    | 3913.0          |
| 827000      | 2003    | LINDE H300-351 | FORKLIFT    |                        | 201.0                    | 335.0          | 0.6                    | 2999.3                    | 4998.9          |
| 827100      | 2003    | TENANT         | SWEEPER     |                        | 0.0                      | 15.0           | 0.6                    | 36.0                      | 201.0           |
| 827200      | 2004    | BAKER          | FORKLIFT    |                        | 0.0                      | 180.0          | 0.6                    | 0.0                       | 1387.0          |
| 6100 1102 V | HITE KN | OB GEN SET     |             |                        | 1438.5                   | 137.0          | 10.5                   | 5071.5                    | 1887.0          |
| 6160 AMBO   | Y       |                |             |                        | 0.0                      | 0.0            |                        | 0.0                       | 0.0             |
|             |         |                |             |                        | 0.0                      | 0.0            |                        | 0.0                       | 0.0             |
|             |         |                |             |                        | 0.0                      | 0.0            |                        | 0.0                       | 0.0             |
| DONNER      |         |                |             |                        | 527.0                    | 0.0            |                        | 22736.9                   | 0.0             |
|             |         |                |             |                        | 24354.0                  |                |                        |                           |                 |

|                                |              | PRICE   |            |
|--------------------------------|--------------|---------|------------|
|                                | GALLONS USED | PER GAL | ENTRY \$'s |
| 6100 2300 PLANT MAINT          | 2.7          | 1.6324  | 4.41       |
| 6100 1700 HEAVY EQUPMENT MAINT | 18.0         | 1.6324  | 29.38      |
| 6100 0400 PLANT ADMIN          | 183.4        | 1.6324  | 299.39     |
| 6100 1600 HEAVY EQUPMENT       | 21476.4      | 1.6324  | 35058.50   |
| DONNER                         | 527.0        | 1.6324  | 860.29     |
| PROFIT                         |              | 1.6324  |            |
|                                | 0.0          | 1.6324  | 0.00       |
|                                |              | 1.6324  |            |
|                                | 0.0          | 1.6324  | 0.00       |
|                                |              | 1.6324  |            |
|                                | 0.0          | 1.6324  | 0.00       |
| 6100 1102 WHITE KNOB GEN SET   | 1438.5       | 1.6324  | 2348.24    |
| 6160 AMBOY                     | 0.0          | 1.6324  | 0.00       |
| 6100 5511 PACKAGING            | 708.0        | 1.6324  | 1155.75    |
| -                              | 24354.0      | 1.6324  | 39755.96   |

## **DONNER**

|                   | Begin    | End      | Used  |
|-------------------|----------|----------|-------|
| PUMP 1(NO TENTHS) | 206714.0 | 206714.0 | 0.0   |
| PUMP 2            | 26001.2  | 26528.2  | 527.0 |
| QUARRY            | 583715.0 | 583715.0 | 0.0   |
|                   |          |          | 527.0 |

#### j:\accounting\california\ca 2002\fuel\diesel2004

DIESEL DISTRIBUTION includes Amboy

YEAR: 2005

MONTH: December

333098

333251

333252

333254

333255

333256

333257

333410

333411

1985

1983

1984

1986

1987

1991

2002

1978

1978

**PAYHAULER** 

**TEREX** 

**TEREX** 

TEREX

TEREX

**TEREX** 

**TEREX** 

**PAYHAULER** 

350B TRUCK

85 TON TRUCK

70 TON TRUCK

WATER TRUCK

GRADER

BEGINNING 144365.0 RECEIVED 77063.0

CALCULATED GALLONS

ENDING READING 160167.0

includes Sentinel fuel tank and

GALLONS USED - MONTH 61261.0

MONTH 50467.8

| PAGE 1 OF 2 |      |           |                 |                        | GALLONS USED - Y.T.D.    |                | 614022.0               | Y.T.D.                    | 492845.6        |
|-------------|------|-----------|-----------------|------------------------|--------------------------|----------------|------------------------|---------------------------|-----------------|
| EQUIP#      | YEAR | MFG       | DESCRIPTION     | UNLOADED<br>WEIGHT/TON | MONTH<br>GALLONS<br>USED | MONTH<br>HOURS | GALLONS<br>PER<br>HOUR | Y.T.D.<br>GALLONS<br>USED | Y.T.D.<br>HOURS |
| 205300      | 1978 | GROVE     | CRANE           | 25.00                  | 8.1                      | 3.0            | 2.7                    | 148.5                     | 55.0            |
| 208252      | 1987 | CAT       | FORKLIFT        | 5.50                   | 0.6                      | 1.0            | 0.6                    | 74.4                      | 124.0           |
| 213400      | 1990 | CHAMP     | FORKLIFT        | 8.00                   | 10.0                     | 5.0            | 2.0                    | 110.0                     | 55.0            |
| 293413      | 1984 | I.H.      | ROAD SWEEPER    |                        | 0.0                      |                | 0.6                    | 0.0                       | 0.0             |
| 298600      | 1992 | CAT       | 966F LOADER     | 22.00                  | 96.2                     | 13.0           | 7.4                    | 2057.2                    | 278.0           |
| 293301      | 1988 |           | BOBCAT          | 2.00                   | 0.0                      |                | 1.5                    | 0.0                       | 0.0             |
| 299000      | 1989 | PETERBILT | DUMP TRUCK      |                        | 300.0                    | 60.0           | 5.0                    | 3613.5                    | 731.7           |
| 330100      |      | CAT       | 988B LOADER     |                        | 0.0                      | 0.0            | 24.4                   | 0.0                       | 0.0             |
| 330200      | 1985 | CAT       | 992C LOADER     | 100.00                 | 2171.6                   | 89.0           | 24.4                   | 21228.0                   | 870.0           |
| 330500      | 1987 | CAT       | 992C LOADER     |                        | 1756.8                   | 72.0           | 24.4                   | 17446.0                   | 715.0           |
| 330600      |      |           | BOBCAT          |                        | 6.0                      | 4.0            | 1.5                    | 111.3                     | 109.0           |
| 330700      |      |           | BOBCAT          |                        | 18.0                     | 12.0           | 1.5                    | 97.8                      | 82.0            |
| 330800      |      | CAT       | 992C CAT LOADER |                        | 2342.4                   | 96.0           | 24.4                   | 9806.2                    | 834.0           |
| 330900      |      | TEREX     | 94 TON TRUCK    |                        | 0.0                      |                | 16.8                   | 10403.4                   | 1220.0          |
| 331200      |      | CAT       | 988 LOADER      |                        | 0.0                      |                | 24.4                   | 170.8                     | 7.0             |
| 332102      | 1970 | KENWORTH  | GREASE TRUCK    | 20.00                  | 10.0                     | 2.0            | 5.0                    | 135.0                     | 27.0            |
| 332132      | 1988 |           | LUBE VAN        | 20.00                  | 105.0                    | 21.0           | 5.0                    | 1650.0                    | 330.0           |
| 332136      | 1974 | •         | FUEL TRUCK      |                        | 35.0                     | 7.0            | 5.0                    | 540.0                     | 108.0           |

| 330000 |      |           | DODOAT          |        | 0.0    | 4.0   | 1.0  | 111.0   | 103.0  |
|--------|------|-----------|-----------------|--------|--------|-------|------|---------|--------|
| 330700 |      |           | BOBCAT          |        | 18.0   | 12.0  | 1.5  | 97.8    | 82.0   |
| 330800 |      | CAT       | 992C CAT LOADER |        | 2342.4 | 96.0  | 24.4 | 9806.2  | 834.0  |
| 330900 |      | TEREX     | 94 TON TRUCK    |        | 0.0    |       | 16.8 | 10403.4 | 1220.0 |
| 331200 |      | CAT       | 988 LOADER      |        | 0.0    |       | 24.4 | 170.8   | 7.0    |
| 332102 | 1970 | KENWORTH  | GREASE TRUCK    | 20.00  | 10.0   | 2.0   | 5.0  | 135.0   | 27.0   |
| 332132 | 1988 |           | LUBE VAN        | 20.00  | 105.0  | 21.0  | 5.0  | 1650.0  | 330.0  |
| 332136 | 1974 |           | FUEL TRUCK      |        | 35.0   | 7.0   | 5.0  | 540.0   | 108.0  |
| 333018 |      |           | TD 25 DOZER     |        | 0.0    |       | 10.7 | 149.8   | 14.0   |
| 333046 | 1989 | CAT       | 992C LOADER     | 100.00 | 2440.0 | 100.0 | 24.4 | 35380.0 | 1450.0 |
| 333053 | 1983 | PAYHAULER | 350B TRUCK      | 36.00  | 848.4  | 101.0 | 8.4  | 9433.2  | 1123.0 |
| 333060 | 1987 | CAT       | 992C LOADER     | 100.00 | 3123.2 | 128.0 | 24.4 | 33501.2 | 1373.0 |
| 333062 | 1990 | CAT       | D9N DOZER       | 46.00  | 0.0    |       | 12.5 | 825.0   | 66.0   |
| 333064 |      |           | EXCAVATOR       | 46.00  | 591.3  | 81.0  | 7.3  | 2496.6  | 342.0  |
| 333091 | 1985 | PAYHAULER | 350B TRUCK      | 36.00  | 1050.0 | 125.0 | 8.4  | 9962.4  | 1186.0 |
|        |      |           |                 |        |        |       |      |         |        |

36.00

70.00

70.00

70.00

70.00

70.00

16.00

50.00

940.8

2805.6

3931.2

5275.2

5460.0

4468.8

1041.6

120.0

319.2

112.0

167.0

234.0

314.0

325.0

266.0

62.0

20.0

38.0

8.4

16.8

16.8

16.8

16.8

16.8

16.8

6.0

8.4

8929.2

41529.6

48955.2

47661.6

55120.8

28812.0

10567.2

4350.0

5040.0

1063.0

2472.0

2914.0

2837.0

3281.0

1715.0

629.0

725.0

600.0

### DIESEL

YEAR: 2005 MONTH: December

PAGE 2 OF 2

| EQUIP#      | YEAR     | MFG            | DESCRIPTION | UNLOADED<br>WEIGHT/TON | MONTH<br>GALLONS<br>USED | MONTH<br>HOURS | GALLONS<br>PER<br>HOUR | Y.T.D.<br>GALLONS<br>USED | Y.T.D.<br>HOURS |
|-------------|----------|----------------|-------------|------------------------|--------------------------|----------------|------------------------|---------------------------|-----------------|
| 825700      | 1991     | CAT            | FORKLIFT    | 5.50                   | 0.0                      | 0.0            | 0.6                    | 0.0                       | 0.0             |
| 825400      | 1992     | CAT            | FORKLIFT    | 5.50                   | 0.0                      | 0.0            | 0.6                    | 43.8                      | 73.0            |
| 825900      | 1993     | CAT            | FORKLIFT    | 5.50                   | 0.0                      | 0.0            | 0.6                    | 0.0                       | 0.0             |
| 826000      | 1993     | AMERICAN LINC  | SWEEPER     |                        | 0.6                      | 1.0            | 0.6                    | 3.6                       | 6.0             |
| 826100      | 1994     | CAT            | FORKLIFT    | 5.50                   | 0.0                      | 0.0            | 0.6                    | 9.0                       | 15.0            |
| 826300      | 1995     | BAKER          | FORKLIFT    |                        | 21.6                     | 36.0           | 0.6                    | 210.6                     | 351.0           |
| 826400      | 1995     | BAKER          | FORKLIFT    |                        | 21.6                     | 36.0           | 0.6                    | 145.2                     | 242.0           |
| 826500      | 1997     | BAKER          | FORKLIFT    |                        | 12.6                     | 21.0           | 0.6                    | 802.2                     | 1337.0          |
| 826600      | 1998     | BAKER          | FORKLIFT    |                        | 19.2                     | 32.0           | 0.6                    | 606.0                     | 1010.0          |
| 826700      | 1999     | BAKER          | FORKLIFT    |                        | 62.4                     | 104.0          | 0.6                    | 1009.8                    | 1683.0          |
| 826800      | 2000     | BAKER          | FORKLIFT    |                        | 105.0                    | 175.0          | 0.6                    | 1367.4                    | 2279.0          |
| 826900      | 2001     | LINDE H300-03  | FORKLIFT    |                        | 206.4                    | 344.0          | 0.6                    | 1976.4                    | 3294.0          |
| 827000      | 2003     | LINDE H300-351 | FORKLIFT    |                        | 211.8                    | 353.0          | 0.6                    | 2482.8                    | 4138.0          |
| 827100      | 2003     | TENANT         | SWEEPER     |                        | 0.0                      | 8.0            | 0.6                    | 91.2                      | 911.0           |
| 827200      | 2004     | BAKER          | FORKLIFT    |                        | 0.0                      | 188.0          | 0.6                    | 667.2                     | 2192.0          |
| 6100 1102 \ | WHITE KN | OB GEN SET     |             |                        | 2110.5                   | 201.0          | 10.5                   | 4935.0                    | 470.0           |
| 6160 AMBC   | Υ        |                |             |                        | 0.0                      | 0.0            |                        | 0.0                       | 0.0             |
|             |          |                |             |                        | 0.0                      | 0.0            |                        | 0.0                       | 0.0             |
|             |          |                |             |                        | 0.0                      | 0.0            |                        | 19285.5                   | 0.0             |
| DONNER      |          |                |             |                        | 8421.1                   | 0.0            |                        | 32585.2                   | 0.0             |
|             |          | ·              |             |                        | 50467.8                  |                |                        |                           |                 |

|                                |              | DDICE            |            |         |
|--------------------------------|--------------|------------------|------------|---------|
|                                | GALLONS USED | PRICE<br>PER GAL | ENTRY \$'s |         |
| 6100 2300 PLANT MAINT          | 8.7          | 2.1893           | 19.05      |         |
| 6100 1700 HEAVY EQUPMENT MAINT | 10.0         | 2.1893           | 21.89      |         |
| 6100 0400 PLANT ADMIN          | 396.2        | 2.1893           | 867.40     |         |
| 6100 1600 HEAVY EQUPMENT       | 38860.1      | 2.1893           | 85076.03   |         |
| DONNER                         | 8421.1       | 2.1893           | 18436.23   |         |
| PROFIT                         |              | 2.1893           |            | 2765.43 |
|                                | 0.0          | 2.1893           | 0.00       |         |
|                                |              | 2.1893           |            | 0.00    |
|                                | 0.0          | 2.1893           | 0.00       |         |
|                                |              | 2.1893           |            | 0.00    |
|                                | 0.0          | 2.1893           | 0.00       |         |
| 6100 1102 WHITE KNOB GEN SET   | 2110.5       | 2.1893           | 4620.50    |         |
| 6160 AMBOY                     | 0.0          | 2.1893           | 0.00       |         |
| 6100 5511 PACKAGING            | 661.2        | 2.1893           | 1447.56    |         |
|                                | 50467.8      | 2.1893           | 110488.65  |         |

# **DONNER**

|                   | Begin    | End      | Used   |
|-------------------|----------|----------|--------|
| PUMP 1(NO TENTHS) | 206714.0 | 206714.0 | 0.0    |
| PUMP 2            | 30505.3  | 31423.4  | 918.1  |
| QUARRY            | 602250.0 | 609753.0 | 7503.0 |
|                   |          |          | 8421.1 |

#### j:\accounting\california\ca 2002\fuel\diesel2006

**DIESEL DISTRIBUTION** includes Ambov

2006 YEAR:

MONTH: December REGINNING 133657 ( RECEIVED 80161.0

CALCULATED **GALLONS** includes Sentinel fuel tank and

Y.T.D.

ENDING READING 155505.0

GALLONS USED - MONTH 58313.0

621145.0

GALLONS USED - Y.T.D.

MONTH 37326.2

533724.4

PAGE 1 OF 2

333411

MONTH **GALLONS** Y.T.D. UNLOADED MONTH **GALLONS** PFR **GALLONS** YTD EQUIP# YEAR MFG **DESCRIPTION** WEIGHT/TON USED **HOURS HOUR USED HOURS** 205300 1978 **GROVE CRANE** 25.00 0.0 2.7 0.0 0.0 6.0 522.0 2000 SKYTRAK 10042 0.0 87.0 207500 LIFTALL 213400 1990 **FORKLIFT** 8.00 8.0 4.0 2.0 156.0 78.0 CHAMP 293413 1984 I.H. **ROAD SWEEPER** 0.0 0.6 0.0 0.0 74.0 10.0 7.4 1768.6 298600 1992 CAT 966F LOADER 22.00 239.0 299000 1989 **PETERBILT** DUMP TRUCK 90.0 18.0 5.0 2055.0 785.1 0.0 1.5 25.5 299100 2002 **BORCAT BOBCAT** 17.0 1986 988B LOADER 97.6 4.0 24.4 3196.4 771.1 330100 CAT 330200 1985 CAT 992C LOADER 100.00 2244.8 92.0 24.4 24351.2 219.0 1987 CAT 992C LOADER 2586.4 106.0 24.4 19422.4 1012.0 330500 330600 1984 **BOBCAT BOBCAT** 40.5 27.0 1.5 268.8 717.0 1984 **BOBCAT BOBCAT** 36.0 24.0 1.5 261.0 181.0 330700 1985 2147.2 88.0 24.4 35454.8 CAT 992C CAT LOADER 241.0 330800 330900 1997 **TEREX** 94 TON HAUL TRUCK 1764.0 105.0 16.8 22008.0 1552.0 1970 0.0 5.0 1205.0 332102 **KENWORTH GREASE TRUCK** 20.00 0.0 125.0 1988 **AUTOCAR** LUBE VAN 20.00 65.0 13.0 5.0 995.0 38.0 332132 1974 WHITE FUEL TRUCK 35.0 7.0 5.0 410.0 193.0 332136 333018 1978 INTERNATIONAL TD 25 DOZER 0.0 0.0 10.7 331.7 75.0 333046 1989 CAT 992C LOADER 100.00 1122.4 46.0 24.4 29890.0 77.0 1983 **PAYHAULER** 350B TRUCK 36.00 58.8 7.0 8.4 5014.8 1186.0 333053 1987 992C LOADER 100.00 2391.2 98.0 24.4 27010.8 333060 CAT 688.0 333062 1990 CAT D9N DOZER 46.00 0.0 0.0 12.5 375.0 1009.0 333064 1990 CAT **EXCAVATOR** 46.00 36.5 5.0 7.3 2029.4 35.0 1985 **PAYHAULER** 350B TRUCK 36.00 134.4 16.0 8.4 8265.6 289.0 333091 333098 1985 **PAYHAULER** 350B TRUCK 36.00 109.2 13.0 8.4 5359.2 981.0 1983 3511.2 209.0 16.8 40908.0 333251 **TEREX** 85 TON TRUCK 70.00 834.0 1984 705.6 42.0 16.8 41428.8 333252 **TEREX** 85 TON TRUCK 70.00 2268.0 1986 **TEREX** 85 TON TRUCK 70.00 2671.2 159.0 16.8 39984.0 2583.0 333254 333255 1987 **TEREX** 70.00 2990.4 178.0 16.8 42823.2 2399.0 85 TON TRUCK 256.0 16.8 1991 **TEREX** 70.00 4300.8 46502.4 2627.0 333256 85 TON TRUCK 2002 70 TON TRUCK 940.8 56.0 16.8 19202.4 2568.0 333257 **TEREX** 333410 1978 46.0 6.0 1133.0 CAT 16.00 276.0 **GRADER** 3222.0 8.4 1978 **PAYHAULER** WATER TRUCK 50.00 680.4 81.0 6207.6 572.0

### DIESEL

YEAR: 2006 MONTH: December

PAGE 2 OF 2

| EQUIP#     | YEAR       | MFG            | DESCRIPTION | UNLOADED<br>WEIGHT/TON | MONTH<br>GALLONS<br>USED | MONTH<br>HOURS | GALLONS<br>PER<br>HOUR | Y.T.D.<br>GALLONS<br>USED | Y.T.D.<br>HOURS |
|------------|------------|----------------|-------------|------------------------|--------------------------|----------------|------------------------|---------------------------|-----------------|
| 825400     | 1992       | CAT            | FORKLIFT    | 5.50                   | 7.8                      | 13.0           | 0.6                    | 77.4                      | 129.0           |
| 826000     | 1993       | AMERICAN LINC  | SWEEPER     |                        | 0.0                      | 0.0            | 0.6                    | 0.0                       | 0.0             |
| 826300     | 1995       | BAKER          | FORKLIFT    |                        | 15.0                     | 25.0           | 0.6                    | 208.8                     | 348.0           |
| 826400     | 1995       | BAKER          | FORKLIFT    |                        | 32.4                     | 54.0           | 0.6                    | 338.4                     | 564.0           |
| 826500     | 1997       | BAKER          | FORKLIFT    |                        | 33.6                     | 56.0           | 0.6                    | 676.2                     | 1127.0          |
| 826600     | 1998       | BAKER          | FORKLIFT    |                        | 31.8                     | 53.0           | 0.6                    | 956.4                     | 1594.0          |
| 826700     | 1999       | BAKER          | FORKLIFT    |                        | 48.6                     | 81.0           | 0.6                    | 787.2                     | 1312.0          |
| 826800     | 2000       | BAKER          | FORKLIFT    |                        | 181.8                    | 303.0          | 0.6                    | 1185.0                    | 1975.0          |
| 826900     | 2001       | LINDE H300-03  | FORKLIFT    |                        | 69.6                     | 116.0          | 0.6                    | 2265.0                    | 3775.0          |
| 827000     | 2003       | LINDE H300-351 | FORKLIFT    |                        | 90.6                     | 151.0          | 0.6                    | 2589.6                    | 4316.0          |
| 827100     | 2003       | TENANT         | SWEEPER     |                        | 6.6                      | 11.0           | 0.6                    | 90.6                      | 207.0           |
| 827200     | 2004       | BAKER          | FORKLIFT    |                        | 102.0                    | 170.0          | 0.6                    | 1041.6                    | 2383.0          |
| 6100 1102  | WHITE KN   | OB GEN SET     |             |                        | 2509.5                   | 239.0          | 10.5                   | 5239.5                    | 499.0           |
| 6160 AMBC  | ΟY         |                |             |                        | 0.0                      | 0.0            |                        | 22217.2                   | 0.0             |
|            |            |                |             |                        | 0.0                      | 0.0            |                        | 3175.0                    | 0.0             |
| EQUIPMEN   | IT LEASING | 3              |             |                        | 3063.0                   | 0.0            |                        | 31928.1                   | 0.0             |
| LV DRILLIN | IG         | •              | ·           |                        | 2016.5                   | 0.0            |                        | 13715.1                   | 0.0             |
|            |            |                |             |                        | 37326.2                  |                |                        |                           | <u> </u>        |

|                                |              | PRICE   |            |         |
|--------------------------------|--------------|---------|------------|---------|
|                                | GALLONS USED | PER GAL | ENTRY \$'s |         |
| 6100 2300 PLANT MAINT          | 0.0          | 2.2830  | 0.00       |         |
| 6100 1700 HEAVY EQUPMENT MAINT | 8.0          | 2.2830  | 18.26      |         |
| 6100 0400 PLANT ADMIN          | 164.0        | 2.2830  | 374.41     |         |
| 6100 1600 HEAVY EQUPMENT       | 28945.4      | 2.2830  | 66081.77   |         |
| DONNER                         | 2016.5       | 2.2830  | 4603.63    |         |
| PROFIT                         |              | 2.2830  |            | 690.54  |
|                                | 0.0          | 2.2830  | 0.00       |         |
|                                |              | 2.2830  |            | 0.00    |
|                                | 3063.0       | 2.2830  | 6992.77    |         |
|                                |              | 2.2830  |            | 1048.92 |
|                                | 0.0          | 2.2830  | 0.00       |         |
| 6100 1102 WHITE KNOB GEN SET   | 2509.5       | 2.2830  | 5729.14    |         |
| 6160 AMBOY                     | 0.0          | 2.2830  | 0.00       |         |
| 6100 5511 PACKAGING            | 517.8        | 2.2830  | 1182.13    |         |
|                                | 37224.2      | 2.2830  | 84982.10   |         |

## **DONNER**

|                   | Begin | End | Used |
|-------------------|-------|-----|------|
| PUMP 1(NO TENTHS) | 0.0   | 0.0 | 0.0  |
| PUMP 2            | 0.0   | 0.0 | 0.0  |
| QUARRY            | 0.0   | 0.0 | 0.0  |
|                   |       |     | 0.0  |

| <u>EIN</u> | Veh serial num            | Your veh<br>num | Eng serial<br>num | Eng<br>Manufact<br>urer                | Eng<br>Model | Eng<br>Family | Eng MY | Eng HP | Eng Tier | Displace<br>ment<br>(liters) | <u>Date</u><br><u>Purchase</u> | <u>Date</u><br><u>Installed</u><br>(Repowered) | Date Sold | On/Off-<br>road<br>engine | Non-<br>diesel<br>engine | Certified to a different standard |
|------------|---------------------------|-----------------|-------------------|----------------------------------------|--------------|---------------|--------|--------|----------|------------------------------|--------------------------------|------------------------------------------------|-----------|---------------------------|--------------------------|-----------------------------------|
| NX9N35     | 49Z01382                  | 3308            | 73W1722<br>5      | CATERPILL<br>AR, INC.                  | 3412         | 274NA031      | 1985   | 690    | Т0       | 27                           | 1/1/1985                       | 1/1/1985                                       |           | off                       |                          |                                   |
| CY3E87     | 115049                    | 2202            | 274NA038          | CATERPILL<br>AR, INC.                  | 3306B        | 274NA038      | 1985   | 215    | Т0       | 10.5                         | 1/1/1985                       | 1/1/1985                                       |           | off                       |                          |                                   |
| SJ9B97     | 50W1138<br>1              | 3301            | BFF00423          | CATERPILL<br>AR, INC.                  | 3408DITA     | 274NA035      | 1985   | 375    | Т0       | 18                           | 1/1/1985                       | 1/1/1985                                       |           | off                       |                          |                                   |
| YB8P58     | 93U1347                   | 3410            | 93U01904          | CATERPILL<br>AR, INC.                  | 3406         | 274NA015      | 1987   | 275    | Т0       | 14.6                         | 1/1/1987                       | 1/1/1987                                       |           | off                       |                          |                                   |
| RF7T38     | 501101                    | 2232            | 4MG1811           | CATERPILL<br>AR, INC.                  | 3406B        | 274NA037      | 1988   | 322    | Т0       | 14.6                         | 1/1/1988                       | 1/1/1988                                       |           | off                       |                          |                                   |
| PB8T39     | 1XP5LB9X<br>4K028307<br>0 | 2290            | 7XC11192          | CATERPILL<br>AR, INC.                  | 3406C        | 274NA039      | 1989   | 425    | Т0       | 14.6                         | 1/1/1989                       | 1/1/1989                                       |           | off                       |                          |                                   |
| FN3U54     | 026N                      | 3298            | 37103885          | CUMMINS<br>ENGINE<br>CO., INC.         | VT1710       | 274NA023      | 1990   | 635    | Т0       | 28                           | 1/1/1990                       | 1/1/1990                                       |           | off                       |                          |                                   |
| CR6E85     | 1JD02200                  | 3462            | 48W3003<br>4      | CATERPILL<br>AR, INC.                  | 3408         | 274NA027      | 1990   | 370    | Т0       | 18                           | 1/1/1990                       | 1/1/1990                                       |           | off                       |                          |                                   |
| XL3E34     | T-<br>3851060             | 3209            | 37206355          | CUMMINS<br>ENGINE<br>CO., INC.         | KT38C        | 274NA025      | 1991   | 1050   | Т0       | 38                           | 1/1/1991                       | 1/1/1991                                       |           | off                       |                          |                                   |
| LL4Y77     | 105N                      | 3291            | 10729894          | CUMMINS<br>ENGINE<br>CO., INC.         | VT1710       | 274NA024      | 1992   | 635    | Т0       | 28                           | 1/1/1992                       | 1/1/1992                                       |           | off                       |                          |                                   |
| CC5P99     | 4YG00650                  | 3303            | 08Z64168          | CATERPILL AR, INC.                     | 3306B        | 274NA033      | 1992   | 235    | Т0       | 10.5                         | 1/1/1992                       | 1/1/1992                                       |           | off                       |                          |                                   |
| XV5P45     | 5BC1382                   | 8254            | 274NA011          | PERKINS<br>ENGINES<br>COMPAN<br>Y LTD. | 274NA011     | 274NA011      | 1992   | 52     | Т0       | 200                          | 1/1/1992                       | 1/1/1992                                       |           | off                       |                          |                                   |
| <u>EIN</u> | Veh serial<br>num         | Your veh<br>num | Eng serial<br>num | Eng<br>Manufact<br>urer                | Eng<br>Model | Eng<br>Family | Eng MY | Eng HP | Eng Tier | Displace<br>ment<br>(liters) | <u>Date</u><br><u>Purchase</u> | <u>Date</u><br><u>Installed</u><br>(Repowered) | Date Sold | On/Off-<br>road<br>engine | Non-<br>diesel<br>engine | Certified to a different standard |
| KP3K99     | 49Z00973                  | 3360            | 73W1648<br>5      | CATERPILL<br>AR, INC.                  | 3412         | 274NA029      | 1994   | 690    | т0       | 27                           | 1/1/1994                       | 1/1/1994                                       |           | off                       |                          |                                   |
| BC6W93     | 49Z1405                   | 3346            | 73W1026<br>7      | CATERPILL<br>AR, INC.                  | 3412         | 274NA030      | 1995   | 690    | Т0       | 27                           | 1/1/1995                       | 1/1/1995                                       |           | off                       |                          |                                   |
| TS6F56     | 5AF01016                  | 3464            | 08Z57759          | CATERPILL<br>AR, INC.                  | 3306         | 274NA026      | 1995   | 195    | Т0       | 10.5                         | 1/1/1995                       | 1/1/1995                                       |           | off                       |                          |                                   |

| GM5E67     | T3851027                   | 3256            | 37157403          |                                        | QST30        | 274NA016         | 1997   | 1050   | Т0       | 30                           | 1/1/1997                       | 1/1/1997                                       |           | off                       |                          |                                   |
|------------|----------------------------|-----------------|-------------------|----------------------------------------|--------------|------------------|--------|--------|----------|------------------------------|--------------------------------|------------------------------------------------|-----------|---------------------------|--------------------------|-----------------------------------|
| NT4W68     | AGC00349                   | 3216            | 2GR02704          | CO., INC.<br>CATERPILL<br>AR, INC.     | 3508         | 274NA022         | 2000   | 938    | T1       | 34.5                         | 1/1/2000                       | 1/1/2000                                       |           | off                       |                          |                                   |
| JF6Y78     | H2X351L0<br>187830         | 8268            | U344163R          | PERKINS<br>ENGINES<br>COMPAN<br>Y LTD. | CP81149      | XPKXL02.7<br>CP1 | 2000   | 52     | T1       | 2.7                          | 1/1/2000                       | 1/1/2000                                       |           | off                       |                          |                                   |
| UM7G58     | T7891011                   | 3257            | 535EL010<br>0200  | DETROIT<br>DIESEL<br>CORPORA<br>TION   | 12V2000      | 274NA013         | 2000   | 760    | Т1       | 24                           | 1/1/2000                       | 1/1/2000                                       |           | off                       |                          |                                   |
| HL7F58     | H2X351L0<br>061930         | 8269            | U178812K          | PERKINS<br>ENGINES<br>COMPAN<br>Y LTD. | 903          | CP80820          | 2001   | 47     | T1       | 2.79                         | 1/1/2001                       | 1/1/2001                                       |           | off                       |                          |                                   |
| XD9V77     | 1HTGLAXT<br>51H-<br>338849 | 2271            | 2KS51137          | CATERPILL<br>AR, INC.                  | C-12         | 274NA041         | 2001   | 322    | T2       | 12                           | 1/1/2001                       | 1/1/2001                                       |           | off                       |                          |                                   |
| WX6V89     | 72473                      | 3252            | 37203442          | CUMMINS<br>ENGINE<br>CO., INC.         | QST30        | YCEXL030.<br>AAA | 2002   | 1050   | T1       | 30                           | 1/1/2002                       | 1/1/2002                                       |           | off                       |                          |                                   |
| RD4U73     | H2X351P0<br>1199           | 8270            | U178812K          | PERKINS<br>ENGINES<br>COMPAN<br>Y LTD. | CP81149      | 3PKXL02.7<br>CP1 | 2003   | 52     | T1       | 2.7                          | 1/1/2003                       | 1/1/2003                                       |           | off                       |                          |                                   |
| GC4L77     | 21103                      | 5171            | 356007            | KUBOTA<br>CORPORA<br>TION              | V1505        | 274NA041         | 2003   | 52     | T1       | 1.5                          | 1/1/2003                       | 1/1/2003                                       |           | off                       |                          |                                   |
| <u>EIN</u> | Veh serial<br>num          | Your veh<br>num | Eng serial<br>num | Eng<br>Manufact<br>urer                | Eng<br>Model | Eng<br>Family    | Eng MY | Eng HP | Eng Tier | Displace<br>ment<br>(liters) | <u>Date</u><br><u>Purchase</u> | <u>Date</u><br><u>Installed</u><br>(Repowered) | Date Sold | On/Off-<br>road<br>engine | Non-<br>diesel<br>engine | Certified to a different standard |
| MX9J35     | 73177                      | 3255            | 37214062          | CUMMINS<br>ENGINE<br>CO., INC.         | QST30        | 274NA017         | 2004   | 1050   | T1       | 30                           | 1/1/2004                       | 1/1/2004                                       |           | off                       |                          |                                   |
| JU3C84     | 49Z00783                   | 3302            | 80M0554<br>5      | CATERPILL<br>AR, INC.                  | 3412 LE      | 274NA034         | 2004   | 690    | T2       | 27                           | 1/1/2004                       | 1/1/2004                                       |           | off                       |                          |                                   |
| HM9D53     | 040N                       | 3253            | 5.31E+09          | DETROIT<br>DIESEL<br>CORPORA<br>TION   | 8V2000       | 274NA019         | 2004   | 635    | Т2       | 200                          | 1/1/2004                       | 1/1/2004                                       |           | off                       |                          |                                   |

| FX9A66 | H2X393R0<br>2493          | 8272 | BEU00612<br>3 | VOLKSWA<br>GEN OF<br>AMERICA,<br>INC. |          | 274NA002         | 2004 | 57   | Т2 | 1.89 | 1/1/2004   | 1/1/2004   | of | ff |         |
|--------|---------------------------|------|---------------|---------------------------------------|----------|------------------|------|------|----|------|------------|------------|----|----|---------|
| SK8E79 | 49Z00901                  | 3305 |               | CATERPILL<br>AR, INC.                 | 3412 LE  | 274NA032         | 2004 | 690  | T2 | 27   | 1/1/2004   | 1/1/2004   | of | ff |         |
| СН9К94 | 73176                     | 3254 | 37214605      | CUMMINS<br>ENGINE<br>CO., INC.        |          | 274NA018         | 2005 | 1050 | T1 | 30   | 1/1/2005   | 1/1/2005   | of | ff |         |
| LX5G75 | N5531                     | 3211 | 37110873      | CUMMINS<br>ENGINE<br>CO., INC.        |          | 274NA014         | 2006 | 635  | Т3 | 19   | 1/1/2006   | 1/1/2006   | of | ff | Rebuild |
|        | 1NKDL99X<br>1SS65535<br>2 |      | 34741843      | CUMMINS<br>ENGINE<br>CO., INC.        | M11-370I | RCE661EJ<br>DARW | 1994 | 370  | Т0 | 10.8 | 12/27/2007 | 0000-00-00 | of | ff |         |

| OMYA (     | California)I | nc.        |
|------------|--------------|------------|
| 2004 PL AI | NT KWH / TO  | N BY MONTH |

| MONTH            | PRODUCTION<br>TONS | KWH<br>USED | 2004<br>KWH USED<br>PER TON |
|------------------|--------------------|-------------|-----------------------------|
|                  |                    |             |                             |
| JANUARY          | 37,319             | 1,753,718   | 46.99                       |
| FEBRUARY         | 50,419             | 1,754,299   | 34.79                       |
| MARCH            | 52,769             | 2,071,915   | 39.26                       |
| APRIL            | 52,625             | 1,894,301   | 36.00                       |
| MAY              | 52,963             | 1,733,040   | 32.72                       |
| JUNE             | 55,561             | 2,093,314   | 37.68                       |
| JULY             | 62,061             | 2,173,502   | 35.02                       |
| AUGUST           | 59,948             | 2,068,469   | 34.50                       |
| SEPTEMBER        | 54,791             | 2,064,754   | 37.68                       |
| OCTOBER          | 60,672             | 2,238,763   | 36.90                       |
| NOVEMBER         | 51,939             | 2,002,699   | 38.56                       |
| DECEMBER         | 51,321             | 2,236,882   | 43.59                       |
|                  |                    |             |                             |
| TOTAL SHORT TONS | 642,388            | 24,085,656  | 37.49                       |
| DMT              | 582,762            |             |                             |

# 2004 PLANT KWH / TON YEAR-TO-DATE

|           |            |            | 2004     |
|-----------|------------|------------|----------|
| MONTH     | PRODUCTION | KWH        | KWH USED |
|           | TONS       | USED       | PER TON  |
|           |            |            |          |
| JANUARY   | 37,319     | 1,753,718  | 46.99    |
| FEBRUARY  | 87,738     | 3,508,017  | 39.98    |
| MARCH     | 140,507    | 5,579,932  | 39.71    |
| APRIL     | 193,132    | 7,474,233  | 38.70    |
| MAY       | 246,095    | 9,207,273  | 37.41    |
| JUNE      | 301,656    | 11,300,587 | 37.46    |
| JULY      | 363,717    | 13,474,089 | 37.05    |
| AUGUST    | 423,665    | 15,542,558 | 36.69    |
| SEPTEMBER | 478,456    | 17,607,312 | 36.80    |
| OCTOBER   | 539,128    | 19,846,075 | 36.81    |
| NOVEMBER  | 591,067    | 21,848,774 | 36.96    |
| DECEMBER  | 642,388    | 24,085,656 | 37.49    |

| Metric 582,76 | 2 24,085,656 | 41.33 |
|---------------|--------------|-------|
|---------------|--------------|-------|

# Omya California Inc. 2005 PLANT KWH / TON BY MONTH

| MONTH     | PRODUCTION<br>SHORT TONS | KWH<br>USED | 2005<br>KWH USED<br>PER TON |
|-----------|--------------------------|-------------|-----------------------------|
|           |                          |             |                             |
| JANUARY   | 49,451                   | 1,894,003   | 38.30                       |
| FEBRUARY  | 49,757                   | 1,987,080   | 39.94                       |
| MARCH     | 59,403                   | 2,303,741   | 38.78                       |
| APRIL     | 56,580                   | 2,274,389   | 40.20                       |
| MAY       | 56,110                   | 2,127,898   | 37.92                       |
| JUNE      | 56,336                   | 2,439,331   | 43.30                       |
| JULY      | 56,846                   | 2,422,262   | 42.61                       |
| AUGUST    | 53,252                   | 2,134,517   | 40.08                       |
| SEPTEMBER | 56,586                   | 2,543,467   | 44.95                       |
| OCTOBER   | 59,461                   | 2,558,554   | 43.03                       |
| NOVEMBER  | 56,101                   | 2,448,648   | 43.65                       |
| DECEMBER  | 48,944                   | 2,242,656   | 45.82                       |
|           |                          |             |                             |
| TOTAL     | 658,827                  | 27,376,546  | 41.55                       |

# 2005 PLANT KWH / TON YEAR-TO-DATE

|           |            |            | 2005     |
|-----------|------------|------------|----------|
| MONTH     | PRODUCTION | KWH        | KWH USED |
|           | SHORT TONS | USED       | PER TON  |
|           |            |            |          |
| JANUARY   | 49,451     | 1,894,003  | 38.30    |
| FEBRUARY  | 99,208     | 3,881,083  | 39.12    |
| MARCH     | 158,611    | 6,184,824  | 38.99    |
| APRIL     | 215,191    | 8,459,213  | 39.31    |
| MAY       | 271,301    | 10,587,111 | 39.02    |
| JUNE      | 327,637    | 13,026,442 | 39.76    |
| JULY      | 384,483    | 15,448,704 | 40.18    |
| AUGUST    | 437,735    | 17,583,221 | 40.17    |
| SEPTEMBER | 494,321    | 20,126,688 | 40.72    |
| OCTOBER   | 553,782    | 22,685,242 | 40.96    |
| NOVEMBER  | 609,883    | 25,133,890 | 41.21    |
| DECEMBER  | 658,827    | 27,376,546 | 41.55    |
| METRIC    | 597,675    | 27,376,546 | 45.81    |

Omya California Inc. 2005 Sentinel KWH / TON BY MONTH

| 2005 Sentinel KWH / TON BY MONTH |                          |             |                             |  |  |  |
|----------------------------------|--------------------------|-------------|-----------------------------|--|--|--|
| MONTH                            | PRODUCTION<br>SHORT TONS | KWH<br>USED | 2005<br>KWH USED<br>PER TON |  |  |  |
|                                  |                          |             |                             |  |  |  |
| JANUARY                          | 8,580                    | 10,579      | 1.23                        |  |  |  |
| FEBRUARY                         | 1,560                    | 10,872      | 6.97                        |  |  |  |
| MARCH                            | 20,280                   | 3,304       | 0.16                        |  |  |  |
| APRIL                            | 22,464                   | 9,074       | 0.40                        |  |  |  |
| MAY                              | 60,792                   | 12,807      | 0.21                        |  |  |  |
| JUNE                             | 78,780                   | 15,263      | 0.19                        |  |  |  |
| JULY                             | 58,968                   | 18,469      | 0.31                        |  |  |  |
| AUGUST                           | 70,902                   | 13,483      | 0.19                        |  |  |  |
| SEPTEMBER                        | 54,756                   | 16,070      | 0.29                        |  |  |  |
| OCTOBER                          | 45,942                   | 16,208      | 0.35                        |  |  |  |
| NOVEMBER                         | 53,076                   | 14,888      | 0.28                        |  |  |  |
| DECEMBER                         | 57,786                   | 18,340      | 0.32                        |  |  |  |
|                                  |                          |             |                             |  |  |  |
| TOTAL                            | 533,886                  | 159,357     | 0.30                        |  |  |  |
| METRIC                           | 484,331                  | 159,357     | 0.33                        |  |  |  |

# Omya California Inc. 2006 PLANT KWH / TON BY MONTH

| MONTH     | PRODUCTION<br>SHORT TONS | KWH<br>USED | 2006<br>KWH USED<br>PER TON |
|-----------|--------------------------|-------------|-----------------------------|
| LANULA DV | 54.005                   | 0.440.747   | 44.00                       |
| JANUARY   | 51,085                   | 2,143,747   | 41.96                       |
| FEBRUARY  | 51,076                   | 2,540,530   | 49.74                       |
| MARCH     | 55,005                   | 2,125,277   | 38.64                       |
| APRIL     | 49,929                   | 2,012,434   | 40.31                       |
| MAY       | 54,513                   | 2,013,370   | 36.93                       |
| JUNE      | 57,555                   | 2,303,333   | 40.02                       |
| JULY      | 54,645                   | 2,116,066   | 38.72                       |
| AUGUST    | 58,365                   | 2,109,240   | 36.14                       |
| SEPTEMBER | 54,378                   | 2,312,909   | 42.53                       |
| OCTOBER   | 48,976                   | 2,027,626   | 41.40                       |
| NOVEMBER  | 43,654                   | 1,817,438   | 41.63                       |
| DECEMBER  | 33,216                   | 1,766,510   | 53.18                       |
|           |                          |             |                             |
| TOTAL     | 612,397                  | 25,288,480  | 41.29                       |

# 2006 PLANT KWH / TON YEAR-TO-DATE

|           |            |            | 2006     |
|-----------|------------|------------|----------|
| MONTH     | PRODUCTION | KWH        | KWH USED |
|           | SHORT TONS | USED       | PER TON  |
|           |            |            |          |
| JANUARY   | 51,085     | 2,143,747  | 41.96    |
| FEBRUARY  | 102,161    | 4,684,277  | 45.85    |
| MARCH     | 157,166    | 6,809,554  | 43.33    |
| APRIL     | 207,095    | 8,821,988  | 42.60    |
| MAY       | 261,608    | 10,835,358 | 41.42    |
| JUNE      | 319,163    | 13,138,691 | 41.17    |
| JULY      | 373,808    | 15,254,757 | 40.81    |
| AUGUST    | 432,173    | 17,363,997 | 40.18    |
| SEPTEMBER | 486,551    | 19,676,906 | 40.44    |
| OCTOBER   | 535,527    | 21,704,532 | 40.53    |
| NOVEMBER  | 579,181    | 23,521,970 | 40.61    |
| DECEMBER  | 612,397    | 25,288,480 | 41.29    |

| 25,288,480 | 45.52      |
|------------|------------|
|            | 25,288,480 |

| Omya California Inc. |                 |         |                  |  |  |  |
|----------------------|-----------------|---------|------------------|--|--|--|
| 2006 Sentinel KV     | VH / TON BY MOI | NTH     |                  |  |  |  |
| MONTH                | PRODUCTION      | KWH     | 2006<br>KWH USED |  |  |  |
| IVIOINTIT            | SHORT TONS      | USED    | PER TON          |  |  |  |
|                      | SHORT TONS      | USED    | PERTON           |  |  |  |
| JANUARY              | 24,726          | 12,208  | 0.49             |  |  |  |
| FEBRUARY             | 30,852          | 12,636  | 0.41             |  |  |  |
| MARCH                | 14,544          | 9,508   | 0.65             |  |  |  |
| APRIL                | 17,394          | 6,405   | 0.37             |  |  |  |
| MAY                  | 25,818          | 9,732   | 0.38             |  |  |  |
| JUNE                 | 55,302          | 14,885  | 0.27             |  |  |  |
| JULY                 | 29,874          | 12,212  | 0.41             |  |  |  |
| AUGUST               | 73,710          | 18,173  | 0.25             |  |  |  |
| SEPTEMBER            | 66,846          | 18,247  | 0.27             |  |  |  |
| OCTOBER              | 59,982          | 17,515  | 0.29             |  |  |  |
| NOVEMBER             | 42,744          | 17,736  | 0.41             |  |  |  |
| DECEMBER             | 16,980          | 18,173  | 1.07             |  |  |  |
|                      |                 |         |                  |  |  |  |
| TOTAL                | 458,772         | 167,430 | 0.36             |  |  |  |
|                      |                 |         |                  |  |  |  |
| Metric               | 416,189         | 167,430 | 0.40             |  |  |  |



14306 Park Avenue, Victorville, CA 92392-2310 (760) 245-1661

# PERMIT TO OPERATE

B000751

Operation under this permit must be conducted in compliance with all information included with the initial application, initial permit condition, and conditions contained herein. The equipment must be maintained and kept in good operating condition at all times. This Permit to Operate or copy must be posted on or within 8 meters of equipment. If copy is posted, original must be maintained on site, available for inspection at all times.

**EXPIRES LAST DAY OF: OCTOBER 2013** 

Page 1 of 2

### **OWNER OR OPERATOR (0090)**

Omya (California) Inc 7299 Crystal Creek Road Lucerne Valley, CA 92356 **EQUIPMENT LOCATION: (00461)** 

Omya - Main Plant 7299 Crystal Creek Road Lucerne Valley, CA 92356

#### **DESCRIPTION:**

CRUSHING AND SCREENING CIRCUIT (SENTINEL) consisting of:

| Capacity | Equipment Description             |
|----------|-----------------------------------|
| 0.0      | 31-110 Feed Hopper                |
| 50.0     | 31-120 Vibrating Feeder           |
| 40.0     | 31-130 Primary Screen             |
| 200.0    | 31-140 Jaw Crusher                |
| 25.0     | 31-150 Conveyor-Crusher discharge |
| 15.0     | 31-220 Conveyor-Reject            |
| 20.0     | 31-160 Conveyor-Picking Feed      |
| 25.0     | 31-180 Conveyor-Picking           |
| 20.0     | 31-190 Conveyor-Radial Stacker    |
| 5.0      | 31-191 Conveyor-Travel Motor      |
|          |                                   |

#### **CONDITIONS:**

400.0

- This equipment shall be operated and maintained in strict accord with the recommendations of the manufacturer and/or sound engineering practices consistent with minimal emissions.
- This circuit shall not be operated unless the water spray equipment (C003293) and baghouse (C007808) are operating properly.

Fee Schedule: 1(C)

Rating: 400.0

SIC: 1422

SCC: 99999999

Location/UTM(Km): 506E/3806N

This permit does not authorize the emission of air contaminants in excess of those allowed by law, including Division 26 of the Health and Safety Code of the State of California and the Rules and Regulations of the District. This permit cannot be construed as permission to violate existing laws, ordinances, statutes or regulations of this or other governmental agencies. This permit must be renewed by the expiration date above. If billing for renewal fee required by Rule 301(c) is not received by expiration date above, please contact the District.

10/15/2012 DATE:

Omya (California) Inc 7225 Crystal Creek Rd Lucerne Valley, CA 92356

B000751 Page 2 of 2

- 3. The maximum ore processed by this equipment shall not exceed 5000 ton/day and 600 ton/hour, verified on a monthly basis.
- 4. This equipment shall not discharge into the atmosphere an exhaust stream that exhibits greater than the following opacity:
  - a. All transfer points and fugitive emission points ten percent (40 CFR 60.672(b))
- 5. This equipment shall be operating in compliance with all applicable requirements of 40 CFR 60 Subpart OOO Standards of Performance for Nonmetallic Mineral Processing Plants.
- 6. The o/o shall conduct a minimum program of inspection and maintenance on this equipment. The o/o shall maintain current and on-site for two (2) years a log of the following information, which shall be provided to District, State or Federal personnel upon request:
  - a. Monthly production (in tons) and hours operated;
  - b. Quarterly stack and transfer/fugitive emission point observation date and result (using USEPA Method 22, and USEPA Method 9 if necessary); and,
  - c. Date and nature of any system repairs.



14306 Park Avenue, Victorville, CA 92392-2310 (760) 245-1661

# PERMIT TO OPERATE

C003293

Operation under this permit must be conducted in compliance with all information included with the initial application, initial permit condition, and conditions contained herein. The equipment must be maintained and kept in good operating condition at all times. This Permit to Operate or copy must be posted on or within 8 meters of equipment. If copy is posted, original must be maintained on site, available for inspection at all times.

**EXPIRES LAST DAY OF: OCTOBER 2013** 

Page 1 of 1

### **OWNER OR OPERATOR (0090)**

Omya (California) Inc 7299 Crystal Creek Road Lucerne Valley, CA 92356

### **EQUIPMENT LOCATION: (00461)**

Omya - Main Plant 7299 Crystal Creek Road Lucerne Valley, CA 92356

### DESCRIPTION:

WATER SPRAY-DUST SUPPRESSION SYSTEM (PUMP 31-230) consisting of:

a 150 gallon per hour system to spray dust from the Sentinel Quarry Crushing and Screening Circuit, under District permit B000751.

#### **CONDITIONS:**

- This circuit shall be operated concurrently with the Sentinel Quarry Crushing and Screening Circuit under valid District permit B000751.
- The points where dust suppression is applied shall be so chosen that particulate emissions from the handling, processing, and storing of ore, product and/or waste are sufficiently treated to comply with all applicable Rules and Regulations of this District, which are included in part in Regulations IV and XIII.
- The owner/operator, o/o, shall operate and maintain this system in strict accord with the recommendations of the manufacturer/supplier and/or sound engineering principles which produce the minimum emissions of particulate matter.
- The o/o shall log all maintenance, repairs, replacements on the equipment. The log shall be maintained current, on-site for a minimum of 2 years and provided to District personnel on request.

Location/UTM(Km): 506E/3806N Fee Schedule: 7(h) Rating: 1.0 SIC: 1422 SCC: 99999999

This permit does not authorize the emission of air contaminants in excess of those allowed by law, including Division 26 of the Health and Safety Code of the State of California and the Rules and Regulations of the District. This permit cannot be construed as permission to violate existing laws, ordinances, statutes or regulations of this or other governmental agencies. This permit must be renewed by the expiration date above. If billing for renewal fee required by Rule 301(c) is not received by expiration date above, please contact the District.

DATE: 10/15/2012

Omya (California) Inc 7225 Crystal Creek Rd Lucerne Valley, CA 92356



14306 Park Avenue, Victorville, CA 92392-2310 (760) 245-1661

## PERMIT TO OPERATE

C007808

Operation under this permit must be conducted in compliance with all information included with the initial application, initial permit condition, and conditions contained herein. The equipment must be maintained and kept in good operating condition at all times. This Permit to Operate or copy must be posted on or within 8 meters of equipment. If copy is posted, original must be maintained on site, available for inspection at all times.

**EXPIRES LAST DAY OF: OCTOBER 2013** 

Page 1 of 2

### **OWNER OR OPERATOR (0090)**

Omya (California) Inc 7299 Crystal Creek Road Lucerne Valley, CA 92356 **EQUIPMENT LOCATION: (00461)** 

Omya - Main Plant 7299 Crystal Creek Road Lucerne Valley, CA 92356

#### **DESCRIPTION:**

BAGHOUSE, SENTINEL CRUSHER SCREEN (31-131) consisting of:

a DCE Inc. CSI, type F, size 66k11 Sintamatic Insertable reverse jet collector. The total filtering area of the bags is 710 sq ft, and of self-supporting PTFE impregnated sintered polyethylene media. The effective filtration volume of 3000 ACFM is driven by a 10 hp motor. Ancillary equipment includes the necessary electric, controls, magnehelic, and acoustic diffusers for optimum service.

### **CONDITIONS:**

- The owner/operator (o/o) shall maintain this dust collector in strict accord with those recommendations of the manufacturer/supplier and/or sound engineering principles which produce the minimum emissions of air
- This baghouse shall operate concurrently with the Vibrating Feeder and the Primary Screen of the Sentinel 2. Crusher Circuit under valid District permit B000751.
- The o/o shall conduct a minimum program of inspection and maintenance on this equipment. The o/o shall 3. maintain current and on-site for five (5) years a log of the following information, which shall be provided to District personnel upon request:
  - a. Quarterly dust collector stack observation date and result (using USEPA Method 22, and USEPA Method 9 if necessary);
  - b. Quarterly bag and bag suspension system inspection date and results;
  - c. Quarterly reading of dust collector pressure drop, date and value (if a manometer is present);
  - d. Date of bag replacements; and,
  - e. Date and nature of any system repairs.
- This dust collector shall not discharge into the atmosphere an exhaust stream that exhibits greater than seven percent opacity (40 CFR 60.672(a)(2)).
- This dust collector shall discharge no more than 0.26 pounds per hour of PM10 at a maximum concentration of 0.01 grains/dscf at the operating conditions given in the above description (BACT). This equipment does not require a regularly scheduled emission compliance test. However, emission compliance testing may be required at the discretion of the District.

Fee Schedule: 7(h)

Rating: 1.0

SIC: 1422

SCC: 99999999

Location/UTM(Km): 506E/3806N

This permit does not authorize the emission of air contaminants in excess of those allowed by law, including Division 26 of the Health and Safety Code of the State of California and the Rules and Regulations of the District. This permit cannot be construed as permission to violate existing laws, ordinances, statutes or regulations of this or other governmental agencies. This permit must be renewed by the expiration date above. If billing for renewal fee required by Rule 301(c) is not received by expiration date above, please contact the District.

DATE: 10/15/2012

Omya (California) Inc 7225 Crystal Creek Rd Lucerne Valley, CA 92356



14306 Park Avenue, Victorville, CA 92392-2310 (760) 245-1661

## PERMIT TO OPERATE

B002456

Operation under this permit must be conducted in compliance with all information included with the initial application, initial permit condition, and conditions contained herein. The equipment must be maintained and kept in good operating condition at all times. This Permit to Operate or copy must be posted on or within 8 meters of equipment. If copy is posted, original must be maintained on site, available for inspection at all times.

**EXPIRES LAST DAY OF: OCTOBER 2013** 

Page 1 of 2

### **OWNER OR OPERATOR (0090)**

Omya (California) Inc 7299 Crystal Creek Road Lucerne Valley, CA 92356 **EQUIPMENT LOCATION: (00461)** 

Omya - Main Plant 7299 Crystal Creek Road Lucerne Valley, CA 92356

### **DESCRIPTION:**

CRUSHING AND SCREENING CIRCUIT (WHITE KNOB) consisting of:

| Capacity | Equipm | ent Description            |
|----------|--------|----------------------------|
| 25.0     | 51-003 | Air Compressor             |
| 0.0      | 51-004 | Truck Loading Hopper       |
| 50.0     | 51-005 | Vibrating Feeder           |
| 250.0    | 51-006 | Jaw Crusher                |
| 40.0     |        | Triple Deck Grizzly Screen |
| 15.0     | 51-007 | Conveyor for Grizzly Fines |
| 25.0     | 51-008 | Conveyor, Under Crusher    |
| 10.0     | 51-009 | Conveyor, Screen Feed      |
| 40.0     | 51-010 | Triple Deck Screen         |
| 10.0     | 51-011 | Conveyor, Under Screen     |
| 7.5      | 51-012 | Conveyor, Sand Transfer    |
| 25.0     | 51-013 | Conveyor, Sand Reject      |
| 10.0     | 51-014 | Conveyor, Product          |
| 40.0     | 51-015 | Conveyor, Radial Stacker   |
| 40.0     | 51-017 | Rock Breaker               |
| 10.0     | 51-115 | Travel Motor               |
| 597.5    |        |                            |

Fee Schedule: 1(C) Rating: 597.5 SIC: 1422 SCC: 99999999 Location/UTM(Km): 506E/3806N

This permit does not authorize the emission of air contaminants in excess of those allowed by law, including Division 26 of the Health and Safety Code of the State of California and the Rules and Regulations of the District. This permit cannot be construed as permission to violate existing laws, ordinances, statutes or regulations of this or other governmental agencies. This permit must be renewed by the expiration date above. If billing for renewal fee required by Rule 301(c) is not received by expiration date above, please contact the District.

RY.

•

DATE: 10/15/2012

Omya (California) Inc 7225 Crystal Creek Rd Lucerne Valley, CA 92356

B002456

Page 2 of 2

### **ONDITIONS:**

- 1. This equipment shall be operated and maintained in strict accord with the recommendations of the manufacturer and/or sound engineering practices consistent with minimal emissions.
- 2. This circuit shall not be operated unless the water spray equipment is operating under valid District permit C002458.
- 3. The maximum ore processed by this equipment shall not exceed 4000 ton/day and 400 ton/hour, verified on a monthly basis.
- 4. This equipment shall not discharge into the atmosphere an exhaust stream that exhibits greater than the following opacity:
  - a. All transfer points and fugitive emission points ten percent (40 CFR 60.672(b))
- 5. This equipment shall be operating in compliance with all applicable requirements of 40 CFR 60 Subpart OOO Standards of Performance for Nonmetallic Mineral Processing Plants.
- 6. The o/o shall conduct a minimum program of inspection and maintenance on this equipment. The o/o shall maintain current and on-site for two (2) years a log of the following information, which shall be provided to District, State or Federal personnel upon request:
  - a. Monthly production (in tons) and hours operated;
  - b. Quarterly stack and transfer/fugitive emission point observation date and result (using USEPA Method 22, and USEPA Method 9 if necessary); and,
  - c. Date and nature of any system repairs.
- 7. This equipment shall not operate while the equipment under District permits B0011000 and B011001 is operating.



14306 Park Avenue, Victorville, CA 92392-2310 (760) 245-1661

## **PERMIT TO OPERATE**

C002458

Operation under this permit must be conducted in compliance with all information included with the initial application, initial permit condition, and conditions contained herein. The equipment must be maintained and kept in good operating condition at all times. This Permit to Operate or copy must be posted on or within 8 meters of equipment. If copy is posted, original must be maintained on site, available for inspection at all times.

**EXPIRES LAST DAY OF: OCTOBER 2013** 

Page 1 of 1

### **OWNER OR OPERATOR (0090)**

Omya (California) Inc 7299 Crystal Creek Road Lucerne Valley, CA 92356 **EQUIPMENT LOCATION: (00461)** 

Omya - Main Plant 7299 Crystal Creek Road Lucerne Valley, CA 92356

### **DESCRIPTION:**

DUST SUPPRESSION-WATER SPRAY NO. 1 (WHITE KNOB) consisting of:

a water spray system rated at 150 gal/h of water at the White Knob Quarry crushing and screening circuit under District permit B002456.

### **CONDITIONS:**

- This circuit shall be operated concurrently with Crushing and Screening System under valid District permit B002456.
- 2. The points where dust suppression is applied shall be so chosen that particulate emissions from the handling, processing, and storing of ore, product and/or waste are sufficiently treated to comply with all applicable Rules and Regulations of this District, which are included in part in Regulations IV and XIII.
- 3. The owner/operator, o/o, shall operate and maintain this system in strict accord with the recommendations of the manufacturer/supplier and/or sound engineering principles which produce the minimum emissions of particulate matter.
- 4. The o/o shall log all maintenance, repairs, filter replacements on the equipment. The log shall be maintained current, on-site for a minimum of 2 years and provided to District personnel on request.

Fee Schedule: 7(h)

Rating: 10.0

SIC: 1422

SCC: 99999999

Location/UTM(Km): 506E/3806N

This permit does not authorize the emission of air contaminants in excess of those allowed by law, including Division 26 of the Health and Safety Code of the State of California and the Rules and Regulations of the District. This permit cannot be construed as permission to violate existing laws, ordinances, statutes or regulations of this or other governmental agencies. This permit must be renewed by the expiration date above. If billing for renewal fee required by Rule 301(c) is not received by expiration date above, please contact the District.

BY:

DATE:

10/15/2012

Omya (California) Inc 7225 Crystal Creek Rd Lucerne Valley, CA 92356



| Location | Туре       | hp    | HC (g/hp-hr) | HC det (g/hp-hr2 | ) HC FCF | NOx (g/hp-hr) | NOx det (g/hp-hr2 | ) NOx FCF | PM (g/hp-hr) | PM det (g/hp-hr2) | ) PM FCF |
|----------|------------|-------|--------------|------------------|----------|---------------|-------------------|-----------|--------------|-------------------|----------|
| Pit      | Dozer      | 370   | 0.68         | 0.0000237        | 0.72     | 8.17          | 0.000136          | 0.93      | 0.38         | 0.0000202         | 0.72     |
| Pit      | Excavator  | 195   | 0.68         | 0.0000315        | 0.72     | 8.17          | 0.000189          | 0.93      | 0.38         | 0.0000276         | 0.72     |
| Pit      | Loader     | 690   | 0.44         | 0.00002505       | 0.72     | 6.9375        | 0.0001088         | 0.939     | 0.2825       | 0.00001497        | 0.76     |
| Plant    | Bobcat     | 50    |              |                  |          |               |                   |           |              |                   |          |
| Plant    | Crane      | 150   | 1            | 0.0000463        | 0.72     | 12            | 0.000278          | 0.93      | 0.55         | 0.00004           | 0.72     |
| Plant    | Forklift   | 52    |              |                  |          |               |                   |           |              |                   |          |
| Plant    | Guzzler    | 322   | 0.19         | 0.0000195        | 0.72     | 4.95          | 0.0000734         | 0.948     | 0.12         | 0.00000651        | 0.8      |
| Plant    | Loader     | 305   |              |                  |          |               |                   |           |              |                   |          |
| Plant    | Manlift    | 150   | 0.68         | 0.0000315        | 0.72     | 6.9           | 0.00016           | 0.948     | 0.38         | 0.0000276         | 0.8      |
| Plant    | Sweeper    | 101   |              |                  |          |               |                   |           |              |                   |          |
| Roads    | Dump Truck | 425   |              |                  |          |               |                   |           |              |                   |          |
| Roads    | Fuel Truck | 370   |              |                  |          |               |                   |           |              |                   |          |
| Roads    | Grader     | 275   | 0.84         | 0.0000293        | 0.72     | 11            | 0.000183          | 0.93      | 0.53         | 0.0000281         | 0.72     |
| Roads    | Lube Truck | 268.5 |              |                  |          |               |                   |           |              |                   |          |
| Roads    | Truck      | 896   |              |                  |          |               |                   |           |              |                   |          |
| WKQ      | Generator  | 890   | 0.68         | 0.00             | 0.72     | 8.17          | 0.00              | 0.93      | 0.38         | 0.00              | 0.72     |

Cells with information on units that were operated during the baseline years and then retired are filled with grey.

| Lasatian | CO (= /b = b =) C | 20 det /=/hm hm2\J | IC FF (~/b ~ b ~) N | Ov. 55 /=/b== b=\ DI | \                 | O FF (= /b = b = ) | CO2 FF /=/h= h= | \   ===       |
|----------|-------------------|--------------------|---------------------|----------------------|-------------------|--------------------|-----------------|---------------|
| Location | CO (g/np-nr) C    | O det (g/hp-hr2) F | ic ef (g/np-nr) N   | Ox EF (g/np-nr) Pi   | vi EF (g/np-nr) C | O EF (g/np-nr):    | SOZ EF (g/np-nr | ) Load Factor |
| Pit      | 4.1               | 8.12E-04           | 0.67                | 8.95                 | 0.43              | 12.78              | 0.00028         | 0.43          |
| Pit      | 2.7               | 7.14E-05           | 0.71                | 9.28                 | 0.46              | 3.38               | 0.00028         | 0.38          |
| Pit      | 2.185             | 2.30E-04           | 0.52                | 7.67                 | 0.34              | 4.94               | 0.00028         | 0.36          |
| Plant    |                   |                    | 2.39                | 7.13                 | 0.81              | 8.23               | 0.00028         | 0.37          |
| Plant    | 4.4               | 1.16E-04           | 1.12                | 14.26                | 0.74              | 5.79               | 0.00028         | 0.2881        |
| Plant    |                   |                    | 1.14                | 7.58                 | 0.78              | 4.62               | 0.00028         | 0.20          |
| Plant    | 0.92              | 1.82E-05           | 0.22                | 5.10                 | 0.13              | 1.03               | 0.00028         | 0.34          |
| Plant    |                   |                    | 0.81                | 10.99                | 0.57              | 9.86               | 0.00028         | 0.36          |
| Plant    | 2.7               | 7.14E-05           | 0.57                | 7.11                 | 0.39              | 2.97               | 0.00028         | 0.3082        |
| Plant    |                   |                    | 0.99                | 10.30                | 0.78              | 4.94               | 0.00028         | 0.40          |
| Roads    |                   |                    | 0.69                | 9.13                 | 0.45              | 13.84              | 0.00028         | 0.34          |
| Roads    |                   |                    | 0.69                | 9.12                 | 0.45              | 13.84              | 0.00028         | 0.34          |
| Roads    | 4.1               | 8.12E-04           | 0.86                | 12.27                | 0.62              | 13.84              | 0.00028         | 0.41          |
| Roads    |                   |                    | 0.84                | 11.09                | 0.59              | 9.76               | 0.00028         | 0.34          |
| Roads    |                   |                    | 0.35                | 6.53                 | 0.20              | 4.10               | 0.00028         | 0.38          |
| WKQ      | 4.1               | 8.12E-04           | 0.59                | 9.12                 | 0.29              | 13.84              | 0.00028         | 0.525         |

| Location | Average (hr)        | Avg. (hp-hr) | HC (lb/yr) | NOx (lb/yr) | PM (lb/yr) | CO (lb/yr) | SOx (lb/yr) | CO2 (tpy) |
|----------|---------------------|--------------|------------|-------------|------------|------------|-------------|-----------|
| Pit      | 120.0               | 44,393       | 28         | 376         | 18         | 536        | 0.012       | 26        |
| Pit      | 293.7               | 57,265       | 34         | 447         | 22         | 163        | 0.013       | 33        |
| Pit      | 5135.3              | 3,543,333    | 1,468      | 21,668      | 950        | 13,951     | 0.781       | 2,064     |
| Plant    | 243.3               | 12,167       | 24         | 70          | 8          | 81         | 0.003       | 7         |
| Plant    | 33.7                | 5,050        | 4          | 46          | 2          | 19         | 0.001       | 3         |
| Plant    | 17066.8             | 887,473      | 447        | 2,981       | 308        | 1,816      | 0.109       | 517       |
| Plant    | 0.0                 | 0            | -          | -           | -          | -          | -           | -         |
| Plant    | 233.7               | 71,287       | 46         | 625         | 32         | 561        | 0.016       | 42        |
| Plant    | 29.0                | 4,350        | 2          | 21          | 1          | 9          | 0.001       | 3         |
| Plant    | 699.5               | 70,650       | 62         | 640         | 48         | 307        | 0.017       | 41        |
| Roads    | 389.2               | 165,430      | 87         | 1,137       | 56         | 1,725      | 0.034       | 96        |
| Roads    | 68.9                | 25,500       | 13         | 175         | 9          | 266        | 0.005       | 15        |
| Roads    | 612.3               | 168,392      | 130        | 1,862       | 95         | 2,101      | 0.042       | 98        |
| Roads    | 347.4               | 93,270       | 59         | 780         | 42         | 685        | 0.019       | 54        |
| Roads    | 18645.4             | 16,706,243   | 4,897      | 91,813      | 2,789      | 57,696     | 3.885       | 9,730     |
| WKQ      | 952.0               | 847,280      | 575        | 8,940       | 285        | 13,576     | 0.271       | 493       |
| -        | Pit Subtotal        | 3,644,992    | 1,531      | 22,491      | 990        | 14,650     | 0.806       | 2,123     |
|          | Plant Subtotal      | 1,041,576    | 578        | 4,316       | 396        | 2,765      | 0.144       | 607       |
|          | Roads Subtotal      | 17,158,834   | 5,186      | 95,767      | 2,990      | 62,474     | 3.987       | 9,994     |
|          | Total w/o Generator | 21,845,402   | 7,294      | 122,573     | 4,377      | 79,888     | 4.936       | 12,723    |
|          | Total w/ Generator  | 22,692,682   | 7,869      | 131,513     | 4,663      | 93,464     | 5.207       | 13,217    |

|                           |             | Engine H     | IC (g/hp-    | HC det (g/hp-          |              | NOx (g/hp-   | NOx det (g/hp-       | NOx            | PM (g/hp-    | PM det (g/hp-            | (            | CO (g/hp-   | CO det (g/hp-          |
|---------------------------|-------------|--------------|--------------|------------------------|--------------|--------------|----------------------|----------------|--------------|--------------------------|--------------|-------------|------------------------|
| Туре                      |             |              | ır)          |                        | HC FCF       |              | hr2)                 | FCF            | hr)          | hr2)                     | PM FCF I     |             | hr2)                   |
| Dozer<br>Dozer            | 250<br>370  | 1977<br>1990 | 0.95<br>0.68 | 0.0000331<br>0.0000237 | 0.72<br>0.72 | 12<br>8.17   | 0.0002<br>0.000136   | 0.93<br>0.93   | 0.53<br>0.38 | 0.0000281<br>0.0000202   | 0.72<br>0.72 | 4.4<br>4.1  | 0.000116<br>0.000812   |
| Dozer Total<br>Excavator  | 195         | 1995         | 0.68         | 0.0000315              | 0.72         | 8.17         | 0.000189             | 0.93           | 0.38         | 0.0000276                | 0.72         | 2.7         | 0.0000714              |
| Excavator Total<br>Loader | 690         | 2004         | 0.12         | 0.0000236              | 0.72         | 4.29         | 0.0000581            | 0.948          | 0.11         | 0.00000579               | 0.8          | 0.92        | 0.0000182              |
| Loader                    | 690         | 2004         | 0.12         | 0.0000236              | 0.72         | 4.29         | 0.0000581            | 0.948          | 0.11         | 0.00000579               | 0.8          | 0.92        | 0.0000182              |
| Loader                    | 690         | 1985         | 0.84         | 0.0000293              | 0.72         | 11           | 0.000183             | 0.93           | 0.53         | 0.0000281                | 0.72         | 4.2         | 0.000832               |
| Loader                    | 690         | 1995         | 0.68         | 0.0000237              | 0.72         | 8.17         | 0.000136             | 0.93           | 0.38         | 0.0000202                | 0.72         | 2.7         | 0.0000535              |
| Loader                    | 690         | 1994         | 0.68         | 0.0000237              | 0.72         | 8.17         | 0.000136             | 0.93           | 0.38         | 0.0000202                | 0.72         | 2.7         | 0.0000535              |
| Loader<br>Loader Total    | 500         | 1985         | 0.84         | 0.0000293              | 0.72         | 11           | 0.000183             | 0.93           | 0.53         | 0.0000281                | 0.72         | 4.2         | 0.000832               |
| Bobcat                    | 50          | 1983         | 1.84         | 0.000235               | 0.72         | 7            | 0.000105             | 0.93           | 0.76         | 0.0000589                | 0.72         | 5           | 0.000513               |
| Bobcat                    | 50          | 1983         | 1.84         | 0.000235               | 0.72         | 7            | 0.000105             | 0.93           | 0.76         | 0.0000589                | 0.72         | 5           | 0.000513               |
| Bobcat                    | 50          | 1987         | 1.84         | 0.000235               | 0.72         | 7            | 0.000105             | 0.93           | 0.76         | 0.0000589                | 0.72         | 5           | 0.000513               |
| Bobcat                    | 50          | 2001         | 1.45         | 0.000185               | 0.72         | 5.55         | 0.000103             | 0.948          | 0.6          | 0.0000465                | 0.8          | 5           | 0.000513               |
| Bobcat Total<br>Crane     | 150         | 1977         | 1            | 0.0000463              | 0.72         | 12           | 0.000278             | 0.93           | 0.55         | 0.00004                  | 0.72         | 4.4         | 0.000116               |
| Crane Total<br>Forklift   | 52          | 1992         | 0.99         | 0.0000458              | 0.72         | 8.75         | 0.000278             | 0.93           | 0.69         | 0.0000502                | 0.72         | 4.8         | 0.000110               |
| Forklift                  | 52          | 2000         | 0.99         | 0.0000458              | 0.72         | 6.9          | 0.000202             | 0.948          | 0.69         | 0.0000502                | 0.72         | 3.49        | 0.000127               |
| Forklift                  | 47          | 2001         | 1.45         | 0.000185               | 0.72         | 5.55         | 0.00010              | 0.948          | 0.6          | 0.0000362                | 0.8          | 3.49        | 0.0000923              |
| Forklift                  | 52          | 2003         | 0.99         | 0.0000458              | 0.72         | 6.9          | 0.00016              | 0.948          | 0.69         | 0.0000502                | 0.8          | 3.49        | 0.0000923              |
| Forklift                  | 57          | 2004         | 0.46         | 0.0000333              | 0.72         | 5.64         | 0.000103             | 0.948          | 0.39         | 0.0000285                | 0.8          | 3.49        | 0.0000923              |
| Forklift                  | 50          | 1986         | 1.84         | 0.000235               | 0.72         | 7            | 0.000105             | 0.93           | 0.76         | 0.0000589                | 0.72         | 5           | 0.000513               |
| Forklift<br>Forklift      | 50<br>50    | 1989<br>1990 | 1.8<br>1.8   | 0.00023<br>0.00023     | 0.72<br>0.72 | 6.9<br>6.9   | 0.000104<br>0.000104 | 0.93<br>0.93   | 0.76<br>0.76 | 0.0000589<br>0.0000589   | 0.72<br>0.72 | 5<br>5      | 0.000513<br>0.000513   |
| Forklift                  | 50          | 1992         | 1.8          | 0.00023                | 0.72         | 6.9          | 0.000104             | 0.93           | 0.76         | 0.0000589                | 0.72         | 5           | 0.000513               |
| Forklift                  | 50          | 1993         | 1.8          | 0.00023                | 0.72         | 6.9          | 0.000104             | 0.93           | 0.76         | 0.0000589                | 0.72         | 5           | 0.000513               |
| Forklift                  | 50          | 1994         | 1.8          | 0.00023                | 0.72         | 6.9          | 0.000104             | 0.93           | 0.76         | 0.0000589                | 0.72         | 5           | 0.000513               |
| Forklift                  | 50          | 1994         | 1.8          | 0.00023                | 0.72         | 6.9          | 0.000104             | 0.93           | 0.76         | 0.0000589                | 0.72         | 5           | 0.000513               |
| Forklift<br>Forklift      | 50<br>50    | 1996<br>1997 | 1.8<br>1.8   | 0.00023<br>0.00023     | 0.72<br>0.72 | 6.9<br>6.9   | 0.000104<br>0.000104 | 0.93<br>0.93   | 0.76<br>0.76 | 0.0000589<br>0.0000589   | 0.72<br>0.72 | 5<br>5      | 0.000513<br>0.000513   |
| Forklift                  | 50          | 1998         | 1.8          | 0.00023                | 0.72         | 6.9          | 0.000104             | 0.93           | 0.76         | 0.0000589                | 0.72         | 5           | 0.000513               |
| Forklift Total<br>Guzzler | 322         | 2001         | 0.19         | 0.0000195              | 0.72         | 4.95         | 0.0000734            | 0.948          | 0.12         | 0.00000651               | 0.8          | 0.92        | 0.0000182              |
| Guzzler Total             |             |              |              |                        |              |              |                      |                |              |                          |              |             |                        |
| Loader<br>Loader          | 375<br>235  | 1985<br>1992 | 0.84<br>0.68 | 0.0000293<br>0.0000315 | 0.72<br>0.72 | 11<br>8.17   | 0.000183<br>0.000189 | 0.93<br>0.93   | 0.53<br>0.38 | 0.0000281<br>0.0000276   | 0.72<br>0.72 | 4.2<br>4.2  | 0.000832<br>0.000111   |
| Loader Total              |             |              |              |                        |              |              |                      |                |              |                          |              |             |                        |
| Manlift<br>Manlift Total  | 150         | 1999         | 0.68         | 0.0000315              | 0.72         | 6.9          | 0.00016              | 0.948          | 0.38         | 0.0000276                | 0.8          | 2.7         | 0.0000714              |
| Sweeper                   | 150         | 1983         | 0.94         | 0.0000435              | 0.72         | 11           | 0.000254             | 0.93           | 0.55         | 0.00004                  | 0.72         | 4.4         | 0.000116               |
| Sweeper                   | 150         | 1992         | 0.68         | 0.0000315              | 0.72         | 8.17         | 0.000189             | 0.93           | 0.38         | 0.0000276                | 0.72         | 4.2         | 0.000111               |
| Sweeper<br>Sweeper        | 150<br>52   | 2002<br>2003 | 0.68<br>0.99 | 0.0000315<br>0.0000458 | 0.72<br>0.72 | 6.9<br>6.9   | 0.00016<br>0.00016   | 0.948<br>0.948 | 0.38<br>0.69 | 0.0000276<br>0.0000502   | 0.8<br>0.8   | 2.7<br>3.49 | 0.0000714<br>0.0000923 |
| Sweeper Total             | 32          | 2005         | 0.55         | 0.0000 150             | 0.72         | 0.5          | 0.00010              | 0.5.0          | 0.03         | 0.0000302                | 0.0          | 5.15        | 0.0000323              |
| Dump Truck                | 300         | 1988         | 0.68         | 0.0000237              | 0.72         | 8.17         | 0.000136             | 0.93           | 0.38         | 0.0000202                | 0.72         | 4.1         | 0.000812               |
| Dump Truck                | 425         | 1989         | 0.68         | 0.0000237              | 0.72         | 8.18         | 0.000136             | 0.93           | 0.38         | 0.0000202                | 0.72         | 4.1         | 0.000812               |
| Dump Truck Tota           | al<br>300   | 1072         | 0.95         | 0.0000331              | 0.72         | 43           | 0.0002               | 0.93           | 0.53         | 0.0000281                | 0.72         | 4.3         | 0.000023               |
| Fuel Truck<br>Fuel Truck  | 370         | 1973<br>1994 | 0.95         | 0.0000331              | 0.72         | 12<br>8.17   | 0.000136             | 0.93           | 0.53<br>0.38 | 0.0000281                | 0.72         | 4.2<br>4.1  | 0.000832<br>0.000812   |
| Fuel Truck Total          | 3,0         | 1554         | 0.00         | 5.0000237              | 5.72         | 0.17         | 0.000130             | 0.55           | 0.36         | 3.0000202                | J., Z        | 7.1         | 3.000312               |
| Grader                    | 275         | 1987         | 0.84         | 0.0000293              | 0.72         | 11           | 0.000183             | 0.93           | 0.53         | 0.0000281                | 0.72         | 4.1         | 0.000812               |
| Grader Total              |             |              |              |                        |              |              |                      |                |              |                          |              |             |                        |
| Lube Truck<br>Lube Truck  | 300<br>215  | 1969<br>1985 | 1.26<br>0.88 | 0.0000439<br>0.0000407 | 0.72<br>0.72 | 14<br>11     | 0.000233<br>0.000254 | 0.93<br>0.93   | 0.74<br>0.55 | 0.0000393<br>0.00004     | 0.72<br>0.72 | 4.2<br>4.3  | 0.000832<br>0.000114   |
| Lube Truck                | 322         | 1985         | 0.88         | 0.0000407              | 0.72         | 8.18         | 0.000254             | 0.93           | 0.38         | 0.00004                  | 0.72         | 4.3         | 0.000114               |
| Lube Truck                | 300         | 1987         | 0.84         | 0.0000293              | 0.72         | 11           | 0.000130             | 0.93           | 0.53         | 0.0000281                | 0.72         | 4.1         | 0.000812               |
| Lube Truck Total          |             |              |              |                        |              |              |                      |                |              |                          |              |             |                        |
| Truck                     | 1050        | 1991         | 0.68         | 0.0000112              | 0.72         | 8.17         | 0.000136             | 0.93           | 0.38         | 0.00000202               | 0.72         | 4.1         | 0.000812               |
| Truck                     | 635         | 2006         | 0.1          | 0.000025               | 0.72         | 2.45         | 0.0000318            | 0.948          | 0.11         | 0.00000555               | 0.8          | 0.92        | 0.0000182              |
| Truck<br>Truck            | 938<br>1050 | 2000<br>1982 | 0.32<br>0.9  | 0.0000112<br>0.0000314 | 0.72<br>0.72 | 6.25<br>11   | 0.000104<br>0.000183 | 0.948<br>0.93  | 0.15<br>0.53 | 0.00000796<br>0.0000281  | 0.8<br>0.72  | 2.7<br>4.2  | 0.0000535<br>0.000832  |
| Truck                     | 1050        | 2002         | 0.32         | 0.0000314              | 0.72         | 6.25         | 0.000183             | 0.948          | 0.15         | 0.0000281                | 0.72         | 2.7         | 0.0000535              |
| Truck                     | 635         | 2004         | 0.12         | 0.0000236              | 0.72         | 4.29         | 0.0000581            | 0.948          | 0.11         | 0.00000579               | 0.8          | 0.92        | 0.0000182              |
| Truck                     | 1050        | 2004         | 0.32         | 0.0000112              | 0.72         | 6.25         | 0.000104             | 0.948          | 0.15         |                          | 0.8          | 2.7         | 0.0000535              |
| Truck                     | 1050        | 2004         | 0.32         | 0.0000112              | 0.72         | 6.25         | 0.000104             | 0.948          | 0.15         | 0.00000796               | 0.8          | 2.7         | 0.0000535              |
| Truck<br>Truck            | 1050<br>760 | 1997<br>2000 | 0.68<br>0.32 | 0.0000112<br>0.0000112 | 0.72<br>0.72 | 8.17<br>6.25 | 0.000136<br>0.000104 | 0.948<br>0.948 | 0.38<br>0.15 | 0.00000202<br>0.00000796 | 0.8<br>0.8   | 4.1<br>2.7  | 0.000812<br>0.0000535  |
| Truck                     | 635         | 1992         | 0.52         | 0.0000112              | 0.72         | 8.17         | 0.000104             | 0.93           | 0.13         | 0.0000202                | 0.72         | 4.1         | 0.0000333              |
| Truck                     | 635         | 1990         | 0.68         | 0.0000237              | 0.72         | 8.17         | 0.000136             | 0.93           | 0.38         | 0.0000202                | 0.72         | 4.1         | 0.000812               |
| Truck Total               | 000         | 4007         | 2.5-         | 0.00004:-              | 0.75         | 0            | 0.0004==             | 0.00           | 2.55         | 0.00000                  | 0.70         |             | 0.0005:-               |
| Generator Generator Total | 890         | 1992         | 0.68         | 0.0000112              | 0.72         | 8.17         | 0.000136             | 0.93           | 0.38         | 0.00000202               | 0.72         | 4.1         | 0.000812               |
| Grand Total               |             |              |              |                        |              |              |                      |                |              |                          |              |             |                        |
|                           |             |              |              |                        |              |              |                      |                |              |                          |              |             |                        |

|                           |             | Years in | Cumulativ                                 |                      |                      |                      |                      |                      |                  |                      |                      |                      |                |                        |
|---------------------------|-------------|----------|-------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------|----------------------|----------------------|----------------------|----------------|------------------------|
|                           |             | Service  | e Hours                                   | HC EF                | NOx EF               | PM EF                | CO EF                | SO2 EF               | Load             |                      |                      |                      |                |                        |
|                           | hp          | (2005)   | (2005)                                    | (g/hp-hr)            | (g/hp-hr)            | (g/hp-hr)            | (g/hp-hr)            | (g/hp-hr)            |                  | 2006 (hr)            | 2005 (hr)            | 2004 (hr)            | Average (hr)   |                        |
| Dozer                     | 250         |          | 8 11,874                                  |                      |                      | 0.621827             |                      | 0.000276             | 0.4288<br>0.4288 | 31.00                | 14.00                | 23.00                | 23             | 5,667                  |
| Dozer<br>Dozer Total      | 370         |          | .5 8,465                                  | 0.634042             | 8.668719             | 0.390/11             | 10.97336             | 0.000276             | 0.4288           | 30.00                | 66.00                | 218.00               | 105<br>127     | 38,727<br>44,393       |
| Excavator                 | 195         | 1        | .0 7,000                                  | 0.648359             | 8.828479             | 0.412703             | 3.199796             | 0.000276             | 0.3819           | 278.00               | 342.00               | 261.00               | 294            | 57,265                 |
| Excavator Total           |             |          |                                           |                      |                      |                      |                      |                      |                  |                      |                      |                      | 294            | 57,265                 |
| Loader                    | 690         |          |                                           | 0.130779             |                      | 0.100098             |                      |                      | 0.3618           | 998.00               | 870.00               | 554.00               | 807            | 557,060                |
| Loader<br>Loader          | 690<br>690  |          | 1 2,612<br>0 12,000                       |                      | 4.210774<br>12.27228 |                      | 0.967534<br>14.184   | 0.000276<br>0.000276 | 0.3618<br>0.3618 | 796.00<br>1,535.00   | 715.00<br>834.00     | 612.00<br>639.00     | 708<br>1,003   | 488,290<br>691,840     |
| Loader                    | 690         |          | .0 12,000                                 |                      | 9.11586              |                      |                      | 0.000276             | 0.3618           | 1,225.00             | 1,450.00             | 1,392.00             | 1,356          | 935,410                |
| Loader                    | 690         |          | 1 12,000                                  |                      | 9.11586              |                      | 3.342                | 0.000276             | 0.3618           | 1,107.00             | 1,373.00             | 1,300.00             | 1,260          | 869,400                |
| Loader                    | 500         | 2        | 12,000                                    | 0.857952             | 12.27228             | 0.624384             | 14.184               | 0.000276             | 0.3618           | -                    | 7.00                 | 1.00                 | 3              | 1,333                  |
| Loader Total              |             |          |                                           |                      |                      |                      |                      |                      |                  |                      |                      |                      | 5,136          | 3,543,333              |
| Bobcat<br>Bobcat          | 50<br>50    |          | 2 5,296<br>2 5,296                        |                      |                      | 0.771799<br>0.771799 |                      | 0.000276<br>0.000276 | 0.3685<br>0.3685 | 184<br>177           | 109<br>82            | 110<br>51            | 134<br>103     | 6,717<br>5,167         |
| Bobcat                    | 50          |          |                                           | 2.124032             |                      | 0.747518             |                      |                      | 0.3685           | 0                    | 0                    | 0                    | 0              | 0,107                  |
| Bobcat                    | 50          |          | 4 1,927                                   | 1.300659             | 5.449548             | 0.55168              | 5.988486             | 0.000276             | 0.3685           | 17                   | 0                    | 0                    | 6              | 283                    |
| Bobcat Total              |             |          |                                           |                      |                      |                      |                      |                      |                  |                      |                      |                      | 243            | 12,167                 |
| Crane<br>Crane Total      | 150         | 2        | 12,000                                    | 1.120032             | 14.26248             | 0.7416               | 5.792                | 0.000276             | 0.2881           | -                    | 55.00                | 46.00                | 34<br>34       | 5,050<br>5,050         |
| Forklift                  | 52          | 1        | .3 9,655                                  | 1.031175             | 9.95124              | 0.845761             | 6.026152             | 0.000276             | 0.201            | 129.00               | 73.00                | 129.00               | 110            | 5,050                  |
| Forklift                  | 52          |          | 5 4,138                                   |                      |                      |                      |                      | 0.000276             | 0.201            | 1,975.00             | 2,279.00             | 2,955.00             | 2,403          | 124,956                |
| Forklift                  | 47          |          | 4 3,448                                   | 1.50329              |                      | 0.60827              |                      |                      | 0.201            | 3,775.00             | 3,294.00             | 3,913.00             | 3,661          | 172,051                |
| Forklift                  | 52          |          | 2 2,069                                   |                      | 6.855007             |                      |                      | 0.000276             | 0.201            | 4,316.00             | 4,138.00             | 4,998.90             | 4,484          | 233,184                |
| Forklift<br>Forklift      | 57<br>50    |          | 1 1,379<br>.9 12,000                      | 0.364269<br>3.3552   | 5.481395<br>7.6818   |                      | 3.617305<br>11.156   | 0.000276<br>0.000276 | 0.201<br>0.201   | 2,693.00             | 2,192.00<br>124.00   | 1,387.00<br>91.00    | 2,091<br>72    | 119,168<br>3,583       |
| Forklift                  | 50          |          | ,                                         | 3.237431             |                      |                      |                      | 0.000276             | 0.201            | 78.00                | 55.00                | 105.00               | 72             | 3,967                  |
| Forklift                  | 50          |          | 5 11,034                                  |                      |                      | 1.01513              |                      | 0.000276             | 0.201            | -                    | -                    | 126.00               | 42             | 2,100                  |
| Forklift                  | 50          |          | .3 9,655                                  |                      |                      |                      |                      | 0.000276             | 0.201            | -                    | -                    | -                    | 0              | 0                      |
| Forklift<br>Forklift      | 50          |          | .2 8,965<br>.1 8,275                      |                      | 7.284106<br>7.217406 |                      | 9.599106<br>9.245328 | 0.000276<br>0.000276 | 0.201<br>0.201   | 348.00               | 15.00                | 244.00<br>650.00     | 86             | 4,317<br>22,483        |
| Forklift                  | 50<br>50    |          | .1 8,275                                  |                      | 7.217406             |                      |                      | 0.000276             | 0.201            | 564.00               | 351.00<br>242.00     | 207.00               | 450<br>338     | 16,883                 |
| Forklift                  | 50          |          | 9 6,896                                   | 2.438018             |                      | 0.839656             |                      | 0.000276             | 0.201            | 1,127.00             | 1,337.00             | 1,008.60             | 1,158          | 57,877                 |
| Forklift                  | 50          |          | 8 6,207                                   | 2.323816             |                      |                      | 8.183996             | 0.000276             | 0.201            | 1,594.00             | 1,010.00             | 225.60               | 943            | 47,160                 |
| Forklift                  | 50          |          | 7 5,517                                   | 2.209614             | 6.950604             | 0.781165             | 7.830219             | 0.000276             | 0.201            | 1,312.00             | 1,683.00             | 1,445.40             | 1,480          | 74,007                 |
| Forklift Total<br>Guzzler | 322         |          | 4 3,000                                   | 0.17892              | 4 90135              | 0.111624             | 0.9746               | 0.000276             | 0.3417           |                      |                      |                      | 17,397<br>0    | 887,473<br>0           |
| Guzzler Total             | 322         |          | - 3,000                                   | 0.17032              | 4.50155              | 0.111024             | 0.5740               | 0.000270             | 0.5417           |                      |                      |                      | 0              | 0                      |
| Loader                    | 375         |          | 12,000                                    | 0.857952             | 12.27228             | 0.624384             | 14.184               | 0.000276             | 0.3618           | 84.00                | -                    | -                    | 28             | 10,500                 |
| Loader                    | 235         | 1        | .3 12,000                                 | 0.76176              | 9.70734              | 0.512064             | 5.532                | 0.000276             | 0.3618           | 239.00               | 278.00               | 259.00               | 259            | 60,787                 |
| Loader Total<br>Manlift   | 150         |          | 6 1,861                                   | 0.531805             | 6.823462             | 0.345089             | 2.832869             | 0.000276             | 0.3082           | 87.00                | _                    |                      | 287<br>29      | 71,287<br>4,350        |
| Manlift Total             | 130         |          | 1,001                                     | 0.551005             | 0.025.02             | 0.5 15005            | 2.032003             | 0.000270             | 0.5002           | 07.00                |                      |                      | 29             | 4,350                  |
| Sweeper                   | 150         | 2        | 2 12,000                                  | 1.05264              | 13.06464             | 0.7416               | 5.792                | 0.000276             | 0.4556           | -                    | -                    | 1.00                 | 0              | 50                     |
| Sweeper                   | 150         |          | .3 9,184                                  | 0.697896             |                      |                      | 5.21944              | 0.000276             | 0.4556           | -                    | 6.00                 | 67.00                | 24             | 3,650                  |
| Sweeper<br>Sweeper        | 150<br>52   |          | <ul><li>3 2,624</li><li>2 1,500</li></ul> |                      | 6.939214<br>6.76872  | 0.361939<br>0.61224  | 2.887356<br>3.62845  | 0.000276<br>0.000276 | 0.4556<br>0.3417 | 227.00               | 911.00               | 201.00               | 446<br>0       | 66,950                 |
| Sweeper Total             | 32          |          | 2 1,300                                   | 0.702204             | 0.70872              | 0.01224              | 3.02043              | 0.000270             | 0.3417           |                      |                      |                      | 471            | 70,650                 |
| Dump Truck                | 300         | 1        | .7 12,000                                 | 0.694368             | 9.11586              | 0.448128             | 13.844               | 0.000276             | 0.3819           | 785.10               | 731.70               | 137.50               | 551            | 165,430                |
| Dump Truck                | 425         | 1        | .6 12,000                                 | 0.694368             | 9.12516              | 0.448128             | 13.844               | 0.000276             | 0.3417           | -                    | -                    | -                    | 0              | 0                      |
| Dump Truck Total          |             |          | 2 12,000                                  | 0.969984             | 12 202               | 0.624204             | 14 104               | 0.000276             | 0.3819           | 82.00                | 108.00               | 65.00                | 551<br>85      | 165,430                |
| Fuel Truck<br>Fuel Truck  | 300<br>370  |          |                                           | 0.969984             |                      | 0.624384<br>0.448128 | 14.184<br>13.844     | 0.000276             | 0.3819           | 62.UU<br>-           | 108.00               | o5.00<br>-           | 85<br>0        | 25,500<br>0            |
| Fuel Truck Total          | 2.0         |          | 12,000                                    | 2.22.330             | 1.21550              |                      | _5.5 74              | 2.2302.0             | 2.5 .17          |                      |                      |                      | 85             | 25,500                 |
| Grader                    | 275         | 1        | .8 12,000                                 | 0.857952             | 12.27228             | 0.624384             | 13.844               | 0.000276             | 0.4087           | 537.00               | 725.00               | 575.00               | 612            | 168,392                |
| Grader Total              | 200         |          | 43.000                                    | 1 200400             | 15 (2022             | 0.072252             | 1440                 | 0.000375             | 0.2042           | 25.00                | 27.00                | 24.70                | 612            | 168,392                |
| Lube Truck<br>Lube Truck  | 300<br>215  |          |                                           | 1.286496<br>0.985248 |                      | 0.872352             |                      | 0.000276<br>0.000276 | 0.3819<br>0.3417 | 25.00                | 27.00                | 31.70                | 28<br>0        | 8,370<br>0             |
| Lube Truck                | 322         |          |                                           | 0.694368             |                      | 0.448128             |                      | 0.000276             | 0.3417           | -                    | -                    | -                    | 0              | 0                      |
| Lube Truck                | 300         |          |                                           | 0.857952             |                      |                      |                      | 0.000276             | 0.3819           | 199.00               | 330.00               | 320.00               | 283            | 84,900                 |
| Lube Truck Total          | 1050        |          | 4 40.000                                  | 0.50000              | 0.44555              | 0.20105-             | 42.24                | 0.0000==             | 0.2245           | 4 242 25             | 4 222 52             | 4 200 00             | 311            | 93,270                 |
| Truck<br>Truck            | 1050<br>635 |          |                                           | 0.586368<br>0.103858 |                      | 0.291053             |                      | 0.000276             | 0.3819<br>0.3819 | 1,310.00<br>739.00   | 1,220.00<br>600.00   | 1,386.00<br>477.00   | 1,305<br>605   | 1,370,600<br>384,387   |
| Truck                     | 938         |          | ,                                         | 0.103838             |                      |                      |                      | 0.000276             | 0.3819           | 739.00               | -                    |                      | 0              | 0-4,367                |
| Truck                     | 1050        |          | 3 12,000                                  | 0.919296             | 12.27228             | 0.624384             | 14.184               | 0.000276             | 0.3819           | 2,435.00             | 2,472.00             | 2,367.00             | 2,425          | 2,545,900              |
| Truck                     | 1050        |          |                                           | 0.284603             |                      |                      |                      |                      | 0.3819           | 2,466.00             | 2,914.00             | 2,666.00             | 2,682          | 2,816,100              |
| Truck<br>Truck            | 635<br>1050 |          | 1 3,480                                   | 0.145535<br>0.258464 | 4.258602             |                      | 0.983339             |                      | 0.3819           | 597.00               | 1,123.00             | 471.00               | 730            | 463,762                |
|                           | 1050        |          | ,                                         | 0.258464             |                      |                      |                      |                      | 0.3819<br>0.3819 | 2,380.00<br>2,549.00 | 2,837.00<br>3,281.00 | 2,059.00<br>2,357.00 | 2,425<br>2,729 | 2,546,600<br>2,865,450 |
| Truck                     | 1050        |          |                                           | 0.586368             |                      |                      |                      | 0.000276             | 0.3819           | 2,768.00             | 1,715.00             | 1,334.00             | 1,939          | 2,035,950              |
| Truck                     | 760         |          |                                           | 0.308817             |                      |                      |                      |                      | 0.3819           | 1,143.00             | 629.00               | 510.80               | 761            | 578,309                |
| Truck                     | 635         |          |                                           | 0.694368             |                      | 0.448128             |                      | 0.000276             | 0.3819           | 984.00               | 1,186.00             | 904.00               | 1,025          | 650,663                |
| Truck Truck Total         | 635         | 1        | .5 12,000                                 | 0.694368             | 9.11586              | 0.448128             | 13.844               | 0.000276             | 0.3819           | 638.00               | 1,063.00             | 418.00               | 706<br>17,333  | 448,522<br>16,706,243  |
| Generator                 | 890         | 1        | .3 12,000                                 | 0.586368             | 9.11586              | 0.291053             | 13.844               | 0.000276             | 0.525            | 499.00               | 470.00               | 1,887.00             | 952            | 847,280                |
| Generator Total           |             |          |                                           |                      |                      |                      |                      |                      |                  |                      |                      |                      | 952            | 847,280                |
| Grand Total               |             |          |                                           |                      |                      |                      |                      |                      |                  |                      |                      |                      | 43,862         | 22,702,082             |

| Description   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |      |            |                  |            |            |             |           | HC (a/l | hn-   | NOv (a/hn- | PM (g/hn- | CO (a/hn | - SOv (a/hn | _   |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|------------|------------------|------------|------------|-------------|-----------|---------|-------|------------|-----------|----------|-------------|-----|-----------------|
| Column   10   20   21   31   30   32   30   30   30   30   30   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Туре                        | hp   | HC (lb/yr) | NOx (lb/yr)      | PM (lb/yr) | CO (lb/yr) | SOx (lb/yr) | CO2 (tpy) |         |       |            |           |          |             |     | Diesel (gal/yr) |
| Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dozer                       |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Secure   156   31.0   42.0   42.0   11.0   11.4   20   0.01   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   13.0   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0   | Dozer Total                 | 370  |            |                  |            |            |             | 25.86     | 0       | ).29  | 3.97       | 0.18      | 4.4      | 2 0.00      | 349 | 2.311           |
| Lacaser of Go S. 11. 1,507.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Excavator                   | 195  |            |                  |            |            |             |           |         |       |            |           |          |             |     | ,-              |
| Stander   See      | Excavator Total             |      |            |                  |            |            |             | 33.35     | 0       | ).25  | 3.37       | 0.16      | 1.2      | 2 0.00      | 195 | 2,981           |
| Stander   Column      |                             |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Marchard   Sept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Loader                      |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Loader                      |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Secondary   Seco   | Loader                      |      | 481.52     | 6,321.53         | 310.76     | 2,317.56   |             |           |         |       |            |           |          |             |     |                 |
| Solveries 56   12.1   38.3   4.2   4.1   0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Loader                      | 500  |            |                  |            |            |             | 2 052 74  |         | . 20  | 2.00       | 0.44      |          |             | 500 |                 |
| Solocket 50   9.3   29.5   3.2   32.4   0.001   1.00   0.00   0.0   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00 |                             | 50   |            |                  |            |            |             | 2,063.74  | 0       | ).20  | 3.00       | 0.14      | 1.7      | 2 0.00      | 690 | 184,454         |
| Solicit   Soli   | Bobcat                      |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Selectorial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bobcat                      |      |            | 0.0              |            |            |             |           |         |       |            |           |          |             |     |                 |
| Crame 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bobcat                      | 50   |            |                  |            |            |             | 7.00      |         |       | 2.50       | 0.20      | 2.0      | 2 2 2       |     | 522             |
| Consented 4 4 6 2 199 0.001 2.94 0.32 4.11 0.21 1.67 0.00 150 260 Profession 5 2 6.62 2.53 0.215 15.32 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | 150  |            |                  |            |            |             | 7.09      | 0       | 0.81  | 2.58       | 0.28      | 2.8      | 3 0.00      | 50  | 633             |
| Frendrit 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Crane Total                 | 130  |            |                  |            |            |             | 2.94      | 0       | 0.32  | 4.11       | 0.21      | 1.6      | 7 0.00      | 150 | 263             |
| From From Harmonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Forklift                    | 52   |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| From From 1 52   80,70   708,33   65,62   380,36   0.029   From From 1 19,24   28,846   18,14   1910,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Forklift                    |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Fromitif 57   19.24   289.64   18.14   191.02   0.015   Fromitif 50   5.33   12.00   13.27   1.84   19.36   0.000   Fromitif 50   5.59   13.27   1.84   19.36   0.000   Fromitif 50   2.91   6.96   0.04   9.92   0.000   Fromitif 50   2.91   6.96   0.04   9.92   0.000   Fromitif 50   5.22   13.93   1.77   18.36   0.001   Fromitif 50   5.23   13.93   1.77   18.35   0.001   Fromitif 50   19.95   5.100   6.95   0.000   Fromitif 50   19.95   5.100   6.95   0.000   Fromitif 50   19.95   1.900   1.900   1.900   1.900   Fromitif 50   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1. | Forklift                    |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Fromitiff 150   5.33   12.20   1.68   17.71   0.000   From From From From From 150   5.69   0.34   9.92   0.000   From From 161   50   5.50   13.77   1.18   19.36   0.000   From From 161   50   5.32   13.93   1.77   18.36   0.001   From From 161   50   2.63   7.191   8.79   9.21   0.002   From 161   50   12.53   13.93   1.77   1.003   From 161   50   12.53   13.93   1.79   0.007   From 161   50   12.53   13.93   1.00   0.72   From 161   50   12.53   1.00   0.00   1.008   From 161   50   12.53   1.00   0.00   1.008   From 161   50   12.53   1.00   0.00   From 161   50   0.00   From 161   50   0.00   0.00   Fr |                             |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Fromith 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Forklift                    |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Fromitiff 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Forklift                    |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Frorhiff 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Forklift                    |      |            |                  |            |            | 0.000       |           |         |       |            |           |          |             |     |                 |
| Frokilf 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |      |            |                  |            |            | 0.001       |           |         |       |            |           |          |             |     |                 |
| FroHilf 50 623 131.68 1253 21837 0.002 FroHilf 50 623 131.68 131.68 1253 21837 0.002 FroHilf 50 623 131.68 1253 21837 0.009 FroHilf 50 623 131.68 1253 21837 0.009 FroHilf 50 72.46 227.94 257.0 258 1.98 1.98 0.009 FroHilf 101 50 72.46 227.94 257.0 258 1.98 1.98 0.009 FroHilf 101 50 72.46 227.94 258 1.98 1.98 0.009 FroHilf 101 50 72.46 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 101 50 72.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Forklift                    |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Forkilf: 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Forklift                    |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| From Hir So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Forklift                    |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Forkith Total   514   2,575   258   1,965   0.109   516.89   0.26   1.32   0.13   1.00   0.00   51   46,199   Guzier 1012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Guzzier fortal Locader 375 7.19 102.78 5.23 118.79 0.002 Locader 235 36.93 470.67 24.83 268.22 0.013 Conder Cord 44 573 30 387 0.016 41.52 0.28 3.65 0.19 2.46 0.00 249 3.711 Manifit Total 150 1.57 20.17 1.02 8.37 0.001 Manifit Total 150 0.05 0.66 0.04 0.29 0.000 Sweeper 150 0.05 0.66 0.04 0.29 0.000 Sweeper 150 0.05 0.36 37 1.67 10.14 0.001 Sweeper 150 36.93 466.64 24.34 194.17 0.019 Sweeper 150 0.56 0.33.77 1.67 10.14 0.001 Sweeper 150 0.56 0.36 30 0.05 0.06 0.04 0.29 0.000 Sweeper 150 0.56 0.05 0.05 0.05 0.05 0.05 0.05 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 50   |            |                  |            |            |             | 516.89    | 0       | ).26  | 1.32       | 0.13      | 1.0      | 0 0.00      | 51  | 46.199          |
| Loader   375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Guzzler                     | 322  |            |                  |            |            |             |           |         |       |            |           |          |             |     | .,              |
| Loader   235   36.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Guzzler Total               |      |            |                  |            |            |             | -         |         | -     | -          | -         | -        | -           | -   |                 |
| Loader Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Maniff 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | 233  |            |                  |            |            |             | 41.52     | 0       | ).28  | 3.65       | 0.19      | 2.4      | 6 0.00      | 249 | 3,711           |
| Sweeper   150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Manlift                     | 150  |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Sweeper   150   2.55   33.77   1.67   19.14   0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Manlift Total               |      |            |                  |            |            |             | 2.53      | 0       | ).16  | 2.10       | 0.11      | 0.8      | 7 0.00      | 150 | 226             |
| Sweeper   150   36.93   466.64   24.34   194.17   0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Sweeper   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sweeper                     |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Dump Truck   300   96.71   1,269.69   62.42   1,928   24   0.038   0.038   0.008   0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sweeper                     |      | -          |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Dump Truck   425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sweeper Total               |      |            |                  |            |            |             | 41.15     | 0       | ).25  | 3.22       | 0.17      | 1.3      | 7 0.00      | 150 | 3,678           |
| Dump Truck Total   97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |      | 96.71      |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Fuel Truck 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |      | 97         |                  |            |            |             | 96.35     | 0       | ).27  | 3.48       | 0.17      | 5.2      | 9 0.00      | 300 | 8.612           |
| Fuel Truck Total   21   288   13   305   0.006   14.85   0.37   5.11   0.24   5.42   0.00   300   1,327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fuel Truck                  |      |            |                  |            |            |             |           |         |       |            |           |          |             |     | -,-             |
| Grader 275 130.17 1,862.03 94.74 2,100.50 0.042 Grader Total 130 1,862 95 2,101 0.042 98.08 0.35 5.02 0.26 5.66 0.00 275 8,766 1.006 Truck 300 9.07 110.08 6.15 99.96 0.002 1.006 Truck 322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fuel Truck                  | 370  | -          |                  | -          | -          | -           |           |         |       |            |           |          |             |     |                 |
| 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fuel Truck Total            | 275  |            |                  |            |            |             | 14.85     | 0       | 0.37  | 5.11       | 0.24      | 5.4      | 2 0.00      | 300 | 1,327           |
| Lube Truck 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | 2/5  |            |                  |            |            |             | 98.08     | n       | 0.35  | 5.02       | 0.26      | 5.6      | 6 0.00      | 275 | 8.766           |
| Lube Truck 322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lube Truck                  | 300  |            |                  |            |            |             |           |         |       |            |           |          | 2.00        |     | -,. 30          |
| Lube Truck         300         61.33         877.24         44.63         989.59         0.020           Lube Truck Total         70         987         51         1,090         0.022         54.32         0.34         4.80         0.25         5.30         0.00         300         4,855           Truck         1050         676.65         10,519.49         335.87         15,975.65         0.32         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70         7.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lube Truck                  |      | -          |                  | -          | -          |             |           |         |       |            |           |          |             |     |                 |
| Lube Truck Total         70         987         51         1,090         0.022         54.32         0.34         4.80         0.25         5.30         0.00         300         4,855           Truck         1050         676.65         10,519.49         335.87         15,975.65         0.32         15,710.40         15,710.40         15,710.40         10.00         1,970.53         26,305.88         1,338.38         30,403.69         0.59         170.00         170.00         1,970.53         26,305.88         1,338.38         30,403.69         0.59         170.00         170.00         15,619.52         386.01         7,254.37         0.65         170.00         170.00         15,628.33         40.66         383.96         0.11         170.00         170.00         15,434.39.52         304.81         6,188.30         0.59         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00         170.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lube Truck                  |      |            |                  |            | -          |             |           |         |       |            |           |          |             |     |                 |
| Truck 1050 676.65 10,519.49 335.87 15,975.65 0.32 Truck 635 33.61 768.94 31.02 308.17 0.09 Truck 1050 1,970.53 26,305.88 1,338.38 30,403.69 0.59 Truck 1050 674.80 15,619.52 386.01 7,254.37 0.65 Truck 1050 56.83 1,662.83 40.66 383.96 0.11 Truck 1050 554.17 13,439.52 304.81 6,188.30 0.59 Truck 1050 623.56 15,122.23 342.97 6,963.12 0.67 Truck 1050 1,005.13 15,928.55 554.35 23,730.94 0.47 Truck 1050 1,005.13 15,928.55 554.35 23,730.94 0.47 Truck 635 380.39 4,993.90 245.50 7,584.10 0.15 Truck 635 262.22 3,442.45 169.23 5,227.95 0.10 Truck 635 263.88 11,1155 3,837 105,588 3.89 9,730.20 0.17 3.02 0.10 2.87 0.00 964 869,672 Generator 890 575.03 8,939.65 285.43 13,576.39 0.27 Generator Total 57 8,940 285 13,576 0.27 493.48 0.31 4.79 0.15 7.27 0.00 890 44,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             | 300  |            |                  |            |            |             | 54 32     | n       | .34   | 4 80       | 0.25      | 5.2      | 0 00        | 300 | 4 855           |
| Truck 635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Truck                       | 1050 |            |                  |            |            |             | 34.32     |         |       | 4.00       | 0.23      | 5.5      | 0.00        | 300 | 7,033           |
| Truck 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Truck                       | 635  |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Truck 1050 674.80 15,619.52 386.01 7,254.37 0.65 Truck 635 56.83 1,662.83 40.66 383.96 0.11 Truck 1050 554.17 13,439.52 304.81 6,188.30 0.59 Truck 1050 1,005.13 15,928.55 554.35 23,730.94 0.47 Truck 1050 1,005.13 15,928.55 554.35 23,730.94 0.47 Truck 635 380.39 4,993.90 245.50 7,584.10 0.15 Truck 635 262.22 3,442.45 169.23 5,227.95 0.10 Truck 635 263.88 111,155 3,837 105,588 3.89 9,730.20 0.17 3.02 0.10 2.87 0.00 964 869,672 Generator 890 575.03 8,939.65 285.43 13,576.39 0.27 Generator Total 578 8,940 285 13,576 0.27 493.48 0.31 4.79 0.15 7.27 0.00 890 44,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Truck                       |      | 4.070.57   |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Truck 635 56.83 1,662.83 40.66 383.96 0.11  Truck 1050 554.17 13,439.52 304.81 6,188.30 0.59  Truck 1050 623.56 15,122.23 342.97 6,963.12 0.67  Truck 1050 1,005.13 15,928.55 554.35 23,730.94 0.47  Truck 760 150.37 3,351.75 88.58 1,567.97 0.13  Truck 635 380.39 4,993.90 245.50 7,584.10 0.15  Truck 635 262.2 3,442.45 169.23 5,227.95 0.10  Truck 760 6388 111,155 3,837 105,588 3.89 9,730.20 0.17 3.02 0.10 2.87 0.00 964 869,672  Generator 890 575.03 8,939.65 285.43 13,576.39 0.27  Generator Total 578 8,940 285 13,576 0.27 493.48 0.31 4.79 0.15 7.27 0.00 890 44,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Truck 1050 554.17 13,439.52 304.81 6,188.30 0.59 Truck 1050 623.56 15,122.23 342.97 6,963.12 0.67 Truck 1050 1,005.13 15,928.55 554.35 23,730.94 0.47 Truck 760 150.37 3,351.75 88.58 1,567.97 0.13 Truck 635 380.39 4,993.90 245.50 7,584.10 0.15 Truck 635 262.22 3,442.45 169.23 5,227.95 0.10 Truck Total 6,388 111,155 3,837 105,588 3.89 9,730.20 0.17 3.02 0.10 2.87 0.00 964 869,672 Generator 890 575.03 8,939.65 285.43 13,576.39 0.27 Generator Total 575 8,940 285 13,576 0.27 493.48 0.31 4.79 0.15 7.27 0.00 890 44,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Truck                       |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Truck 1050 1,005.13 15,928.55 554.35 23,730.94 0.47  Truck 760 150.37 3,351.75 88.58 1,567.97 0.13  Truck 635 380.39 4,993.90 245.50 7,584.10 0.15  Truck 635 262.22 3,442.45 169.23 5,227.95 0.10  Truck Total 638 111,155 3,837 105,588 3.89 9,730.20 0.17 3.02 0.10 2.87 0.00 964 869,672  Generator 890 575.03 8,939.65 285.43 13,576.39 0.27  Generator Total 575 8,940 285 13,576 0.27 493.48 0.31 4.79 0.15 7.27 0.00 890 44,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Truck                       |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Truck 760 150.37 3,351.75 88.58 1,567.97 0.13  Truck 635 380.39 4,993.90 245.50 7,584.10 0.15  Truck 635 262.2 3,442.45 169.23 5,227.95 0.10  Truck Total 6,388 111,155 3,837 105,588 3.89 9,730.20 0.17 3.02 0.10 2.87 0.00 964 869,672  Generator 890 575.03 8,939.65 285.43 13,576.39 0.27  Generator Total 575 8,940 285 13,576 0.27 493.48 0.31 4.79 0.15 7.27 0.00 890 44,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Truck                       |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Truck 635 380.39 4,993.90 245.50 7,584.10 0.15 Truck 635 262.22 3,442.45 169.23 5,227.95 0.10 Truck Total 638 111,155 3,837 105,588 3.89 9,730.20 0.17 3.02 0.10 2.87 0.00 964 869,672 Generator 890 575.03 8,939.65 285.43 13,576.39 0.27 Generator Total 575 8,940 285 13,576 0.27 493.48 0.31 4.79 0.15 7.27 0.00 890 44,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Truck                       |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Truck         635         262.22         3,442.45         169.23         5,227.95         0.10           Truck Total         6,388         111,155         3,837         105,588         3.89         9,730.20         0.17         3.02         0.10         2.87         0.00         964         869,672           Generator         890         575.03         8,939.65         285.43         13,576.39         0.27         493.48         0.31         4.79         0.15         7.27         0.00         890         44,107           Generator Total         575         8,940         285         13,576         0.27         493.48         0.31         4.79         0.15         7.27         0.00         890         44,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Truck                       |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Truck Total         6,388         111,155         3,837         105,588         3.89         9,730.20         0.17         3.02         0.10         2.87         0.00         964         869,672           Generator         890         575.03         8,939.65         285.43         13,576.39         0.27         0.27         0.31         4.79         0.15         7.27         0.00         890         44,107           Generator Total         575         8,940         285         13,576         0.27         493.48         0.31         4.79         0.15         7.27         0.00         890         44,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Truck                       |      |            |                  |            |            |             |           |         |       |            |           |          |             |     |                 |
| Generator Total 575 8,940 285 13,576 0.27 493.48 0.31 4.79 0.15 7.27 0.00 890 44,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Truck Total                 |      |            | 111,155          |            | 105,588    |             | 9,730.20  | 0       | ).17  | 3.02       | 0.10      | 2.8      | 7 0.00      | 964 | 869,672         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Generator                   | 890  |            |                  |            |            |             | 402.40    |         | 1 2 1 | 4.70       | 0.15      | 7.3      | 7 0.00      | 900 | 44.107          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Generator Total Grand Total |      | 9,548      | 8,940<br>152,520 | 5,781      | 13,576     | 5.22        |           |         |       | 3.05       | 0.15      |          |             |     |                 |

| Oro to Brimary Crushar          |                    |                    |         |                    |           |                    |                    |                  |                    |                    | MAX                  | AVG - ALL | Baseline (tons) | Peak Day (tons) | Peak Hour |
|---------------------------------|--------------------|--------------------|---------|--------------------|-----------|--------------------|--------------------|------------------|--------------------|--------------------|----------------------|-----------|-----------------|-----------------|-----------|
| Ore to Primary Crusher USDT     | 2002               | 2003               | 2004    | 2005               | 2006      | 2007               | 2008               | 2009             | 2010               | 2011               |                      | YEARS     |                 |                 | (tons)    |
| Sentinel                        | 325,951            | 377,760            | 386,835 | 467,520            | 309,880   | 237,946            | 189,453            | 154,967          | 280,363            | 210,316            | 467,520              | 294,099   | 388,078         | 4,361           | 523       |
| Butterfield 3                   | 0                  | 377,760            | 300,033 | 41,701             | 128,948   | 97,601             | 80,575             | 50,018           | 47,628             | 48,972             | 128,948              | 49,544    | 56,883          | ,               | 77        |
| White Knob                      | 261,244            | 274,193            | 309,168 | 311,999            | 350,895   | 212,999            | 190,274            | 52,758           | 228,414            | 144,075            | 350,895              | 233,602   | 324,021         |                 | 400       |
| Annex                           | 201,244            | 274,133            | 0       | 0                  | 0         | 0                  | 0                  | 0                | 0                  | 0                  | 0                    | 255,002   | 0               |                 | 400       |
| White Ridge                     |                    |                    | 0       | 0                  | 0         | 0                  | 0                  | 0                | 0                  | 0                  | 0                    | 0         | 0               | 0               | C         |
| Sentinel - Butterfield          | 325,951            | 377,760            | 386,835 | 509,221            | 438,828   | 335,547            | 270,028            | 204,985          | 327,991            | 259,288            | 596,468              | 343,643   | 444,962         | 5,000           | 600       |
| TOTAL                           | 587,194            | 651,953            | 696,004 | 821,220            | 789,724   | 548,546            | 460,302            | 257,742          | 556,405            | 403,363            | 947,364              | 577,245   | 768,982         |                 | 1,000     |
| Ore Hauled to Plant             | ,                  | ,                  | ,       | ,                  | ,         | ,                  | ,                  | ,                | ,                  | ,                  | ,                    | ,         | ,               | ,               | ,         |
| USDT                            | 2002               | 2003               | 2004    | 2005               | 2006      | 2007               | 2008               | 2009             | 2010               | 2011               |                      |           |                 |                 |           |
| Sentinel                        | 277,058            | 321,096            | 328,810 | 397,392            | 263,398   | 202,254            | 161,035            | 131,722          | 238,309            | 178,768            | 397,392              | 249,984   | 329,867         | 3,707           | 445       |
| Butterfield 3                   | 0                  | 0                  | 0       | 35,446             | 109,606   | 82,961             | 68,489             | 42,515           | 40,483             | 41,627             | 109,606              | 42,113    | 48,351          | 543             | 65        |
| White Knob                      | 222,057            | 233,064            | 262,793 | 265,199            | 298,261   | 181,049            | 161,733            | 44,844           | 194,152            | 122,463            | 298,261              | 198,562   | 275,418         | 3,400           | 340       |
| Annex                           |                    |                    | 0       | 0                  | 0         | 0                  | 0                  | 0                | 0                  | 0                  | 0                    | 0         | 0               | 0               | C         |
| White Ridge                     |                    |                    | 0       | 0                  | 0         | 0                  | 0                  | 0                | 0                  | 0                  | 0                    | 0         | 0               | 0               | C         |
| Sentinel - Butterfield          | 277,058            | 321,096            | 328,810 | 432,838            | 373,004   | 285,215            | 229,524            | 174,237          | 278,792            | 220,395            | 506,998              | 292,097   | 378,217         |                 | 510       |
| TOTAL                           | 499,115            | 554,160            | 591,603 | 698,037            | 671,265   | 466,264            | 391,257            | 219,081          | 472,944            | 342,858            | 805,259              | 490,658   | 653,635         | 7,650           | 850       |
| Waste Total                     |                    |                    |         |                    |           |                    |                    |                  |                    |                    |                      |           |                 |                 |           |
| USDT                            | 2002               | 2003               | 2004    | 2005               | 2006      | 2007               | 2008               | 2009             | 2010               | 2011               |                      |           |                 |                 |           |
| Sentinel                        | 178,260            | 171,504            | 204,702 | 184,440            | 207,780   | 203,074            | 165,940            | 109,181          | 305,832            | 782,285            | 782,285              | 251,300   | 198,974         |                 | 295       |
| Butterfield 3                   | 0                  | 0                  | 0       | 59,376             | 81,624    | 185,546            | 34,820             | 15,256           | 85,687             | 116,028            | 185,546              | 57,834    | 47,000          |                 | 43        |
| White Knob                      | 164,666            | 159,728            | 151,860 | 281,698<br>0       | 130,590   | 169,776            | 61,020<br>0        | 1,250<br>0       | 85,766<br>0        | 103,348            | 281,698              | 130,970   | 188,049         | 2,258<br>0      | 226       |
| Annex<br>White Ridge            |                    |                    | 0<br>0  | 0                  | 0         | 0                  | 0                  | 0                | 0                  | 0                  | 0                    | 0         | 0               | 0               |           |
| Sentinel - Butterfield          | 178,260            | 171,504            | 204,702 | 243,816            | 289,404   | 388,620            | 200,760            | 124,437          | 391,519            | 898,313            | 967,831              | 309,133   | 245,974         |                 | 339       |
| TOTAL                           | 342,926            | 331,232            | 356,562 | 525,514            | 419,994   | 558,396            | 261,780            | 125,687          | 477,285            | 1,001,661          | 1,249,529            | 440,104   | 434,023         |                 | 564       |
| Waste Crusher Fines             | 342,320            | 331,232            | 330,302 | 323,314            | 413,334   | 330,330            | 201,700            | 125,007          | 477,203            | 1,001,001          | 1,243,323            | 440,104   | 434,023         | 3,000           | 304       |
| USDT                            | 2002               | 2003               | 2004    | 2005               | 2006      | 2007               | 2008               | 2009             | 2010               | 2011               |                      |           |                 |                 |           |
| Sentinel                        | 48,893             | 56,664             | 58,025  | 70,128             | 46,482    | 35,692             | 28,418             | 23,245           | 42,054             | 31,547             | 70,128               | 44,115    | 58,212          | 654             | 78        |
| Butterfield 3                   | 0                  | 0                  | 0       | 6,255              | 19,342    | 14,640             | 12,086             | 7,503            | 7,144              | 7,346              | 19,342               | 7,432     | 8,532           |                 | 12        |
| White Knob                      | 39,187             | 41,129             | 46,375  | 46,800             | 52,634    | 31,950             | 28,541             | 7,914            | 34,262             | 21,611             | 52,634               | 35,040    | 48,603          | 600             | 60        |
| Annex                           |                    |                    | 0       | 0                  | 0         | 0                  | 0                  | 0                | 0                  | 0                  | 0                    | 0         | 0               | 0               | C         |
| White Ridge                     |                    |                    | 0       | 0                  | 0         | 0                  | 0                  | 0                | 0                  | 0                  | 0                    | 0         | 0               | 0               | C         |
| Sentinel - Butterfield          | 48,893             | 56,664             | 58,025  | 76,383             | 65,824    | 50,332             | 40,504             | 30,748           | 49,199             | 38,893             | 89,470               | 51,547    | 66,744          |                 | 90        |
| TOTAL                           | 88,079             | 97,793             | 104,401 | 123,183            | 118,459   | 82,282             | 69,045             | 38,661           | 83,461             | 60,504             | 142,105              | 86,587    | 115,347         | 1,350           | 150       |
| Waste Rock Not Process          |                    |                    |         |                    |           |                    |                    |                  |                    |                    |                      |           |                 |                 |           |
| USDT                            | 2002               | 2003               | 2004    | 2005               | 2006      | 2007               | 2008               | 2009             | 2010               | 2011               |                      |           |                 |                 |           |
| Sentinel                        | 129,367            | 114,840            | 146,677 | 114,312            | 161,298   | 167,382            | 137,522            | 85,936           | 263,777            | 750,737            | 750,737              | 207,185   | 140,762         |                 | 217       |
| Butterfield 3                   | 0                  | 0                  | 0       | 53,121             | 62,282    | 170,906            | 22,734             | 7,753            | 78,543             | 108,682            | 170,906              | 50,402    | 38,468          |                 | 32        |
| White Knob                      | 125,479            | 118,599            | 105,485 | 234,898            | 77,956    | 137,826            | 32,479             | (6,664)          | 51,504             | 81,737             | 234,898              | 95,930    | 139,446         |                 | 166       |
| Annex                           |                    |                    | 0       | 0                  | 0         | 0                  | 0                  | 0                | 0                  | 0                  | 0                    | 0         | 0               | 0               | C         |
| White Ridge                     | 120 207            | 114.040            | 146 677 | 167.422            | 222 590   | 220 200            | 160.356            | 0 690            | 0                  | 0<br>850 430       | 021.642              | 257507    | 170 220         | 0               | 249       |
| Sentinel - Butterfield<br>TOTAL | 129,367<br>254,847 | 114,840<br>233,439 | 146,677 | 167,433<br>402,331 | 223,580   | 338,288<br>476,114 | 160,256<br>192,735 | 93,689<br>87,026 | 342,320<br>393,824 | 859,420<br>941,157 | 921,643<br>1,156,541 | 257,587   | 179,230         |                 | 414       |
|                                 | •                  | ,                  | 252,161 | ,                  | 301,535   | •                  | ,                  | ,                | ,                  | ,                  |                      | 353,517   | 318,676         |                 |           |
| SUBTOTAL SENTINEL-B             | 455,318            | 492,600            | 533,512 | 676,654            | 662,408   | 673,835            | 430,284            | 298,674          | 670,311            | 1,118,708          | 1,518,111            | 601,230   | 624,191         | 7,072           | 849       |
| AL EXCAVATED (TONS):            | 842,041            | 885,392            | 948,165 | 1,223,551          | 1,091,259 | 1,024,660          | 653,037            | 344,768          | 950,230            | 1,344,520          | 2,103,905            | 930,762   | 1,087,658       | 12,730          | 1,414     |
|                                 |                    |                    |         |                    |           |                    |                    |                  |                    |                    |                      |           |                 |                 |           |

|                           |                |           |            |                                | A -<br>Butterfiel<br>d Pit<br>A | B -<br>Waste<br>Pile<br>B | C - West<br>Road<br>C | D -<br>Butterfiel<br>d<br>Crusher<br>D | E -<br>Sentinel<br>Pit<br>E | F -<br>Crushed<br>Pile<br>F | G -<br>Sentinel/<br>Butterfiel<br>d to<br>Plant<br>G | H - White<br>Ridge to<br>Plant<br>H | I - Plant<br>Feed<br>I | J - White<br>Knob Pit<br>J | K - On-<br>Road<br>Trucks<br>K | L -<br>Crusher<br>to White<br>Ridge<br>L |       |
|---------------------------|----------------|-----------|------------|--------------------------------|---------------------------------|---------------------------|-----------------------|----------------------------------------|-----------------------------|-----------------------------|------------------------------------------------------|-------------------------------------|------------------------|----------------------------|--------------------------------|------------------------------------------|-------|
| Ore to Primary Crushe     | Trips/Year     | Trips/Day | Trine/Hour | Jnpaved Road<br>Links Traveled | 3,360                           | 775                       | 1,015                 | -                                      | 3,000                       | -                           | 38,000                                               | 24,260                              | 365                    | 3,725                      | 6,186                          | 2300                                     | 1300  |
| USDT                      |                |           |            |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| Sentinel                  | 10,349         | 116       | 14 E       |                                | _                               | _                         | _                     | _                                      | 5,880                       | _                           | _                                                    | _                                   | -                      | -                          | _                              | _                                        | -     |
| Butterfield 3             | 1,517          | 17        | 2 /        |                                | 965                             | _                         | 292                   | -                                      | -                           | _                           | _                                                    | _                                   | _                      | _                          | _                              | _                                        | -     |
| White Knob                | 8,641          | 107       | 11 J       |                                | -                               | _                         | _                     | -                                      | -                           | _                           | _                                                    | _                                   | -                      | 6,096                      | _                              | _                                        | _     |
| Annex                     | 0              | 0         | 0 1        |                                | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -     |
| White Ridge               | 0              | 0         | 0 1        | Л, L                           | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -     |
| Sentinel - Butterfield    | 11,866         | 133       | 16         |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| TOTAL                     | 20,506         | 240       | 27         |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| Ore Hauled to Plant       |                |           |            |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| USDT                      |                |           |            |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| Sentinel                  | 8,796          | 99        | 12 0       | 6, I                           | -                               | -                         | -                     | -                                      | -                           | -                           | 63,308                                               | -                                   | 608                    | -                          | -                              | -                                        | -     |
| Butterfield 3             | 1,289          | 14        | 2 0        | 6, I                           | -                               | -                         | -                     | -                                      | -                           | -                           | 9,279                                                | -                                   | 89                     | -                          | -                              | -                                        | -     |
| White Knob                | 7,344          | 91        | 9 H        | ł, L, I                        | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | 33,746                              | 508                    | -                          | -                              | 3,199                                    | -     |
| Annex                     | 0              | 0         | 0 H        | ł, L, I                        | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -     |
| White Ridge               | 0              | 0         | 0 H        | l, L, I                        | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -     |
| Sentinel - Butterfield    | 10,086         | 113       | 14         |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| TOTAL                     | 17,430         | 204       | 23         |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            | 20,421                         |                                          |       |
| Waste Total               |                |           |            |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| USDT                      |                |           |            |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| Sentinel                  | 5,306          | 66        | 8          |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| Butterfield 3             | 1,253          | 10        | 1          |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| White Knob                | 5,015          | 60        | 6          |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| Annex                     | 0              | 0         | 0          |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| White Ridge               | 0              | 0         | 0          |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| Sentinel - Butterfield    | 6,559          | 75        | 9          |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| TOTAL                     | 11,574         | 135       | 15         |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| Waste Crusher Fines       |                |           |            |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| USDT                      |                |           |            |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| Sentinel                  | 1,552          | 17        | 2 E        |                                | -                               | 228                       | 298                   | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -     |
| Butterfield 3             | 228            | 3         | 0 E        |                                | -                               | 33                        | 44                    | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -     |
| White Knob                | 1,296          | 16        | 2 L        |                                | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | 565                                      | -     |
| Annex                     | 0              | 0         | 0 L        |                                | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -     |
| White Ridge               | 0              | 0         | 0 L        |                                | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -     |
| Sentinel - Butterfield    | 1,780          | 20<br>36  | 2          |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| TOTAL                     | 3,076          | 36        | 4          |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| Waste Rock Not Proce USDT |                |           |            |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
|                           | 2.754          | 40        | C 1        |                                |                                 | FF1                       | 722                   |                                        | 2 122                       |                             |                                                      |                                     |                        |                            |                                |                                          |       |
| Sentinel<br>Butterfield 3 | 3,754          | 48<br>7   |            | 3, C, E                        | -<br>653                        | 551<br>151                | 722                   | -                                      | 2,133                       | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -     |
| White Knob                | 1,026<br>3,719 | 44        | 1 4        |                                | 653                             | 151                       | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | 2,623                      | -                              | 1,620                                    | -     |
| Annex                     | 3,719          | 0         | 4 J<br>0 J |                                | _                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | 2,023                      | -                              | 1,020                                    | -     |
| White Ridge               | 0              | 0         | O N        |                                | ]                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -     |
| Sentinel - Butterfield    | 4,779          | 55        | 7          | vi, L                          | ]                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -     |
| TOTAL                     | 4,779<br>8,498 | 99        | 11         |                                |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |       |
|                           |                |           |            |                                | А                               | В                         | С                     | D                                      | E                           | F                           | G                                                    | Н                                   | 1                      | J                          | K                              | L                                        | М     |
| SUBTOTAL SENTINEL-B       | 16,645         | 189       | 23         |                                |                                 |                           |                       |                                        |                             | г<br>-                      |                                                      |                                     |                        |                            |                                |                                          | IVI   |
| AL EXCAVATED (TONS):      | 29,004         | 339       | 38         |                                | 1,618<br>1.21%                  | 963<br>0.72%              | 1,355<br>1.01%        | 0.00%                                  | 8,013<br>6.00%              | 0.00%                       | 72,587<br>54.34%                                     | 33,746<br>25.26%                    | 1,205<br>0.90%         | 8,719<br>6.53%             | 20,421                         | 5,384<br>4.03%                           | 0.00% |

|                                                                                 | A -<br>Butterfield<br>Pit<br>A | B -<br>Waste<br>Pile<br>B | C - West<br>Road<br>C | D -<br>Butterfiel<br>d<br>Crusher<br>D | E -<br>Sentinel<br>Pit<br>E | F -<br>Crushed<br>Pile<br>F | G -<br>Sentinel/<br>Butterfiel<br>d to<br>Plant<br>G |        | I - Plant<br>Feed<br>I | J - White<br>Knob Pit<br>J | K - On-<br>Road<br>Trucks<br>K | L -<br>Crusher<br>to White<br>Ridge<br>L | M -<br>White<br>Ridge Pit<br>M |
|---------------------------------------------------------------------------------|--------------------------------|---------------------------|-----------------------|----------------------------------------|-----------------------------|-----------------------------|------------------------------------------------------|--------|------------------------|----------------------------|--------------------------------|------------------------------------------|--------------------------------|
| Ore to Primary Crushe                                                           | 3,360                          | 775                       | 1,015                 | -                                      | 3,000                       | -                           | 38,000                                               | 24,260 | 365                    | 3,725                      | 6,186                          | 2300                                     | 1300                           |
| USDT                                                                            |                                |                           |                       |                                        |                             |                             |                                                      |        |                        |                            |                                |                                          |                                |
| Sentinel                                                                        | -                              | -                         | -                     | -                                      | 66                          | -                           | -                                                    | -      | -                      | -                          | -                              | -                                        | -                              |
| Butterfield 3                                                                   | 11                             | -                         | 3                     | -                                      | -                           | -                           | -                                                    | -      | -                      | -                          | -                              | -                                        | -                              |
| White Knob                                                                      | -                              | -                         | -                     | -                                      | -                           | -                           | -                                                    | -      | -                      | 75                         | -                              | -                                        | -                              |
| Annex                                                                           | -                              | -                         | -                     | -                                      | -                           | -                           | -                                                    | -      | -                      | -                          | -                              | -                                        | -                              |
| White Ridge                                                                     | -                              | -                         | -                     | -                                      | -                           | -                           | -                                                    | -      | -                      | -                          | -                              | -                                        | -                              |
| Sentinel - Butterfield<br>TOTAL                                                 |                                |                           |                       |                                        |                             |                             |                                                      |        |                        |                            |                                |                                          |                                |
| Ore Hauled to Plant                                                             |                                |                           |                       |                                        |                             |                             |                                                      |        |                        |                            |                                |                                          |                                |
| USDT                                                                            |                                |                           |                       |                                        |                             |                             |                                                      |        |                        |                            |                                |                                          |                                |
| Sentinel                                                                        | -                              | -                         | _                     | _                                      | _                           | -                           | 711                                                  | -      | 7                      | -                          | -                              | -                                        | -                              |
| Butterfield 3                                                                   | _                              | _                         | _                     | -                                      | _                           | -                           | 104                                                  | _      | 1                      | _                          | _                              | _                                        | _                              |
| White Knob                                                                      | _                              | _                         | _                     | _                                      | _                           | _                           | _                                                    | 417    | 6                      | _                          | _                              | 39                                       | _                              |
| Annex                                                                           | -                              | _                         | _                     | _                                      | -                           | _                           | _                                                    | _      | _                      | _                          | -                              | -                                        | _                              |
| White Ridge                                                                     | -                              | _                         | _                     | _                                      | _                           | _                           | _                                                    | _      | _                      | _                          | _                              | _                                        | -                              |
| Sentinel - Butterfield                                                          |                                |                           |                       |                                        |                             |                             |                                                      |        |                        |                            | 222                            |                                          |                                |
| TOTAL<br>Waste Total                                                            |                                |                           |                       |                                        |                             |                             |                                                      |        |                        |                            | 239                            |                                          |                                |
| USDT Sentinel Butterfield 3 White Knob Annex White Ridge Sentinel - Butterfield |                                |                           |                       |                                        |                             |                             |                                                      |        |                        |                            |                                |                                          |                                |
| Waste Crusher Fines                                                             |                                |                           |                       |                                        |                             |                             |                                                      |        |                        |                            |                                |                                          |                                |
| USDT                                                                            |                                |                           |                       |                                        |                             |                             |                                                      |        |                        |                            |                                |                                          |                                |
| Sentinel                                                                        | -                              | 3                         | 3                     | -                                      | -                           | -                           | -                                                    | -      | -                      | -                          | -                              | -                                        | -                              |
| Butterfield 3                                                                   | -                              | 0                         | 0                     | -                                      | -                           | -                           | -                                                    | -      | -                      | -                          | -                              | -                                        | -                              |
| White Knob                                                                      | -                              | -                         | -                     | -                                      | -                           | -                           | -                                                    | -      | -                      | -                          | -                              | 7                                        | -                              |
| Annex                                                                           | -                              | -                         | -                     | -                                      | -                           | -                           | -                                                    | -      | -                      | -                          | -                              | -                                        | -                              |
| White Ridge<br>Sentinel - Butterfield                                           | -                              | -                         | -                     | -                                      | -                           | -                           | -                                                    | -      | -                      | -                          | -                              | -                                        | -                              |
| TOTAL                                                                           |                                |                           |                       |                                        |                             |                             |                                                      |        |                        |                            |                                |                                          |                                |
| Waste Rock Not Proce                                                            |                                |                           |                       |                                        |                             |                             |                                                      |        |                        |                            |                                |                                          |                                |
| USDT                                                                            |                                |                           |                       |                                        |                             |                             |                                                      |        |                        |                            |                                |                                          |                                |
| Sentinel                                                                        | -                              | 7                         | 9                     | -                                      | 27                          | -                           | -                                                    | -      | -                      | -                          | -                              | -                                        | -                              |
| Butterfield 3                                                                   | 4                              | 1                         | -                     | -                                      | -                           | -                           | -                                                    | -      | -                      | -                          | -                              | -                                        | -                              |
| White Knob                                                                      | -                              | -                         | -                     | -                                      | -                           | -                           | -                                                    | -      | -                      | 31                         | -                              | 19                                       | -                              |
| Annex                                                                           | -                              | -                         | -                     | -                                      | -                           | -                           | -                                                    | -      | -                      | -                          | -                              | -                                        | -                              |
| White Ridge<br>Sentinel - Butterfield<br>TOTAL                                  | -                              | -                         | -                     | -                                      | -                           | -                           | -                                                    | -      | -                      | -                          | -                              | -                                        | -                              |
| SUBTOTAL SENTINEL-B                                                             | А                              | В                         | С                     | D                                      | E                           | F                           | G                                                    | Н      | 1                      | J                          | K                              | L                                        | М                              |
| AL EXCAVATED (TONS):                                                            | 15                             | 11                        | 16                    | -                                      | 93                          | '<br>-                      | 816                                                  | 417    | 14                     | 106                        | 239                            | 66                                       |                                |
| LE EVONANIED (101/2):                                                           | 0.99%                          | 0.71%                     | 1.05%                 | 0.00%                                  | 6.01%                       | 0.00%                       |                                                      | 26.79% | 0.91%                  |                            | 239                            | 4.23%                                    |                                |

| Docto   Portinary Crushe   3,360   775   1,015   3,000   38,000   24,260   365   3,725   6,186   2300   3300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           | A -<br>Butterfiel<br>d Pit<br>A | B -<br>Waste<br>Pile<br>B | C - West<br>Road<br>C | D -<br>Butterfiel<br>d<br>Crusher<br>D | E -<br>Sentinel<br>Pit<br>E | F -<br>Crushed<br>Pile<br>F | G -<br>Sentinel/<br>Butterfiel<br>d to<br>Plant<br>G | H - White<br>Ridge to<br>Plant<br>H | I - Plant<br>Feed<br>I | J - White<br>Knob Pit<br>J | K - On-<br>Road<br>Trucks<br>K | L -<br>Crusher<br>to White<br>Ridge<br>L |      | per Year  | Offsite per Day | per Hour |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------|---------------------------|-----------------------|----------------------------------------|-----------------------------|-----------------------------|------------------------------------------------------|-------------------------------------|------------------------|----------------------------|--------------------------------|------------------------------------------|------|-----------|-----------------|----------|
| Sentenel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ore to Primary Crushe                                                                     | 3,360                           | 775                       | 1,015                 | -                                      | 3,000                       | -                           | 38,000                                               | 24,260                              | 365                    | 3,725                      | 6,186                          | 2300                                     | 1300 |           |                 |          |
| Substinction   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | USDT                                                                                      |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |      |           |                 |          |
| White Ridge Sontinel-Butterfield TOTAL  OF Hauded Plant USDT Sontinel-Butterfield South Field South Fi |                                                                                           |                                 | -                         | -                     | -                                      | 8                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -    |           |                 |          |
| Annex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           | 1                               | -                         | 0                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      |                            | -                              | -                                        | -    |           |                 |          |
| White Ridge Sontinel - Butterfield TOTAL  OF HAUMED FORM USDT Sontinel - Butterfield 3  Sontinel - Butterfield 5  Sontinel - Butterfield 5  Sontinel - Butterfield 5  Sontinel - Butterfield 5  Sontinel - Butterfield 7  Sontinel - Butterfield 8  White Ridge  Sontinel - Butterfield 7  Sontinel - Butterfield 8  Sontinel - Butterfield 7  Sontinel - Butterfiel |                                                                                           | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | 8                          | -                              | -                                        | -    |           |                 |          |
| Sentinel-Butterfield 7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -    |           |                 |          |
| TOTAL  USOT  Sentinel 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -    |           |                 |          |
| Ore Native Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |      |           |                 |          |
| USDT Sentinel  Sent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |      |           |                 |          |
| Sentine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |      |           |                 |          |
| Butterfield 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           | _                               | _                         | -                     | -                                      | -                           | _                           | 85                                                   | _                                   | 1                      | -                          | _                              | _                                        | _    |           |                 |          |
| White Rode Annex Annex Annex Annex Butterfield TOTAL  Waste Total USOT Sentinel Butterfield 3 White Rode Annex White Rode Annex White Rode Annex |                                                                                           | -                               | _                         | -                     | _                                      | _                           | _                           |                                                      | _                                   |                        | -                          | _                              | _                                        | _    |           |                 |          |
| White Ridge Sentinel - Butterfield TOTAL  Waste Total  USOT  Sentinel Butterfield 3  White Knob  Annex  Waste Cusher Fines  USOT  Sentinel Butterfield 3  White Ridge Sentinel - Butterfield 3  White Ridge Sentinel - Butterfield 7  Waste Cusher Fines  USOT  Sentinel Butterfield 3  White Ridge Sentinel - Butterfield 7  Waste Cusher Fines  USOT  Sentinel Butterfield 3  White Ridge Sentinel - Butterfield 7  Waste Cusher Fines  USOT  Sentinel Butterfield 3  Waste Cusher Fines  USOT  Sentinel Butterfield 3  Waste Cusher Fines  USOT  Sentinel Butterfield 3  Waste Rock Not Proce  USOT  Sentinel Butterfield 3  Waste Rock Not Not Proce  USOT  Sentinel Butterfield 3  An B B C D B F G H I J J K L M  KINESTONLE SUBSTOTALL SENTINELE A B B C D B F G H I J J K L M  LEXCANATED TOTAL  Waste Rock Not Proce  USOT  Sentinel Butterfield 3  A B B C D B F G H I J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H I J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H I J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H I J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H I J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H I J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H I J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H J J K L M  LEXCANATED TOTAL SENTINELE A B B C D B F G H J J K L M M  LEXCANATED TOTAL SENTINELE A B B C D B F G H J J K L M M  LEXCANATED TOTAL SENTINELE A B B C D B F G H J J K L M M  LEXCANATED TOTAL SENTINELE A B B C D B F G H J J K L M M  LEXCANATED TOTAL SENTINELE A B B C D B F G H J J K L M M  LEXCANATED TOTAL SENTINELE A B C D B F G H J J K L M M  LEXCANATED TOTAL SENTINELE A B C D B F G H J J K L M M  LEXCANATED TOTAL SENTINELE A B C D B T M M M |                                                                                           | -                               | _                         | _                     | _                                      | _                           | _                           |                                                      | 42                                  |                        | _                          | _                              | 4                                        | _    |           |                 |          |
| Sentinel - Butterfield 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Annex                                                                                     | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -    |           |                 |          |
| TOTAL  Waste Total  USDT  Sentinel  Butterfield 3  White Knob  Annex  White Ridge  Sentinel- Butterfield  TOTAL  Waste Crusher Fines  USDT  Sentinel  Butterfield 3  "Annex  White Ridge  Sentinel- Butterfield 3  "Annex  "Butterfield 3  | White Ridge                                                                               | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -    |           |                 |          |
| Waste Total   USDT   Sentine   Butterfield 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sentinel - Butterfield                                                                    |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |      |           |                 |          |
| USDT Sentinel Butterfield 3 White Knob Annex White Ridge Sentinel- Butterfield TOTAL  Waste Crusher Fines USDT Sentinel Butterfield 3  White Rob Annex White Ridge Sentinel- Butterfield TOTAL  Waste Crusher Fines USDT Sentinel Butterfield 3  Butterfield 4  Butterfield 5  Butte |                                                                                           |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            | 27                             |                                          |      | 5,751,988 | 67,320          | 7,480    |
| USDT   Sentine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sentinel<br>Butterfield 3<br>White Knob<br>Annex<br>White Ridge<br>Sentinel - Butterfield |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |      |           |                 |          |
| Sentinel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Waste Crusher Fines                                                                       |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |      |           |                 |          |
| Butterfield 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |      |           |                 |          |
| White Knob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | -                               |                           |                       | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -    |           |                 |          |
| Annex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           | -                               | 0                         | 0                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -    |           |                 |          |
| White Ridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | 1                                        | -    |           |                 |          |
| Sentinel - Butterfield   TOTAL   Waste Rock Not Proce   USDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -    |           |                 |          |
| TOTAL  Waste Rock Not Proce USDT  Sentinel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | _                               | -                         | -                     | _                                      | -                           | -                           | _                                                    | _                                   | -                      | _                          | _                              | _                                        | _    |           |                 |          |
| Waste Rock Not Proce USDT  Sentinel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |      |           |                 |          |
| USDT Sentinel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |      |           |                 |          |
| Butterfield 3 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |                                 |                           |                       |                                        |                             |                             |                                                      |                                     |                        |                            |                                |                                          |      |           |                 |          |
| White Knob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | -                               | 1                         | 1                     | -                                      | 3                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -    |           |                 |          |
| Annex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           | 1                               | 0                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -    |           |                 |          |
| White Ridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | 3                          | -                              | 2                                        | -    |           |                 |          |
| Sentinel - Butterfield   TOTAL   SUBTOTAL SENTINEL-B   A B C D E F G H I J K L M   L EXCAVATED (TONS): 2 1 2 - 11 - 98 42 2 11 27 7 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        |      |           |                 |          |
| SUBTOTAL SENTINEL-B         A         B         C         D         E         F         G         H         I         J         K         L         M           L EXCAVATED (TONS):         2         1         2         -         11         -         98         42         2         11         27         7         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sentinel - Butterfield                                                                    | -                               | -                         | -                     | -                                      | -                           | -                           | -                                                    | -                                   | -                      | -                          | -                              | -                                        | -    |           |                 |          |
| AL EXCAVATED (TONS): 2 1 2 - 11 - 98 42 2 11 27 7 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           | Α .                             | В                         | С                     | D                                      | Е                           | F                           | G                                                    | Н                                   | I                      | J                          | K                              | L                                        | М    |           |                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                 |                           | 2                     |                                        |                             |                             | 98                                                   |                                     |                        |                            |                                |                                          | -    |           |                 |          |

Omya California Inc.

# PLANT KWH / TON BY MONTH

| MONTH  | PRODUCTION (TONS) | ELECTRICITY (KWH) |
|--------|-------------------|-------------------|
| Jan-04 | 37,319            | 1,753,718         |
| Feb-04 | 50,419            | 1,754,299         |
| Mar-04 | 52,769            | 2,071,915         |
| Apr-04 | 52,625            | 1,894,301         |
| May-04 | 52,963            | 1,733,040         |
| Jun-04 | 55,561            | 2,093,314         |
| Jul-04 | 62,061            | 2,173,502         |
| Aug-04 | 59,948            | 2,068,469         |
| Sep-04 | 54,791            | 2,064,754         |
| Oct-04 | 60,672            | 2,238,763         |
| Nov-04 | 51,939            | 2,002,699         |
| Dec-04 | 51,321            | 2,236,882         |
| Jan-05 | 49,451            | 1,894,003         |
| Feb-05 | 49,757            | 1,987,080         |
| Mar-05 | 59,403            | 2,303,741         |
| Apr-05 | 56,580            | 2,274,389         |
| May-05 | 56,110            | 2,127,898         |
| Jun-05 | 56,336            | 2,439,331         |
| Jul-05 | 56,846            | 2,422,262         |
| Aug-05 | 53,252            | 2,134,517         |
| Sep-05 | 56,586            | 2,543,467         |
| Oct-05 | 59,461            | 2,558,554         |
| Nov-05 | 56,101            | 2,448,648         |
| Dec-05 | 48,944            | 2,242,656         |
| Jan-06 | 51,085            | 2,143,747         |
| Feb-06 | 51,076            | 2,540,530         |
| Mar-06 | 55,005            | 2,125,277         |
| Apr-06 | 49,929            | 2,012,434         |
| May-06 | 54,513            | 2,013,370         |
| Jun-06 | 57,555            | 2,303,333         |
| Jul-06 | 54,645            | 2,116,066         |
| Aug-06 | 58,365            | 2,109,240         |
| Sep-06 | 54,378            | 2,312,909         |
| Oct-06 | 48,976            | 2,027,626         |
| Nov-06 | 43,654            | 1,817,438         |
| Dec-06 | 33,216            | 1,766,510         |
| TOTAL  | 1,913,612         | 76,750,682        |

PLANT USES: 40.11 KWH/TON

Omya California Inc.

# Sentinel KWH / TON BY MONTH

| MONTH  | PRODUCTION | KWH     |
|--------|------------|---------|
| Jan-05 | 8,580      | 10,579  |
| Feb-05 | 1,560      | 10,872  |
| Mar-05 | 20,280     | 3,304   |
| Apr-05 | 22,464     | 9,074   |
| May-05 | 60,792     | 12,807  |
| Jun-05 | 78,780     | 15,263  |
| Jul-05 | 58,968     | 18,469  |
| Aug-05 | 70,902     | 13,483  |
| Sep-05 | 54,756     | 16,070  |
| Oct-05 | 45,942     | 16,208  |
| Nov-05 | 53,076     | 14,888  |
| Dec-05 | 57,786     | 18,340  |
| Jan-06 | 24,726     | 12,208  |
| Feb-06 | 30,852     | 12,636  |
| Mar-06 | 14,544     | 9,508   |
| Apr-06 | 17,394     | 6,405   |
| May-06 | 25,818     | 9,732   |
| Jun-06 | 55,302     | 14,885  |
| Jul-06 | 29,874     | 12,212  |
| Aug-06 | 73,710     | 18,173  |
| Sep-06 | 66,846     | 18,247  |
| Oct-06 | 59,982     | 17,515  |
| Nov-06 | 42,744     | 17,736  |
| Dec-06 | 16,980     | 18,173  |
| TOTAL  | 992,658    | 326,787 |

SENTINEL: 0.33 KWH/TON

# **Unpaved Road Emissions Factors**

| EF= k                 | * (S/12)^ | a * (W/3)^b * [(I | N-P)/N] |                |
|-----------------------|-----------|-------------------|---------|----------------|
|                       | TSP       | PM10              | PM2.5   |                |
| k=                    | 4.9       | 1.5               | 0.15    |                |
| a=                    | 0.7       | 0.9               | 0.9     |                |
| b=                    | 0.45      | 0.45              | 0.45    |                |
| N=                    | 365       | 365               | 365     | (days/yr)      |
| P (Los Angeles-MDAB)= | 33        | 33                | 33      | (rain days/yr) |

Sources: AP-42, Section 13.2.2 (Nov. 2006), CalEEMod User Manual Appendix D

CalEEMod User Manual, Appendix D

#### UNCONTROLLED FACTOR

S= 8.3 %

Control Factor = 0%

| Control ractor =              | 070    |              |           |            |
|-------------------------------|--------|--------------|-----------|------------|
| Doromotor                     | Weight |              | PM10 E.F. | PM2.5 E.F. |
| Parameter                     | (tons) | TSP (lb/VMT) | (lb/VMT)  | (lb/VMT)   |
| Full =                        | 120    | 19.91        | 5.66      | 0.57       |
| Empty =                       | 45     | 12.80        | 3.64      | 0.36       |
| Average =                     | 82.5   | 16.36        | 4.65      | 0.47       |
| Annual Average <sup>1</sup> = |        | 14.88        | 4.23      | 0.42       |

#### **UNMITIGATED FACTOR**

S= 8.3 %

Control Factor<sup>2</sup> = 84%

| Parameter                  | Weight (tons) | TSP (lb/VMT) | PM10 E.F.<br>(lb/VMT) | PM2.5 E.F.<br>(lb/VMT) |
|----------------------------|---------------|--------------|-----------------------|------------------------|
| Full =                     | <u> </u>      | 3.19         | 0.91                  | 0.09                   |
|                            |               |              |                       |                        |
| Empty =                    | 45            | 2.05         | 0.58                  | 0.06                   |
| Average =                  | 82.5          | 2.62         | 0.74                  | 0.07                   |
| Annual Avg. <sup>1</sup> = |               | 2.38         | 0.68                  | 0.07                   |

<sup>&</sup>lt;sup>1</sup> Annual average emissions factors take into account the rainfall adjustment factor [(N-P)/N]. This adjustment factor is not included in the daily emissions estimate.

| EF= k * (sL)^a * (W)^b * (1-P/4N) |       |        |         |  |  |  |  |
|-----------------------------------|-------|--------|---------|--|--|--|--|
|                                   | TSP   | PM10   | PM2.5   |  |  |  |  |
| k=                                | 0.011 | 0.0022 | 0.00054 |  |  |  |  |
|                                   | 0.01  | 0.01   | 0.01    |  |  |  |  |

a= 0.91 0.91 0.91 b= 1.02 1.02 1.02 P= 33 33 33 N= 365 365 365

Source: AP-42, Section 13.2.1 (Jan. 2011)

**Paved Road Emissions Factors** 

#### **OFFSITE**

 $sL = 0.1 \text{ g/m}^2$ 

| 32                         | 0.2              | 6,              |                       |                        |  |
|----------------------------|------------------|-----------------|-----------------------|------------------------|--|
| Parameter                  | Weight<br>(tons) | TSP<br>(lb/VMT) | PM10 E.F.<br>(lb/VMT) | PM2.5 E.F.<br>(lb/VMT) |  |
|                            |                  |                 |                       |                        |  |
| Full =                     | 40               | 0.0583          | 0.0117                | 0.0029                 |  |
| Empty =                    | 12               | 0.0171          | 0.0034                | 0.0008                 |  |
| Average =                  | 26               | 0.0377          | 0.0075                | 0.0018                 |  |
| Annual Avg. <sup>1</sup> = |                  | 0.0368          | 0.0074                | 0.0018                 |  |

<sup>&</sup>lt;sup>1</sup> Annual average emissions factors take into account the rainfall adjustment factor [(N-P)/N]. This adjustment factor is not included in the hourly and daily emissions estimates. Default silt loading in CalEEMod is 0.1 g/m2 and is used to model offsite road emissions.

<sup>&</sup>lt;sup>2</sup> The control factor for the unmitigated emissions is chemical dust suppressants.



# **MEMORANDUM**

5920 Friars Road, Suite 103 • San Diego, California 92108

Date: August 28, 2012

To: File

From: Scott Cohen

Re: Using OFFROAD2011 to Obtain Emissions Factors

The OFFROAD2011 model contains table data that is used to calculate emissions from offroad vehicles that are subject to the In Use Offroad Air Toxic Control Measure (ATCM). A table summarizing the results of the offroad model is also included. Information in the model can be used in various ways to estimate emissions and emissions factors. This memo summarized the ways in which SESPE may use the OFFROAD2011 model in preparing emissions calculations.

### 1. Emissions Factors for a Specific Offroad Vehicle

The following example is for a 2002 model year, 250 hp to 500 hp engine (i.e. 500 hp bin) that is powers a loader during calendar year 2011. Such a loader engine would have the following attributes in the OFFROAD2011 model:

- NOx emissions factors (EF<sub>0</sub> = 4.51 g/hp-hr and EF<sub>det</sub> = 6.32E-05 g/hp-hr<sup>2</sup>) from the table named EMFACUpdate;
- Load factor for a loader (LF = 0.3618) from the table named LoadFactor;
- Cumulative hours for a nine year old loader (12,000 hours) from the table named ActivityCMHrs; and
- NOx Fuel correction factor (FCF = 0.948) from table named FuelCorrectionFactorUpdate.

Emissions would be calculated by the following equation

*NOx Emissions (grams)* =  $HP \times LF \times (EF_0 \times hours + EF_{det} \times cumulative hours) \times FCF$ 

Emissions in OFFROAD2011 are in units of tons (per day). Thus, the results of the above equation would be converted to tons by dividing by 453.59 g/lb and 2000 lb/ton.

In order to check the above calculation method, emissions reported in table osmEmissionsForAirBasin for all 2002 model year engines in loaders are examined. First, the average horsepower of all such loaders is calculated by multiplying the total pounds of fuel burned by the brake specific fuel consumption (0.367) and then dividing by the applicable load factor (0.3618). The average horsepower of the 2002 engines in loaders between 250 hp and 500 hp is calculated to be 319.6 hp. Next, the emissions are calculated using the average horsepower and compared to the total emissions in osmEmissionsForAirBasin. As shown in Attachment 1, the percent difference between the calculated value and the osmEmissionsForAirBasin total is less than one percent (1%). Therefore, then calculation method including units of measure and other assumptions is confirmed to be correct.

### 2. Emissions Factors for the Average Vehicle of a Particular Type and Size by Calendar Year

Average emissions factors for a vehicle of a particular size, type during each calendar year can be estimated using data in the table named osmEmissionsForAirBasin. Attachment 2 contains loader NOx emissions factors that are calculated for each calendar year for the 500 hp bin. The average horsepower for each year is calculated as discussed above. Then the total NOx emissions are used to back-calculated the NOx emissions factor. By back-calculating the emissions factor from the total, the deterioration factor and fuel correction factor are incorporated into the result which reflects the average NOx emissions factor for a unit in the 500 hp bin during each calendar year.

Two queries were developed in order to automate the process of calculating emissions factors for the average unit by calendar year. First, a query named EmissionsTotal sums the fuel use, hours of operation, and emissions of NOx, PM, and HC:

Next, a query named EmissionsFactors performs the necessary back-calculations to determine the average emissions factors by calendar year:

```
SELECT EmissionsTotals.CalendarYear,
    EmissionsTotals.SumOfScenBSFC,
    EmissionsTotals.SumOfScenNOx,
    EmissionsTotals.SumOfScenPM,
    EmissionsTotals.SumOfScenHC,
    EmissionsTotals.SumOfScenActivity,
    EmissionsTotals.HorsepowerBin,
    [EmissionsTotals]![SumOfScenBSFC]/0.367/[EmissionsTotals]![SumOfScenActivity]/[LoadFactor] AS AvgHP,
    [SumOfScenNOx]*2000*453.59237/[AvgHP]/[SumOfScenActivity]/[LoadFactor] AS NOxEF,
    [SumOfScenPM]*2000*453.59237/[AvgHP]/[SumOfScenActivity]/[LoadFactor] AS PMEF,
    [SumOfScenHC]*2000*453.59237/[AvgHP]/[SumOfScenActivity]/[LoadFactor] AS HCEF
FROM EmissionsTotals;
```

Before running the above queries, the user must know the EquipmentTypeID and the load factor. OFFROAD2011 stores the numerical EquipmentTypeID and the load factor in the LoadFactor table and the name associated with each EquipmentTypeID is located in the LookupEquipmentType table. Attachment 2 contains the results of a query which combines these two OFFROAD2011 tables into one table that can be referenced. Attachment 3 contains output from the EmissionsFactors query for loaders in the 500 hp bin.

| CalendarY | FleetSize | AirBas | ModelYe | Equipm  | Horsepo | BaseBSFC | BaseNOx     | BaseActivity | ScenBSFC    | ScenNOx    | ScenActivity |
|-----------|-----------|--------|---------|---------|---------|----------|-------------|--------------|-------------|------------|--------------|
| ear       | TICCISIZE | in     | ar      | entType | werBin  | lb fuel  | tpd         | hours        | lb fuel     | tpd        | hours        |
| 2011      | L         | NCC    | 2002    | 24      | 500     | 40968    | 0.609564189 | 932.2506108  | 40968.44013 | 0.60956419 | 932.2506108  |
| 2011      | L         | SV     | 2002    | 24      | 500     | 198752   | 2.957209393 | 4522.674252  | 198752.2531 | 2.95720939 | 4522.674252  |
| 2011      | L         | LC     | 2002    | 24      | 500     | 2787     | 0.041465898 | 63.41679777  | 2786.897914 | 0.0414659  | 63.41679777  |
| 2011      | L         | MC     | 2002    | 24      | 500     | 15028    | 0.2235959   | 341.9613855  | 15027.7451  | 0.2235959  | 341.9613855  |
| 2011      | L         | NC     | 2002    | 24      | 500     | 10366    | 0.154235226 | 235.8830888  | 10366.05617 | 0.15423523 | 235.8830888  |
| 2011      | L         | NEP    | 2002    | 24      | 500     | 1567     | 0.023308623 | 35.64756369  | 1566.558457 | 0.02330862 | 35.64756369  |
| 2011      | L         | SC     | 2002    | 24      | 500     | 882289   | 13.12745811 | 20076.77134  | 882288.5125 | 13.1274581 | 20076.77134  |
| 2011      | L         | SCC    | 2002    | 24      | 500     | 73602    | 1.095111184 | 1674.832755  | 73601.75969 | 1.09511118 | 1674.832755  |
| 2011      | L         | SD     | 2002    | 24      | 500     | 236408   | 3.517484385 | 5379.543328  | 236407.9961 | 3.51748439 | 5379.543328  |
| 2011      | L         | SF     | 2002    | 24      | 500     | 466116   | 6.935282585 | 10606.62936  | 466116.144  | 6.93528259 | 10606.62936  |
| 2011      | L         | SJV    | 2002    | 24      | 500     | 373931   | 5.563670273 | 8508.923429  | 373930.9108 | 5.56367027 | 8508.923429  |
| 2011      | L         | SS     | 2002    | 24      | 500     | 79345    | 1.180560925 | 1805.517226  | 79344.78508 | 1.18056093 | 1805.517226  |
| 2011      | L         | MD     | 2002    | 24      | 500     | 65057    | 0.967971201 | 1480.388381  | 65056.75839 | 0.9679712  | 1480.388381  |
| 2011      | L         | LT     | 2002    | 24      | 500     | 4617     | 0.068696677 | 105.0627975  | 4617.062065 | 0.06869668 | 105.0627975  |
| 2011      | L         | GBV    | 2002    | 24      | 500     | 726      | 0.010796839 | 16.51238755  | 725.6490397 | 0.01079684 | 16.51238755  |
| 2011      | M         | NCC    | 2002    | 24      | 500     | 6195     | 0.092179876 | 147.8877417  | 6195.35364  | 0.09217988 | 147.8877417  |
| 2011      | М         | SV     | 2002    | 24      | 500     | 30056    | 0.447196865 | 717.4552358  | 30055.83056 | 0.44719686 | 717.4552358  |
| 2011      | М         | LC     | 2002    | 24      | 500     | 421      | 0.006270581 | 10.06013501  | 421.4419217 | 0.00627058 | 10.06013501  |
| 2011      | М         | MC     | 2002    | 24      | 500     | 2273     | 0.033812751 | 54.24710531  | 2272.534542 | 0.03381275 | 54.24710531  |
| 2011      | M         | NC     | 2002    | 24      | 500     | 1568     | 0.02332385  | 37.41935581  | 1567.581867 | 0.02332385 | 37.41935581  |
| 2011      | М         | NEP    | 2002    | 24      | 500     | 237      | 0.00352479  | 5.654957617  | 236.8990279 | 0.00352479 | 5.654957617  |
| 2011      | М         | SC     | 2002    | 24      | 500     | 133422   | 1.985168221 | 3184.882199  | 133421.9543 | 1.98516822 | 3184.882199  |
| 2011      | М         | SCC    | 2002    | 24      | 500     | 11130    | 0.16560555  | 265.6873924  | 11130.24876 | 0.16560555 | 265.6873924  |
| 2011      | M         | SD     | 2002    | 24      | 500     | 35750    | 0.5319231   | 853.3848142  | 35750.22956 | 0.5319231  | 853.3848142  |
| 2011      | М         | SF     | 2002    | 24      | 500     | 70487    | 1.048771398 | 1682.584538  | 70487.29072 | 1.0487714  | 1682.584538  |
| 2011      | М         | SJV    | 2002    | 24      | 500     | 56547    | 0.841352631 | 1349.814584  | 56546.80097 | 0.84135263 | 1349.814584  |
| 2011      | М         | SS     | 2002    | 24      | 500     | 11999    | 0.178527481 | 286.4185467  | 11998.72393 | 0.17852748 | 286.4185467  |
| 2011      | М         | MD     | 2002    | 24      | 500     | 9838     | 0.146379112 | 234.8416745  | 9838.051527 | 0.14637911 | 234.8416745  |
| 2011      | М         | LT     | 2002    | 24      | 500     | 698      | 0.010388489 | 16.6666556   | 698.2040854 | 0.01038849 | 16.6666556   |
| 2011      | М         | GBV    | 2002    | 24      | 500     | 110      | 0.001632726 | 2.61944554   | 109.7345275 | 0.00163273 | 2.61944554   |
| 2011      | S         | NCC    | 2002    | 24      | 500     | 7620     | 0.113370145 | 210.7865502  | 7619.538826 | 0.11337015 | 210.7865502  |
| 2011      | S         | SV     | 2002    | 24      | 500     | 36965    | 0.549998285 | 1022.599387  | 36965.05174 | 0.54999828 | 1022.599387  |

| CalendarY | FleetSize |     | ModelYe |         | Horsepo | BaseBSFC<br>Ib fuel | BaseNOx     | BaseActivity<br>hours | ScenBSFC<br>Ib fuel | ScenNOx    | ScenActivity<br>hours |
|-----------|-----------|-----|---------|---------|---------|---------------------|-------------|-----------------------|---------------------|------------|-----------------------|
| ear       |           | in  | ar      | entType | werBin  | ib fuei             | tpd         | 110013                | ib luei             | tpd        | 110013                |
| 2011      | S         | LC  | 2002    | 24      | 500     | 518                 | 0.007712059 | 14.33885682           | 518.3228064         | 0.00771206 | 14.33885682           |
| 2011      | S         | MC  | 2002    | 24      | 500     | 2795                | 0.041585612 | 77.31918856           | 2794.943788         | 0.04158561 | 77.31918856           |
| 2011      | S         | NC  | 2002    | 24      | 500     | 1928                | 0.028685527 | 53.33435233           | 1927.936901         | 0.02868553 | 53.33435233           |
| 2011      | S         | NEP | 2002    | 24      | 500     | 291                 | 0.004335068 | 8.060093377           | 291.3572729         | 0.00433507 | 8.060093377           |
| 2011      | S         | SC  | 2002    | 24      | 500     | 164093              | 2.441517824 | 4539.458941           | 164092.9349         | 2.44151782 | 4539.458941           |
| 2011      | S         | SCC | 2002    | 24      | 500     | 13689               | 0.203674881 | 378.6881064           | 13688.86548         | 0.20367488 | 378.6881064           |
| 2011      | S         | SD  | 2002    | 24      | 500     | 43968               | 0.65420135  | 1216.341793           | 43968.47669         | 0.65420135 | 1216.341793           |
| 2011      | S         | SF  | 2002    | 24      | 500     | 86691               | 1.289862508 | 2398.212226           | 86690.87829         | 1.28986251 | 2398.212226           |
| 2011      | S         | SJV | 2002    | 24      | 500     | 69546               | 1.034762406 | 1923.910368           | 69545.75485         | 1.03476241 | 1923.910368           |
| 2011      | S         | SS  | 2002    | 24      | 500     | 14757               | 0.219567301 | 408.2365224           | 14756.98535         | 0.2195673  | 408.2365224           |
| 2011      | S         | MD  | 2002    | 24      | 500     | 12100               | 0.180028679 | 334.7232559           | 12099.61851         | 0.18002868 | 334.7232559           |
| 2011      | S         | LT  | 2002    | 24      | 500     | 859                 | 0.012776591 | 23.75522675           | 858.7069353         | 0.01277659 | 23.75522675           |
| 2011      | S         | GBV | 2002    | 24      | 500     | 135                 | 0.002008056 | 3.733533844           | 134.9602527         | 0.00200806 | 3.733533844           |
|           |           |     |         |         | TOTALS: | 3278242.7           | 48.77655512 | 77249.13749           | 3278242.741         | 48.7765551 | 77249.13749           |

BACK-CALCULATED NOx: 49.1774931
PERCENT DIFFERENCE: 0.82%

| 0.367 lb/hp-hr  | brake specific fuel consumption (BSFC) applies to units greater than 50 hp. |              |                |
|-----------------|-----------------------------------------------------------------------------|--------------|----------------|
| 8932542 hp-hr   | ScenBSFC Column divided by BFSC = ScenHP-HR                                 | Conversions: |                |
| 115.6329 hp     | ScenHP-HR divided by ScenActivity Column                                    |              | 2000 lb/ton    |
| 0.3618 l.f.     | LoadFactor table in OFFROAD2011                                             |              | 453.59237 g/lb |
| 319.6 hp        | Average horsepower of units 250 to 500 hp                                   |              |                |
|                 |                                                                             |              |                |
| 4.51 NOx EF     | EMFACUpdate table in OFFROAD2011 for 2002 MY engine 250 - 500 hp.           |              |                |
| 6.32E-05 NOx DF | EMFACUpdate table in OFFROAD2011 for 2002 MY engine 250 - 500 hp.           |              |                |
| 12000 cumulati  | ve hours ActivityCMHrs table in OFFROAD2011 for nine year old loader.       |              |                |
| 0.948 NOx FCF   | FuelCorrectionFactorUpdate table in OFFROAD2011.                            |              |                |

| EquipmentTypeID | EquipmentType                      | Adj ARB LF |
|-----------------|------------------------------------|------------|
| 1               | A/C Tug Narrow Body                | 0.536      |
| 2               | A/C Tug Wide Body                  | 0.536      |
| 3               | Baggage Tug                        | 0.3685     |
| 4               | Belt Loader                        | 0.335      |
| 5               | Bobtail                            | 0.3685     |
| 6               | Cargo Loader                       | 0.335      |
| 7               | Cargo Tractor                      | 0.3618     |
| 8               | Forklift (GSE)                     | 0.201      |
| 9               | Lift (GSE)                         | 0.335      |
| 10              | Other GSE                          | 0.335      |
| 11              | Bore/Drill Rigs                    | 0.5025     |
| 12              | Cranes                             | 0.2881     |
| 13              | Crawler Tractors                   | 0.4288     |
| 14              | Excavators                         | 0.3819     |
| 15              | Graders                            | 0.4087     |
| 16              | Off-Highway Tractors               | 0.4355     |
| 17              | Off-Highway Trucks                 | 0.3819     |
| 18              | Other Construction Equipment       | 0.4154     |
| 19              | Pavers                             | 0.4154     |
| 20              | Paving Equipment                   | 0.3551     |
| 21              | Rollers                            | 0.3752     |
| 22              | Rough Terrain Forklifts            | 0.402      |
| 23              | Rubber Tired Dozers                | 0.3953     |
| 24              | Rubber Tired Loaders               | 0.3618     |
| 25              | Scrapers                           | 0.4824     |
| 26              | Skid Steer Loaders                 | 0.3685     |
| 27              | Surfacing Equipment                | 0.3015     |
| 28              | Tractors/Loaders/Backhoes          | 0.3685     |
| 29              | Trenchers                          | 0.5025     |
| 30              | Aerial Lifts                       | 0.3082     |
| 31              | Forklifts                          | 0.201      |
| 32              | Other General Industrial Equipment | 0.3417     |
| 33              | Other Material Handling Equipment  | 0.3953     |
| 34              | Drill Rig (Mobile)                 | 0.5025     |
| 35              | Workover Rig (Mobile)              | 0.5025     |
| 36              | Sweepers/Scrubbers                 | 0.4556     |
| 37              | Passenger Stand                    | 0.3953     |

| CalendarY | SumOfSce | SumOfSce | SumOfSce | SumOfSce | SumOfSce  | Horsenow |          |          |          |          |
|-----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|
| ear       | nBSFC    | nNOx     | nPM      | nHC      | nActivity | erBin    | AvgHP    | NOxEF    | PMEF     | HCEF     |
| 2009      | 795484.3 | 13.52483 |          | 4.209929 |           | 50       | 46.2623  | 5.660592 | 0.660601 | 1.761996 |
| 2009      |          | 466.4952 |          | 46.4795  | 1716383   | 120      | 85.31986 | 7.987483 | 0.686807 | 0.795837 |
| 2009      | 46050646 | 974.7037 | 53.19423 | 73.49095 | 2314949   | 175      | 149.8165 | 7.046909 | 0.384583 | 0.531325 |
| 2009      | 63466227 | 1132.198 |          | 61.16232 | 2330841   | 250      | 205.0668 | 5.939387 | 0.19651  | 0.320851 |
| 2009      | 83019654 | 1414.619 |          | 83.30651 | 1964818   | 500      | 318.2174 | 5.673101 | 0.209017 | 0.334087 |
| 2009      |          | 228.078  |          | 13.71631 | 189237.3  | 750      | 580.951  | 5.201929 | 0.199972 | 0.312837 |
| 2009      | 4255953  | 84.21503 |          | 4.017598 | 38393.36  | 1000     | 834.8455 | 6.588015 | 0.182793 | 0.314291 |
| 2009      | 1691900  | 31.16528 |          | 1.488808 | 8433.303  | 9999     | 1510.923 | 6.13279  | 0.164475 | 0.292972 |
| 2010      | 715997.9 | 12.20853 | 1.422356 | 3.778545 | 116550    | 50       | 46.26631 | 5.676929 | 0.661391 | 1.757012 |
| 2010      | 17501371 | 416.7788 | 36.1039  | 41.73121 | 1544745   | 120      | 85.32585 | 7.92858  | 0.686821 | 0.793872 |
| 2010      | 41447725 | 873.8488 | 48.24921 | 66.81854 | 2083455   | 175      | 149.8242 | 7.019358 | 0.387571 | 0.536733 |
| 2010      | 57117512 | 1024.338 | 34.22026 | 56.91146 | 2097757   | 250      | 205.0593 | 5.970847 | 0.199469 | 0.331736 |
| 2010      | 74688392 | 1276.786 | 47.5056  | 77.52044 | 1768336   | 500      | 318.0927 | 5.691501 | 0.211765 | 0.345561 |
| 2010      | 13133606 | 206.5284 | 8.033338 | 12.87465 | 170313.5  | 750      | 580.7646 | 5.235492 | 0.203645 | 0.326372 |
| 2010      | 3830215  | 76.56765 | 2.157638 | 3.722718 | 34554.02  | 1000     | 834.8143 | 6.65555  | 0.18755  | 0.323593 |
| 2010      | 1522710  | 28.34703 | 0.774174 | 1.393886 | 7589.973  | 9999     | 1510.923 | 6.198009 | 0.169271 | 0.30477  |
| 2011      | 754771   | 12.74524 | 1.449747 | 3.796269 | 122674.6  | 50       | 46.33678 | 5.62205  | 0.639497 | 1.674571 |
| 2011      | 18411501 | 429.5517 | 37.50495 | 43.17995 | 1625920   | 120      | 85.2816  | 7.767622 | 0.678205 | 0.780827 |
| 2011      | 43620817 | 893.8571 | 49.6047  | 68.97781 | 2192938   | 175      | 149.8072 | 6.822383 | 0.378609 | 0.526475 |
| 2011      | 60110794 | 1065.587 | 35.74835 | 60.60215 | 2207992   | 250      | 205.0313 | 5.901987 | 0.198    | 0.335658 |
| 2011      | 78548830 | 1325.78  | 49.58221 | 82.58638 | 1861261   | 500      | 317.8322 | 5.619447 | 0.210159 | 0.35005  |
| 2011      | 13820018 | 218.6842 | 8.601628 | 14.09272 | 179263.4  | 750      | 580.6072 | 5.268301 | 0.207221 | 0.339506 |
| 2011      | 4031325  | 81.25036 | 2.318445 | 4.016673 | 36369.81  | 1000     | 834.7803 | 6.710258 | 0.191474 | 0.331727 |
| 2011      | 1602727  | 30.13776 | 0.837035 | 1.521804 | 7988.82   | 9999     | 1510.923 | 6.260559 | 0.173879 | 0.316126 |
| 2012      | 792466.4 | 13.50252 | 1.549871 | 4.061612 | 128799.2  | 50       | 46.33754 | 5.672778 | 0.651143 | 1.706394 |
| 2012      | 19330172 | 449.0382 | 39.34213 | 45.36549 | 1707095   | 120      | 85.27924 | 7.734092 | 0.677616 | 0.781361 |
| 2012      | 45787866 | 935.9932 | 52.28397 | 73.21025 | 2302422   | 175      | 149.7721 | 6.805877 | 0.380172 | 0.532333 |
| 2012      | 63109253 | 1115.192 | 37.69609 | 65.07559 | 2318228   | 250      | 205.0229 | 5.883265 | 0.198868 | 0.34331  |
| 2012      | 82450291 | 1392.057 | 52.55014 | 89.16521 | 1954185   | 500      | 317.7546 | 5.621168 | 0.212199 | 0.360052 |
| 2012      | 14511983 | 228.937  | 9.075095 | 15.20448 | 188213.2  | 750      | 580.6868 | 5.252317 | 0.208203 | 0.348824 |
| 2012      | 4232404  | 85.79728 | 2.470937 | 4.302467 | 38185.6   | 1000     | 834.7432 | 6.749137 | 0.194373 | 0.338448 |
| 2012      | 1682745  | 31.9293  |          | 1.651664 | 8387.667  | 9999     | 1510.923 | 6.317323 | 0.178096 | 0.326788 |
| 2013      | 830079.8 | 13.87685 | 1.559876 | 4.060634 | 134923.8  | 50       | 46.33365 | 5.565867 | 0.625651 | 1.62868  |
| 2013      | 20245767 | 459.3817 |          | 46.4028  | 1788270   | 120      | 85.26414 | 7.554422 | 0.660711 | 0.763083 |
|           | 47955694 | 953.1783 |          |          | 2411906   | 175      | 149.7425 | 6.617528 |          | 0.522211 |
|           | 66102392 | 1147.257 |          | 68.76043 | 2428463   | 250      | 204.9986 | 5.778371 |          | 0.346324 |
|           | 86341809 | 1428.669 |          | 93.78424 |           | 500      | 317.6474 | 5.508992 |          | 0.361635 |
|           | 15223625 | 235.6801 |          |          | 197163.1  | 750      |          | 5.154264 |          | 0.351713 |
| 2013      |          | 89.00589 |          |          |           | 1000     |          |          |          | 0.33713  |
| 2013      | 1762762  | 33.68518 |          |          | 8786.514  | 9999     | 1510.923 |          |          | 0.336255 |
| 2014      |          | 14.31514 |          | 4.098854 |           | 50       | 46.28687 | 5.497898 | 0.60875  | 1.574213 |
|           | 21109684 | 457.9051 | 39.7522  | 46.06419 | 1869446   | 120      | 85.04216 | 7.221968 |          | 0.726513 |
|           | 50133312 | 946.0177 | 52.83873 | 75.43156 | 2521390   | 175      | 149.7448 | 6.282531 | 0.350904 | 0.500943 |
|           | 69083373 | 1145.646 |          | 70.05216 | 2538699   | 250      |          | 5.521265 | 0.187688 | 0.337606 |
|           | 90115610 | 1417.28  |          |          |           | 500      |          | 5.236213 |          | 0.350829 |
|           | 15894821 | 237.4446 |          | 16.56475 | 206112.9  | 750      | 580.7856 | 4.973574 | 0.19654  | 0.346969 |
| 2014      | 4634443  | 93.39919 |          |          |           | 1000     | 834.6574 | 6.709766 |          | 0.342743 |
| 2014      | 1842779  | 35.4518  |          | 1.911448 |           | 9999     | 1510.923 | 6.405115 | 0.18482  | 0.345343 |
| 2015      | 904482   | 14.95894 | 1.651025 | 4.263328 | 147173    | 50       | 46.28465 | 5.506336 | 0.607737 | 1.569317 |

| CalendarY | SumOfSce | SumOfSce | SumOfSce | SumOfSce | SumOfSce  | Horsepow |          |          |          |          |
|-----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|
| ear       | nBSFC    | nNOx     | nPM      | nHC      | nActivity | erBin    | AvgHP    | NOxEF    | PMEF     | HCEF     |
| 2015      |          | 469.8943 |          |          | 1950621   | 120      | 85.07433 | 7.099961 | 0.613733 | 0.716068 |
| 2015      |          | 959.6145 |          | 77.39714 | 2630874   | 175      | 149.7259 | 6.108395 | 0.341307 | 0.492669 |
| 2015      | 72071297 | 1167.957 | 39.87548 | 72.90785 | 2648934   | 250      | 204.9069 | 5.395434 | 0.184207 | 0.336801 |
| 2015      | 93855486 | 1429.035 | 53.95714 | 97.71088 | 2232959   | 500      | 316.5514 | 5.069265 | 0.191404 | 0.346613 |
| 2015      | 16608073 | 234.6374 | 9.225203 | 16.80371 | 215062.8  | 750      | 581.5933 | 4.703702 | 0.184935 | 0.336859 |
| 2015      | 4835391  | 97.74798 | 2.864355 | 5.051515 | 43632.96  | 1000     | 834.6076 | 6.730355 | 0.197223 | 0.347818 |
| 2015      | 1922796  | 37.21438 | 1.084718 | 2.043659 | 9584.208  | 9999     | 1510.923 | 6.44376  | 0.187821 | 0.353865 |
| 2016      | 942211.7 | 15.42918 | 1.681585 | 4.329943 | 153297.7  | 50       | 46.28906 | 5.452003 | 0.594199 | 1.530014 |
| 2016      | 22940141 | 459.5581 | 39.44713 | 46.30203 | 2031796   | 120      | 85.0318  | 6.669698 | 0.572507 | 0.671995 |
| 2016      | 54469279 | 938.6039 | 52.34292 | 76.57778 | 2740358   | 175      | 149.6958 | 5.737102 | 0.31994  | 0.468072 |
| 2016      | 75064747 | 1158.972 | 39.52724 | 73.63873 | 2759170   | 250      | 204.891  | 5.140423 | 0.175316 | 0.326612 |
| 2016      | 97615496 | 1372.236 | 51.54389 | 95.85646 | 2325884   | 500      | 316.0793 | 4.680281 | 0.175801 | 0.326937 |
| 2016      | 17358799 | 223.7947 | 8.797873 | 16.53089 | 224012.6  | 750      | 583.5964 | 4.292318 | 0.168741 | 0.317058 |
| 2016      | 5036280  | 101.99   | 3.000598 | 5.320876 | 45448.74  | 1000     | 834.552  | 6.742323 | 0.198363 | 0.351751 |
| 2016      | 2002813  | 33.56578 | 0.929072 | 1.754828 | 9983.055  | 9999     | 1510.923 | 5.579793 | 0.154444 | 0.291713 |
| 2017      | 980588.9 | 15.78367 | 1.677705 | 4.286872 | 159422.3  | 50       | 46.32371 | 5.358989 | 0.569627 | 1.455511 |
| 2017      | 23857882 | 452.6809 | 38.44312 | 45.41443 | 2112971   | 120      | 85.03618 | 6.317162 | 0.536474 | 0.633759 |
| 2017      | 56653912 | 885.6915 | 49.34791 | 73.47903 | 2849842   | 175      | 149.7182 | 5.204923 | 0.290002 | 0.431813 |
| 2017      | 78083362 | 1120.36  | 38.16652 | 72.57634 | 2869405   | 250      | 204.9425 | 4.777063 | 0.162737 | 0.309456 |
| 2017      | 1.01E+08 | 1311.634 | 49.43327 | 94.11002 | 2418809   | 500      | 315.8379 | 4.305009 | 0.162249 | 0.308885 |
| 2017      | 18055835 | 225.9764 | 8.921091 | 16.92765 | 232962.4  | 750      | 583.7099 | 4.166846 | 0.164499 | 0.312134 |
| 2017      | 5237100  | 103.3687 | 3.025756 | 5.403018 | 47264.53  | 1000     | 834.4896 | 6.571433 | 0.192356 | 0.343485 |
| 2017      | 2084677  | 28.0939  | 0.671277 | 1.276847 | 10381.9   | 9999     | 1512.263 | 4.486781 | 0.107207 | 0.203921 |
| 2018      | 1018654  | 15.6343  | 1.585005 | 4.015649 | 165546.9  | 50       | 46.34162 | 5.109912 | 0.518043 | 1.312474 |
| 2018      | 24774755 | 412.3757 | 34.05524 | 40.82555 | 2194146   | 120      | 85.03725 | 5.541732 | 0.457653 | 0.548636 |
| 2018      | 58831743 | 773.2941 | 42.89501 | 65.5502  | 2959326   | 175      | 149.7216 | 4.376176 | 0.242749 | 0.370957 |
| 2018      | 81047125 | 1010.868 | 34.28384 | 67.43425 | 2979641   | 250      | 204.8515 | 4.152584 | 0.140836 | 0.277016 |
| 2018      | 1.05E+08 | 1193.235 | 44.6742  | 88.35773 | 2511733   | 500      | 315.8818 | 3.770988 | 0.141184 | 0.279237 |
| 2018      | 18743519 | 205.298  | 8.108368 | 15.83084 | 241912.3  | 750      | 583.5238 | 3.646661 | 0.144027 | 0.281199 |
| 2018      | 5431100  | 92.92509 | 2.524548 | 4.546652 | 49080.32  | 1000     | 833.3853 | 5.696485 | 0.15476  | 0.278718 |
| 2018      | 2162848  | 26.68439 | 0.580171 | 1.112553 | 10780.75  | 9999     | 1510.923 | 4.107648 | 0.089308 | 0.17126  |
| 2019      |          | 15.50668 | 1.477575 | 3.778938 | 171671.5  | 50       | 46.33442 | 4.888144 |          | 1.191228 |
| 2019      | 25666341 | 391.3426 | 31.42409 | 38.41888 | 2275321   | 120      | 84.95454 | 5.07639  | 0.407625 | 0.498359 |
| 2019      | 61018193 | 708.4688 | 39.15897 | 61.46611 | 3068809   | 175      | 149.7458 | 3.865656 | 0.213665 | 0.335381 |
| 2019      | 84049882 | 950.1183 |          |          | 3089876   | 250      | 204.862  | 3.763591 | 0.126187 | 0.256992 |
| 2019      |          | 1091.752 |          |          | 2604658   | 500      | 316.0437 | 3.325472 | 0.124135 | 0.255584 |
|           | 19530909 | 181.3558 |          |          | 250862.1  | 750      |          | 3.091511 | 0.121295 | 0.248173 |
| 2019      |          |          |          |          | 50896.1   | 1000     |          | 5.482226 | 0.14679  | 0.268407 |
| 2019      |          |          |          |          | 11179.6   | 9999     | 1510.809 | 4.119128 | 0.089665 |          |
| 2020      |          |          |          | 3.61752  | 177796.1  | 50       |          | 4.726594 | 0.426571 | 1.100794 |
|           | 26590858 | 379.4237 |          |          | 2356496   | 120      |          | 4.750659 | 0.372022 | 0.465397 |
|           | 63188352 | 668.7519 |          | 59.50741 | 3178293   | 175      | 149.7299 | 3.523626 | 0.193932 | 0.313542 |
|           | 87020672 | 899.0397 |          | 63.03243 | 3200112   | 250      | 204.7966 | 3.439682 | 0.114186 | 0.241159 |
| 2020      |          | 1037.535 |          |          | 2697583   | 500      |          | 3.050729 | 0.113441 | 0.241558 |
|           | 20282502 |          |          |          | 259812    | 750      |          | 2.82626  | 0.109747 | 0.233675 |
| 2020      |          | 92.41115 |          |          | 52711.89  | 1000     | 833.0556 | 5.27678  |          |          |
| 2020      |          | 28.85636 |          |          | 11578.44  | 9999     | 1510.805 | 4.136281 | 0.090193 |          |
| 2021      | 1131499  | 15.21318 |          |          | 183920.7  | 50       | 46.33284 | 4.476386 | 0.368239 |          |
| 2021      | 27551013 | 353.003  | 26.48818 | 34.46344 | 2437671   | 120      | 85.11925 | 4.265821 | 0.320093 | 0.416469 |

| CalendarY | SumOfSce | SumOfSce | SumOfSce | SumOfSce | SumOfSce  | Horsenow |          |          |          |          |
|-----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|
| ear       | nBSFC    | nNOx     | nPM      | nHC      | nActivity | erBin    | AvgHP    | NOxEF    | PMEF     | HCEF     |
| 2021      | 65346561 | 613.4135 |          | 56.25789 | 3287777   | 175      | 149.6876 | 3.125305 | 0.170911 | 0.286631 |
| 2021      | 90028168 | 814.8947 | 27.17398 | 59.78651 | 3310347   | 250      | 204.819  | 3.013595 | 0.100493 | 0.221099 |
| 2021      | 1.17E+08 | 928.723  | 34.66658 | 77.70099 | 2790507   | 500      | 316.8948 | 2.63339  | 0.098297 | 0.220321 |
| 2021      |          | 169.9779 | 6.587371 | 14.43531 | 268761.8  | 750      | 587.7571 | 2.698076 | 0.104562 | 0.229133 |
| 2021      | 6048477  | 90.53184 | 2.327053 | 4.424395 | 54527.67  | 1000     | 835.3999 | 4.983301 | 0.128092 | 0.24354  |
| 2021      | 2402705  | 29.96662 | 0.654491 | 1.345334 | 11977.29  | 9999     | 1510.801 | 4.152399 | 0.090691 | 0.18642  |
| 2022      | 1169715  | 15.00549 | 1.119768 | 3.078283 | 190045.3  | 50       | 46.35412 | 4.271023 | 0.31872  | 0.876174 |
| 2022      | 28472884 | 326.117  | 23.06515 | 31.47732 | 2518847   | 120      | 85.13244 | 3.813324 |          | 0.368068 |
| 2022      | 67500681 | 511.749  | 27.5991  | 49.53335 | 3397261   | 175      | 149.6389 | 2.524124 | 0.136128 | 0.244316 |
| 2022      | 93093466 | 659.2349 | 22.11232 | 52.47907 | 3420583   | 250      | 204.9673 | 2.357669 | 0.079082 | 0.187685 |
| 2022      | 1.21E+08 | 799.6874 | 29.85869 | 71.91101 | 2883432   | 500      | 317.0309 | 2.193492 | 0.0819   | 0.197247 |
| 2022      | 21756150 | 139.4706 | 5.320019 | 12.79927 | 277711.6  | 750      | 590.0018 | 2.134335 | 0.081413 | 0.195869 |
| 2022      | 6271113  | 68.00467 | 1.40034  | 2.991675 | 56343.46  | 1000     | 838.2363 | 3.610405 | 0.074345 | 0.15883  |
| 2022      | 2482709  | 31.07632 | 0.67977  | 1.429614 | 12376.14  | 9999     | 1510.797 | 4.167404 | 0.091159 | 0.191714 |
| 2023      | 1206291  | 14.74845 |          | 2.82886  | 196169.9  | 50       | 46.31107 | 4.07058  |          | 0.780767 |
| 2023      |          | 313.7071 | 21.30253 | 30.41317 | 2600022   | 120      | 85.14426 | 3.553196 |          | 0.344474 |
| 2023      |          | 460.6434 | 24.66173 | 46.67714 | 3506745   | 175      | 149.554  | 2.202368 | 0.117909 | 0.223167 |
| 2023      | 96077230 | 597.178  | 19.99711 | 50.28917 | 3530818   | 250      | 204.9323 | 2.069403 | 0.069296 | 0.174267 |
| 2023      | 1.25E+08 |          | 26.34807 | 68.10065 | 2976357   | 500      | 317.2593 | 1.880591 | 0.069964 | 0.180834 |
| 2023      |          | 132.301  | 5.113731 | 12.84973 | 286661.5  | 750      | 590.9379 | 1.9583   | 0.075693 | 0.1902   |
| 2023      | 6465622  | 68.47599 |          | 3.092152 | 58159.25  | 1000     | 837.2534 | 3.526061 | 0.070992 | 0.159225 |
| 2023      | 2562711  | 32.1838  |          | 1.514787 | 12774.98  | 9999     | 1510.792 | 4.181187 | 0.091593 | 0.196795 |
| 2024      | 1243776  | 15.02851 | 0.962798 | 2.804497 | 202294.5  | 50       | 46.30453 | 4.022866 | 0.257724 | 0.750714 |
| 2024      |          | 307.5767 | 20.30936 | 30.24943 | 2681197   | 120      | 85.18989 | 3.376477 | 0.22295  | 0.332068 |
| 2024      | 71764308 | 407.4853 | 21.73469 | 43.97715 | 3616229   | 175      | 149.4576 | 1.89045  | 0.100834 | 0.204024 |
| 2024      | 99069158 | 539.9836 |          | 48.69311 | 3641054   | 250      | 204.9164 | 1.814696 |          | 0.163641 |
| 2024      | 1.29E+08 |          | 24.70506 |          | 3069281   | 500      | 317.2914 | 1.714523 |          | 0.17436  |
| 2024      | 23210661 | 133.1878 | 5.105091 | 13.1984  | 295611.3  | 750      | 591.3326 | 1.910463 | 0.073228 | 0.18932  |
| 2024      | 6668080  | 70.92734 | 1.429801 | 3.31863  | 59975.03  | 1000     | 837.3281 | 3.541398 | 0.07139  | 0.165699 |
| 2024      | 2642712  | 33.39659 | 0.732805 | 1.6022   | 13173.83  | 9999     | 1510.787 | 4.207402 | 0.092321 | 0.20185  |
| 2025      | 1257637  | 14.80015 | 0.880293 | 2.700925 | 204674.7  | 50       | 46.27606 | 3.918075 | 0.233042 | 0.715021 |
| 2025      | 30691281 | 276.8333 | 16.67371 | 27.10479 | 2712744   | 120      | 85.20628 | 3.003068 | 0.180875 | 0.294031 |
| 2025      | 72624548 | 348.0578 | 18.37816 | 40.4613  | 3658778   | 175      | 149.4902 | 1.595621 | 0.084252 | 0.185489 |
| 2025      | 1E+08    | 436.2477 | 14.65447 | 44.34216 | 3683894   | 250      | 204.9529 | 1.448769 | 0.048667 | 0.147259 |
| 2025      | 1.31E+08 | 567.223  | 20.79148 | 63.18094 | 3105395   | 500      | 317.7181 | 1.441525 | 0.052839 | 0.160566 |
| 2025      | 23493193 | 118.4749 | 4.581728 | 12.56269 | 299089.5  | 750      | 591.5701 | 1.678983 | 0.064931 | 0.178034 |
| 2025      | 6748115  | 62.54633 | 1.053847 | 2.769147 | 60680.7   | 1000     | 837.524  | 3.085895 | 0.051994 | 0.136623 |
| 2025      | 2673796  | 33.99149 | 0.746976 | 1.657077 | 13328.84  | 9999     | 1510.781 | 4.232566 | 0.093012 | 0.206337 |
| 2026      | 1272784  | 14.22646 | 0.737557 | 2.472334 | 207055    | 50       | 46.29504 | 3.72138  | 0.192931 | 0.646717 |
| 2026      | 31075468 | 258.976  | 14.65046 | 25.57071 | 2744291   | 120      | 85.28112 | 2.774621 | 0.156962 | 0.27396  |
| 2026      | 73478874 | 306.7472 | 15.91916 | 38.39913 | 3701326   | 175      | 149.5101 | 1.389888 | 0.072131 | 0.173989 |
| 2026      | 1.01E+08 | 381.1347 | 12.94906 | 42.89021 | 3726735   | 250      | 204.8744 | 1.251669 | 0.042525 | 0.140854 |
| 2026      | 1.33E+08 | 524.4631 | 19.11961 | 61.93119 | 3141508   | 500      | 317.697  | 1.317622 | 0.048035 | 0.155591 |
| 2026      | 23792564 | 109.828  | 4.154625 | 12.20825 | 302567.7  | 750      | 592.2214 | 1.536858 | 0.058137 | 0.170834 |
| 2026      | 6827373  | 63.71525 | 1.077633 | 2.949595 | 61386.37  | 1000     | 837.62   | 3.107074 | 0.052551 | 0.143837 |
| 2026      | 2705145  | 33.85727 | 0.739202 | 1.492533 | 13483.84  | 9999     | 1510.923 | 4.166997 | 0.090978 | 0.183694 |
| 2027      | 1287182  | 14.23859 | 0.703119 | 2.420637 | 209435.2  | 50       | 46.28664 | 3.682892 | 0.181866 | 0.626111 |
| 2027      | 31425244 | 242.7363 | 12.54497 | 24.05942 | 2775838   | 120      | 85.26089 | 2.571685 | 0.132909 | 0.254899 |
| 2027      | 74348715 | 275.0632 | 13.97286 | 36.82471 | 3743875   | 175      | 149.5607 | 1.231745 | 0.062571 | 0.164903 |
|           |          |          |          |          |           |          |          |          |          |          |

| CalendarY | SumOfSce | SumOfSce | SumOfSce | SumOfSce | SumOfSce  | Horsepow |          |          |          |          |
|-----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|
| ear       | nBSFC    | nNOx     | nPM      | nHC      | nActivity | erBin    | AvgHP    | NOxEF    | PMEF     | HCEF     |
| 2027      | 1.03E+08 | 323.2244 | 11.22077 | 41.19653 | 3769576   | 250      | 204.8941 | 1.049323 | 0.036427 | 0.133741 |
| 2027      | 1.34E+08 | 472.7879 | 17.56584 | 60.85875 | 3177621   | 500      | 317.7    | 1.174287 | 0.043629 | 0.151158 |
| 2027      | 24057547 | 94.09608 | 3.466569 | 11.50262 | 306045.9  | 750      | 592.0116 | 1.302213 | 0.047974 | 0.159187 |
| 2027      | 6906731  | 64.85395 | 1.100276 | 3.123887 | 62092.04  | 1000     | 837.7259 | 3.126264 | 0.053038 | 0.150586 |
| 2027      | 2736242  | 34.35132 | 0.750215 | 1.511142 | 13638.84  | 9999     | 1510.923 | 4.179754 | 0.091284 | 0.183871 |
| 2028      | 1301697  | 13.99635 | 0.634036 | 2.334328 | 211815.4  | 50       | 46.2826  | 3.579865 | 0.162168 | 0.597054 |
| 2028      | 31797695 | 231.2234 | 10.96646 | 23.03595 | 2807385   | 120      | 85.30196 | 2.421017 | 0.114824 | 0.241197 |
| 2028      | 75196782 | 245.98   | 12.12649 | 35.38693 | 3786424   | 175      | 149.5669 | 1.089087 | 0.053691 | 0.156677 |
| 2028      | 1.04E+08 | 292.6777 | 10.24971 | 41.1205  | 3812417   | 250      | 204.9673 | 0.939143 | 0.032889 | 0.131947 |
| 2028      | 1.35E+08 | 449.8796 | 16.70758 | 61.24265 | 3213735   | 500      | 317.3387 | 1.10609  | 0.041078 | 0.150573 |
| 2028      | 24288127 | 88.70153 | 3.299128 | 11.41824 | 309524.1  | 750      | 590.9694 | 1.215903 | 0.045224 | 0.156519 |
| 2028      | 6985276  | 66.10231 | 1.128655 | 3.292656 | 62797.71  | 1000     | 837.732  | 3.150611 | 0.053795 | 0.156937 |
| 2028      | 2767339  | 34.85036 | 0.761995 | 1.560496 | 13793.85  | 9999     | 1510.923 | 4.192824 | 0.091675 | 0.187742 |
| 2029      | 1318779  | 13.93336 | 0.571985 | 2.239748 | 214195.6  | 50       | 46.36892 | 3.517594 | 0.144402 | 0.565443 |
| 2029      | 32174771 | 225.7992 | 10.18067 | 22.89696 | 2838932   | 120      | 85.35437 | 2.336516 | 0.105347 | 0.236932 |
| 2029      | 76095795 | 221.2058 | 10.82451 | 34.53263 | 3828973   | 175      | 149.6731 | 0.967827 | 0.04736  | 0.151088 |
| 2029      | 1.05E+08 | 273.4534 | 9.629486 | 41.49637 | 3855258   | 250      | 204.9765 | 0.867667 | 0.030554 | 0.131668 |
| 2029      | 1.37E+08 | 424.5485 | 15.84455 | 61.23872 | 3249848   | 500      | 316.9402 | 1.033509 | 0.038572 | 0.149078 |
| 2029      | 24537796 | 87.22084 | 3.237043 | 11.70892 | 313002.2  | 750      | 590.4097 | 1.183441 | 0.043921 | 0.15887  |
| 2029      | 7063164  | 65.81549 | 1.101656 | 3.36654  | 63503.38  | 1000     | 837.6601 | 3.102349 | 0.051929 | 0.158689 |
| 2029      | 2798437  | 26.56762 | 0.435185 | 1.070151 | 13948.85  | 9999     | 1510.923 | 3.160814 | 0.051775 | 0.127318 |

Note: Emissions factors have fuel correction factor incorporated.



# **MEMORANDUM**

5920 Friars Road, Suite 103 • San Diego, California 92108

Date: August 28, 2012

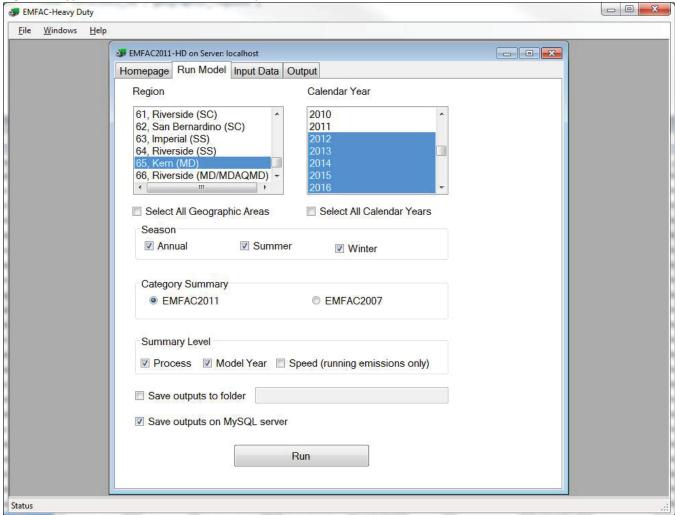
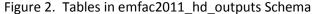
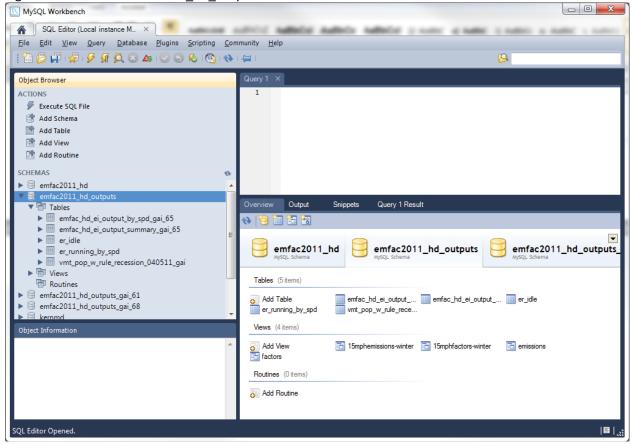
To: File

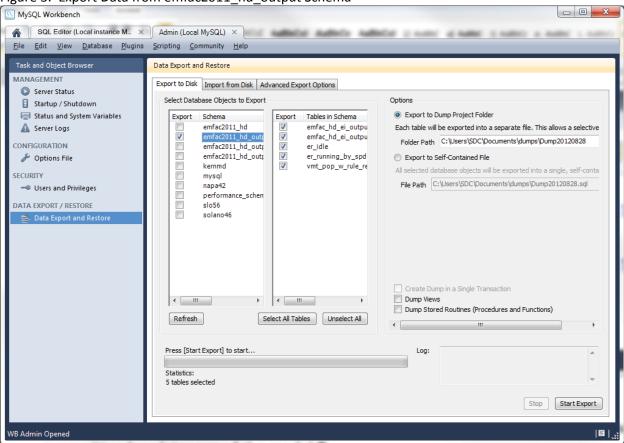
From: Scott Cohen

Re: Using EMFAC2011-HD to Obtain Emissions Factors

Figure 1 is a screenshot of a typical EMFAC2011-HD run for a CEQA project located in the Mojave Desert Air Basin portion of Kern County.

Figure 1. Typical EMFAC2011-HD Model Input



Figure 2 shows the tables that are generated by EMFFAC2011-HD in the emfac2011\_hd\_outputs schema. MySQL Workbench and MySQL server must be installed in order to perform the remaining tasks.





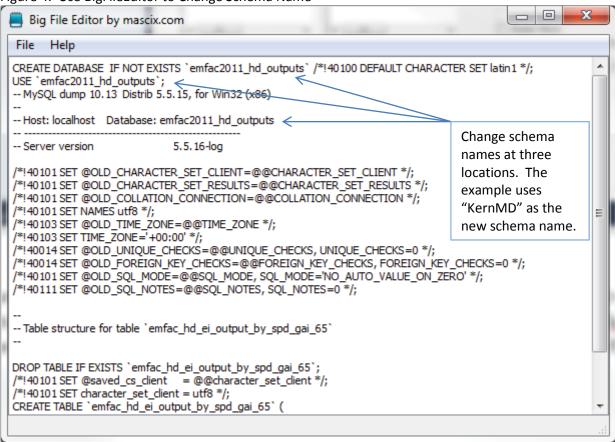
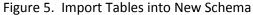
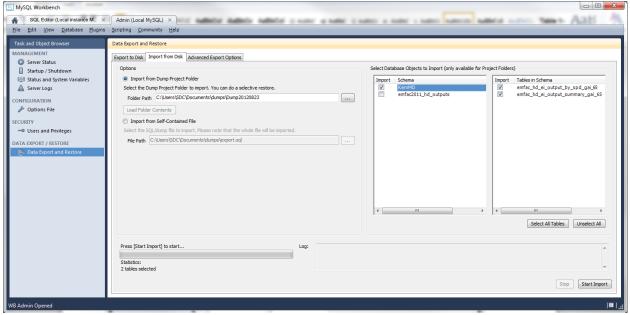

The contents of the emfac2011\_hd\_outputs schema must be moved in order to prevent them from being overwritten by a later run of the model. This is accomplished by exporting the data as shown in Figure 3.

Figure 3. Export Data from emfac2011\_hd\_output Schema



The dumped tables have references to the emfac2011\_hd\_outputs schema that must be manually changed in order to reload them with a different schema name. Each file is opened using BigFileEditor (http://mascix.com) and the schema name is changed manually in three places near the top of each file as shown in Figure 4.


Figure 4. Use BigFileEditor to Change Schema Name




Once the files are edited to reference a new schema name, then import them using MySQL Workbench. Ensure that the file extension remains sql and has not been changed to txt by BigFileEditor when you save it. In the example case, two tables were needed to perform the calculations described later. Idling emissions factors are the same in all geographic regions and emissions estimates are discussed later in this document. Figure 5 shows the import screen.

Once the import is complete then, the tables will be available to query without having to worry about overwriting them. It may be easier to rename the tables with a more common name. For this example, the two tables are renamed as follows:

```
emfac_hd_ei_output_summary_gai_65 → summary emfac hd ei output by spd gai 65 → byspeed
```





Typically, there are a few factors that are used in evaluation of running emissions for heavy-heavy duty trucks:

- Average emissions factors that incorporate all speeds and idling for each calendar year. This type of
  factor would be used to estimate emissions from off-site truck travel. If daily emissions are required,
  then seasonal emissions may be more appropriate to use. For annual emissions, the annual emissions
  should be used.
- Emissions factors at a specific speed. This type of factor would be used to estimate emissions from onsite truck travel or for a road with a known speed limit. On-site travel is typically assumed to occur at a speed of 15 mph. Seasonal or annual emissions should be selected as appropriate.

## 1. Average Emissions Factors (all speeds)

The above emissions factors can be derived from EMFAC2011-HD by running queries on the table data. MySQL Workbench allows queries to be saved as views. The views can be used with each other. The first view created is named "emissions" and it returns results (Attachment 1) from the following query:

```
select
   `kernmd`.`summary`.`CalYr` AS `CalYr`,
   (sum(`kernmd`.`summary`.`vmt`)/3) AS `Total_VMT`,
   sum(`kernmd`.`summary`.`ROG`) AS `Total_ROG`,
   sum(`kernmd`.`summary`.`NOx`) AS `Total_NOx`,
   sum(`kernmd`.`summary`.`CO`) AS `Total_CO`,
   sum(`kernmd`.`summary`.`SOx`) AS `Total_SOx`,
   sum(`kernmd`.`summary`.`PM10`) AS `Total_PM10`,
   sum(`kernmd`.`summary`.`PM2_5`) AS `Total_PM2_5`,
   sum(`kernmd`.`summary`.`CO2`) AS `Total_CO2`,
   sum(`kernmd`.`summary`.`Fuel_DSL`) AS `Total_Fuel_DSL`
from
   `kernmd`.`summary`.
where
   (`kernmd`.`summary`.`Veh` = 'T7 tractor construction')
group by `kernmd`.`summary`.`CalYr`
```

The "emissions" view calculates total emissions of each pollutant, total fuel use, and total vehicle miles traveled (VMT) for a region. VMT is divided by three (3) because the model results contain VMT in triplicate (i.e. the same VMT appears in rows for running emissions, brake wear, and tire wear). The "emissions" view example above limits the vehicle type to "T7 tractor construction" and could be modified to select a season, model year range, other vehicle types, etc. by changing the WHERE clause.

The "factors" view calculates emissions factors and miles per gallon operating on results of the "emissions" view in the following query:

```
select
    `emissions`.`CalYr` AS `CalYr`,
    ((`emissions`.`Total_ROG`*2000)/`emissions`.`Total_VMT`) AS `ROG_EF`,
    ((`emissions`.`Total_CO`*2000)/`emissions`.`Total_VMT`) AS `CO_EF`,
    ((`emissions`.`Total_NOx`*2000)/`emissions`.`Total_VMT`) AS `NOx_EF`,
    ((`emissions`.`Total_CO2`*2000)/`emissions`.`Total_VMT`) AS `CO2_EF`,
    ((`emissions`.`Total_PM10`*2000)/`emissions`.`Total_VMT`) AS `PM10_EF`,
    ((`emissions`.`Total_SOx`*2000)/`emissions`.`Total_VMT`) AS `SOx_EF`,
    ((`emissions`.`Total_VMT`/`emissions`.`Total_Fuel_DSL`)/1000) AS `MPG`
from
    `kernmd`.`emissions`
```

Total emissions of each pollutant is converted from tons to pounds and then divided by Total VMT to determine the annual average emissions factor in units of pounds per VMT for each pollutant by calendar year for "T7 tractor construction" type vehicles.

## 2. Emissions Factors by Speed

The following query is assigned to a view named "emissionsbyspeed-15a" and returns annual average emissions from "T7 tractor construction" type vehicles while running at 15 mph by calendar year (Attachment 3).

```
select
   `kernmd`.`byspeed`.`CalYr` AS `CalYr`,
   sum(`kernmd`.`byspeed`.`vmt`) AS `Total_VMT`,
   sum(`kernmd`.`byspeed`.`ROG`) AS `Total_ROG`,
   sum(`kernmd`.`byspeed`.`NOx`) AS `Total_NOx`,
   sum(`kernmd`.`byspeed`.`CO') AS `Total_CO`,
   sum(`kernmd`.`byspeed`.`SOx`) AS `Total_SOx`,
   sum(`kernmd`.`byspeed`.`PM10`) AS `Total_PM10`,
   sum(`kernmd`.`byspeed`.`PM2_5`) AS `Total_PM2_5`,
   sum(`kernmd`.`byspeed`.`CO2`) AS `Total_CO2`,
   sum(`kernmd`.`byspeed`.`Fuel_DSL`) AS `Total_Fuel_DSL`
from
   `kernmd`.`byspeed`.`Fuel_DSL`) AS `Total_Fuel_DSL`
from
   `kernmd`.`byspeed`.`Veh` = 'T7 tractor construction') and
(`kernmd`.`byspeed`.`Season` = 'a') and (`kernmd`.`byspeed`.`Speed_bin` = 15))
group by `kernmd`.`byspeed`.`CalYr`
```

A second view named "factorsbyspeed-15a" contains the following query which produces emissions factors in units of lb/VMT and miles per gallon (Attachment 4).

```
select
   `emissionsbyspeed-15a`.`CalYr` AS `CalYr`,
   (('emissionsbyspeed-15a`.`Total_ROG`*2000)/`emissionsbyspeed-
15a`.`Total_VMT`) AS `ROG_EF`,
   (('emissionsbyspeed-15a`.`Total_CO`*2000)/`emissionsbyspeed-15a`.`Total_VMT`)
AS `CO_EF`,
   (('emissionsbyspeed-15a`.`Total_NOx`*2000)/`emissionsbyspeed-
15a`.`Total_VMT`) AS `NOx_EF`,
   (('emissionsbyspeed-15a`.`Total_CO2`*2000)/`emissionsbyspeed-
15a`.`Total_VMT`) AS `CO2_EF`,
   (('emissionsbyspeed-15a`.`Total_PM10`*2000)/`emissionsbyspeed-
15a`.`Total_VMT`) AS `PM10_EF`,
   (('emissionsbyspeed-15a`.`Total_SOx`*2000)/`emissionsbyspeed-
15a`.`Total_VMT`) AS `SOx_EF`,
   (('emissionsbyspeed-15a`.`Total_VMT`/`emissionsbyspeed-
15a`.`Total_Fuel_DSL`)/1000) AS `MPG`
from
   `kernmd`.`emissionsbyspeed-15a`
```

| CalYr  | Total_VMT          | Total_ROG         | Total_NOx           | Total_CO          | Total_SOx       | Total_PM10  | Total_PM2_5 | Total_CO2   | Total_Fuel_DSL |
|--------|--------------------|-------------------|---------------------|-------------------|-----------------|-------------|-------------|-------------|----------------|
| 2012   | 9423.37093         | 0.008066629       | 0.138404642         | 0.03677079        | 0.000174925     | 0.006203732 | 0.005141723 | 18.33507956 | 1.650157161    |
| 2013   | 10475.84077        | 0.008003753       | 0.143422764         | 0.036805418       | 0.000194956     | 0.006075046 | 0.004960149 | 20.43461003 | 1.839114903    |
| 2014   | 11589.70234        | 0.006195982       | 0.147231846         | 0.028901341       | 0.000216881     | 0.004586902 | 0.003524188 | 22.73272979 | 2.045945681    |
| 2015   | 12766.41984        | 0.005681756       | 0.141788012         | 0.026353218       | 0.000238502     | 0.004010251 | 0.002923028 | 24.99897757 | 2.249907981    |
| 2016   | 14007.4274         | 0.00422522        | 0.131916566         | 0.020085444       | 0.000262448     | 0.00302484  | 0.001941948 | 27.50887714 | 2.475798942    |
| 2017   | 15314.18296        | 0.004404384       | 0.128956698         | 0.021147266       | 0.000286674     | 0.003062225 | 0.001897895 | 30.04821834 | 2.70433965     |
| 2018   | 15998.50698        | 0.004682058       | 0.120881057         | 0.022592429       | 0.000299207     | 0.003181871 | 0.001966887 | 31.36192954 | 2.822573659    |
| 2019   | 16697.5566         | 0.004888696       | 0.114345646         | 0.023695833       | 0.000312054     | 0.003302714 | 0.002036096 | 32.70843235 | 2.943758911    |
| 2020   | 17411.33182        | 0.005216121       | 0.093901691         | 0.0254842         | 0.000325417     | 0.003420949 | 0.002102023 | 34.10909537 | 3.069818584    |
| 2021   | 17627.24226        | 0.00553968        | 0.069014128         | 0.027324799       | 0.000329333     | 0.003431911 | 0.002099146 | 34.51962574 | 3.106766317    |
| 2022   | 17839.49143        | 0.005950424       | 0.053312733         | 0.029454545       | 0.000333354     | 0.003430608 | 0.002085206 | 34.94108389 | 3.14469755     |
| 2023   | 18048.07933        | 0.005701599       | 0.047464196         | 0.028365944       | 0.000336715     | 0.00343484  | 0.002076577 | 35.29334805 | 3.176401324    |
| 2024   | 18253.00596        | 0.005775508       | 0.048272443         | 0.028727547       | 0.000340471     | 0.003482696 | 0.002108302 | 35.68703866 | 3.211833479    |
| 2025   | 18454.27132        | 0.005852855       | 0.049057263         | 0.029107189       | 0.000344195     | 0.003529405 | 0.002139191 | 36.07735709 | 3.246962138    |
| 2026   | 18651.87542        | 0.005923469       | 0.049711846         | 0.029456374       | 0.000347869     | 0.003571825 | 0.002166356 | 36.46243188 | 3.281618869    |
| 2027   | 18845.81824        | 0.005981157       | 0.050185593         | 0.029745962       | 0.00035148      | 0.003608307 | 0.002188276 | 36.84097064 | 3.315687358    |
| 2028   | 19036.0998         | 0.006028733       | 0.050560292         | 0.029987077       | 0.000355011     | 0.00364103  | 0.002206958 | 37.21104014 | 3.348993613    |
| 2029   | 19222.72009        | 0.006076414       | 0.050957488         | 0.030229708       | 0.000358485     | 0.003673006 | 0.002225172 | 37.57519933 | 3.38176794     |
| 2030   | 19405.67911        | 0.006129296       | 0.051407917         | 0.030496523       | 0.000361901     | 0.003706191 | 0.002244719 | 37.93328549 | 3.413995694    |
| 2031   | 19792.94666        | 0.006250966       | 0.052432792         | 0.03110322        | 0.000369128     | 0.00377984  | 0.002289228 | 38.6907817  | 3.482170353    |
| 2032   | 20182.87843        | 0.006371999       | 0.053437936         | 0.031707122       | 0.000376403     | 0.003853461 | 0.00233355  | 39.45333838 | 3.550800454    |
| 2033   | 20575.47442        | 0.006491467       | 0.054422627         | 0.03230313        | 0.000383721     | 0.003926931 | 0.002377575 | 40.22031705 | 3.619828535    |
| 2034   | 20970.73462        | 0.00661045        | 0.05541877          | 0.032896827       | 0.000391084     | 0.004000534 | 0.002421561 | 40.992154   | 3.68929386     |
| 2035   | 21368.65904        | 0.006732975       | 0.056444688         | 0.033507392       | 0.000398501     | 0.004075538 | 0.002466675 | 41.76954839 | 3.759259355    |
| Emissi | ons are in units o | f tons per day an | d diesel fuel is in | units of 1,000 ga | allons per day. |             |             |             |                |

| CalYr   | ROG_EF             | CO_EF            | NOx_EF      | CO2_EF      | PM10_EF     | SOx_EF      | MPG         |
|---------|--------------------|------------------|-------------|-------------|-------------|-------------|-------------|
| 2012    | 0.001712047        | 0.007804169      | 0.029374763 | 3.891405676 | 0.001316669 | 3.71258E-05 | 5.71058997  |
| 2013    | 0.00152804         | 0.007026723      | 0.027381624 | 3.901283054 | 0.00115982  | 3.72201E-05 | 5.696131738 |
| 2014    | 0.001069222        | 0.004987417      | 0.025407356 | 3.922918662 | 0.000791548 | 3.74265E-05 | 5.664716539 |
| 2015    | 0.000890109        | 0.004128521      | 0.022212651 | 3.916364632 | 0.00062825  | 3.73639E-05 | 5.674196433 |
| 2016    | 0.000603283        | 0.002867828      | 0.018835231 | 3.927755804 | 0.000431891 | 3.74726E-05 | 5.65774028  |
| 2017    | 0.000575203        | 0.002761788      | 0.016841473 | 3.924233949 | 0.00039992  | 3.7439E-05  | 5.662817893 |
| 2018    | 0.000585312        | 0.002824317      | 0.015111542 | 3.920607039 | 0.000397771 | 3.74044E-05 | 5.668056503 |
| 2019    | 0.000585558        | 0.00283824       | 0.013696093 | 3.917750738 | 0.000395592 | 3.73772E-05 | 5.672188893 |
| 2020    | 0.000599164        | 0.002927312      | 0.010786273 | 3.91803404  | 0.000392957 | 3.73799E-05 | 5.671778754 |
| 2021    | 0.000628536        | 0.003100292      | 0.007830394 | 3.916622378 | 0.000389387 | 3.73664E-05 | 5.673823024 |
| 2022    | 0.000667107        | 0.003302173      | 0.005976934 | 3.917273543 | 0.000384608 | 3.73726E-05 | 5.672879869 |
| 2023    | 0.000631823        | 0.003143375      | 0.00525975  | 3.911036449 | 0.000380632 | 3.73131E-05 | 5.681926648 |
| 2024    | 0.000632828        | 0.003147706      | 0.00528926  | 3.910264286 | 0.000381602 | 3.73057E-05 | 5.683048664 |
| 2025    | 0.000634309        | 0.003154521      | 0.00531663  | 3.909919438 | 0.000382503 | 3.73025E-05 | 5.683549897 |
| 2026    | 0.000635161        | 0.003158543      | 0.005330493 | 3.9097872   | 0.000382999 | 3.73012E-05 | 5.683742129 |
| 2027    | 0.000634746        | 0.003156771      | 0.005325913 | 3.909723649 | 0.000382929 | 3.73006E-05 | 5.683834515 |
| 2028    | 0.0006334          | 0.003150548      | 0.005312043 | 3.90952354  | 0.00038254  | 3.72987E-05 | 5.684125443 |
| 2029    | 0.000632212        | 0.003145206      | 0.005301798 | 3.909457054 | 0.000382153 | 3.7298E-05  | 5.684222109 |
| 2030    | 0.000631701        | 0.003143051      | 0.005298234 | 3.90950353  | 0.00038197  | 3.72985E-05 | 5.684154536 |
| 2031    | 0.000631636        | 0.003142859      | 0.005298129 | 3.909552465 | 0.000381938 | 3.7299E-05  | 5.684083389 |
| 2032    | 0.000631426        | 0.003141982      | 0.005295373 | 3.909584901 | 0.000381854 | 3.72993E-05 | 5.68403623  |
| 2033    | 0.000630991        | 0.003139964      | 0.005290048 | 3.909539702 | 0.00038171  | 3.72988E-05 | 5.684101945 |
| 2034    | 0.000630445        | 0.003137403      | 0.005285344 | 3.909462853 | 0.000381535 | 3.72981E-05 | 5.684213678 |
| 2035    | 0.000630173        | 0.003136125      | 0.005282942 | 3.909421579 | 0.00038145  | 3.72977E-05 | 5.684273689 |
| Emissio | ons factors are in | units of lb/VMT. |             |             |             |             |             |

| CalYr  | Total VMT          | Total ROG         | Total_NOx           | Total_CO          | Total_SOx      | Total_PM10  | Total_PM2_5 | Total CO2   | Total Fuel DSL |
|--------|--------------------|-------------------|---------------------|-------------------|----------------|-------------|-------------|-------------|----------------|
| 2012   | 50.2489574         | <del>-</del>      | 0.001139853         | 0.000452039       | 1.44143E-06    | 5.32299E-05 | 4.89715E-05 | 0.151086217 | 0.01359776     |
| 2013   | 55.86112234        | 0.000160837       | 0.001186039         | 0.000440398       | 1.60378E-06    | 4.99655E-05 | 4.59683E-05 | 0.168103083 | 0.015129277    |
| 2014   | 61.80065109        | 0.000120127       | 0.001221099         | 0.000331898       | 1.78108E-06    | 3.57761E-05 | 3.2914E-05  | 0.18668651  | 0.016801786    |
| 2015   | 68.07535133        | 0.000106969       | 0.00118418          | 0.000285592       | 1.95465E-06    | 2.65761E-05 | 2.445E-05   | 0.204880381 | 0.018439234    |
| 2016   | 74.69287031        | 7.20502E-05       | 0.00111812          | 0.000180755       | 2.14309E-06    | 1.12696E-05 | 1.0368E-05  | 0.224631262 | 0.020216814    |
| 2017   | 81.66098236        | 7.24454E-05       | 0.001097568         | 0.00017969        | 2.33837E-06    | 9.32409E-06 | 8.57816E-06 | 0.24509998  | 0.022058998    |
| 2018   | 85.31005537        | 7.58146E-05       | 0.001034046         | 0.000187646       | 2.43798E-06    | 9.1875E-06  | 8.4525E-06  | 0.255541327 | 0.022998719    |
| 2019   | 89.03765081        | 7.79441E-05       | 0.000984933         | 0.000192538       | 2.54027E-06    | 9.05451E-06 | 8.33015E-06 | 0.266262878 | 0.023963659    |
| 2020   | 92.84376869        | 8.0047E-05        | 0.000841077         | 0.000195474       | 2.6425E-06     | 8.0104E-06  | 7.36956E-06 | 0.276978197 | 0.024928038    |
| 2021   | 93.99508434        | 8.22172E-05       | 0.00063633          | 0.000200487       | 2.66627E-06    | 7.15981E-06 | 6.58703E-06 | 0.279469351 | 0.025152242    |
| 2022   | 95.12687672        | 8.68622E-05       | 0.000474441         | 0.000211921       | 2.69139E-06    | 7.03975E-06 | 6.47657E-06 | 0.282102118 | 0.025389191    |
| 2023   | 96.23914585        | 8.13249E-05       | 0.000411912         | 0.000198577       | 2.71653E-06    | 6.95449E-06 | 6.39813E-06 | 0.28473751  | 0.025626376    |
| 2024   | 97.33189171        | 8.25472E-05       | 0.000419707         | 0.000201597       | 2.74729E-06    | 7.07584E-06 | 6.50977E-06 | 0.28796161  | 0.025916545    |
| 2025   | 98.40511432        | 8.37754E-05       | 0.000427094         | 0.000204616       | 2.77754E-06    | 7.19339E-06 | 6.61792E-06 | 0.291132728 | 0.026201946    |
| 2026   | 99.45881366        | 8.48433E-05       | 0.000433051         | 0.000207238       | 2.80726E-06    | 7.2924E-06  | 6.70901E-06 | 0.294247197 | 0.026482248    |
| 2027   | 100.4929897        | 8.565E-05         | 0.000437108         | 0.000209224       | 2.8364E-06     | 7.36511E-06 | 6.7759E-06  | 0.297301597 | 0.026757144    |
| 2028   | 101.5076426        | 8.62893E-05       | 0.000440216         | 0.000210807       | 2.86496E-06    | 7.42199E-06 | 6.82823E-06 | 0.300295886 | 0.02702663     |
| 2029   | 102.5027721        | 8.69112E-05       | 0.000443503         | 0.000212346       | 2.89298E-06    | 7.47712E-06 | 6.87895E-06 | 0.303232652 | 0.027290939    |
| 2030   | 103.4783784        | 8.76237E-05       | 0.000447313         | 0.000214099       | 2.92048E-06    | 7.53981E-06 | 6.93663E-06 | 0.306114541 | 0.027550309    |
| 2031   | 105.5434346        | 8.93468E-05       | 0.000456193         | 0.000218313       | 2.97875E-06    | 7.68875E-06 | 7.07365E-06 | 0.312222193 | 0.028099997    |
| 2032   | 107.6226974        | 9.10555E-05       | 0.000464864         | 0.000222493       | 3.03741E-06    | 7.83619E-06 | 7.20929E-06 | 0.318371483 | 0.028653433    |
| 2033   | 109.7161669        | 9.27452E-05       | 0.000473354         | 0.000226627       | 3.09648E-06    | 7.98159E-06 | 7.34307E-06 | 0.32456241  | 0.029210617    |
| 2034   | 111.8238429        | 9.44277E-05       | 0.000481968         | 0.000230744       | 3.15594E-06    | 8.12627E-06 | 7.47617E-06 | 0.330794987 | 0.029771549    |
| 2035   | 113.9457256        | 9.61696E-05       | 0.000490865         | 0.000235004       | 3.21581E-06    | 8.2762E-06  | 7.6141E-06  | 0.337070632 | 0.030336357    |
| Fmissi | ons are in units o | f tons per day an | d diesel fuel is in | units of 1 000 ga | illons per day |             |             |             |                |

| CalYr   | ROG_EF            | CO_EF            | NOx_EF      | CO2_EF      | PM10_EF     | SOx_EF      | MPG         |
|---------|-------------------|------------------|-------------|-------------|-------------|-------------|-------------|
| 2012    | 0.006566571       | 0.017991961      | 0.045368222 | 6.013506551 | 0.002118648 | 5.73717E-05 | 3.695385053 |
| 2013    | 0.005758445       | 0.015767612      | 0.042463853 | 6.018607437 | 0.001788918 | 5.74203E-05 | 3.692253143 |
| 2014    | 0.003887554       | 0.010740936      | 0.039517338 | 6.041570973 | 0.001157791 | 5.76394E-05 | 3.678219179 |
| 2015    | 0.003142674       | 0.008390479      | 0.034790276 | 6.019223607 | 0.000780785 | 5.74262E-05 | 3.691875177 |
| 2016    | 0.001929238       | 0.004839952      | 0.029939149 | 6.014797955 | 0.000301759 | 5.7384E-05  | 3.694591637 |
| 2017    | 0.001774298       | 0.004400889      | 0.026881077 | 6.002866311 | 0.000228361 | 5.72702E-05 | 3.701935221 |
| 2018    | 0.00177739        | 0.004399158      | 0.024242074 | 5.990884096 | 0.000215391 | 5.71558E-05 | 3.709339367 |
| 2019    | 0.001750812       | 0.004324865      | 0.022123964 | 5.980905284 | 0.000203386 | 5.70606E-05 | 3.715528196 |
| 2020    | 0.001724338       | 0.004210818      | 0.018118119 | 5.966543593 | 0.000172556 | 5.69236E-05 | 3.72447161  |
| 2021    | 0.001749394       | 0.004265915      | 0.013539635 | 5.946467379 | 0.000152344 | 5.67321E-05 | 3.737046015 |
| 2022    | 0.001826238       | 0.004455549      | 0.009974917 | 5.931070757 | 0.000148008 | 5.65852E-05 | 3.74674711  |
| 2023    | 0.001690059       | 0.00412674       | 0.008560181 | 5.917290877 | 0.000144525 | 5.64537E-05 | 3.755472341 |
| 2024    | 0.001696201       | 0.004142473      | 0.008624242 | 5.917107026 | 0.000145396 | 5.6452E-05  | 3.755589027 |
| 2025    | 0.001702663       | 0.004158655      | 0.008680314 | 5.917024342 | 0.0001462   | 5.64512E-05 | 3.755641508 |
| 2026    | 0.001706099       | 0.004167306      | 0.008708153 | 5.91696575  | 0.000146642 | 5.64506E-05 | 3.755678698 |
| 2027    | 0.001704597       | 0.004163956      | 0.008699267 | 5.916862414 | 0.00014658  | 5.64496E-05 | 3.75574429  |
| 2028    | 0.001700154       | 0.004153513      | 0.008673551 | 5.916714817 | 0.000146235 | 5.64482E-05 | 3.755837979 |
| 2029    | 0.001695783       | 0.004143225      | 0.008653483 | 5.916574661 | 0.000145891 | 5.64469E-05 | 3.75592695  |
| 2030    | 0.001693565       | 0.004138039      | 0.008645542 | 5.916492812 | 0.000145727 | 5.64461E-05 | 3.75597891  |
| 2031    | 0.00169308        | 0.004136929      | 0.008644655 | 5.916468312 | 0.000145698 | 5.64459E-05 | 3.755994464 |
| 2032    | 0.001692125       | 0.004134681      | 0.00863877  | 5.916437532 | 0.000145623 | 5.64456E-05 | 3.756014004 |
| 2033    | 0.00169064        | 0.004131148      | 0.008628696 | 5.916400826 | 0.000145495 | 5.64452E-05 | 3.756037306 |
| 2034    | 0.001688866       | 0.004126923      | 0.008620122 | 5.916358772 | 0.000145341 | 5.64448E-05 | 3.756064005 |
| 2035    | 0.001687989       | 0.004124839      | 0.008615761 | 5.916336574 | 0.000145266 | 5.64446E-05 | 3.756078097 |
| Emissio | ns factors are in | units of lb/VMT. |             |             |             |             |             |

Appendix I: Project Emissions

|       | Total Sentinel<br>Butterfield | Total White Knob | Total Processing Plant | Total Offsite | Total Project w/o<br>White Knob<br>Reductions | Total Project w/<br>White Knob<br>Reductions |
|-------|-------------------------------|------------------|------------------------|---------------|-----------------------------------------------|----------------------------------------------|
| HC    | 2.69                          | -1.54            | 0.01                   | 0.11          | 2.82                                          | 1.27                                         |
| NOx   | 48.1                          | -26.4            | 0.10                   | 2.07          | 50.3                                          | 23.9                                         |
| СО    | 32.6                          | -21.1            | 0.07                   | 0.50          | 33.1                                          | 12.0                                         |
| SOx   | 0.0022                        | -0.0010          | 0.0000                 | 0.0027        | 0.0049                                        | 0.0038                                       |
| TSP   | 262                           | -151             | 4.04                   | 2.93          | 269                                           | 118                                          |
| PM10  | 87.3                          | -54.5            | 0.76                   | 0.68          | 88.8                                          | 34.3                                         |
| PM2.5 | 14.4                          | -12.5            | 0.18                   | 0.25          | 14.8                                          | 2.38                                         |
| CO2   | 9,900                         | -4,978           | 28.3                   | 0.14          | 9,929                                         | 4,951                                        |

# 2008 Emissions from Processing Plant Area

360,117 tons produced in 2008

| EMISSION SOURCE / OPERATION / ACTIVITY          | DEVICE ID # CRITERIA EMISSIONS (tons per year) |       |       |       |      |      |      |      |           |     |      |
|-------------------------------------------------|------------------------------------------------|-------|-------|-------|------|------|------|------|-----------|-----|------|
|                                                 |                                                | TSP   | PM10  | PM2.5 | СО   | NO   | x TO | OG   | ROG / VOC | SOx |      |
| DRILLING                                        | 90,010                                         | -     | -     |       | -    | -    | -    | -    |           | -   | -    |
| BLASTING                                        | 90,011                                         | -     | -     |       | -    | -    | -    | -    |           | -   | _ '  |
| EXPLOSIVES                                      | 90,011                                         | -     | -     |       | -    | -    | -    | -    |           | -   | _ '  |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL    | 90012a                                         | 0.10  | 0.05  | (     | 0.02 | -    | -    | -    |           | -   | _ '  |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT      | 90006,7,8,9                                    | 0.00  | 0.00  | (     | 0.00 | -    | -    | -    |           | -   | _ '  |
| Ball Mill #1                                    | 2,002                                          | 0.93  | 0.06  | (     | 0.02 | -    | -    | -    |           | -   | -    |
| Tertiary Crushing                               | 757                                            | 19.09 | 1.24  | (     | 0.38 | -    | -    | -    |           | -   | -    |
| Roller Mill #1                                  | 763                                            | 1.99  | 0.13  | (     | 0.04 | -    | -    | -    |           | -   | -    |
| Roller Mill #2                                  | 763                                            | 1.46  | 0.09  | (     | 0.03 | -    | -    | -    |           | -   | -    |
| Roller Mill #3                                  | 3,935                                          | 0.89  | 0.06  | (     | 0.02 | -    | -    | -    |           | -   | _ '  |
| Roller Mill #4                                  | 7,674                                          | 0.88  | 0.06  | (     | 0.02 | -    | -    | -    |           | -   | _ '  |
| Surface Treating Plant                          | 2,003                                          | 0.01  | 0.00  | (     | 0.00 | -    | -    | -    |           | -   | _ '  |
| Rock Storage System/Plan                        | 754                                            | 10.77 | 3.01  | (     | 0.94 | -    | -    | -    |           | -   | _ '  |
| Optical Sorter                                  | 763                                            | 0.01  | 0.01  | (     | 0.00 | -    | -    | -    |           | -   | -    |
| Coarse Product Storage System                   | 2,009                                          | 0.27  | 0.04  | (     | 0.01 | -    | -    | -    |           | -   | -    |
| Silo 81-70c                                     | 4,967                                          | 0.32  | 0.05  | (     | 0.01 | -    | -    | -    |           | -   | _    |
| Bulk Loadout 82 System                          | 2,007                                          | 0.09  | 0.01  | (     | 0.00 | -    | -    | -    |           | -   | -    |
| Bulk Loadout 83 System                          | 2,009                                          | 0.02  | 0.00  | (     | 0.00 | -    | -    | -    |           | -   | -    |
| STOCKPILES - WIND EROSION                       | 90,015                                         | 1.06  | 0.53  | (     | 0.21 | -    | -    | -    |           | -   | -    |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT     | VARIOUS                                        | 0.03  | 0.03  | (     | 0.03 | 0.07 | 0.26 | 0.00 | 0.00      | ) ( | 0.07 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT        | 90001,2                                        |       |       |       |      |      |      |      |           |     |      |
| PAVED ROADS - ENTRAINED DUST                    | =                                              | -     | -     |       | -    | -    | -    | -    |           | -   | -    |
| UNPAVED ROADS - ENTRAINED DUST                  | 90,013                                         | 16.99 | 5.01  | (     | ).77 | -    | -    | -    |           | -   | -    |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND | ROA 90014a                                     | 11.25 | 5.62  | 2     | 2.25 | -    | -    | -    |           | -   | -    |
|                                                 | GRAND TOTAL                                    | 66.15 | 16.01 |       | 1.75 | 0.07 | 0.26 | 0.00 | 0.00      | ) ( | 0.07 |

## 2008 Emissions from Sentinel-Butterfield Quarry Area

449,672 tons excavated in 2008

| EMISSION SOURCE / OPERATION / ACTIVITY            | DEVICE ID # | CRITERIA | <b>EMISSIOI</b> | NS (tons per y | /ear) |      |      |           |     |      |
|---------------------------------------------------|-------------|----------|-----------------|----------------|-------|------|------|-----------|-----|------|
|                                                   |             | TSP      | PM10            | PM2.5          | СО    | NOx  | TOG  | ROG / VOC | SOx |      |
| DRILLING                                          | 90,010      | 0.22     | 0.18            | 0.18           | -     | -    |      |           | -   | -    |
| BLASTING                                          | 90,011      | 10.42    | 5.42            | 0.31           |       | -    | -    | -         | -   | -    |
| EXPLOSIVES                                        | 30,502,514  | -        | -               | -              | 2.95  | 0.75 | -    | -         | -   | -    |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL      | 90,012      | 0.05     | 0.02            | 0.01           |       |      |      | -         | -   | -    |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT        | 90006,7,8,9 | 0.28     | 0.14            | 0.04           | -     | -    |      |           | -   | -    |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1    | 751         | 6.08     | 1.06            | 0.33           | -     | -    |      |           | -   | -    |
| STOCKPILES - WIND EROSION                         | 90,015      | 0.67     | 0.34            | 0.13           | -     | -    | -    | -         | -   | -    |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT       | VARIOUS     | 0.03     | 0.03            | 0.03           | 0.08  | 0.38 | 0.03 | 0.0       | 3   | 0.00 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT          | 90001,2     |          |                 |                |       |      |      |           |     |      |
| UNPAVED ROADS - ENTRAINED DUST                    | 90,013      |          |                 |                |       |      |      |           |     |      |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND I | ROA 90,014  | 20.10    | 10.05           | 4.02           |       |      | -    | -         | -   | -    |
|                                                   | GRAND TOTAL | 37.84    | 17.23           | 5.05           | 3.03  | 1.12 | 0.03 | 0.0       | 3   | 0.00 |

#### 2008 Emissions from White Knob Quarry Area

243,036 tons excavated in 2008

| EMISSION SOURCE / OPERATION / ACTIVITY          | DEVICE ID#  | CE ID # CRITERIA EMISSIONS (tons per year) |       |       |        |        |     |           |     |   |
|-------------------------------------------------|-------------|--------------------------------------------|-------|-------|--------|--------|-----|-----------|-----|---|
|                                                 |             | TSP                                        | PM10  | PM2.5 | СО     | NOx    | TOG | ROG / VOC | SOx |   |
| DRILLING                                        | 90,010      | 0.12                                       | 0.10  | 0.1   | 0      |        |     | -         | -   | - |
| BLASTING                                        | 90,011      | 2.84                                       | 1.47  | 0.0   | 9      |        | -   | -         | -   | - |
| EXPLOSIVES                                      | 90,011      | -                                          | -     |       | - 1.94 | 4 0.49 | )   | -         | -   | - |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL    | 90012a      | 11.01                                      | 5.35  | 1.6   | 4      |        | -   | -         | -   | - |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT      | 90006,7,8,9 | 0.87                                       | 0.42  | 0.1   | 3      |        | -   | -         | -   | - |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1  | 2,456       | 6.20                                       | 2.01  | 0.6   | 3      |        |     | -         | -   | - |
| STOCKPILES - WIND EROSION                       | 90,015      | 0.18                                       | 0.09  | 0.0   | 4      |        | -   | -         | -   | - |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT     | VARIOUS     |                                            |       |       |        |        |     |           |     |   |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT        | 90001,2     |                                            |       |       |        |        |     |           |     |   |
| UNPAVED ROADS - ENTRAINED DUST                  | 90,013      |                                            |       |       |        |        |     |           |     |   |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND | ROA 90014a  | 20.66                                      | 10.33 | 4.1   | 3      |        | -   | -         | -   | - |
|                                                 | GRAND TOTAL | 41.88                                      | 19.78 | 6.7   | 5 1.94 | 4 0.49 | )   | -         | -   | - |

Notes: There are no paved roads on-site. Exhaust from stationary and portable equipment excludes White Knob generator which is calculated elsewhere. Exhaust from mobile/vehicular equipment and travel on unpaved roads is calculated elsewhere. Wind erosion is not expected to change because the active area that is disturbed on a daily basis will not change with project.

#### **Baseline Emissions from Processing Plant Area**

653,635 tons produced in Baseline

EMISSION SOURCE / OPERATION / ACTIVITY CRITERIA EMISSIONS (tons per year)

|                                                     | Multiplier | TSP    | PM10   | PM2.5  | CO N | Ox 7 | ГОG  | ROG / VOC SC | Эx   |
|-----------------------------------------------------|------------|--------|--------|--------|------|------|------|--------------|------|
| DRILLING                                            | -          | -      | -      |        | -    | -    | -    | -            | -    |
| BLASTING                                            | -          | -      | -      |        | -    | -    | -    | -            | -    |
| EXPLOSIVES                                          | -          | -      | -      |        | -    | -    | -    | -            | -    |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 1.82       | 0.185  | 0.090  | 0.028  | -    | -    | -    | -            | -    |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 1.82       | 0.0072 | 0.0035 | 0.0011 | -    | -    | -    | -            | -    |
| Ball Mill #1                                        | 1.82       | 1.68   | 0.106  | 0.033  | -    | -    | -    | -            | -    |
| Tertiary Crushing                                   | 1.82       | 34.7   | 2.25   | 0.69   | -    | -    | -    | -            | -    |
| Roller Mill #1                                      | 1.82       | 3.61   | 0.242  | 0.076  | -    | -    | -    | -            | -    |
| Roller Mill #2                                      | 1.82       | 2.66   | 0.167  | 0.052  | -    | -    | -    | -            | -    |
| Roller Mill #3                                      | 1.82       | 1.62   | 0.104  | 0.033  | -    | -    | -    | -            | -    |
| Roller Mill #4                                      | 1.82       | 1.60   | 0.104  | 0.033  | -    | -    | -    | -            | -    |
| Surface Treating Plant                              | 1.82       | 0.011  | 0.0010 | 0.0003 | -    | -    | -    | -            | -    |
| Rock Storage System/Plan                            | 1.82       | 19.5   | 5.47   | 1.71   | -    | -    | -    | -            | -    |
| Optical Sorter                                      | 1.82       | 0.019  | 0.014  | 0.004  | -    | -    | -    | -            | -    |
| Coarse Product Storage System                       | 1.82       | 0.48   | 0.080  | 0.025  | -    | -    | -    | -            | -    |
| Silo 81-70c                                         | 1.82       | 0.58   | 0.082  | 0.026  | -    | -    | -    | -            | -    |
| Bulk Loadout 82 System                              | 1.82       | 0.16   | 0.025  | 0.008  | -    | -    | -    | -            | -    |
| Bulk Loadout 83 System                              | 1.82       | 0.028  | 0.005  | 0.001  | -    | -    | -    | -            | -    |
| STOCKPILES - WIND EROSION                           | 1.00       | 1.06   | 0.53   | 0.21   | -    | -    | -    | -            | -    |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 1.82       | 0.047  | 0.046  | 0.046  | 0.12 | 0.48 | 0.01 | 0.01         | 0.13 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          | -      | -      |        | -    | -    | -    | -            | -    |
| PAVED ROADS - ENTRAINED DUST                        | -          | -      | -      |        | -    | -    | -    | -            | -    |
| UNPAVED ROADS - ENTRAINED DUST                      | 1.82       | 30.84  | 9.10   | 1.40   | -    | -    | -    | -            | -    |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | 1.00       | 11.25  | 5.62   | 2.25   | -    | -    | -    | -            | -    |
|                                                     |            | 110.03 | 24.04  | 6.62   | 0.12 | 0.48 | 0.01 | 0.01         | 0.13 |

## Baseline Emissions from Sentinel-Butterfield Quarry Area

624,191 tons excavated in Baseline

| EMISSION SOURCE / OPERATION / ACTIVITY              |            |       |       |       |    |      |      |       |             |        |
|-----------------------------------------------------|------------|-------|-------|-------|----|------|------|-------|-------------|--------|
|                                                     | Multiplier | TSP   | PM10  | PM2.5 | СО | NOx  | TC   | OG RO | og / voc so | Эx     |
| DRILLING                                            | 1.39       | 0.31  | 0.25  | 0.25  |    | -    | -    | -     | -           | -      |
| BLASTING                                            | 1.39       | 14.46 | 7.52  | 0.43  |    | -    | -    | -     | -           | -      |
| EXPLOSIVES                                          | 1.39       | -     | -     | -     |    | 4.09 | 1.04 | -     | -           | -      |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 2.57       | 28.27 | 13.75 | 4.20  |    | -    | -    | -     | -           | -      |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 1.39       | 0.39  | 0.19  | 0.06  |    | -    | -    | -     | -           | -      |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      | 1.39       | 8.43  | 1.48  | 0.46  |    | -    | -    | -     | -           | -      |
| STOCKPILES - WIND EROSION                           | 1.00       | 0.67  | 0.34  | 0.13  |    | -    | -    | -     | -           | -      |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 1.39       | 0.04  | 0.04  | 0.04  |    | 0.11 | 0.52 | 0.042 | 0.037       | 0.0017 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          | -     | -     | -     |    | -    | -    | -     | -           | -      |
| UNPAVED ROADS - ENTRAINED DUST                      | -          | -     | -     | -     |    | -    | -    | -     | -           | -      |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | 1.00       | 20.10 | 10.05 | 4.02  |    | -    | -    | -     | -           | -      |
|                                                     |            | 72 66 | 33 61 | 9 59  |    | 4.2  | 1.6  | 0.042 | 0.037       | 0.0017 |

Note: Bulldozing scaled based on White Knob Quarry activity level to reflect increased overburden with

#### **Baseline Emissions from White Knob Quarry Area**

463,467 tons excavated in Baseline

| EMISSION SOURCE / OPERATION / ACTIVITY CRITERIA EMISSIONS (tons per year) |            |       |       |       |    |      |      |    |             |  |
|---------------------------------------------------------------------------|------------|-------|-------|-------|----|------|------|----|-------------|--|
|                                                                           | Multiplier | TSP   | PM10  | PM2.5 | СО | NOx  | TOG  | RO | G / VOC SOx |  |
| DRILLING                                                                  | 1.91       | 0.23  | 0.19  | 0.19  |    | -    | -    | -  | -           |  |
| BLASTING                                                                  | 1.91       | 5.41  | 2.81  | 0.16  |    | -    | -    | -  | -           |  |
| EXPLOSIVES                                                                | 1.91       | -     | -     | -     |    | 3.71 | 0.94 | -  | -           |  |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL                              | 1.91       | 20.99 | 10.21 | 3.12  |    | -    | -    | -  | -           |  |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT                                | 1.91       | 1.65  | 0.81  | 0.25  |    | -    | -    | -  | -           |  |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1                            | 1.91       | 11.83 | 3.83  | 1.20  |    | -    | -    | -  | -           |  |
| STOCKPILES - WIND EROSION                                                 | 1.00       | 0.18  | 0.09  | 0.04  |    | -    | -    | -  | -           |  |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT                               | -          | -     | -     | -     |    | -    | -    | -  | -           |  |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT                                  | -          | -     | -     | -     |    | -    | -    | -  | -           |  |
| UNPAVED ROADS - ENTRAINED DUST                                            | -          | -     | -     | -     |    | -    | -    | -  | -           |  |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA                       | 1.00       | 20.66 | 10.33 | 4.13  |    | -    | -    | -  | -           |  |
| _                                                                         |            | 60.96 | 28.27 | 9.08  |    | 3.71 | 0.94 | -  | -           |  |

Note: Sentinel-Butterfield bulldozing scaled based on White Knob Quarry activity level to reflect increased overburden with project.

#### Project Plus Baseline Emissions from Processing Plant Area

680,000 tons produced with Project

CRITERIA EMISSIONS (tons per year) **EMISSION SOURCE / OPERATION / ACTIVITY** Multiplier PM10 СО NOx TOG ROG / VOC SOx PM2.5 DRILLING BLASTING **EXPLOSIVES** BULLDOZING, SCRAPING AND GRADING OF MATERIAL 1.89 0.19 0.09 0.03 LOADING OF MATERIAL(S) MINE / QUARRY / PIT 1 89 0.01 0.00 0.00 Ball Mill #1 1.89 1.75 0.11 0.03 0.72 Tertiary Crushing 1.89 36.05 2.34 Roller Mill #1 1.89 3.75 0.25 0.08 Roller Mill #2 1.89 2.77 0.17 0.05 Roller Mill #3 1.89 1.68 0.11 0.03 Roller Mill #4 1.89 1.67 0.11 0.03 Surface Treating Plant 1.89 0.01 0.00 0.00 Rock Storage System/Plan 1.89 20.33 5.69 1.78 Optical Sorter 1.89 0.02 0.01 0.00 Coarse Product Storage System 1.89 0.50 0.08 0.03 Silo 81-70c 0.09 1 89 0.60 0.03 Bulk Loadout 82 System 1.89 0.16 0.03 0.01 Bulk Loadout 83 System 0.03 0.00 0.00 1.89 STOCKPILES - WIND EROSION 1.00 1.06 0.53 0.21 **EXHAUST - STATIONARY AND PORTABLE EQUIPMENT** 0.50 0.01 0.0054 1.89 0.05 0.05 0.05 0.12 0.13 EXHAUST - MOBILE AND VEHICULAR EQUIPMENT PAVED ROADS - ENTRAINED DUST UNPAVED ROADS - ENTRAINED DUST 1.89 32.08 9.47 1.45 WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA 1.00 11.25 5.62 2.25

#### Project Plus Baseline Emissions from Sentinel-Butterfield Quarry Area

6.79

24 77

1,487,500 tons excavated with Project

113.97

| EMISSION SOURCE / OPERATION / ACTIVITY              |            | CRITERIA EMISSIONS (tons per year) |       |       |    |       |      |      |            |        |
|-----------------------------------------------------|------------|------------------------------------|-------|-------|----|-------|------|------|------------|--------|
|                                                     | Multiplier | TSP                                | PM10  | PM2.5 | СО | NOx   | TOG  | i R0 | og / voc s | Ox     |
| DRILLING                                            | 3.31       | 0.74                               | 0.60  | 0.60  |    | -     | -    | -    | -          |        |
| BLASTING                                            | 3.31       | 34.46                              | 17.92 | 1.03  |    | -     | -    | -    | -          | -      |
| EXPLOSIVES                                          | 3.31       | -                                  | -     | -     |    | 9.75  | 2.47 | -    | -          | -      |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 6.12       | 67.36                              | 32.77 | 10.01 |    | -     | -    | -    | -          | -      |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 3.31       | 0.92                               | 0.45  | 0.14  |    | -     | -    | -    | -          | -      |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      | 3.31       | 20.10                              | 3.52  | 1.09  |    | -     | -    | -    | -          | -      |
| STOCKPILES - WIND EROSION                           | 1.00       | 0.67                               | 0.34  | 0.13  |    | -     | -    | -    | -          | -      |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 3.31       | 0.09                               | 0.09  | 0.09  |    | 0.27  | 1.24 | 0.10 | 0.088      | 0.0041 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          | -                                  | -     | -     |    | -     | -    | -    | -          | -      |
| UNPAVED ROADS - ENTRAINED DUST                      | -          | -                                  | -     | -     |    | -     | -    | -    | -          |        |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | 1.00       | 20.10                              | 10.05 | 4.02  |    | -     | -    | -    | -          |        |
| •                                                   |            | 1// //                             | 65.72 | 17 11 |    | 10.02 | 3 72 |      |            |        |

Note: Bulldozing scaled based on White Knob Quarry activity level to reflect increased overburden with  $\boldsymbol{p}$ 

0.50

0.12

0.01

0.01

0.13

#### Project Plus Baseline Emissions from White Knob Quarry Area

- tons excavated with Project

| EMISSION SOURCE / OPERATION / ACTIVITY              |            |     |      |       |    |     |     |     |           |   |  |  |  |
|-----------------------------------------------------|------------|-----|------|-------|----|-----|-----|-----|-----------|---|--|--|--|
|                                                     | Multiplier | TSP | PM10 | PM2.5 | СО | NOx | TOG | ROG | / VOC SOx |   |  |  |  |
| DRILLING                                            |            | -   | -    | -     | -  | -   | -   | -   | -         |   |  |  |  |
| BLASTING                                            |            | -   | -    | -     | -  | -   | -   | -   | -         |   |  |  |  |
| EXPLOSIVES                                          |            | -   | -    | -     | -  | -   | -   | -   | -         | - |  |  |  |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        |            | -   | -    | -     | -  | -   | -   | -   | -         |   |  |  |  |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          |            | -   | -    | -     | -  | -   | -   | -   | -         | - |  |  |  |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      |            | -   | -    | -     | -  | -   | -   | -   | -         |   |  |  |  |
| STOCKPILES - WIND EROSION                           |            | -   | -    | -     | -  | -   | -   | -   | -         |   |  |  |  |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         |            | -   | -    | -     | -  | -   | -   | -   | -         | - |  |  |  |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            |            | -   | -    | -     | -  | -   | -   | -   | -         | - |  |  |  |
| UNPAVED ROADS - ENTRAINED DUST                      |            | -   | -    | -     | -  | -   | -   | -   | -         |   |  |  |  |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | Į.         | -   | -    | -     | -  | -   | -   | -   | -         |   |  |  |  |

Note: Sentinel-Butterfield bulldozing scaled based on White Knob Quarry activity level to reflect increased overburden with project.

#### **Project Emissions from Processing Plant Area**

|                                                     | Project Emissions 26,365 tons change from baseline CRITERIA EMISSIONS (tons per year) |      |       |      |      |      |             |      |  |  |  |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------|------|-------|------|------|------|-------------|------|--|--|--|--|
| EMISSION SOURCE / OPERATION / ACTIVITY              |                                                                                       |      |       | ,    |      |      | 200 (11000  |      |  |  |  |  |
|                                                     | TSP                                                                                   | PM10 | PM2.5 | CO   | NOx  | TOG  | ROG / VOC S | ,Ox  |  |  |  |  |
| DRILLING                                            | -                                                                                     | -    | -     | -    | -    | -    | -           | -    |  |  |  |  |
| BLASTING                                            | -                                                                                     | -    | -     | -    | -    | -    | -           | -    |  |  |  |  |
| EXPLOSIVES                                          | -                                                                                     | -    | -     | -    | -    | -    | -           | -    |  |  |  |  |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 0.01                                                                                  |      | 0.00  |      | -    | -    | -           | -    |  |  |  |  |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 0.00                                                                                  | 0.00 | 0.00  |      | -    | -    | -           | -    |  |  |  |  |
| Ball Mill #1                                        | 0.07                                                                                  | 0.00 | 0.00  | -    | -    | -    | -           | -    |  |  |  |  |
| Tertiary Crushing                                   | 1.40                                                                                  | 0.09 | 0.03  | -    | -    | -    | -           | -    |  |  |  |  |
| Roller Mill #1                                      | 0.15                                                                                  | 0.01 | 0.00  | -    | -    | -    | -           | -    |  |  |  |  |
| Roller Mill #2                                      | 0.11                                                                                  | 0.01 | 0.00  | -    | -    | -    | -           | -    |  |  |  |  |
| Roller Mill #3                                      | 0.07                                                                                  | 0.00 | 0.00  | -    | -    | -    | -           | -    |  |  |  |  |
| Roller Mill #4                                      | 0.06                                                                                  | 0.00 | 0.00  | -    | -    | -    | -           | -    |  |  |  |  |
| Surface Treating Plant                              | 0.00                                                                                  | 0.00 | 0.00  | -    | -    | -    | -           | -    |  |  |  |  |
| Rock Storage System/Plan                            | 0.79                                                                                  | 0.22 | 0.07  | -    | -    | -    | -           | -    |  |  |  |  |
| Optical Sorter                                      | 0.00                                                                                  | 0.00 | 0.00  | -    | -    | -    | -           | -    |  |  |  |  |
| Coarse Product Storage System                       | 0.02                                                                                  | 0.00 | 0.00  | -    | -    | -    | -           | -    |  |  |  |  |
| Silo 81-70c                                         | 0.02                                                                                  | 0.00 | 0.00  | -    | -    | -    | -           | -    |  |  |  |  |
| Bulk Loadout 82 System                              | 0.01                                                                                  | 0.00 | 0.00  | -    | -    | -    | -           | -    |  |  |  |  |
| Bulk Loadout 83 System                              | 0.00                                                                                  | 0.00 | 0.00  | -    | -    | -    | -           | -    |  |  |  |  |
| STOCKPILES - WIND EROSION                           | -                                                                                     | -    | -     | -    | -    | -    | _           | -    |  |  |  |  |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 0.00                                                                                  | 0.00 | 0.00  | 0.00 | 0.02 | 0.00 | 0.00        | 0.01 |  |  |  |  |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -                                                                                     | -    | -     | -    | -    | -    | _           | _    |  |  |  |  |
| PAVED ROADS - ENTRAINED DUST                        | _                                                                                     | -    | -     | -    | -    | -    | _           | -    |  |  |  |  |
| UNPAVED ROADS - ENTRAINED DUST                      | 1.24                                                                                  | 0.37 | 0.06  | -    | -    | -    | _           | -    |  |  |  |  |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | -                                                                                     | -    | -     | -    | -    | -    | -           | -    |  |  |  |  |
|                                                     | 3.94                                                                                  | 0.72 | 0.17  | 0.00 | 0.02 | 0.00 | 0.00        | 0.01 |  |  |  |  |

## Project Emissions from Sentinel-Butterfield Quarry Area

|                                                     | Project Em |            | ,           |     | change fror | n baseline |       |             |       |
|-----------------------------------------------------|------------|------------|-------------|-----|-------------|------------|-------|-------------|-------|
| EMISSION SOURCE / OPERATION / ACTIVITY              | CRITERIA E | MISSIONS ( | tons per ye | ar) |             |            |       |             |       |
|                                                     | TSP        | PM10       | PM2.5       | CO  | NOx         | TOG        | R     | og / voc so | <     |
| DRILLING                                            | 0.43       | 0.35       | 0.35        |     | -           | -          | -     | -           | -     |
| BLASTING                                            | 20.00      | 10.40      | 0.60        |     | -           | -          | -     | -           | -     |
| EXPLOSIVES                                          | -          | -          | -           |     | 5.66        | 1.44       | -     | -           | -     |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 39.10      | 19.02      | 5.81        |     | -           | -          | -     | -           | -     |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 0.53       | 0.26       | 0.08        |     | -           | -          | -     | -           | -     |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      | 11.66      | 2.04       | 0.63        |     | -           | -          | -     | -           | -     |
| STOCKPILES - WIND EROSION                           | -          | -          | -           |     | -           | -          | -     | -           | -     |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 0.05       | 0.05       | 0.05        |     | 0.16        | 0.72       | 0.06  | 0.05        | 0.00  |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          |            | -           |     | -           | -          | -     | -           | -     |
| UNPAVED ROADS - ENTRAINED DUST                      | -          | -          | -           |     | -           | -          | -     | -           | -     |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | -          | -          | -           |     | -           | -          | -     | -           | -     |
|                                                     | 71.78      | 32.12      | 7.52        |     | 5.82        | 2.16       | -0.04 | -0.04       | -0.00 |
|                                                     | roject.    |            |             |     |             |            |       |             |       |

#### **Project Emissions from White Knob Quarry Area**

| EMISSION SOURCE / OPERATION / ACTIVITY              | Project Em |        | -463,467<br>tons per yea |       | ge from bas | eline |     |             |   |
|-----------------------------------------------------|------------|--------|--------------------------|-------|-------------|-------|-----|-------------|---|
|                                                     | TSP        | PM10   | PM2.5                    | СО    | NOx         | TOG   | ROC | G / VOC SOx |   |
| DRILLING                                            | -0.23      | -0.19  | -0.19                    |       |             |       | -   | -           | - |
| BLASTING                                            | -5.41      | -2.81  | -0.16                    |       |             | -     | -   | -           | - |
| EXPLOSIVES                                          | -          | -      | -                        | -3.71 | L -0.94     | ļ.    | -   | -           | - |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | -20.99     | -10.21 | -3.12                    |       |             |       | -   | -           | - |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | -1.65      | -0.81  | -0.25                    |       |             |       | -   | -           | - |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      | -11.83     | -3.83  | -1.20                    |       |             | -     | -   | -           | - |
| STOCKPILES - WIND EROSION                           | -0.18      | -0.09  | -0.04                    |       |             |       | -   | -           | - |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | -          | -      | -                        |       |             |       | -   | -           | - |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          | -      | -                        |       |             | -     | -   | -           | - |
| UNPAVED ROADS - ENTRAINED DUST                      | -          | -      | -                        |       |             |       | -   | -           | - |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | -20.66     | -10.33 | -4.13                    |       |             | -     | -   | -           | - |
|                                                     | -60.96     | -28 27 | -9 08                    | -3.7  | 1 -0.94     | 1     | _   |             |   |

| Base |  |
|------|--|
|      |  |
|      |  |

|            | VOL1         | WK Crusher |          | VOL2         | WK Pit    |          | VOL3     | WR Pit  |          |
|------------|--------------|------------|----------|--------------|-----------|----------|----------|---------|----------|
|            | Per Year     | Per Day    | Per Hour | Per Year     | Per Day   | Per Hour | Per Year | Per Day | Per Hour |
| hp-hr      | 1,002,598.38 | 10,025.98  | 1,671.00 | 1,320,206.27 | 13,202.06 | 2,200.34 | -        | -       | -        |
| HC (lb)    | 640.25       | 6.40       | 1.07     | 554.35       | 5.54      | 0.92     | -        | -       | -        |
| NOx (lb)   | 9,898.01     | 98.98      | 16.50    | 8,146.06     | 81.46     | 13.58    | -        | -       | -        |
| PM (lb)    | 327.63       | 3.28       | 0.55     | 358.76       | 3.59      | 0.60     | -        | -       | -        |
| CO (lb)    | 14,200.65    | 142.01     | 23.67    | 5,306.16     | 53.06     | 8.84     | -        | -       | -        |
| SOx (lb)   | 0.31         | 0.00       | 0.00     | 0.29         | 0.00      | 0.00     | -        | -       | -        |
| CO2 (tons) | 583.94       | 5.84       | 0.97     | 768.93       | 7.69      | 1.28     | -        | -       | -        |

# Project

|            | VOL1     | WK Crusher |          | VOL2     | WK Pit  |          | VOL3     | WR Pit  |          |
|------------|----------|------------|----------|----------|---------|----------|----------|---------|----------|
|            | Per Year | Per Day    | Per Hour | Per Year | Per Day | Per Hour | Per Year | Per Day | Per Hour |
| hp-hr      |          |            | -        | -        | -       |          |          | -       | -        |
| HC (lb)    |          |            | -        | -        | -       |          |          | -       | -        |
| NOx (lb)   |          |            | -        | -        | -       |          |          | -       | -        |
| PM (lb)    |          |            | -        | -        | -       |          |          | -       | -        |
| CO (lb)    |          |            | -        | -        | -       |          |          | -       | -        |
| SOx (lb)   |          |            | -        | -        | -       |          |          | -       | -        |
| CO2 (tons) |          |            | -        | -        | -       |          |          | -       | -        |

|            | VOL1          | WK Crusher |           | VOL2          | WK Pit     | ,         | VOL3     | WR Pit  |          |
|------------|---------------|------------|-----------|---------------|------------|-----------|----------|---------|----------|
|            | Per Year      | Per Day    | Per Hour  | Per Year      | Per Day    | Per Hour  | Per Year | Per Day | Per Hour |
| hp-hr      | -1,002,598.38 | -10,025.98 | -1,671.00 | -1,320,206.27 | -13,202.06 | -2,200.34 | -        | -       | -        |
| HC (lb)    | -640.25       | -6.40      | -1.07     | -554.35       | -5.54      | -0.92     | -        | -       | -        |
| NOx (lb)   | -9,898.01     | -98.98     | -16.50    | -8,146.06     | -81.46     | -13.58    | -        | -       | -        |
| PM (lb)    | -327.63       | -3.28      | -0.55     | -358.76       | -3.59      | -0.60     | -        | -       | -        |
| CO (lb)    | -14,200.65    | -142.01    | -23.67    | -5,306.16     | -53.06     | -8.84     | -        | -       | -        |
| SOx (lb)   | -0.31         | -0.00      | -0.00     | -0.29         | -0.00      | -0.00     | -        | -       | -        |
| CO2 (tons) | -583.94       | -5.84      | -0.97     | -768.93       | -7.69      | -1.28     | -        | -       | -        |

CO2 (tons)

-22.62

-0.23

-0.04

-22.62

-0.23

0.72

4.33

| Baseline   | VOL4       | OB1     | ,        | VOL5       | OB2     |          | VOL6         | Plant     |          | VOL7       | BF Pit    |          |
|------------|------------|---------|----------|------------|---------|----------|--------------|-----------|----------|------------|-----------|----------|
|            | Per Year   | Per Day | Per Hour | Per Year   | Per Day | Per Hour | Per Year     | Per Day   | Per Hour | Per Year   | Per Day   | Per Hour |
| hp-hr      | 38,829.60  | 388.30  | 64.72    | 38,829.60  | 388.30  |          | 1,050,976.27 | 10,509.76 | 1,751.63 |            | 2,716.11  | 452.68   |
| HC (lb)    | 16.30      | 0.16    | 0.03     | 16.30      | 0.16    | 0.03     | 578.23       | 5.78      | 0.96     | 114.05     | 1.14      | 0.19     |
| NOx (lb)   | 239.59     | 2.40    | 0.40     | 239.59     | 2.40    | 0.40     | 4,316.04     | 43.16     | 7.19     | 1,675.92   | 16.76     | 2.79     |
| PM (lb)    | 10.55      | 0.11    | 0.02     | 10.55      | 0.11    | 0.02     | 396.46       | 3.96      | 0.66     | 73.81      | 0.74      | 0.12     |
| CO (lb)    | 156.06     | 1.56    | 0.26     | 156.06     | 1.56    | 0.26     | 2,764.55     | 27.65     | 4.61     | 1,091.65   | 10.92     | 1.82     |
| SOx (lb)   | 0.01       | 0.00    | 0.00     | 0.01       | 0.00    | 0.00     | 0.14         | 0.00      | 0.00     | 0.06       | 0.00      | 0.00     |
| CO2 (tons) | 22.62      | 0.23    | 0.04     | 22.62      | 0.23    | 0.04     | 612.12       | 6.12      | 1.02     |            | 1.58      | 0.26     |
| Project    |            |         |          |            |         |          |              |           |          |            |           |          |
|            | VOL4       | OB1     | ,        | VOL5       | OB2     |          | VOL6         | Plant     |          | VOL7       | BF Pit    |          |
|            | Per Year   | Per Day | Per Hour | Per Year   | Per Day | Per Hour | Per Year     | Per Day   | Per Hour | Per Year   | Per Day   | Per Hour |
| hp-hr      | -          | -       | -        | -          | -       | -        | 1,093,368.41 | 10,933.68 | 1,822.28 | ########   | 10,155.06 | 1,692.51 |
| HC (lb)    | -          | -       | -        | -          | -       | -        | 601.55       | 6.02      | 1.00     | 457.65     | 4.58      | 0.76     |
| NOx (lb)   | -          | -       | -        | -          | -       | -        | 4,490.13     | 44.90     | 7.48     | 6,751.67   | 67.52     | 11.25    |
| PM (lb)    | -          | -       | -        | -          | -       | -        | 412.45       | 4.12      | 0.69     | 309.68     | 3.10      | 0.52     |
| CO (lb)    | -          | -       | -        | -          | -       | -        | 2,876.06     | 28.76     | 4.79     | 3,913.57   | 39.14     | 6.52     |
| SOx (lb)   | -          | -       | -        | -          | -       | -        | 0.15         | 0.00      | 0.00     | 0.22       | 0.00      | 0.00     |
| CO2 (tons) | -          | -       | -        | -          | -       | -        | 636.81       | 6.37      | 1.06     | 591.46     | 5.91      | 0.99     |
| Increment  |            |         |          |            |         |          |              |           |          |            |           |          |
| merement   | VOL4       | OB1     | ,        | VOL5       | OB2     |          | VOL6         | Plant     |          | VOL7       | BF Pit    |          |
|            | Per Year   | Per Day | Per Hour | Per Year   | Per Day | Per Hour | Per Year     | Per Day   | Per Hour | Per Year   | Per Day   | Per Hour |
| hp-hr      | -38,829.60 | -388.30 | -64.72   | -38,829.60 | -388.30 | -64.72   | 42,392.14    | 423.92    |          | 743,895.44 | 7,438.95  | 1,239.83 |
| HC (lb)    | -16.30     | -0.16   | -0.03    | -16.30     | -0.16   | -0.03    | 23.32        | 0.23      | 0.04     | 343.60     | 3.44      | 0.57     |
| NOx (lb)   | -239.59    | -2.40   | -0.40    | -239.59    | -2.40   | -0.40    | 174.09       | 1.74      | 0.29     | 5,075.75   | 50.76     | 8.46     |
| PM (lb)    | -10.55     | -0.11   | -0.02    | -10.55     | -0.11   | -0.02    | 15.99        | 0.16      | 0.03     | 235.87     | 2.36      | 0.39     |
| CO (lb)    | -156.06    | -1.56   | -0.26    | -156.06    | -1.56   | -0.26    | 111.51       | 1.12      | 0.19     | 2,821.92   | 28.22     | 4.70     |
| SOx (lb)   | -0.01      | -0.00   | -0.00    | -0.01      | -0.00   | -0.00    | 0.01         | 0.00      | 0.00     | 0.16       | 0.00      | 0.00     |
|            |            |         |          |            |         |          |              |           |          |            |           |          |

-0.04

24.69

0.25

0.04

433.27

|            | VOL8       | B5       | ,        | VOL9       | SB Crusher |          | VOL10        | Sen Pit   |          | Total        |           |          |  |
|------------|------------|----------|----------|------------|------------|----------|--------------|-----------|----------|--------------|-----------|----------|--|
|            | Per Year   | Per Day  | Per Hour | Per Year   | Per Day    | Per Hour | Per Year     | Per Day   | Per Hour | Per Year     | Per Day   | Per Hour |  |
| hp-hr      | 104,590.39 | 1,045.90 | 174.32   | 209,180.78 | 2,091.81   | 348.63   | 1,506,426.05 | 15,064.26 | 2,510.71 | 5,543,247.93 | 55,432.48 | 9,238.75 |  |
| HC (lb)    | 43.92      | 0.44     | 0.07     | 87.83      | 0.88       | 0.15     | 632.55       | 6.33      | 1.05     | 2,683.79     | 26.84     | 4.47     |  |
| NOx (lb)   | 645.35     | 6.45     | 1.08     | 1,290.71   | 12.91      | 2.15     | 9,295.09     | 92.95     | 15.49    | 35,746.35    | 357.46    | 59.58    |  |
| PM (lb)    | 28.42      | 0.28     | 0.05     | 56.84      | 0.57       | 0.09     | 409.36       | 4.09      | 0.68     | 1,672.38     | 16.72     | 2.79     |  |
| CO (lb)    | 420.37     | 4.20     | 0.70     | 840.74     | 8.41       | 1.40     | 6,054.61     | 60.55     | 10.09    | 30,990.85    | 309.91    | 51.65    |  |
| SOx (lb)   | 0.02       | 0.00     | 0.00     | 0.05       | 0.00       | 0.00     | 0.33         | 0.00      | 0.00     | 1.22         | 0.01      | 0.00     |  |
| CO2 (tons) | 60.92      | 0.61     | 0.10     | 121.83     | 1.22       | 0.20     | 877.39       | 8.77      | 1.46     | 3.228.55     | 32.29     | 5.38     |  |

## Project

|            | VOL8       | B5       |          | VOL9         | SB Crusher |          | VOL10        | Sen Pit   |          | Total        |           |           |  |
|------------|------------|----------|----------|--------------|------------|----------|--------------|-----------|----------|--------------|-----------|-----------|--|
|            | Per Year   | Per Day  | Per Hour | Per Year     | Per Day    | Per Hour | Per Year     | Per Day   | Per Hour | Per Year     | Per Day   | Per Hour  |  |
| hp-hr      | 249,247.62 | 2,492.48 | 415.41   | 2,583,350.22 | 25,833.50  | 4,305.58 | 3,221,703.57 | 32,217.04 | 5,369.51 | 8,163,175.86 | 81,631.76 | 13,605.29 |  |
| HC (lb)    | 104.66     | 1.05     | 0.17     | 417.81       | 4.18       | 0.70     | 1,352.79     | 13.53     | 2.25     | 2,934.46     | 29.34     | 4.89      |  |
| NOx (lb)   | 1,537.93   | 15.38    | 2.56     | 8,383.09     | 83.83      | 13.97    | 19,878.85    | 198.79    | 33.13    | 41,041.67    | 410.42    | 68.40     |  |
| PM (lb)    | 67.73      | 0.68     | 0.11     | 316.39       | 3.16       | 0.53     | 875.47       | 8.75      | 1.46     | 1,981.72     | 19.82     | 3.30      |  |
| CO (lb)    | 1,001.77   | 10.02    | 1.67     | 8,277.55     | 82.78      | 13.80    | 12,948.63    | 129.49    | 21.58    | 29,017.60    | 290.18    | 48.36     |  |
| SOx (lb)   | 0.06       | 0.00     | 0.00     | 0.78         | 0.01       | 0.00     | 0.71         | 0.01      | 0.00     | 1.92         | 0.02      | 0.00      |  |
| CO2 (tons) | 145.17     | 1.45     | 0.24     | 927.84       | 9.28       | 1.55     | 1,876.41     | 18.76     | 3.13     | 4,177.70     | 41.78     | 6.96      |  |

|            | VOL8       | B5       |          | VOL9         | SB Crusher |          | VOL10        | Sen Pit   |          |              |           |          |
|------------|------------|----------|----------|--------------|------------|----------|--------------|-----------|----------|--------------|-----------|----------|
|            | Per Year   | Per Day  | Per Hour | Per Year     | Per Day    | Per Hour | Per Year     | Per Day   | Per Hour | Per Year     | Per Day   | Per Hour |
| hp-hr      | 144,657.23 | 1,446.57 | 241.10   | 2,374,169.44 | 23,741.69  | 3,956.95 | 1,715,277.52 | 17,152.78 | 2,858.80 | 2,619,927.93 | 26,199.28 | 4,366.55 |
| HC (lb)    | 60.74      | 0.61     | 0.10     | 329.97       | 3.30       | 0.55     | 720.24       | 7.20      | 1.20     | 250.67       | 2.51      | 0.42     |
| NOx (lb)   | 892.58     | 8.93     | 1.49     | 7,092.39     | 70.92      | 11.82    | 10,583.76    | 105.84    | 17.64    | 5,295.32     | 52.95     | 8.83     |
| PM (lb)    | 39.31      | 0.39     | 0.07     | 259.54       | 2.60       | 0.43     | 466.11       | 4.66      | 0.78     | 309.34       | 3.09      | 0.52     |
| CO (lb)    | 581.40     | 5.81     | 0.97     | 7,436.82     | 74.37      | 12.39    | 6,894.02     | 68.94     | 11.49    | -1,973.26    | -19.73    | -3.29    |
| SOx (lb)   | 0.03       | 0.00     | 0.00     | 0.73         | 0.01       | 0.00     | 0.38         | 0.00      | 0.00     | 0.70         | 0.01      | 0.00     |
| CO2 (tons) | 84.25      | 0.84     | 0.14     | 806.01       | 8.06       | 1.34     | 999.03       | 9.99      | 1.67     | 949.15       | 9.49      | 1.58     |

| Baseline Offroad Act   | ivity         | Baseline Flee | t Character   | istics       |               |             |           |
|------------------------|---------------|---------------|---------------|--------------|---------------|-------------|-----------|
|                        | Avg. (hp-hr)  | HC (lb/yr)    | NOx (lb/yr)   | PM (lb/yr)   | CO (lb/yr)    | SOx (lb/yr) | CO2 (tpy) |
| Pit Subtotal           | 3,644,992     | 1,643         | 24,234        | 1,112        | 14,047        | 0.81        | 2,123     |
| Plant Subtotal         | 1,050,976     | 624           | 3,785         | 325          | 2,668         | 0.15        | 612       |
| Roads Subtotal         | 17,158,834    | 6,706         | 115,562       | 4,059        | 111,011       | 3.99        | 9,994     |
| Total w/o Generator    | 21,854,802    | 8,973         | 143,581       | 5,495        | 127,726       | 4.95        | 12,729    |
| Total w/ Generator     | 22,702,082    | 9,548         | 152,520       | 5,781        | 141,303       | 5.22        | 13,222    |
| Generator              | 847,280       | 575           | 8,940         | 285          | 13,576        | 0.27        | 493       |
| Baseline Offroad Act   | ivity         | 2012 Fleet Ch | naracteristic | :S           |               |             |           |
|                        | Avg. (hp-hr)  |               | NOx (lb/yr)   |              | CO (lb/yr)    | SOx (lb/yr) | CO2 (tpy) |
| Pit Subtotal           | 3,644,992     |               | 22,491        | 990          |               | 0.81        | 2,123     |
| Plant Subtotal         | 1,041,576     |               | 4,316         |              | •             | 0.14        | 612       |
| Roads Subtotal         | 17,158,834    |               | 95,767        |              | •             |             |           |
| Total w/o Generator    |               |               |               |              |               |             |           |
| Total w/ Generator     | 22,692,682    | -             | 131,513       | 4,663        |               |             | 13,222    |
| Danalina Die Australen | A.II 4.1      |               |               |              |               |             |           |
| Baseline Pit Activity  |               | hn hr         | Dit (ha ha)   | Fill (bo by) | Loadout (bo b | اء.         |           |
|                        | Ton Excavated | •             | Pit (hp-hr)   |              | Loadout (hp-h | 11)         |           |
| White Knob             | 463,467       |               | 1,320,206     |              |               |             |           |
| Sentinel               | 528,841       |               | 1,506,426     |              |               |             |           |
| Butterfield            | 95,351        |               | -             | •            |               |             |           |
|                        | 1,087,658     | 3,644,992     | 3,098,243     | 182,250      | 364,499       |             |           |
| Project Pit Activity A | llocations    |               |               |              |               |             |           |
|                        | Ton Excavated | hp-hr         | Pit (hp-hr)   | Fill (hp-hr) | Loadout (hp-h | Percentage  |           |
| White Knob             | -             | -             |               |              |               |             |           |
| Sentinel               | 1,131,000     | 3,790,239     | 3,221,704     | 189,512      | 379,024       | 76%         |           |
| Butterfield            | 356,500       | 1,194,713     | 1,015,506     | 59,736       | 119,471       | 24%         |           |
|                        | 1,487,500     | 4,984,952     | 4,237,210     | 249,248      | 498,495       |             |           |
|                        |               |               |               |              |               |             |           |
| Project Offroad Activ  | vity          | Baseline Flee | t Character   | istics       |               |             |           |
|                        | Avg. (hp-hr)  | HC (lb/yr)    | NOx (lb/yr)   | PM (lb/yr)   | CO (lb/yr)    | SOx (lb/yr) | CO2 (tpy) |
| Pit Subtotal           | 4,984,952     | 2,093         | 30,759        | 1,355        | 20,035        | 1.10        | 2,903     |
| Plant Subtotal         | 1,093,368     | 607           | 4,531         | 416          | 2,902         | 0.15        | 643       |
| Roads Subtotal         | 24,029,854    | 7,262         | 134,115       | 4,188        | 87,490        | 5.58        | 13,996    |
| Mobile Crusher         | 2,084,855     | 208           | 5,307         | 181          | 6,274         | 0.67        | 638       |
| Total                  | 32,193,030    | 10,171        | 174,712       | 6,140        | 116,702       | 7.50        | 18,179    |
| Increment              | 9,500,348     | 2,301         | 43,199        | 1,477        | 23,237        | 2.30        | 4,957     |
|                        |               |               |               |              |               |             |           |
| <b>Mobile Crusher</b>  |               |               |               |              |               |             |           |
| Tier 3 E.F. (g/hp-hr)  | (CalEEMod 201 | 0.12          | 2.32          | 0.088        | 2.6           | 0.000276    | 528.4     |
| Fuel Correction Factor | or            | 0.720         | 0.948         | 0.852        | 1             | 1           | 1         |
| 0.525                  | load factor   |               |               |              |               |             |           |

<sup>10%</sup> of Pit Subtotal assumed to be loading at plant

<sup>5%</sup> of Pit Subtotal assumed to be placement of fill

<sup>85%</sup> of Pit Subtotal assumed to be excavation

<sup>100</sup> maximum days are used to estimate daily emissions from annual activity levels

<sup>6</sup> maximum hours are assumed to occur on the maximum day in order to determine peak hour

|                         |               | Act             | ivity Data |            |               |            |                   | Vehicle Miles             | Traveled per      | Year             |                 |                         |                 |                                             |
|-------------------------|---------------|-----------------|------------|------------|---------------|------------|-------------------|---------------------------|-------------------|------------------|-----------------|-------------------------|-----------------|---------------------------------------------|
| Locaiton                | Tons/Year     | Tons/Day        | Tons/Hour  | Trips/Year | Trips/Da<br>Y | Trips/Hour | Links<br>Traveled | A -<br>Butterfield<br>Pit | B - Waste<br>Pile | C - West<br>Road | D - Not<br>Used | E -<br>Senteniel<br>Pit | F - Not<br>Used | G -<br>Sentinel/B<br>utterfield<br>to Plant |
| Ore to Primary Crusher  |               |                 |            |            |               |            |                   | 4,065                     | 1,800             | 1,460            | -               | 6,045                   | _               | 38,000                                      |
| Sentinel                | 606,769       | 3,805           | 457        | 16,181     | 101           | 12         | E                 | -                         | -                 | -                | -               | 18,525                  | -               | -                                           |
| Butterfield 3           | 190,531       | 1,195           | 143        | 5,081      | 32            | 4          | A, C              | 3,912                     |                   | 1,405            | -               | -                       | -               | -                                           |
| White Knob              | -             | -               | -          | -          | -             | -          | J                 | -                         | -                 | -                | -               | -                       | -               | -                                           |
| Sentinel - Butterfield  | 797,300       | 5,000           | 600        | 21,261     | 133           | 16         | -                 |                           |                   |                  |                 |                         |                 |                                             |
| TOTAL                   | 797,300       | 5,000           | 600        | 21,261     | 133           | 16         | -                 |                           |                   |                  |                 |                         |                 |                                             |
| Ore Hauled to Plant     |               |                 |            |            |               |            |                   |                           | -                 |                  |                 |                         |                 |                                             |
| Sentinel                | 517,500       | 3,245           | 389        | 13,800     | 87            | 10         | G, I              | -                         | -                 | -                | -               | -                       | -               | 99,318                                      |
| Butterfield 3           | 162,500       | 1,019           | 122        | 4,333      | 27            | 3          | G, I              | -                         | -                 | -                | -               | -                       | -               | 31,187                                      |
| White Knob              | -             | -               | -          | -          | -             | -          | H, L, I           | -                         | -                 | -                | -               | -                       | -               | -                                           |
| Sentinel - Butterfield  | 680,000       | 4,264           | 512        | 18,133     | 114           | 14         | -                 |                           |                   |                  |                 |                         |                 |                                             |
| TOTAL                   | 680,000       | 4,264           | 512        | 18,133     | 114           | 14         | -                 |                           |                   |                  |                 |                         |                 |                                             |
| Waste Crusher Fines     |               |                 |            |            |               |            |                   |                           |                   |                  |                 |                         |                 |                                             |
| Sentinel                | 89,269        | 560             | 67         | 2,381      | 15            | 2          | В, С              | -                         | 812               | 658              | -               | -                       | -               | -                                           |
| Butterfield 3           | 28,031        | 176             | 21         | 748        | 5             | 1          | B, C              | -                         | 255               | 207              | -               | -                       | -               | -                                           |
| White Knob              | -             | -               | -          | -          | -             | -          | L                 | -                         | -                 | -                | -               | -                       | -               | -                                           |
| Sentinel - Butterfield  | 117,300       | 736             | 88         | 3,128      | 20            | 2          | -                 |                           |                   |                  |                 |                         |                 |                                             |
| TOTAL                   | 117,300       | 736             | 88         | 3,128      | 20            | 2          | -                 |                           |                   |                  |                 |                         |                 |                                             |
| Waste Rock Not Processe | d             |                 |            |            |               |            |                   |                           |                   |                  |                 |                         |                 |                                             |
| Sentinel                | 524,231       | 3,294           | 395        | 13,980     | 88            | 11         | B, C, E           | -                         | 4,766             | 3,866            | -               | 16,005                  | -               | -                                           |
| Butterfield 3           | 165,969       | 1,034           | 124        | 4,426      | 28            | 3          | A, B              | 3,407                     | 1,509             | -                | -               | -                       | -               | -                                           |
| White Knob              | -             | -               | -          | -          | -             |            | J, L              | -                         | -                 | -                | -               | -                       | -               | -                                           |
| Sentinel - Butterfield  | 690,200       | 4,328           | 519        | 18,405     | 115           | 14         | -                 |                           |                   |                  |                 |                         |                 |                                             |
| TOTAL                   | 690,200       | 4,328           | 519        | 18,405     | 115           | 14         | -                 |                           |                   |                  |                 |                         |                 |                                             |
|                         | 1,487,500     | tons, total exc | avated     |            |               |            |                   | Α                         | В                 | С                | D               | E                       | F               | G                                           |
| Total VMT:              | not used on t | his page.       |            |            |               |            |                   | 7,319                     | 7,341             | 6,135            | -               | 34,530                  | -               | 130,505                                     |
| % of VMT:               | not used on t | his page.       |            |            |               |            |                   | 4%                        | 4%                | 3%               | 0%              | 18%                     | 0%              | 70%                                         |

|                         |               | Act             | ivity Data | Vehicle Miles                  | Traveled per      | Year                  |                       |                                  |                        |
|-------------------------|---------------|-----------------|------------|--------------------------------|-------------------|-----------------------|-----------------------|----------------------------------|------------------------|
| Locaiton                | Tons/Year     | Tons/Day        | Tons/Hour  | H - White<br>Ridge to<br>Plant | I - Plant<br>Feed | J - White<br>Knob Pit | K - On-Road<br>Trucks | L - Crusher<br>to White<br>Ridge | M - White<br>Ridge Pit |
| Ore to Primary Crusher  |               |                 |            | 24,260                         | 365               | 3,725                 | 6,186                 | 2,300                            | 1,300                  |
| Sentinel                | 606,769       | 3,805           | 457        | -                              | -                 | -                     | -                     | -                                | -                      |
| Butterfield 3           | 190,531       | 1,195           | 143        | -                              | -                 | -                     | -                     | -                                | -                      |
| White Knob              | -             | -               | -          | -                              | -                 | -                     | -                     | -                                | -                      |
| Sentinel - Butterfield  | 797,300       | 5,000           | 600        |                                | -                 | -                     |                       | -                                | -                      |
| TOTAL                   | 797,300       | 5,000           | 600        |                                | -                 | -                     |                       | -                                | -                      |
| Ore Hauled to Plant     |               |                 |            |                                |                   | -                     |                       | -                                | -                      |
| Sentinel                | 517,500       | 3,245           | 389        | -                              | 954               | -                     | -                     | -                                | -                      |
| Butterfield 3           | 162,500       | 1,019           | 122        | -                              | 300               | -                     | -                     | -                                | -                      |
| White Knob              | -             | -               | -          | -                              | -                 | -                     | -                     | -                                | -                      |
| Sentinel - Butterfield  | 680,000       | 4,264           | 512        |                                |                   | -                     |                       | -                                | -                      |
| TOTAL                   | 680,000       | 4,264           | 512        |                                |                   | -                     | 28,453                | -                                | -                      |
| Waste Crusher Fines     |               |                 |            |                                |                   | -                     |                       | -                                | -                      |
| Sentinel                | 89,269        | 560             | 67         | -                              | -                 | -                     | -                     | -                                | -                      |
| Butterfield 3           | 28,031        | 176             | 21         | -                              | -                 | -                     | -                     | -                                | -                      |
| White Knob              | -             | -               | -          | -                              | -                 | -                     | -                     | -                                | -                      |
| Sentinel - Butterfield  | 117,300       | 736             | 88         |                                |                   | -                     |                       | -                                | -                      |
| TOTAL                   | 117,300       | 736             | 88         |                                |                   | -                     |                       | -                                | -                      |
| Waste Rock Not Processe | ed            |                 |            |                                |                   | -                     |                       | -                                | -                      |
| Sentinel                | 524,231       | 3,294           | 395        | -                              | -                 | -                     | -                     | -                                | -                      |
| Butterfield 3           | 165,969       | 1,034           | 124        | -                              | -                 | -                     | -                     | -                                | -                      |
| White Knob              | -             | -               | -          | -                              | -                 | -                     | -                     | -                                | -                      |
| Sentinel - Butterfield  | 690,200       | 4,328           | 519        |                                |                   | -                     |                       | -                                | -                      |
| TOTAL                   | 690,200       | 4,328           | 519        |                                |                   |                       |                       |                                  |                        |
|                         | 1,487,500     | tons, total exc | avated     | Н                              | I                 | J                     | K                     | L                                | М                      |
| Total VMT:              | not used on t | his page.       |            | -                              | 1,254             | -                     | 28,453                | -                                | -                      |
| % of VMT:               | not used on t | his page.       |            | 0%                             | 1%                | 0%                    |                       | 0%                               | 6 0%                   |

|                         |               | Act             | ivity Data | Vehicle Mile               | es Traveled          | l per Day        |                 |                         |                 |                                                 |
|-------------------------|---------------|-----------------|------------|----------------------------|----------------------|------------------|-----------------|-------------------------|-----------------|-------------------------------------------------|
| Locaiton                | Tons/Year     | Tons/Day        | Tons/Hour  | A -<br>Butterfiel<br>d Pit | B -<br>Waste<br>Pile | C - West<br>Road | D - Not<br>Used | E -<br>Senteniel<br>Pit | F - Not<br>Used | G -<br>Sentinel/<br>Butterfie<br>Id to<br>Plant |
| Ore to Primary Crusher  |               |                 |            | 4,065                      | 1,800                | 1,460            | -               | 6,045                   | _               | 38,000                                          |
| Sentinel                | 606,769       | 3,805           | 457        | _                          | _                    | _                | -               | 116.17                  | -               | _                                               |
| Butterfield 3           | 190,531       | 1,195           | 143        | 24.53                      |                      | 8.81             | -               | -                       | -               | -                                               |
| White Knob              | -             | -               | -          | -                          | -                    | -                | -               | -                       | -               | -                                               |
| Sentinel - Butterfield  | 797,300       | 5,000           | 600        |                            |                      |                  |                 |                         |                 |                                                 |
| TOTAL                   | 797,300       | 5,000           | 600        |                            |                      |                  |                 |                         |                 |                                                 |
| Ore Hauled to Plant     |               |                 |            |                            |                      |                  |                 |                         |                 |                                                 |
| Sentinel                | 517,500       | 3,245           | 389        | -                          | -                    | -                | -               | -                       | -               | 622.84                                          |
| Butterfield 3           | 162,500       | 1,019           | 122        | -                          | -                    | -                | -               | -                       | -               | 195.58                                          |
| White Knob              | -             | -               | -          | -                          | -                    | -                | -               | -                       | -               | -                                               |
| Sentinel - Butterfield  | 680,000       | 4,264           | 512        |                            |                      |                  |                 |                         |                 |                                                 |
| TOTAL                   | 680,000       | 4,264           | 512        |                            |                      |                  |                 |                         |                 |                                                 |
| Waste Crusher Fines     |               |                 |            |                            |                      |                  |                 |                         |                 |                                                 |
| Sentinel                | 89,269        | 560             | 67         | -                          | 5.09                 | 4.13             | -               | -                       | -               | -                                               |
| Butterfield 3           | 28,031        | 176             | 21         | -                          | 1.60                 | 1.30             | -               | -                       | -               | -                                               |
| White Knob              | -             | -               | -          | -                          | -                    | -                | -               | -                       | -               | -                                               |
| Sentinel - Butterfield  | 117,300       | 736             | 88         |                            |                      |                  |                 |                         |                 |                                                 |
| TOTAL                   | 117,300       | 736             | 88         |                            |                      |                  |                 |                         |                 |                                                 |
| Waste Rock Not Processe |               |                 |            |                            |                      |                  |                 |                         |                 |                                                 |
| Sentinel                | 524,231       | 3,294           | 395        | -                          | 29.95                | 24.29            | -               | 100.57                  | -               | -                                               |
| Butterfield 3           | 165,969       | 1,034           | 124        | 21.24                      | 9.40                 | -                | -               | -                       | -               | -                                               |
| White Knob              | -             | -               | -          | -                          | -                    | -                | -               | -                       | -               | -                                               |
| Sentinel - Butterfield  | 690,200       | 4,328           | 519        |                            |                      |                  |                 |                         |                 |                                                 |
| TOTAL                   | 690,200       | 4,328           | 519        |                            |                      |                  |                 |                         |                 |                                                 |
|                         |               | tons, total exc | avated     | Α                          | В                    | С                | D               | E                       | F               | G                                               |
| Total VMT:              | not used on t |                 |            | 46                         | 46                   | 39               | -               | 217                     | -               | 818                                             |
| % of VMT:               | not used on t | his page.       |            | 4%                         | 4%                   | 3%               | 0%              | 18%                     | 0%              | 6 70%                                           |

|                         |               | Act             | ivity Data | Vehicle Mi                        | les Travele       | d per Day             |                           |                                     |                           |
|-------------------------|---------------|-----------------|------------|-----------------------------------|-------------------|-----------------------|---------------------------|-------------------------------------|---------------------------|
| Locaiton                | Tons/Year     | Tons/Day        | Tons/Hour  | H -<br>White<br>Ridge to<br>Plant | I - Plant<br>Feed | J - White<br>Knob Pit | K - On-<br>Road<br>Trucks | L -<br>Crusher<br>to White<br>Ridge | M -<br>White<br>Ridge Pit |
| Ore to Primary Crusher  |               |                 |            | 24,260                            | 365               | 3,725                 | 6,186                     | 2,300                               | 1,300                     |
| Sentinel                | 606,769       | 3,805           | 457        | -                                 | -                 | -                     | -                         | -                                   | -                         |
| Butterfield 3           | 190,531       | 1,195           | 143        | -                                 | -                 | -                     | -                         | -                                   | -                         |
| White Knob              | -             | -               | -          | -                                 | -                 | -                     | -                         | -                                   | -                         |
| Sentinel - Butterfield  | 797,300       | 5,000           | 600        |                                   |                   |                       |                           |                                     |                           |
| TOTAL                   | 797,300       | 5,000           | 600        |                                   |                   |                       |                           |                                     |                           |
| Ore Hauled to Plant     |               |                 |            |                                   |                   |                       |                           |                                     |                           |
| Sentinel                | 517,500       | 3,245           | 389        | -                                 | 5.98              | -                     | -                         | -                                   | -                         |
| Butterfield 3           | 162,500       | 1,019           | 122        | -                                 | 1.88              | -                     | -                         | -                                   | -                         |
| White Knob              | -             | -               | -          | -                                 | -                 | -                     | -                         | -                                   | -                         |
| Sentinel - Butterfield  | 680,000       | 4,264           | 512        |                                   |                   |                       |                           |                                     |                           |
| TOTAL                   | 680,000       | 4,264           | 512        |                                   |                   |                       | 178.43                    |                                     |                           |
| Waste Crusher Fines     |               |                 |            |                                   |                   |                       |                           |                                     |                           |
| Sentinel                | 89,269        | 560             | 67         | -                                 | -                 | -                     | -                         | -                                   | -                         |
| Butterfield 3           | 28,031        | 176             | 21         | -                                 | -                 | -                     | -                         | -                                   | -                         |
| White Knob              | -             | -               | -          | -                                 | -                 | -                     | -                         | -                                   | -                         |
| Sentinel - Butterfield  | 117,300       | 736             | 88         |                                   |                   |                       |                           |                                     |                           |
| TOTAL                   | 117,300       | 736             | 88         |                                   |                   |                       |                           |                                     |                           |
| Waste Rock Not Processe |               |                 |            |                                   |                   |                       |                           |                                     |                           |
| Sentinel                | 524,231       | 3,294           | 395        | -                                 | -                 | -                     | -                         | -                                   | -                         |
| Butterfield 3           | 165,969       | 1,034           | 124        | -                                 | -                 | -                     | -                         | -                                   | -                         |
| White Knob              | -             | -               | -          | -                                 | -                 | -                     | -                         | -                                   | -                         |
| Sentinel - Butterfield  | 690,200       | 4,328           | 519        |                                   |                   |                       |                           |                                     |                           |
| TOTAL                   | 690,200       | 4,328           | 519        |                                   |                   |                       |                           |                                     |                           |
|                         | 1,487,500     | tons, total exc | avated     | Н                                 | 1                 | J                     | K                         | L                                   | М                         |
| Total VMT:              | not used on t | his page.       |            | -                                 | 8                 | -                     | 178                       | -                                   | -                         |
| % of VMT:               | not used on t | his page.       |            | 0%                                | 1%                | 0%                    |                           | 0%                                  | 0%                        |

|                         |               | Act             | ivity Data | Vehicle Mil                | es Travele           | d per Hour       |                 |                         |                 |                                                 |
|-------------------------|---------------|-----------------|------------|----------------------------|----------------------|------------------|-----------------|-------------------------|-----------------|-------------------------------------------------|
| Locaiton                | Tons/Year     | Tons/Day        | Tons/Hour  | A -<br>Butterfie<br>ld Pit | B -<br>Waste<br>Pile | C - West<br>Road | D - Not<br>Used | E -<br>Senteniel<br>Pit | F - Not<br>Used | G -<br>Sentinel/<br>Butterfie<br>Id to<br>Plant |
| Ore to Primary Crusher  |               |                 |            | 4,065                      | 1,800                | 1,460            | -               | 6,045                   | -               | 38,000                                          |
| Sentinel                | 606,769       | 3,805           | 457        | -                          | -                    | -                | -               | 13.94                   | -               | -                                               |
| Butterfield 3           | 190,531       | 1,195           | 143        | 2.94                       |                      | 1.06             | -               | -                       | -               | -                                               |
| White Knob              | -             | -               | -          | -                          | -                    | -                | -               | -                       | -               | -                                               |
| Sentinel - Butterfield  | 797,300       | 5,000           | 600        |                            |                      |                  |                 |                         |                 |                                                 |
| TOTAL                   | 797,300       | 5,000           | 600        |                            |                      |                  |                 |                         |                 |                                                 |
| Ore Hauled to Plant     |               |                 |            |                            |                      |                  |                 |                         |                 |                                                 |
| Sentinel                | 517,500       | 3,245           | 389        | -                          | -                    | -                | -               | -                       | -               | 74.74                                           |
| Butterfield 3           | 162,500       | 1,019           | 122        | -                          | -                    | -                | -               | -                       | -               | 23.47                                           |
| White Knob              | -             | -               | -          | -                          | -                    | -                | -               | -                       | -               | -                                               |
| Sentinel - Butterfield  | 680,000       | 4,264           | 512        |                            |                      |                  |                 |                         |                 |                                                 |
| TOTAL                   | 680,000       | 4,264           | 512        |                            |                      |                  |                 |                         |                 |                                                 |
| Waste Crusher Fines     |               |                 |            |                            |                      |                  |                 |                         |                 |                                                 |
| Sentinel                | 89,269        | 560             | 67         | -                          | 0.61                 | 0.50             | -               | -                       | -               | -                                               |
| Butterfield 3           | 28,031        | 176             | 21         | -                          | 0.19                 | 0.16             | -               | -                       | -               | -                                               |
| White Knob              | -             | -               | -          | -                          | -                    | -                | -               | -                       | -               | -                                               |
| Sentinel - Butterfield  | 117,300       | 736             | 88         |                            |                      |                  |                 |                         |                 |                                                 |
| TOTAL                   | 117,300       | 736             | 88         |                            |                      |                  |                 |                         |                 |                                                 |
| Waste Rock Not Processe | ed            |                 |            |                            |                      |                  |                 |                         |                 |                                                 |
| Sentinel                | 524,231       | 3,294           | 395        | -                          | 3.59                 | 2.91             | -               | 12.07                   | -               | -                                               |
| Butterfield 3           | 165,969       | 1,034           | 124        | 2.55                       | 1.13                 | -                | -               | -                       | -               | -                                               |
| White Knob              | -             | -               | -          | -                          | -                    | -                | -               | -                       | -               | -                                               |
| Sentinel - Butterfield  | 690,200       | 4,328           | 519        |                            |                      |                  |                 |                         |                 |                                                 |
| TOTAL                   | 690,200       | 4,328           | 519        |                            |                      |                  |                 |                         |                 |                                                 |
|                         | 1,487,500     | tons, total exc | avated     | Α                          | В                    | С                | D               | E                       | F               | G                                               |
| Total VMT:              | not used on t | his page.       |            | 5.49                       | 5.52                 | 4.62             | -               | 26.01                   | -               | 98.21                                           |
| % of VMT:               | not used on t | his page.       |            | 4%                         | 4%                   | 3%               | 0%              | 18%                     | 0%              | 70%                                             |

|                        |               | Act             | ivity Data | Vehicle Mi                        | les Travele       | d per Hour            |                           |                                     |                           | Off-site |
|------------------------|---------------|-----------------|------------|-----------------------------------|-------------------|-----------------------|---------------------------|-------------------------------------|---------------------------|----------|
| Locaiton               | Tons/Year     | Tons/Day        | Tons/Hour  | H -<br>White<br>Ridge to<br>Plant | I - Plant<br>Feed | J - White<br>Knob Pit | K - On-<br>Road<br>Trucks | L -<br>Crusher<br>to White<br>Ridge | M -<br>White<br>Ridge Pit | per Year |
| Ore to Primary Crusher |               |                 |            | 24,260                            | 365               | 3,725                 | 6,186                     | 2,300                               | 1,300                     |          |
| Sentinel               | 606,769       | 3,805           | 457        | -                                 | -                 | -                     | -                         | -                                   | -                         |          |
| Butterfield 3          | 190,531       | 1,195           | 143        | -                                 | -                 | -                     | -                         | -                                   | -                         |          |
| White Knob             | -             | -               | -          | -                                 | -                 | -                     | -                         | -                                   | -                         |          |
| Sentinel - Butterfield | 797,300       | 5,000           | 600        |                                   |                   |                       |                           |                                     |                           |          |
| TOTAL                  | 797,300       | 5,000           | 600        |                                   |                   |                       |                           |                                     |                           |          |
| Ore Hauled to Plant    |               |                 |            |                                   |                   |                       |                           |                                     |                           |          |
| Sentinel               | 517,500       | 3,245           | 389        | -                                 | 0.72              | -                     | -                         | -                                   | -                         |          |
| Butterfield 3          | 162,500       | 1,019           | 122        | -                                 | 0.23              | -                     | -                         | -                                   | -                         |          |
| White Knob             | -             | -               | -          | -                                 | -                 | -                     | -                         | -                                   | -                         |          |
| Sentinel - Butterfield | 680,000       | 4,264           | 512        |                                   |                   |                       |                           |                                     |                           |          |
| TOTAL                  | 680,000       | 4,264           | 512        |                                   |                   |                       | 21.41                     |                                     |                           | 394073   |
| Waste Crusher Fines    |               |                 |            |                                   |                   |                       |                           |                                     |                           |          |
| Sentinel               | 89,269        | 560             | 67         | -                                 | -                 | -                     | -                         | -                                   | -                         |          |
| Butterfield 3          | 28,031        | 176             | 21         | -                                 | -                 | -                     | -                         | -                                   | -                         |          |
| White Knob             | -             | -               | -          | -                                 | -                 | -                     | -                         | -                                   | -                         |          |
| Sentinel - Butterfield | 117,300       | 736             | 88         |                                   |                   |                       |                           |                                     |                           |          |
| TOTAL                  | 117,300       | 736             | 88         |                                   |                   |                       |                           |                                     |                           |          |
| Waste Rock Not Process |               |                 |            |                                   |                   |                       |                           |                                     |                           |          |
| Sentinel               | 524,231       | 3,294           | 395        | -                                 | -                 | -                     | -                         | -                                   | -                         |          |
| Butterfield 3          | 165,969       | 1,034           | 124        | -                                 | -                 | -                     | -                         | -                                   | -                         |          |
| White Knob             | -             | -               | -          | -                                 | -                 | -                     | -                         | -                                   | -                         |          |
| Sentinel - Butterfield | 690,200       | 4,328           | 519        |                                   |                   |                       |                           |                                     |                           |          |
| TOTAL                  | 690,200       | 4,328           | 519        |                                   |                   |                       |                           |                                     |                           |          |
|                        |               | tons, total exc | avated     | Н                                 | I                 | J                     | K                         | L                                   | M                         |          |
| Total VMT:             | not used on t |                 |            | -                                 | 0.94              | -                     | 21.41                     | -                                   | -                         |          |
| % of VMT:              | not used on t | his page.       |            | 0%                                | 1%                | 0%                    |                           | 0%                                  | 0%                        |          |

|                 | А        |         |          | В        |         |          |
|-----------------|----------|---------|----------|----------|---------|----------|
|                 | per Year | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 1,618.07 | 15.34   | 1.84     | 962.78   | 11.05   | 1.33     |
| VMT (%)         | 1.21%    | 0.99%   | 1.05%    | 0.72%    | 0.71%   | 0.76%    |
| TSP - Dust      | 6,018.41 | 57.06   | 6.85     | 3,581.04 | 41.09   | 4.93     |
| PM10 - Dust     | 1,711.42 | 16.23   | 1.95     | 1,018.32 | 11.68   | 1.40     |
| PM2.5 - Dust    | 171.14   | 1.62    | 0.19     | 101.83   | 1.17    | 0.14     |
| TSP - Exhaust   | 36.22    | 0.34    | 0.04     | 21.55    | 0.25    | 0.03     |
| PM10 - Exhaust  | 36.22    | 0.34    | 0.04     | 21.55    | 0.25    | 0.03     |
| PM2.5 - Exhaust | 33.32    | 0.32    | 0.04     | 19.83    | 0.23    | 0.03     |
| HC              | 62.81    | 0.60    | 0.07     | 37.37    | 0.43    | 0.05     |
| NOx             | 1,160    | 11.00   | 1.32     | 690      | 7.92    | 0.95     |
| со              | 757      | 7.17    | 0.86     | 450      | 5.17    | 0.62     |
| SOx             | 0.05     | 0.00    | 0.00     | 0.03     | 0.00    | 0.00     |
| CO2             | 121.05   | -       | -        | 72.03    | -       | -        |

**Project** 1.40 scale factor from Project VMT/yr over Baseline VMT/yr

| 110,000         | 1.40 Scale factor from Froject viviry yr over Buseline viviry yr |         |          |           |         |          |
|-----------------|------------------------------------------------------------------|---------|----------|-----------|---------|----------|
|                 | Α                                                                |         |          | В         |         |          |
|                 | per Year                                                         | per Day | per Hour | per Year  | per Day | per Hour |
| VMT (miles)     | 7,319.05                                                         | 45.77   | 5.49     | 7,340.91  | 46.04   | 5.52     |
| VMT (%)         | 3.91%                                                            | 3.90%   | 3.90%    | 3.92%     | 3.92%   | 3.92%    |
| TSP - Dust      | 27,223.18                                                        | 170.23  | 20.43    | 27,304.48 | 171.23  | 20.55    |
| PM10 - Dust     | 7,741.29                                                         | 48.41   | 5.81     | 7,764.41  | 48.69   | 5.84     |
| PM2.5 - Dust    | 774.13                                                           | 4.84    | 0.58     | 776.44    | 4.87    | 0.58     |
| TSP - Exhaust   | 163.84                                                           | 1.02    | 0.12     | 164.33    | 1.03    | 0.12     |
| PM10 - Exhaust  | 163.84                                                           | 1.02    | 0.12     | 164.33    | 1.03    | 0.12     |
| PM2.5 - Exhaust | 150.73                                                           | 0.94    | 0.11     | 151.18    | 0.95    | 0.11     |
| НС              | 284.11                                                           | 1.78    | 0.21     | 284.96    | 1.79    | 0.21     |
| NOx             | 5,246.83                                                         | 32.81   | 3.94     | 5,262.50  | 33.00   | 3.96     |
| со              | 3,422.78                                                         | 21.40   | 2.57     | 3,433.00  | 21.53   | 2.58     |
| SOx             | 0.22                                                             | 0.00    | 0.00     | 0.22      | 0.00    | 0.00     |
| CO2 (tons)      | 547.54                                                           | -       | -        | 549.17    | -       | -        |

| increment       |           |         |          |           |         |          |
|-----------------|-----------|---------|----------|-----------|---------|----------|
|                 | Α         |         |          | В         |         |          |
|                 | per Year  | per Day | per Hour | per Year  | per Day | per Hour |
| VMT (miles)     | 5,700.98  | 30.42   | 3.65     | 6,378.13  | 34.99   | 4.20     |
| TSP - Dust      | 21,204.77 | 113.16  | 13.58    | 23,723.43 | 130.15  | 15.62    |
| PM10 - Dust     | 6,029.87  | 32.18   | 3.86     | 6,746.09  | 37.01   | 4.44     |
| PM2.5 - Dust    | 602.99    | 3.22    | 0.39     | 674.61    | 3.70    | 0.44     |
| TSP - Exhaust   | 127.62    | 0.68    | 0.08     | 142.78    | 0.78    | 0.09     |
| PM10 - Exhaust  | 127.62    | 0.68    | 0.08     | 142.78    | 0.78    | 0.09     |
| PM2.5 - Exhaust | 117.41    | 0.63    | 0.08     | 131.35    | 0.72    | 0.09     |
| HC              | 221.30    | 1.18    | 0.14     | 247.58    | 1.36    | 0.16     |
| NOx             | 4,086.88  | 21.81   | 2.62     | 4,572.31  | 25.08   | 3.01     |
| со              | 2,666.08  | 14.23   | 1.71     | 2,982.75  | 16.36   | 1.96     |
| SOx             | 0.17      | 0.00    | 0.00     | 0.19      | 0.00    | 0.00     |
| CO2 (tons)      | 426.49    | -       | -        | 477.15    | -       | -        |

|                 | С        |         |          | D        |         |          |
|-----------------|----------|---------|----------|----------|---------|----------|
|                 | per Year | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 1,355.33 | 16.39   | 1.97     | -        | -       | -        |
| VMT (%)         | 1.01%    | 1.05%   | 1.13%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 5,041.15 | 60.95   | 7.31     | -        | -       | -        |
| PM10 - Dust     | 1,433.52 | 17.33   | 2.08     | -        | -       | -        |
| PM2.5 - Dust    | 143.35   | 1.73    | 0.21     | -        | -       | -        |
| TSP - Exhaust   | 30.34    | 0.37    | 0.04     | -        | -       | -        |
| PM10 - Exhaust  | 30.34    | 0.37    | 0.04     | -        | -       | -        |
| PM2.5 - Exhaust | 27.91    | 0.34    | 0.04     | -        | -       | -        |
| HC              | 52.61    | 0.64    | 0.08     | -        | -       | -        |
| NOx             | 972      | 11.75   | 1.41     | -        | -       | -        |
| СО              | 634      | 7.66    | 0.92     | -        | -       | -        |
| SOx             | 0.04     | 0.00    | 0.00     | -        | -       | -        |
| CO2             | 101.39   | -       | -        | -        | -       | -        |

## **Project**

| rioject         |           |         |          |          |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | С         |         |          | D        |         |          |
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 6,135.41  | 38.52   | 4.62     | -        | -       | -        |
| VMT (%)         | 3.28%     | 3.28%   | 3.28%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 22,820.63 | 143.29  | 17.19    | -        | -       | -        |
| PM10 - Dust     | 6,489.36  | 40.75   | 4.89     | -        | -       | -        |
| PM2.5 - Dust    | 648.94    | 4.07    | 0.49     | -        | -       | -        |
| TSP - Exhaust   | 137.34    | 0.86    | 0.10     | -        | -       | -        |
| PM10 - Exhaust  | 137.34    | 0.86    | 0.10     | -        | -       | -        |
| PM2.5 - Exhaust | 126.35    | 0.79    | 0.10     | -        | -       | -        |
| HC              | 238.16    | 1.50    | 0.18     | -        | -       | -        |
| NOx             | 4,398.31  | 27.62   | 3.31     | -        | -       | -        |
| со              | 2,869.24  | 18.02   | 2.16     | -        | -       | -        |
| SOx             | 0.18      | 0.00    | 0.00     | -        | -       | -        |
| CO2 (tons)      | 458.99    | -       | -        | -        | -       | -        |

|                 | С         |         |              | D        |         |          |
|-----------------|-----------|---------|--------------|----------|---------|----------|
|                 | per Year  | per Day | per Hour     | per Year | per Day | per Hour |
| VMT (miles)     | 4,780.08  | 22.14   | 2.66         | -        | -       | -        |
| TSP - Dust      | 17,779.48 | 82.34   | 9.88         | -        | -       |          |
| PM10 - Dust     | 5,055.84  | 23.42   | 2.81         | -        | -       |          |
| PM2.5 - Dust    | 505.58    | 2.34    | 0.28         | -        | -       | -        |
| TSP - Exhaust   | 107.00    | 0.50    | 0.06         | -        | -       | -        |
| PM10 - Exhaust  | 107.00    | 0.50    | 0.06         | -        | -       | -        |
| PM2.5 - Exhaust | 98.44     | 0.46    | 0.05         | -        | -       | -        |
| HC              | 185.55    | 0.86    | 0.10         | -        | -       | -        |
| NOx             | 3,426.71  | 15.87   | 1.90         | -        | -       | -        |
| со              | 2,235.42  | 10.35   | 1.24         | -        | -       | -        |
| SOx             | 0.14      | 0.00    | 0.00         | -        | -       | -        |
| CO2 (tons)      | 357.60    | -       | <del>-</del> | -        |         | <u>-</u> |

|                 | E         |         |          | F        |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 8,012.74  | 93.45   | 11.21    | -        | -       | -        |
| VMT (%)         | 6.00%     | 6.01%   | 6.42%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 29,803.34 | 347.60  | 41.71    | -        | -       | -        |
| PM10 - Dust     | 8,475.00  | 98.85   | 11.86    | -        | -       | -        |
| PM2.5 - Dust    | 847.50    | 9.88    | 1.19     | -        | -       | -        |
| TSP - Exhaust   | 179.37    | 2.09    | 0.25     | -        | -       | -        |
| PM10 - Exhaust  | 179.37    | 2.09    | 0.25     | -        | -       | -        |
| PM2.5 - Exhaust | 165.02    | 1.92    | 0.23     | -        | -       | -        |
| HC              | 311.04    | 3.63    | 0.44     | -        | -       | -        |
| NOx             | 5,744     | 66.99   | 8.04     | -        | -       | -        |
| со              | 3,747     | 43.70   | 5.24     | -        | -       | -        |
| SOx             | 0.24      | 0.00    | 0.00     | -        | -       | -        |
| CO2             | 599.43    | -       | -        | -        | -       | -        |

## **Project**

| Project         |            |         |          |          |         |          |
|-----------------|------------|---------|----------|----------|---------|----------|
|                 | E          |         |          | F        |         |          |
|                 | per Year   | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 34,529.77  | 216.74  | 26.01    | -        | -       | -        |
| VMT (%)         | 18.46%     | 18.47%  | 18.47%   | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 128,433.33 | 806.16  | 96.74    | -        | -       | -        |
| PM10 - Dust     | 36,521.81  | 229.24  | 27.51    | -        | -       | -        |
| PM2.5 - Dust    | 3,652.18   | 22.92   | 2.75     | -        | -       | -        |
| TSP - Exhaust   | 772.95     | 4.85    | 0.58     | -        | -       | -        |
| PM10 - Exhaust  | 772.95     | 4.85    | 0.58     | -        | -       | -        |
| PM2.5 - Exhaust | 711.12     | 4.46    | 0.54     | -        | -       | -        |
| HC              | 1,340.37   | 8.41    | 1.01     | -        | -       | -        |
| NOx             | 24,753.46  | 155.37  | 18.64    | -        | -       | -        |
| СО              | 16,147.95  | 101.36  | 12.16    | -        | -       | -        |
| SOx             | 1.03       | 0.01    | 0.00     | -        | -       | -        |
| CO2 (tons)      | 2,583.16   | -       | -        | -        | -       | -        |

| increment       |           |         |          |          |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | E         |         |          | F        |         |          |
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 26,517.04 | 123.29  | 14.79    | -        | -       | -        |
| TSP - Dust      | 98,629.99 | 458.56  | 55.03    | -        | -       | -        |
| PM10 - Dust     | 28,046.81 | 130.40  | 15.65    | -        | -       | -        |
| PM2.5 - Dust    | 2,804.68  | 13.04   | 1.56     | -        | -       | -        |
| TSP - Exhaust   | 593.59    | 2.76    | 0.33     | -        | -       | -        |
| PM10 - Exhaust  | 593.59    | 2.76    | 0.33     | -        | -       | -        |
| PM2.5 - Exhaust | 546.10    | 2.54    | 0.30     | -        | -       | -        |
| HC              | 1,029.33  | 4.79    | 0.57     | -        | -       | -        |
| NOx             | 19,009.34 | 88.38   | 10.61    | -        | -       | -        |
| со              | 12,400.77 | 57.65   | 6.92     | -        | -       | -        |
| SOx             | 0.79      | 0.00    | 0.00     | -        | -       | -        |
| CO2 (tons)      | 1,983.73  | -       | -        | -        | -       | -        |

|                 | G          |          |          | Н          |          |          |
|-----------------|------------|----------|----------|------------|----------|----------|
|                 | per Year   | per Day  | per Hour | per Year   | per Day  | per Hour |
| VMT (miles)     | 72,587.16  | 815.66   | 97.88    | 33,745.62  | 416.59   | 41.66    |
| VMT (%)         | 54.34%     | 52.46%   | 56.04%   | 25.26%     | 26.79%   | 23.85%   |
| TSP - Dust      | 269,987.62 | 3,033.83 | 364.06   | 125,516.67 | 1,549.49 | 154.95   |
| PM10 - Dust     | 76,774.75  | 862.71   | 103.53   | 35,692.42  | 440.62   | 44.06    |
| PM2.5 - Dust    | 7,677.47   | 86.27    | 10.35    | 3,569.24   | 44.06    | 4.41     |
| TSP - Exhaust   | 1,624.87   | 18.26    | 2.19     | 755.40     | 9.33     | 0.93     |
| PM10 - Exhaust  | 1,624.87   | 18.26    | 2.19     | 755.40     | 9.33     | 0.93     |
| PM2.5 - Exhaust | 1,494.88   | 16.80    | 2.02     | 694.97     | 8.58     | 0.86     |
| HC              | 2,817.67   | 31.66    | 3.80     | 1,309.93   | 16.17    | 1.62     |
| NOx             | 52,036     | 584.72   | 70.17    | 24,191     | 298.64   | 29.86    |
| СО              | 33,946     | 381.44   | 45.77    | 15,781     | 194.82   | 19.48    |
| SOx             | 2.17       | 0.02     | 0.00     | 1.01       | 0.01     | 0.00     |
| CO2             | 5,430.22   | -        | -        | 2,524.50   | -        | -        |

## **Project**

| 110,000         |            |          |          |          |         |          |
|-----------------|------------|----------|----------|----------|---------|----------|
|                 | G          |          |          | Н        |         |          |
|                 | per Year   | per Day  | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 130,505.05 | 818.42   | 98.21    | -        | -       | -        |
| VMT (%)         | 69.76%     | 69.75%   | 69.75%   | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 485,412.92 | 3,044.10 | 365.29   | -        | -       | -        |
| PM10 - Dust     | 138,033.94 | 865.63   | 103.88   | -        | -       | -        |
| PM2.5 - Dust    | 13,803.39  | 86.56    | 10.39    | -        | -       | -        |
| TSP - Exhaust   | 2,921.37   | 18.32    | 2.20     | -        | -       | -        |
| PM10 - Exhaust  | 2,921.37   | 18.32    | 2.20     | -        | -       | -        |
| PM2.5 - Exhaust | 2,687.66   | 16.85    | 2.02     | -        | -       | -        |
| HC              | 5,065.92   | 31.77    | 3.81     | -        | -       | -        |
| NOx             | 93,555.53  | 586.70   | 70.40    | -        | -       | -        |
| со              | 61,031.06  | 382.74   | 45.93    | -        | -       | -        |
| SOx             | 3.89       | 0.02     | 0.00     | -        | -       | -        |
| CO2 (tons)      | 9,763.04   | -        | -        | -        | -       | -        |

|                 | G H        |         |          |            |             |          |
|-----------------|------------|---------|----------|------------|-------------|----------|
|                 | per Year   | per Day | per Hour | per Year   | per Day     | per Hour |
| VMT (miles)     | 57,917.89  | 2.7     | 5 0.33   | -33,745.6  | 2 -416.59   | -41.66   |
| TSP - Dust      | 215,425.30 | 10.2    | 7 1.23   | -125,516.6 | 7 -1,549.49 | -154.95  |
| PM10 - Dust     | 61,259.19  | 2.9     | 2 0.35   | -35,692.4  | 2 -440.62   | -44.06   |
| PM2.5 - Dust    | 6,125.92   | 0.2     | 9 0.04   | -3,569.2   | 4 -44.06    | -4.41    |
| TSP - Exhaust   | 1,296.50   | 0.0     | 5 0.02   | L -755.4   | 9.33        | -0.93    |
| PM10 - Exhaust  | 1,296.50   | 0.0     | 5 0.02   | L -755.4   | 9.33        | -0.93    |
| PM2.5 - Exhaust | 1,192.78   | 0.0     | 5 0.02   | L -694.9   | 7 -8.58     | -0.86    |
| HC              | 2,248.24   | 0.1     | 1 0.01   | l -1,309.9 | 3 -16.17    | -1.62    |
| NOx             | 41,519.76  | 1.9     | 3 0.24   | -24,191.3  | 2 -298.64   | -29.86   |
| со              | 27,085.46  | 1.2     | 9 0.16   | -15,781.2  | 3 -194.82   | -19.48   |
| SOx             | 1.73       | 0.0     | 0.00     | -1.0       | 1 -0.01     | -0.00    |
| CO2 (tons)      | 4,332.82   |         | -        | 2,524.5    | 0 -         | -        |

|                 | I        | J       |          |           |         |          |  |  |  |
|-----------------|----------|---------|----------|-----------|---------|----------|--|--|--|
|                 | per Year | per Day | per Hour | per Year  | per Day | per Hour |  |  |  |
| VMT (miles)     | 1,204.93 | 14.10   | 1.57     | 8,719.27  | 106.44  | 10.64    |  |  |  |
| VMT (%)         | 0.90%    | 0.91%   | 0.90%    | 6.53%     | 6.85%   | 6.09%    |  |  |  |
| TSP - Dust      | 4,481.74 | 52.45   | 5.83     | 32,431.27 | 395.90  | 39.59    |  |  |  |
| PM10 - Dust     | 1,274.45 | 14.92   | 1.66     | 9,222.28  | 112.58  | 11.26    |  |  |  |
| PM2.5 - Dust    | 127.44   | 1.49    | 0.17     | 922.23    | 11.26   | 1.13     |  |  |  |
| TSP - Exhaust   | 26.97    | 0.32    | 0.04     | 195.18    | 2.38    | 0.24     |  |  |  |
| PM10 - Exhaust  | 26.97    | 0.32    | 0.04     | 195.18    | 2.38    | 0.24     |  |  |  |
| PM2.5 - Exhaust | 24.81    | 0.29    | 0.03     | 179.57    | 2.19    | 0.22     |  |  |  |
| НС              | 46.77    | 0.55    | 0.06     | 338.46    | 4.13    | 0.41     |  |  |  |
| NOx             | 864      | 10.11   | 1.12     | 6,251     | 76.30   | 7.63     |  |  |  |
| со              | 563      | 6.59    | 0.73     | 4,078     | 49.78   | 4.98     |  |  |  |
| SOx             | 0.04     | 0.00    | 0.00     | 0.26      | 0.00    | 0.00     |  |  |  |
| CO2             | 90.14    | -       | -        | 652.29    | -       | -        |  |  |  |

#### **Project**

| ,               |          |         |          |          |         |          |
|-----------------|----------|---------|----------|----------|---------|----------|
|                 | 1        |         |          | J        |         |          |
|                 | per Year | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 1,253.54 | 7.86    | 0.94     | -        | -       | -        |
| VMT (%)         | 0.67%    | 0.67%   | 0.67%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 4,662.52 | 29.24   | 3.51     | -        | -       | -        |
| PM10 - Dust     | 1,325.85 | 8.31    | 1.00     | -        | -       | -        |
| PM2.5 - Dust    | 132.59   | 0.83    | 0.10     | -        | -       | -        |
| TSP - Exhaust   | 28.06    | 0.18    | 0.02     | -        | -       | -        |
| PM10 - Exhaust  | 28.06    | 0.18    | 0.02     | -        | -       | -        |
| PM2.5 - Exhaust | 25.82    | 0.16    | 0.02     | -        | -       | -        |
| нс              | 48.66    | 0.31    | 0.04     | -        | -       | -        |
| NOx             | 898.63   |         |          | -        | -       | -        |
| со              | 586.22   |         |          |          | -       | -        |
| SOx             | 0.04     | 0.00    | 0.00     | -        | -       | -        |
| CO2 (tons)      | 93.78    | -       | -        | -        | -       | -        |

| increment       |          |         |          |            |         |          |  |  |  |
|-----------------|----------|---------|----------|------------|---------|----------|--|--|--|
|                 | I        | J       |          |            |         |          |  |  |  |
|                 | per Year | per Day | per Hour | per Year   | per Day | per Hour |  |  |  |
| VMT (miles)     | 48.60    | -6.24   | -0.62    | -8,719.27  | -106.44 | -10.64   |  |  |  |
| TSP - Dust      | 180.78   | -23.21  | -2.32    | -32,431.27 | -395.90 | -39.59   |  |  |  |
| PM10 - Dust     | 51.41    | -6.60   | -0.66    | -9,222.28  | -112.58 | -11.26   |  |  |  |
| PM2.5 - Dust    | 5.14     | -0.66   | -0.07    | -922.23    | -11.26  | -1.13    |  |  |  |
| TSP - Exhaust   | 1.09     | -0.14   | -0.01    | -195.18    | -2.38   | -0.24    |  |  |  |
| PM10 - Exhaust  | 1.09     | -0.14   | -0.01    | -195.18    | -2.38   | -0.24    |  |  |  |
| PM2.5 - Exhaust | 1.00     | -0.13   | -0.01    | -179.57    | -2.19   | -0.22    |  |  |  |
| HC              | 1.89     | -0.24   | -0.02    | -338.46    | -4.13   | -0.41    |  |  |  |
| NOx             | 34.84    | -4.47   | -0.45    | -6,250.60  | -76.30  | -7.63    |  |  |  |
| со              | 22.73    | -2.92   | -0.29    | -4,077.59  | -49.78  | -4.98    |  |  |  |
| SOx             | 0.00     | -0.00   | -0.00    | -0.26      | -0.00   | -0.00    |  |  |  |
| CO2 (tons)      | 3.64     | -       | -        | -652.29    | -       | -        |  |  |  |

|                 | K         | K L     |          |           |         |          |  |  |
|-----------------|-----------|---------|----------|-----------|---------|----------|--|--|
|                 | per Year  | per Day | per Hour | per Year  | per Day | per Hour |  |  |
| VMT (miles)     | 20,421.14 | 239.00  | 26.56    | 5,383.71  | 65.72   | 6.57     |  |  |
| VMT (%)         | 0.00%     | 0.00%   | 0.00%    | 4.03%     | 4.23%   | 3.76%    |  |  |
| TSP - Dust      | 751.91    | 8.80    | 0.98     | 20,024.68 | 244.45  | 24.44    |  |  |
| PM10 - Dust     | 150.38    | 1.76    | 0.20     | 5,694.30  | 69.51   | 6.95     |  |  |
| PM2.5 - Dust    | 36.91     | 0.43    | 0.05     | 569.43    | 6.95    | 0.70     |  |  |
| TSP - Exhaust   | 31.80     | 0.37    | 0.04     | 120.51    | 1.47    | 0.15     |  |  |
| PM10 - Exhaust  | 31.80     | 0.37    | 0.04     | 120.51    | 1.47    | 0.15     |  |  |
| PM2.5 - Exhaust | 29.25     | 0.34    | 0.04     | 110.87    | 1.35    | 0.14     |  |  |
| HC              | 29.32     | 0.34    | 0.04     | 208.98    | 2.55    | 0.26     |  |  |
| NOx             | 553.40    | 6.48    | 0.72     | 3,859     | 47.11   | 4.71     |  |  |
| со              | 132.81    | 1.55    | 0.17     | 2,518     | 30.73   | 3.07     |  |  |
| SOx             | 0.72      | 0.01    | 0.00     | 0.16      | 0.00    | 0.00     |  |  |
| CO2             | -         | -       | -        | 402.75    | -       | -        |  |  |

#### **Project**

| TTOJECE         |           |         |          |          |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | K         |         |          | L        |         |          |
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 28,452.92 | 178.43  | 21.41    | -        | -       | -        |
| VMT (%)         | 0.00%     | 0.00%   | 0.00%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 1,047.65  | 6.57    | 0.79     | -        | -       | -        |
| PM10 - Dust     | 209.53    | 1.31    | 0.16     | -        | -       | -        |
| PM2.5 - Dust    | 51.43     | 0.32    | 0.04     | -        | -       | -        |
| TSP - Exhaust   | 44.30     | 0.28    | 0.03     | -        | -       | -        |
| PM10 - Exhaust  | 44.30     | 0.28    | 0.03     | -        | -       | -        |
| PM2.5 - Exhaust | 40.76     | 0.26    | 0.03     | -        | -       | -        |
| НС              | 40.85     | 0.26    | 0.03     | -        | -       | -        |
| NOx             | 771.05    | 4.84    | 0.58     | -        | -       | -        |
| со              | 185.05    | 1.16    | 0.14     | -        | -       | -        |
| SOx             | 1.01      | 0.01    | 0.00     | -        | -       | -        |
| CO2 (tons)      | -         | -       | -        | -        | -       | -        |

| increment       |          |         |          |            |         |          |
|-----------------|----------|---------|----------|------------|---------|----------|
|                 | K        |         | L        |            |         |          |
|                 | per Year | per Day | per Hour | per Year   | per Day | per Hour |
| VMT (miles)     | 8,031.78 | -60.57  | -5.14    | -5,383.71  | -65.72  | -6.57    |
| TSP - Dust      | 295.73   | -2.23   | -0.19    | -20,024.68 | -244.45 | -24.44   |
| PM10 - Dust     | 59.15    | -0.45   | -0.04    | -5,694.30  | -69.51  | -6.95    |
| PM2.5 - Dust    | 14.52    | -0.11   | -0.01    | -569.43    | -6.95   | -0.70    |
| TSP - Exhaust   | 12.51    | -0.09   | -0.01    | -120.51    | -1.47   | -0.15    |
| PM10 - Exhaust  | 12.51    | -0.09   | -0.01    | -120.51    | -1.47   | -0.15    |
| PM2.5 - Exhaust | 11.51    | -0.09   | -0.01    | -110.87    | -1.35   | -0.14    |
| НС              | 11.53    | -0.09   | -0.01    | -208.98    | -2.55   | -0.26    |
| NOx             | 217.66   | -1.64   | -0.14    | -3,859.43  | -47.11  | -4.71    |
| СО              | 52.24    | -0.39   | -0.03    | -2,517.71  | -30.73  | -3.07    |
| SOx             | 0.28     | -0.00   | -0.00    | -0.16      | -0.00   | -0.00    |
| CO2 (tons)      | -        | -       | -        | -402.75    | -       | -        |

|                 | M Total On-site |         |       |         |       |            |          |          |
|-----------------|-----------------|---------|-------|---------|-------|------------|----------|----------|
|                 | per Year        | per Day | ŗ     | er Hour |       | per Year   | per Day  | per Hour |
| VMT (miles)     |                 | -       | -     |         | -     | 133,589.61 | 1,554.73 | 174.67   |
| VMT (%)         |                 | 0.00%   | 0.00% |         | 0.00% | 100.00%    | 100.00%  | 100.00%  |
| TSP - Dust      |                 | -       | -     |         | -     | 496,885.92 | 5,782.81 | 649.67   |
| PM10 - Dust     |                 | -       | -     |         | -     | 141,296.45 | 1,644.42 | 184.74   |
| PM2.5 - Dust    |                 | -       | -     |         | -     | 14,129.64  | 164.44   | 18.47    |
| TSP - Exhaust   |                 | -       | -     |         | -     | 2,990.42   | 34.80    | 3.91     |
| PM10 - Exhaust  |                 | -       | -     |         | -     | 2,990.42   | 34.80    | 3.91     |
| PM2.5 - Exhaust |                 | -       | -     |         | -     | 2,751.18   | 32.02    | 3.60     |
| HC              |                 | -       | -     |         | -     | 5,185.65   | 60.35    | 6.78     |
| NOx             |                 | -       | -     |         | -     | 95,766.76  | 1,114.54 | 125.21   |
| СО              |                 | -       | -     |         | -     | 62,473.56  | 727.07   | 81.68    |
| SOx             |                 | -       | -     |         | -     | 3.99       | 0.05     | 0.01     |
| CO2             |                 | -       | -     |         | -     | 9,994      |          |          |

Project 1.40

|                 |          |         |          |       | 1.10          |          |          |
|-----------------|----------|---------|----------|-------|---------------|----------|----------|
|                 | М        |         |          |       | Total On-site |          |          |
|                 | per Year | per Day | per Hour |       | per Year      | per Day  | per Hour |
| VMT (miles)     |          | -       | -        | -     | 187,083.73    | 1,173.35 | 140.80   |
| VMT (%)         |          | 0.00%   | 0.00%    | 0.00% | 100.00%       | 100.00%  | 100.00%  |
| TSP - Dust      |          | -       | -        | -     | 695,857.06    | 4,364.25 | 523.71   |
| PM10 - Dust     |          | -       | -        | -     | 197,876.67    | 1,241.04 | 148.92   |
| PM2.5 - Dust    |          | -       | -        | -     | 19,787.67     | 124.10   | 14.89    |
| TSP - Exhaust   |          | -       | -        | -     | 4,187.89      | 26.27    | 3.15     |
| PM10 - Exhaust  |          | -       | -        | -     | 4,187.89      | 26.27    | 3.15     |
| PM2.5 - Exhaust |          | -       | -        | -     | 3,852.86      | 24.16    | 2.90     |
| HC              |          | -       | -        | -     | 7,262.18      | 45.55    | 5.47     |
| NOx             |          | -       | -        | -     | 134,115.25    | 841.14   | 100.94   |
| CO              |          | -       | -        | -     | 87,490.24     | 548.72   | 65.85    |
| SOx             |          | -       | -        | -     | 5.58          | 0.04     | 0.00     |
| CO2 (tons)      |          | -       | -        | -     | 13,995.68     | -        | -        |

|                 | М        |         |          | To | Total On-site |           |          |  |
|-----------------|----------|---------|----------|----|---------------|-----------|----------|--|
|                 | per Year | per Day | per Hour | ре | er Year       | per Day   | per Hour |  |
| VMT (miles)     |          | -       | -        | -  | 53,494.12     | -381.39   | -33.87   |  |
| TSP - Dust      |          | -       | -        | -  | 198,971.14    | -1,418.56 | -125.96  |  |
| PM10 - Dust     |          | -       | -        | -  | 56,580.22     | -403.39   | -35.82   |  |
| PM2.5 - Dust    |          | -       | -        | -  | 5,658.02      | -40.34    | -3.58    |  |
| TSP - Exhaust   |          | -       | -        | -  | 1,197.47      | -8.54     | -0.76    |  |
| PM10 - Exhaust  |          | -       | -        | -  | 1,197.47      | -8.54     | -0.76    |  |
| PM2.5 - Exhaust |          | -       | -        | -  | 1,101.67      | -7.85     | -0.70    |  |
| НС              |          | -       | -        | -  | 2,076.52      | -14.80    | -1.31    |  |
| NOx             |          | -       | -        | -  | 38,348.48     | -273.40   | -24.28   |  |
| СО              |          | -       | -        | -  | 25,016.68     | -178.36   | -15.84   |  |
| SOx             |          | -       | -        | -  | 1.60          | -0.01     | -0.00    |  |
| CO2 (tons)      |          | -       | -        | -  | 4,001.88      | -         | -        |  |

|                 | Total Offsite |              |              | Total        |              |              |  |
|-----------------|---------------|--------------|--------------|--------------|--------------|--------------|--|
|                 | per Year      | per Day      | per Hour     | per Year     | per Day      | per Hour     |  |
| VMT (miles)     | 3,787,945.55  | 3,787,945.55 | 3,787,945.55 | 3,921,535.16 | 3,789,500.28 | 3,788,120.22 |  |
| VMT (%)         | 100.00%       | 100.00%      | 100.00%      |              |              |              |  |
| TSP - Dust      | 139,473.29    | 139,473.29   | 139,473.29   | 636,359.21   | 145,256.10   | 140,122.96   |  |
| PM10 - Dust     | 27,894.66     | 27,894.66    | 27,894.66    | 169,191.10   | 29,539.08    | 28,079.40    |  |
| PM2.5 - Dust    | 6,846.87      | 6,846.87     | 6,846.87     | 20,976.52    | 7,011.31     | 6,865.35     |  |
| TSP - Exhaust   | 5,898.06      | 5,898.06     | 5,898.06     | 8,888.47     | 5,932.86     | 5,901.97     |  |
| PM10 - Exhaust  | 5,898.06      | 5,898.06     | 5,898.06     | 8,888.47     | 5,932.86     | 5,901.97     |  |
| PM2.5 - Exhaust | 5,426.21      | 5,426.21     | 5,426.21     | 8,177.40     | 5,458.23     | 5,429.81     |  |
| HC              | 5,437.75      | 5,437.75     | 5,437.75     | 10,623.40    | 5,498.10     | 5,444.53     |  |
| NOx             | 102,650.55    | 102,650.55   | 102,650.55   | 198,417.31   | 103,765.10   | 102,775.77   |  |
| со              | 24,635.25     | 24,635.25    | 24,635.25    | 87,108.81    | 25,362.33    | 24,716.94    |  |
| SOx             | 133.92        | 133.92       | 133.92       | 137.90       | 133.96       | 133.92       |  |
| CO2             | 7,067.22      | 7,067.22     | 7,067.22     | 17,061.02    | 7,067.22     | 7,067.22     |  |

#### **Project**

| Froject         | _             |              |              |              |              |              |  |
|-----------------|---------------|--------------|--------------|--------------|--------------|--------------|--|
|                 | Total Offsite |              |              | Total        |              |              |  |
|                 | per Year      | per Day      | per Hour     | per Year     | per Day      | per Hour     |  |
| VMT (miles)     | 3,940,736.00  | 3,940,736.00 | 3,940,736.00 | 4,127,819.73 | 3,941,909.35 | 3,940,876.80 |  |
| VMT (%)         | 100.00%       | 100.00%      | 100.00%      |              |              |              |  |
| TSP - Dust      | 145,099.08    | 145,099.08   | 145,099.08   | 840,956.14   | 149,463.33   | 145,622.79   |  |
| PM10 - Dust     | 29,019.82     | 29,019.82    | 29,019.82    | 226,896.48   | 30,260.85    | 29,168.74    |  |
| PM2.5 - Dust    | 7,123.05      | 7,123.05     | 7,123.05     | 26,910.71    | 7,247.15     | 7,137.94     |  |
| TSP - Exhaust   | 6,135.96      | 6,135.96     | 6,135.96     | 10,323.85    | 6,162.23     | 6,139.11     |  |
| PM10 - Exhaust  | 6,135.96      | 6,135.96     | 6,135.96     | 10,323.85    | 6,162.23     | 6,139.11     |  |
| PM2.5 - Exhaust | 5,645.08      | 5,645.08     | 5,645.08     | 9,497.94     | 5,669.25     | 5,647.98     |  |
| HC              | 5,657.09      | 5,657.09     | 5,657.09     | 12,919.27    | 5,702.63     | 5,662.55     |  |
| NOx             | 106,791.06    | 106,791.06   | 106,791.06   | 240,906.31   | 107,632.20   | 106,892.00   |  |
| со              | 25,628.94     | 25,628.94    | 25,628.94    | 113,119.18   | 26,177.66    | 25,694.79    |  |
| SOx             | 139.32        | 139.32       | 139.32       | 144.90       | 139.35       | 139.32       |  |
| CO2 (tons)      | 7,339.35      | 7,339.35     | 7,339.35     | 21,335.03    | 7,339.35     | 7,339.35     |  |

| increment       |               |            |            |            |            |            |  |
|-----------------|---------------|------------|------------|------------|------------|------------|--|
|                 | Total Offsite |            |            | Total      |            |            |  |
|                 | per Year      | per Day    | per Hour   | per Year   | per Day    | per Hour   |  |
| VMT (miles)     | 152,790.45    | 152,790.45 | 152,790.45 | 206,284.57 | 152,409.06 | 152,756.58 |  |
| TSP - Dust      | 5,625.79      | 5,625.79   | 5,625.79   | 204,596.93 | 4,207.23   | 5,499.83   |  |
| PM10 - Dust     | 1,125.16      | 1,125.16   | 1,125.16   | 57,705.38  | 721.77     | 1,089.34   |  |
| PM2.5 - Dust    | 276.18        | 276.18     | 276.18     | 5,934.20   | 235.84     | 272.59     |  |
| TSP - Exhaust   | 237.90        | 237.90     | 237.90     | 1,435.38   | 229.37     | 237.15     |  |
| PM10 - Exhaust  | 237.90        | 237.90     | 237.90     | 1,435.38   | 229.37     | 237.15     |  |
| PM2.5 - Exhaust | 218.87        | 218.87     | 218.87     | 1,320.55   | 211.02     | 218.17     |  |
| HC              | 219.34        | 219.34     | 219.34     | 2,295.86   | 204.53     | 218.02     |  |
| NOx             | 4,140.51      | 4,140.51   | 4,140.51   | 42,488.99  | 3,867.10   | 4,116.23   |  |
| со              | 993.69        | 993.69     | 993.69     | 26,010.37  | 815.33     | 977.85     |  |
| SOx             | 5.40          | 5.40       | 5.40       | 7.00       | 5.39       | 5.40       |  |
| CO2 (tons)      | 272.13        | 272.13     | 272.13     | 4,274.01   | 272.13     | 272.13     |  |

|                      | VOL1       | VOL2       | VOL3     | VOL4       | VOL5       | VOL6       | VOL7       | VOL8       | VOL9       | VOL10      |
|----------------------|------------|------------|----------|------------|------------|------------|------------|------------|------------|------------|
| TSPann               | -3.50E-01  | -8.14E-01  | 0.00E+00 | -3.00E-01  | -3.00E-01  | 1.14E-01   | 4.33E-01   | 8.23E-03   | 3.41E-01   | 1.30E+00   |
| TSPday               | -1.28E+00  | -2.97E+00  | 0.00E+00 | -1.09E+00  | -1.09E+00  | 4.15E-01   | 1.58E+00   | 3.01E-02   | 1.24E+00   | 4.73E+00   |
| PM10ann              | -1.17E-01  | -4.10E-01  | 0.00E+00 | -1.48E-01  | -1.48E-01  | 2.10E-02   | 2.18E-01   | 4.30E-03   | 6.40E-02   | 6.52E-01   |
| PM10day              | -4.29E-01  | -1.50E+00  | 0.00E+00 | -5.40E-01  | -5.40E-01  | 7.66E-02   | 7.97E-01   | 1.57E-02   | 2.33E-01   | 2.38E+00   |
| PM25ann              | -4.03E-02  | -1.27E-01  | 0.00E+00 | -5.23E-02  | -5.23E-02  | 5.06E-03   | 5.23E-02   | 1.71E-03   | 2.34E-02   | 1.53E-01   |
| PM25day              | -1.47E-01  | -4.62E-01  | 0.00E+00 | -1.91E-01  | -1.91E-01  | 1.85E-02   | 1.91E-01   | 6.22E-03   | 8.53E-02   | 5.60E-01   |
| NOxyr                | -1.42E-01  | -1.17E-01  | 0.00E+00 | -3.45E-03  | -3.45E-03  | 2.50E-03   | 7.30E-02   | 1.28E-02   | 1.02E-01   | 1.52E-01   |
| NOxhr                | -2.08E+00  | -1.71E+00  | 0.00E+00 | -5.03E-02  | -5.03E-02  | 3.66E-02   | 1.07E+00   | 1.87E-01   | 1.49E+00   | 2.22E+00   |
| TSPann (lb/yr/src)   | -24344.179 | -56602.499 | 0        | -20836.774 | -20836.774 | 7899.79756 | 30132.5258 | 572.507122 | 23689.7697 | 90156.0658 |
| TSPday (lb/day/src)  | -243.44179 | -566.02499 | 0        | -208.36774 | -208.36774 | 78.9979756 | 301.325258 | 5.72507122 | 236.897697 | 901.560658 |
| PM10ann (lb/yr/src)  | -8167.1132 | -28507.675 | 0        | -10281.845 | -10281.845 | 1459.43901 | 15182.9663 | 298.702889 | 4446.23095 | 45307.3873 |
| PM10day (lb/day/src) | -81.671132 | -285.07675 | 0        | -102.81845 | -102.81845 | 14.5943901 | 151.829663 | 2.98702889 | 44.4623095 | 453.073873 |
| PM25ann (lb/yr/src)  | -2803.8977 | -8798.7133 | 0        | -3636.8902 | -3636.8902 | 351.818377 | 3634.15286 | 118.568524 | 1625.57054 | 10660.9469 |
| PM25day (lb/day/src) | -28.038977 | -87.987133 | 0        | -36.368902 | -36.368902 | 3.51818377 | 36.3415286 | 1.18568524 | 16.2557054 | 106.609469 |
| NOx (lb/yr/src)      | -9898.008  | -8146.057  | 0        | -239.58991 | -239.58991 | 174.091745 | 5075.75189 | 892.577239 | 7092.38564 | 10583.7616 |
| NOx (lb/hr/src)      | -16.49668  | -13.576762 | 0        | -0.3993165 | -0.3993165 | 0.29015291 | 8.45958648 | 1.48762873 | 11.8206427 | 17.6396027 |
| TSPann (lb/yr)       | -24,344    | -56,602    | 0        | -20,837    | -20,837    | 7,900      | 30,133     | 573        | 23,690     | 90,156     |
| TSPday (lb/day)      | -243       | -566       | 0        | -208       | -208       | 79         | 301        | 6          | 237        | 902        |
| PM10ann (lb/yr)      | -8,167     | -28,508    | 0        | -10,282    | -10,282    | 1,459      | 15,183     | 299        | 4,446      | 45,307     |
| PM10day (lb/day)     | -82        | -285       | 0        | -103       | -103       | 15         | 152        | 3          | 44         | 453        |
| PM25ann (lb/yr)      | -2,804     | -8,799     | 0        | -3,637     | -3,637     | 352        | 3,634      | 119        | 1,626      | 10,661     |
| PM25day (lb/day)     | -28        | -88        | 0        | -36        | -36        | 4          | 36         | 1          | 16         | 107        |
| HC (lb/yr)           | -640       | -554       | 0        | -16        | -16        | 23         | 344        | 61         | 330        | 720        |
| NOx (lb/yr)          | -9,898     | -8,146     | 0        | -240       | -240       | 174        | 5,076      | 893        | 7,092      | 10,584     |
| CO (lb/yr)           | -14,201    | -5,306     | 0        | -156       | -156       | 112        | 2,822      | 581        | 7,437      | 6,894      |
| SOx (lb/yr)          | -0.305     | -0.292     | 0        | -0.009     | -0.009     | 0.006      | 0.164      | 0.032      | 0.731      | 0.379      |
| CO2 (ton/yr)         | -584       | -769       | 0        | -23        | -23        | 25         | 433        | 84         | 806        | 999        |
| TSP (lb/yr)          | -24,344    | -56,602    | 0        | -20,837    | -20,837    | 7,900      | 30,133     | 573        | 23,690     | 90,156     |
| PM10 (lb/yr)         | -8,167     | -28,508    | 0        | -10,282    | -10,282    | 1,459      | 15,183     | 299        | 4,446      | 45,307     |
| PM2.5 (lb/yr)        | -2,804     | -8,799     | 0        | -3,637     | -3,637     | 352        | 3,634      | 119        | 1,626      | 10,661     |

|                      | Α        | В        | С        | E0       | G        | Н         | I         | J         | K         | L         | М        |
|----------------------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|----------|
| TSPann               | 8.07E-03 | 2.02E-02 | 1.84E-02 | 2.64E-02 | 9.53E-03 | -8.90E-03 | 6.54E-04  | -1.30E-02 | 5.54E-05  | -1.45E-02 | 0.00E+00 |
| TSPday               | 1.57E-02 | 4.04E-02 | 3.11E-02 | 4.48E-02 | 1.66E-04 | -4.01E-02 | -3.07E-02 | -5.81E-02 | -1.53E-04 | -6.46E-02 | 0.00E+00 |
| PM10ann              | 2.33E-03 | 5.83E-03 | 5.30E-03 | 7.63E-03 | 2.75E-03 | -2.57E-03 | 1.89E-04  | -3.76E-03 | 1.29E-05  | -4.18E-03 | 0.00E+00 |
| PM10day              | 4.54E-03 | 1.17E-02 | 8.97E-03 | 1.29E-02 | 4.79E-05 | -1.16E-02 | -8.85E-03 | -1.68E-02 | -3.55E-05 | -1.86E-02 | 0.00E+00 |
| PM25ann              | 2.73E-04 | 6.82E-04 | 6.21E-04 | 8.93E-04 | 3.22E-04 | -3.01E-04 | 2.21E-05  | -4.40E-04 | 4.68E-06  | -4.89E-04 | 0.00E+00 |
| PM25day              | 5.31E-04 | 1.37E-03 | 1.05E-03 | 1.51E-03 | 5.60E-06 | -1.35E-03 | -1.04E-03 | -1.96E-03 | -1.29E-05 | -2.18E-03 | 0.00E+00 |
| NOxyr                | 1.55E-03 | 3.87E-03 | 3.52E-03 | 5.06E-03 | 1.83E-03 | -1.71E-03 | 1.25E-04  | -2.50E-03 | 3.91E-05  | -2.78E-03 | 0.00E+00 |
| NOxhr                | 8.68E-03 | 2.23E-02 | 1.71E-02 | 2.47E-02 | 9.16E-05 | -1.84E-02 | -1.41E-02 | -2.67E-02 | -2.20E-04 | -2.97E-02 | 0.00E+00 |
| TSPann (lb/yr/src)   | 561.3787 | 1403.89  | 1277.61  | 1837.47  | 662.758  | -618.981  | 45.4659   | -906.29   | 3.85298   | -1007.26  | 0        |
| TSPday (lb/day/src)  | 2.995892 | 7.70169  | 5.9171   | 8.54293  | 0.03161  | -7.64125  | -5.8384   | -11.0633  | -0.02906  | -12.2959  | 0        |
| PM10ann (lb/yr/src)  | 162.0392 | 405.227  | 368.775  | 530.378  | 191.302  | -178.666  | 13.1235   | -261.596  | 0.89566   | -290.741  | 0        |
| PM10day (lb/day/src) | 0.864749 | 2.22306  | 1.70794  | 2.46587  | 0.00912  | -2.20561  | -1.68523  | -3.19337  | -0.00675  | -3.54914  | 0        |
| PM25ann (lb/yr/src)  | 18.95776 | 47.4095  | 43.1448  | 62.0515  | 22.3813  | -20.903   | 1.53538   | -30.6054  | 0.32529   | -34.0152  | 0        |
| PM25day (lb/day/src) | 0.101171 | 0.26009  | 0.19982  | 0.28849  | 0.00107  | -0.25804  | -0.19716  | -0.37361  | -0.00245  | -0.41523  | 0        |
| NOx (lb/yr/src)      | 107.5494 | 268.959  | 244.765  | 352.025  | 126.972  | -118.585  | 8.71039   | -173.628  | 2.72069   | -192.972  | 0        |
| NOx (lb/hr/src)      | 0.068875 | 0.17706  | 0.13603  | 0.1964   | 0.00073  | -0.14639  | -0.11176  | -0.21195  | -0.00174  | -0.23557  | 0        |
|                      |          |          |          |          |          |           |           |           |           |           |          |
| TSPann (lb/yr)       | 21,332   | 23,866   | 17,886   | 99,224   | 216,722  | -126,272  | 182       | -32,626   | 308       | -, -      |          |
| TSPday (lb/day)      | 114      | 131      | 83       | 461      | 10       | -1,559    | -23       | -398      |           | _         | _        |
| PM10ann (lb/yr)      | 6,157    | 6,889    | 5,163    | 28,640   | 62,556   | -36,448   | 52        | ,         | 72        | -,        |          |
| PM10day (lb/day)     | 33       | 38       | 24       | 133      | 3        | -450      | -7        | -115      | -1        |           | _        |
| PM25ann (lb/yr)      | 720      | 806      | 604      | 3,351    | 7,319    | -4,264    | 6         | -1,102    | 26        | -680      | 0        |
| PM25day (lb/day)     | 4        | 4        | 3        | 16       | 0        | -53       | -1        | -13       | 0         | -8        | 0        |
| HC (lb/yr)           | 221      | 248      | 186      | 1,029    | 2,248    | -1,310    | 2         | -338      | 12        | -209      | 0        |
| NOx (lb/yr)          | 4,087    | 4,572    | 3,427    | 19,009   | 41,520   | -24,191   | 35        | -6,251    | 218       | -3,859    | 0        |
| CO (lb/yr)           | 2,666    | 2,983    | 2,235    | 12,401   | 27,085   | -15,781   | 23        | -4,078    | 52        | -2,518    | 0        |
| SOx (lb/yr)          | 0.170    | 0.190    | 0.143    | 0.791    | 1.728    | -1.007    | 0.001     | -0.260    | 0.284     | -0.161    | 0        |
| CO2 (ton/yr)         | 426      | 477      | 358      | 1,984    | 4,333    | -2,524    | 4         | -652      | 0         | -403      | 0        |
| TSP (lb/yr)          | 21,332   | 23,866   | 17,886   | 99,224   | 216,722  | -126,272  | 182       | -32,626   | 308       | -20,145   | 0        |
| PM10 (lb/yr)         | 6,157    | 6,889    | 5,163    | 28,640   | 62,556   | -36,448   | 52        | -9,417    | 72        | -5,815    | 0        |
| PM2.5 (lb/yr)        | 720      | 806      | 604      | 3,351    | 7,319    | -4,264    | 6         | -1,102    | 26        | -680      | 0        |

|                      | Total Sentinel Butterfield | Total White Knob | Total Processing Plant | Total Offsite |
|----------------------|----------------------------|------------------|------------------------|---------------|
| TSPann               |                            |                  |                        |               |
| TSPday               |                            |                  |                        |               |
| PM10ann              |                            |                  |                        |               |
| PM10day              |                            |                  |                        |               |
| PM25ann              |                            |                  |                        |               |
| PM25day              |                            |                  |                        |               |
| NOxyr                |                            |                  |                        |               |
| NOxhr                |                            |                  |                        |               |
| TSPann (lb/yr/src)   |                            |                  |                        |               |
| TSPday (lb/day/src)  |                            |                  |                        |               |
| PM10ann (lb/yr/src)  |                            |                  |                        |               |
| PM10day (lb/day/src) |                            |                  |                        |               |
| PM25ann (lb/yr/src)  |                            |                  |                        |               |
| PM25day (lb/day/src) |                            |                  |                        |               |
| NOx (lb/yr/src)      |                            |                  |                        |               |
| NOx (lb/hr/src)      |                            |                  |                        |               |
| TSPann (lb/yr)       | 523,581                    | -301,664         | 8,082                  |               |
| TSPday (lb/day)      | 2,245                      |                  |                        |               |
| PM10ann (lb/yr)      | 174,641                    | -108,919         |                        |               |
| PM10dam (lb/day)     | 883                        | -1,208           | · ·                    |               |
| PM25ann (lb/yr)      | 28,839                     |                  | 358                    |               |
| PM25day (lb/day)     | 187                        | -263             | 3                      |               |
| HC (lb/yr)           | 5,387                      | -3,085           | 25                     | 219.3         |
| NOx (lb/yr)          | 96,259                     | · ·              |                        | 4140.5        |
| CO (lb/yr)           | 65,105                     |                  |                        | 993.7         |
| SOx (lb/yr)          | 4                          | -2               | 0                      | 5.4           |
| CO2 (ton/yr)         | 9,900                      | -4,978           | 28                     | 272.1         |
| TSP (lb/yr)          | 523,581                    |                  |                        | 5863.7        |
| PM10 (lb/yr)         | 174,641                    | -108,919         |                        | 1363.1        |
| PM2.5 (lb/yr)        | 28,839                     | -24,923          | 358                    | 495.0         |

|                      | Total Project w/o White Knd | Total Project w/ White Knob | Volume Source Identifier | -         |                       |      |
|----------------------|-----------------------------|-----------------------------|--------------------------|-----------|-----------------------|------|
| TSPann               |                             |                             |                          |           | 498771.228 3802380.11 | 7 0. |
| TSPday               |                             |                             | ** DESCRSRC White Knob   | o Crushin | g                     |      |
| PM10ann              |                             |                             | LOCATION VOL2 VO         | OLUME     | 498410.694 3802532.33 | 0 0. |
| PM10day              |                             |                             | ** DESCRSRC White Knob   | o Pit     |                       |      |
| PM25ann              |                             |                             | LOCATION VOL3 VO         | OLUME     | 499367.635 3802416.27 | 4 0. |
| PM25day              |                             |                             | ** DESCRSRC White Ridg   | e Pit     |                       |      |
| NOxyr                |                             |                             |                          |           |                       |      |
| NOxhr                |                             |                             |                          |           |                       |      |
|                      |                             |                             | LOCATION VOL4 VO         | OLUME     | 499169.967 3802653.55 | 3 0. |
| TSPann (lb/yr/src)   |                             |                             | ** DESCRSRC OB1          |           |                       |      |
| TSPday (lb/day/src)  |                             |                             | LOCATION VOL5 VO         | OLUME     | 498786.819 3802108.55 | 9 0. |
| PM10ann (lb/yr/src)  |                             |                             | ** DESCRSRC OB2          |           |                       |      |
| PM10day (lb/day/src) |                             |                             | LOCATION VOL6 VO         | OLUME     | 505294.247 3804607.15 | 1 0. |
| PM25ann (lb/yr/src)  |                             |                             | ** DESCRSRC Processing   | Plant     |                       |      |
| PM25day (lb/day/src  |                             |                             | LOCATION VOL7 VO         | OLUME     | 504322.000 3798695.00 | 0 0. |
| NOx (lb/yr/src)      |                             |                             | ** DESCRSRC Butterfield  | Pit       |                       |      |
| NOx (lb/hr/src)      |                             |                             | LOCATION VOL8 VO         | OLUME     | 505430.000 3797960.00 | 0 0. |
|                      |                             |                             | ** DESCRSRC B5 Pad Exp   | ansion    |                       |      |
|                      |                             |                             | LOCATION VOL9 VO         | OLUME     | 505555.000 3798545.00 | 0 0. |
| TSPann (lb/yr)       | 531,663                     | 229,999                     | ** DESCRSRC Butterfield- | -Sentinel | Crushing              |      |
| TSPday (lb/day)      | 2,300                       | -1,129                      | LOCATION VOL10 V         | OLUME     | 505808.000 3798770.00 | 0 0  |
| PM10ann (lb/yr)      | 176,153                     | 67,234                      | ** DESCRSRC Sentinel Pit | į         |                       |      |
| PM10day (lb/day)     | 891                         | -317                        |                          |           |                       |      |
| PM25ann (lb/yr)      | 29,197                      | 4,274                       |                          |           |                       |      |
| PM25day (lb/day)     | 190                         | -73                         |                          |           |                       |      |
| ', ', ',             |                             |                             |                          |           |                       |      |
| HC (lb/yr)           | 5,631                       | 2,547                       |                          |           |                       |      |
| NOx (lb/yr)          | 100,609                     | 47,784                      |                          |           |                       |      |
| CO (lb/yr)           | 66,233                      | 24,037                      |                          |           |                       |      |
| SOx (lb/yr)          | 10                          | 8                           |                          |           |                       |      |
| CO2 (ton/yr)         | 10,201                      | 5,223                       |                          |           |                       |      |
| TSP (lb/yr)          | 537,527                     | 235,863                     |                          |           |                       |      |
| PM10 (lb/yr)         | 177,516                     | •                           |                          |           |                       |      |
| PM2.5 (lb/yr)        | 29,692                      | 4,769                       |                          |           |                       |      |
| 1                    | 25,032                      | .,, 05                      |                          |           |                       |      |

|                                 | ID       | # of sources |
|---------------------------------|----------|--------------|----------|--------------|----------|--------------|----------|--------------|
|                                 | Α        | 38           | В        | 17           | С        | 14           | EO       | 54           |
| CHEMICAL                        | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      |
| arsenic                         | 0.00238  | 8.24097E-06  | 0.005952 | 3.92963E-06  | 0.005417 | 3.01908E-06  | 0.007791 | 4.35885E-06  |
| bromine                         | 0.002856 | 1.52625E-05  | 0.007143 | 4.7244E-06   | 0.0065   | 3.62969E-06  | 0.009349 | 5.24043E-06  |
| cadmium                         | 0.002063 | 0.000102071  | 0.005159 | 3.56196E-06  | 0.004695 | 2.7366E-06   | 0.006752 | 3.95102E-06  |
| chlorine                        | 0.133927 | 0.000189875  | 0.334923 | 0.000220656  | 0.304795 | 0.000169527  | 0.438361 | 0.000244758  |
| copper                          | 0.025072 | 0.000224273  | 0.062699 | 4.16184E-05  | 0.057059 | 3.19748E-05  | 0.082063 | 4.61642E-05  |
| lead                            | 0.020629 | 4.67939E-05  | 0.051588 | 3.40162E-05  | 0.046947 | 2.61342E-05  | 0.06752  | 3.77317E-05  |
| manganese                       | 0.145193 | 0.000287765  | 0.363098 | 0.000239353  | 0.330436 | 0.000183892  | 0.475238 | 0.000265497  |
| mercury                         | 0.002222 | 2.49311E-05  | 0.005556 | 3.69603E-06  | 0.005056 | 2.83961E-06  | 0.007271 | 4.09974E-06  |
| nickel                          | 0.005871 | 3.3985E-05   | 0.014683 | 9.71556E-06  | 0.013362 | 7.46433E-06  | 0.019217 | 1.07768E-05  |
| selenium                        | 0.000476 | 2.71716E-05  | 0.00119  | 8.27944E-07  | 0.001083 | 6.36098E-07  | 0.001558 | 9.18378E-07  |
| vanadium (fume or dust)         | 0.012218 | 1.1183E-05   | 0.030556 | 2.01208E-05  | 0.027807 | 1.54586E-05  | 0.039993 | 2.23186E-05  |
| Silica, Crystln                 | 6.347235 | 0.00406477   | 15.87315 | 0.010449513  | 14.44527 | 0.008028214  | 20.77542 | 0.011590883  |
| Asbestos                        | 0        | 0            | 0        | 0            | 0        | 0            | 0        | 0            |
| 1,3-butadiene                   | 0        | 7.08601E-06  | 0        | 1.82164E-05  | 0        | 1.39954E-05  | 0        | 2.02061E-05  |
| acetaldehyde                    | 0        | 0.000274117  | 0        | 0.000704686  | 0        | 0.0005414    | 0        | 0.000781657  |
| benzene                         | 0        | 7.45896E-05  | 0        | 0.000191751  | 0        | 0.00014732   | 0        | 0.000212696  |
| ethyl benzene                   | 0        | 1.15614E-05  | 0        | 2.97215E-05  | 0        | 2.28346E-05  | 0        | 3.29678E-05  |
| formaldehyde                    | 0        | 0.000548606  | 0        | 0.001410331  | 0        | 0.001083537  | 0        | 0.001564377  |
| hexane                          | 0        | 5.96717E-06  | 0        | 1.53401E-05  | 0        | 1.17856E-05  | 0        | 1.70157E-05  |
| methanol                        | 0        | 1.11884E-06  | 0        | 2.87627E-06  | 0        | 2.2098E-06   | 0        | 3.19044E-06  |
| methyl ethyl ketone {2-butanone | 0        | 5.51963E-05  | 0        | 0.000141896  | 0        | 0.000109017  | 0        | 0.000157395  |
| m-xylene                        | 0        | 2.27498E-05  | 0        | 5.84841E-05  | 0        | 4.49325E-05  | 0        | 6.48722E-05  |
| naphthalene                     | 0        | 3.35653E-06  | 0        | 8.62881E-06  | 0        | 6.62939E-06  | 0        | 9.57131E-06  |
| o-xylene                        | 0        | 1.26802E-05  | 0        | 3.25977E-05  | 0        | 2.50444E-05  | 0        | 3.61583E-05  |
| propylene                       | 0        | 9.69665E-05  | 0        | 0.000249277  | 0        | 0.000191516  | 0        | 0.000276504  |
| p-xylene                        | 0        | 3.72948E-06  | 0        | 9.58756E-06  | 0        | 7.36599E-06  | 0        | 1.06348E-05  |
| styrene                         | 0        | 2.23769E-06  | 0        | 5.75254E-06  | 0        | 4.41959E-06  | 0        | 6.38087E-06  |
| toluene                         | 0        | 5.48234E-05  | 0        | 0.000140937  | 0        | 0.00010828   | 0        | 0.000156331  |
| DieselExhPM                     | 3.358343 | 0            | 8.398536 | 0            | 7.64304  | 0            | 10.99234 | 0            |

|                                 | ID          | # of sources | ID       | # of sources | ID       | # of sources | ID       | # of sources |
|---------------------------------|-------------|--------------|----------|--------------|----------|--------------|----------|--------------|
|                                 | G           | 327          | Н        | 204          | 1        | 4            | J        | 36           |
| CHEMICAL                        | (lb/yr)     | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      |
| arsenic                         | 0.002810055 | 1.61271E-08  | -0.00262 | -3.24899E-06 | 0.000193 | -2.48032E-06 | -0.00384 | -4.70401E-06 |
| bromine                         | 0.003372066 | 1.93888E-08  | -0.00315 | -3.9061E-06  | 0.000231 | -2.98197E-06 | -0.00461 | -5.6554E-06  |
| cadmium                         | 0.002435381 | 1.46182E-08  | -0.00227 | -2.945E-06   | 0.000167 | -2.24826E-06 | -0.00333 | -4.26389E-06 |
| chlorine                        | 0.158112409 | 9.05569E-07  | -0.14767 | -0.000182437 | 0.010847 | -0.000139275 | -0.21621 | -0.000264139 |
| copper                          | 0.029599242 | 1.70801E-07  | -0.02764 | -3.44098E-05 | 0.002031 | -2.62689E-05 | -0.04048 | -4.98198E-05 |
| lead                            | 0.024353807 | 1.39602E-07  | -0.02275 | -2.81244E-05 | 0.001671 | -2.14706E-05 | -0.0333  | -4.07196E-05 |
| manganese                       | 0.171413334 | 9.82301E-07  | -0.16009 | -0.000197896 | 0.011759 | -0.000151076 | -0.2344  | -0.000286521 |
| mercury                         | 0.002622718 | 1.51684E-08  | -0.00245 | -3.05585E-06 | 0.00018  | -2.33288E-06 | -0.00359 | -4.42438E-06 |
| nickel                          | 0.006931468 | 3.98725E-08  | -0.00647 | -8.03276E-06 | 0.000476 | -6.13233E-06 | -0.00948 | -1.16301E-05 |
| selenium                        | 0.000562011 | 3.39787E-09  | -0.00052 | -6.84539E-07 | 3.86E-05 | -5.22587E-07 | -0.00077 | -9.91102E-07 |
| vanadium (fume or dust)         | 0.014424947 | 8.25755E-08  | -0.01347 | -1.66358E-05 | 0.00099  | -1.27E-05    | -0.01973 | -2.40859E-05 |
| Silica, Crystln                 | 7.493479098 | 4.28846E-05  | -6.99851 | -0.008639586 | 0.51406  | -0.006595587 | -10.247  | -0.012508731 |
| Asbestos                        | 0           | 0            | 0        | 0            | 0        | 0            | 0        | 0            |
| 1,3-butadiene                   | 0           | 7.47596E-08  | 0        | -1.50612E-05 | 0        | -1.14979E-05 | 0        | -2.18062E-05 |
| acetaldehyde                    | 0           | 2.89202E-06  | 0        | -0.00058263  | 0        | -0.000444788 | 0        | -0.000843554 |
| benzene                         | 0           | 7.86944E-07  | 0        | -0.000158539 | 0        | -0.000121031 | 0        | -0.000229538 |
| ethyl benzene                   | 0           | 1.21976E-07  | 0        | -2.45735E-05 | 0        | -1.87598E-05 | 0        | -3.55785E-05 |
| formaldehyde                    | 0           | 5.78797E-06  | 0        | -0.001166052 | 0        | -0.000890181 | 0        | -0.001688256 |
| hexane                          | 0           | 6.29555E-08  | 0        | -1.26831E-05 | 0        | -9.68246E-06 | 0        | -1.83631E-05 |
| methanol                        | 0           | 1.18042E-08  | 0        | -2.37808E-06 | 0        | -1.81546E-06 | 0        | -3.44308E-06 |
| methyl ethyl ketone {2-butanone | 0           | 5.82338E-07  | 0        | -0.000117319 | 0        | -8.95628E-05 | 0        | -0.000169858 |
| m-xylene                        | 0           | 2.40018E-07  | 0        | -4.83543E-05 | 0        | -3.69144E-05 | 0        | -7.00092E-05 |
| naphthalene                     | 0           | 3.54125E-08  | 0        | -7.13424E-06 | 0        | -5.44638E-06 | 0        | -1.03292E-05 |
| o-xylene                        | 0           | 1.3378E-07   | 0        | -2.69516E-05 | 0        | -2.05752E-05 | 0        | -3.90215E-05 |
| propylene                       | 0           | 1.02303E-06  | 0        | -0.0002061   | 0        | -0.00015734  | 0        | -0.0002984   |
| p-xylene                        | 0           | 3.93472E-08  | 0        | -7.92693E-06 | 0        | -6.05154E-06 | 0        | -1.14769E-05 |
| styrene                         | 0           | 2.36083E-08  | 0        | -4.75616E-06 | 0        | -3.63092E-06 | 0        | -6.88615E-06 |
| toluene                         | 0           | 5.78404E-07  | 0        | -0.000116526 | 0        | -8.89576E-05 | 0        | -0.000168711 |
| DieselExhPM                     | 3.964824266 | 0            | -3.70294 | 0            | 0.271991 | 0            | -5.42171 | 0            |

|                                 | ID          | # of sources | ID       | # of sources | ID      | # of sources | ID          | # of sources | ID        | # of sources |
|---------------------------------|-------------|--------------|----------|--------------|---------|--------------|-------------|--------------|-----------|--------------|
|                                 | K           | 80           | L        | 20           | М       | 12           | VOL1        | 1            | VOL2      | 1            |
| CHEMICAL                        | (lb/yr)     | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr) | (lb/hr)      | (lb/yr)     | (lb/hr)      | (lb/yr)   | (lb/hr)      |
| arsenic                         | 3.92867E-05 | -7.30302E-09 | -0.00427 | -5.22808E-06 | (       | 0            | -0.6271584  | -0.001046    | -2.251914 | -0.003754    |
| bromine                         | 4.7144E-05  | -8.92382E-09 | -0.00512 | -6.28547E-06 | (       | 0            | -0.391974   | -0.000655    | -1.407446 | -0.002348    |
| cadmium                         | 3.40485E-05 | -9.15937E-09 | -0.0037  | -4.73893E-06 | (       | 0            | -0.6271584  | -0.001062    | -2.251914 | -0.003771    |
| chlorine                        | 0.002210531 | -4.02753E-07 | -0.2403  | -0.000293567 | (       | 0            | -140.091507 | -0.233503    | -503.0212 | -0.838387    |
| copper                          | 0.00041382  | -8.10234E-08 | -0.04498 | -5.53702E-05 | (       | 0            | -5.56603079 | -0.009311    | -19.98573 | -0.033347    |
| lead                            | 0.000340485 | -6.25586E-08 | -0.03701 | -4.52561E-05 | (       | 0            | -13.5623004 | -0.022609    | -48.69763 | -0.081169    |
| manganese                       | 0.002396488 | -4.39077E-07 | -0.26051 | -0.000318442 | (       | 0            | -5.09566199 | -0.008524    | -18.2968  | -0.030529    |
| mercury                         | 3.66676E-05 | -7.33011E-09 | -0.00399 | -4.9173E-06  | (       | 0            | -0.0783948  | -0.000134    | -0.281489 | -0.000473    |
| nickel                          | 9.69072E-05 | -1.84213E-08 | -0.01053 | -1.29258E-05 | (       | 0            | -2.2734492  | -0.003794    | -8.163187 | -0.013611    |
| selenium                        | 7.85734E-06 | -2.22152E-09 | -0.00085 | -1.10152E-06 | (       | 0            | -4.39010879 | -0.007321    | -15.76339 | -0.026277    |
| vanadium (fume or dust)         | 0.000201672 | -3.65611E-08 | -0.02192 | -2.67693E-05 | (       | 0            | -0.1567896  | -0.000262    | -0.562978 | -0.000939    |
| Silica, Crystln                 | 0.104764511 | -1.89407E-05 | -11.3886 | -0.013902321 | (       | 0            | -313.5792   | -0.522632    | -1125.957 | -1.876595    |
| Asbestos                        | 0           | 0            | 0        | 0            | (       | 0            | 0           | 0            | 0         | 0            |
| 1,3-butadiene                   | 0           | -2.06513E-06 | 0        | -2.42356E-05 | (       | 0            | 0           | -0.002027    | 0         | -0.001755    |
| acetaldehyde                    | 0           | -7.9888E-05  | 0        | -0.000937534 | (       | 0            | 0           | -0.078431    | 0         | -0.067908    |
| benzene                         | 0           | -2.17382E-05 | 0        | -0.000255111 | (       | 0            | 0           | -0.021342    | 0         | -0.018478    |
| ethyl benzene                   | 0           | -3.36943E-06 | 0        | -3.95422E-05 | (       | 0            | 0           | -0.003308    | 0         | -0.002864    |
| formaldehyde                    | 0           | -0.000159885 | 0        | -0.001876343 | (       | 0            | 0           | -0.156968    | 0         | -0.135909    |
| hexane                          | 0           | -1.73906E-06 | 0        | -2.04089E-05 | (       | 0            | 0           | -0.001707    | 0         | -0.001478    |
| methanol                        | 0           | -3.26074E-07 | 0        | -3.82667E-06 | (       | 0            | 0           | -0.00032     | 0         | -0.000277    |
| methyl ethyl ketone {2-butanone | 0           | -1.60863E-05 | 0        | -0.000188782 | (       | 0            | 0           | -0.015793    | 0         | -0.013674    |
| m-xylene                        | 0           | -6.63016E-06 | 0        | -7.78089E-05 | (       | 0            | 0           | -0.006509    | 0         | -0.005636    |
| naphthalene                     | 0           | -9.78221E-07 | 0        | -1.148E-05   | (       | 0            | 0           | -0.00096     | 0         | -0.000832    |
| o-xylene                        | 0           | -3.6955E-06  | 0        | -4.33689E-05 | (       | 0            | 0           | -0.003628    | 0         | -0.003141    |
| propylene                       | 0           | -2.82597E-05 | 0        | -0.000331645 | (       | 0            | 0           | -0.027744    | 0         | -0.024022    |
| p-xylene                        | 0           | -1.08691E-06 | 0        | -1.27556E-05 | (       | 0            | 0           | -0.001067    | 0         | -0.000924    |
| styrene                         | 0           | -6.52147E-07 | 0        | -7.65334E-06 | (       | 0            | 0           | -0.00064     | 0         | -0.000554    |
| toluene                         | 0           | -1.59776E-05 | 0        | -0.000187507 | (       | 0            | 0           | -0.015686    | 0         | -0.013582    |
| DieselExhPM                     | 0.156324494 | 0            | -6.02574 | 0            | (       | 0            | -327.633166 | 0            | -358.7551 | 0            |

|                                 | ID      | # of sources | ID        | # of sources | ID        | # of sources | ID       | # of sources |
|---------------------------------|---------|--------------|-----------|--------------|-----------|--------------|----------|--------------|
|                                 | VOL3    | 1            | VOL4      | 1            | VOL5      | 1            | VOL6     | 1            |
| CHEMICAL                        | (lb/yr) | (lb/hr)      | (lb/yr)   | (lb/hr)      | (lb/yr)   | (lb/hr)      | (lb/yr)  | (lb/hr)      |
| arsenic                         | (       | 0 0          | -0.821704 | -0.001369541 | -0.821704 | -0.001369541 | 0.115476 | 0.000192513  |
| bromine                         | (       | 0 0          | -0.513565 | -0.000856011 | -0.513565 | -0.000856011 | 0.072172 | 0.000120394  |
| cadmium                         | (       | 0 0          | -0.821704 | -0.001370033 | -0.821704 | -0.001370033 | 0.115476 | 0.000193259  |
| chlorine                        | (       | 0 0          | -183.548  | -0.305913912 | -183.548  | -0.305913912 | 25.7944  | 0.042991501  |
| copper                          | (       | 0 0          | -7.292619 | -0.012155455 | -7.292619 | -0.012155455 | 1.024848 | 0.001709732  |
| lead                            | (       | 0 0          | -17.76934 | -0.02961574  | -17.76934 | -0.02961574  | 2.497164 | 0.004162207  |
| manganese                       | (       | 0 0          | -6.676341 | -0.011128255 | -6.676341 | -0.011128255 | 0.938241 | 0.001565281  |
| mercury                         | (       | 0 0          | -0.102713 | -0.000171311 | -0.102713 | -0.000171311 | 0.014434 | 2.4244E-05   |
| nickel                          | (       | 0 0          | -2.978675 | -0.004964617 | -2.978675 | -0.004964617 | 0.4186   | 0.000697906  |
| selenium                        | (       | 0 0          | -5.751925 | -0.009586682 | -5.751925 | -0.009586682 | 0.808331 | 0.001347431  |
| vanadium (fume or dust)         | (       | 0 0          | -0.205426 | -0.000342394 | -0.205426 | -0.000342394 | 0.028869 | 4.81416E-05  |
| Silica, Crystln                 | (       | 0 0          | -410.8518 | -0.68475292  | -410.8518 | -0.68475292  | 57.7379  | 0.096229826  |
| Asbestos                        | (       | 0 0          | 0         | 0            | 0         | 0            | 0        | 0            |
| 1,3-butadiene                   | (       | 0 0          | 0         | -5.1631E-05  | 0         | -5.1631E-05  | 0        | 7.38573E-05  |
| acetaldehyde                    | (       | 0 0          | 0         | -0.001997304 | 0         | -0.001997304 | 0        | 0.002857111  |
| benzene                         | (       | 0 0          | 0         | -0.000543484 | 0         | -0.000543484 | 0        | 0.000777445  |
| ethyl benzene                   | (       | 0 0          | 0         | -8.424E-05   | 0         | -8.424E-05   | 0        | 0.000120504  |
| formaldehyde                    | (       | 0 0          | 0         | -0.003997326 | 0         | -0.003997326 | 0        | 0.00571811   |
| hexane                          | (       | 0 0          | 0         | -4.34787E-05 | 0         | -4.34787E-05 | 0        | 6.21956E-05  |
| methanol                        | (       | 0 0          | 0         | -8.15226E-06 | 0         | -8.15226E-06 | 0        | 1.16617E-05  |
| methyl ethyl ketone {2-butanone | (       | 0 0          | 0         | -0.000402178 | 0         | -0.000402178 | 0        | 0.00057531   |
| m-xylene                        | (       | 0 0          | 0         | -0.000165763 | 0         | -0.000165763 | 0        | 0.000237121  |
| naphthalene                     | (       | 0 0          | 0         | -2.44568E-05 | 0         | -2.44568E-05 | 0        | 3.4985E-05   |
| o-xylene                        | (       | 0 0          | 0         | -9.23923E-05 | 0         | -9.23923E-05 | 0        | 0.000132166  |
| propylene                       | (       | 0 0          | 0         | -0.000706529 | 0         | -0.000706529 | 0        | 0.001010679  |
| p-xylene                        | (       | 0 0          | 0         | -2.71742E-05 | 0         | -2.71742E-05 | 0        | 3.88723E-05  |
| styrene                         | (       | 0 0          | 0         | -1.63045E-05 | 0         | -1.63045E-05 | 0        | 2.33234E-05  |
| toluene                         | (       | 0 0          | 0         | -0.000399461 | 0         | -0.000399461 | 0        | 0.000571422  |
| DieselExhPM                     | (       | 0 0          | -10.55162 | 0            | -10.55162 | 0            | 15.99162 | 0            |

|                                 | ID       | # of sources |
|---------------------------------|----------|--------------|----------|--------------|----------|--------------|----------|--------------|
|                                 | VOL7     | 1            | VOL8     | 1            | VOL9     | 1            | VOL10    | 1            |
| CHEMICAL                        | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      |
| arsenic                         | 1.195767 | 0.001993732  | 0.020751 | 3.47168E-05  | 0.334935 | 0.00055909   | 3.587302 | 0.00598039   |
| bromine                         | 0.747355 | 0.001247163  | 0.01297  | 2.18782E-05  | 0.209334 | 0.000350621  | 2.242064 | 0.00373988   |
| cadmium                         | 1.195767 | 0.002004739  | 0.020751 | 3.65513E-05  | 0.334935 | 0.000571202  | 3.587302 | 0.006002142  |
| chlorine                        | 267.1045 | 0.445186399  | 4.635362 | 0.007727634  | 74.81613 | 0.124706966  | 801.3136 | 1.335546719  |
| copper                          | 10.61244 | 0.017711765  | 0.184169 | 0.000311011  | 2.972549 | 0.004981068  | 31.83731 | 0.05311034   |
| lead                            | 25.85847 | 0.043101379  | 0.448751 | 0.000748573  | 7.242972 | 0.012075946  | 77.57541 | 0.129300111  |
| manganese                       | 9.71561  | 0.016215484  | 0.168606 | 0.00028481   | 2.721348 | 0.004560669  | 29.14683 | 0.048623105  |
| mercury                         | 0.149471 | 0.00025187   | 0.002594 | 4.78183E-06  | 0.041867 | 7.28061E-05  | 0.448413 | 0.000752793  |
| nickel                          | 4.334657 | 0.007227966  | 0.075224 | 0.000125963  | 1.21414  | 0.00202746   | 13.00397 | 0.021680275  |
| selenium                        | 8.370371 | 0.013953764  | 0.14526  | 0.000242625  | 2.344546 | 0.003911037  | 25.11111 | 0.041858071  |
| vanadium (fume or dust)         | 0.298942 | 0.00049863   | 0.005188 | 8.71197E-06  | 0.083734 | 0.000139989  | 0.896825 | 0.001495486  |
| Silica, Crystln                 | 597.8837 | 0.996472775  | 10.37574 | 0.017292899  | 167.4676 | 0.279112605  | 1793.651 | 2.989418326  |
| Asbestos                        | 0        | 0            | 0        | 0            | 0        | 0            | 0        | 0            |
| 1,3-butadiene                   | 0        | 0.00108807   | 0        | 0.000192348  | 0        | 0.001044915  | 0        | 0.002280773  |
| acetaldehyde                    | 0        | 0.042091125  | 0        | 0.007440831  | 0        | 0.040421699  | 0        | 0.088229884  |
| benzene                         | 0        | 0.011453367  | 0        | 0.002024716  | 0        | 0.010999102  | 0        | 0.024008132  |
| ethyl benzene                   | 0        | 0.001775272  | 0        | 0.000313831  | 0        | 0.001704861  | 0        | 0.00372126   |
| formaldehyde                    | 0        | 0.084239517  | 0        | 0.014891786  | 0        | 0.080898394  | 0        | 0.176579808  |
| hexane                          | 0        | 0.000916269  | 0        | 0.000161977  | 0        | 0.000879928  | 0        | 0.001920651  |
| methanol                        | 0        | 0.000171801  | 0        | 3.03707E-05  | 0        | 0.000164987  | 0        | 0.000360122  |
| methyl ethyl ketone {2-butanone | 0        | 0.008475492  | 0        | 0.00149829   | 0        | 0.008139335  | 0        | 0.017766017  |
| m-xylene                        | 0        | 0.003493277  | 0        | 0.000617538  | 0        | 0.003354726  | 0        | 0.00732248   |
| naphthalene                     | 0        | 0.000515402  | 0        | 9.11122E-05  | 0        | 0.00049496   | 0        | 0.001080366  |
| o-xylene                        | 0        | 0.001947072  | 0        | 0.000344202  | 0        | 0.001869847  | 0        | 0.004081382  |
| propylene                       | 0        | 0.014889378  | 0        | 0.002632131  | 0        | 0.014298832  | 0        | 0.031210571  |
| p-xylene                        | 0        | 0.000572668  | 0        | 0.000101236  | 0        | 0.000549955  | 0        | 0.001200407  |
| styrene                         | 0        | 0.000343601  | 0        | 6.07415E-05  | 0        | 0.000329973  | 0        | 0.000720244  |
| toluene                         | 0        | 0.008418225  | 0        | 0.001488166  | 0        | 0.00808434   | 0        | 0.017645977  |
| DieselExhPM                     | 235.8747 | 0            | 39.3094  | 0            | 259.5419 | 0            | 466.1125 | 0            |

Table J-1. Wind Speed Class Distribution of Hours in MM5 Meteorological Dataset (2008 to 2012)

| Sector | Wind Direction<br>(degrees) | Number of<br>Hours Less<br>Than 0.97<br>knots (Calms) | Number of<br>Hours | Number of<br>Hours | Number of<br>Hours<br>Between 7.00 -<br>11.08 knots | Number of<br>Hours<br>Between<br>11.08 - 17.11<br>knots | Number of<br>Hours<br>Between<br>17.11 - 21.58<br>knots | Number of<br>Hours Greater<br>Than 21.58<br>knots | Number of<br>Hours at Any<br>Speed |
|--------|-----------------------------|-------------------------------------------------------|--------------------|--------------------|-----------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|------------------------------------|
| 0      | Calms                       | 150                                                   | 0                  | 0                  | 0                                                   | 0                                                       | 0                                                       | 0                                                 | 150                                |
| 1      | 348.75 - 11.25              | 0                                                     | 334                | 273                | 180                                                 | 38                                                      | 3                                                       | 0                                                 | 828                                |
| 2      | 11.25 - 33.75               | 0                                                     | 225                | 361                | 357                                                 | 90                                                      | 12                                                      | 0                                                 | 1045                               |
| 3      | 33.75 - 56.25               | 0                                                     | 226                | 385                | 706                                                 | 257                                                     | 50                                                      | 8                                                 | 1632                               |
| 4      | 56.25 - 78.75               | 0                                                     | 156                | 364                | 659                                                 | 520                                                     | 59                                                      | 6                                                 | 1764                               |
| 5      | 78.75 - 101.25              | 0                                                     | 159                | 351                | 776                                                 | 481                                                     | 54                                                      | 0                                                 | 1821                               |
| 6      | 101.25 - 123.75             | 0                                                     | 196                | 646                | 2087                                                | 676                                                     | 0                                                       | 0                                                 | 3605                               |
| 7      | 123.75 - 146.25             | 0                                                     | 266                | 562                | 1178                                                | 387                                                     | 0                                                       | 0                                                 | 2393                               |
| 8      | 146.25 - 168.75             | 0                                                     | 304                | 364                | 467                                                 | 145                                                     | 0                                                       | 0                                                 | 1280                               |
| 9      | 168.75 - 191.25             | 0                                                     | 302                | 630                | 857                                                 | 498                                                     | 2                                                       | 4                                                 | 2293                               |
| 10     | 191.25 - 213.75             | 0                                                     | 276                | 826                | 3156                                                | 5432                                                    | 375                                                     | 182                                               | 10247                              |
| 11     | 213.75 - 236.25             | 0                                                     | 209                | 666                | 2423                                                | 3034                                                    | 776                                                     | 303                                               | 7411                               |
| 12     | 236.25 - 258.75             | 0                                                     | 223                | 763                | 1724                                                | 939                                                     | 155                                                     | 26                                                | 3830                               |
| 13     | 258.75 - 281.25             | 0                                                     | 282                | 769                | 736                                                 | 427                                                     | 43                                                      | 4                                                 | 2261                               |
| 14     | 281.25 - 303.75             | 0                                                     | 295                | 448                | 404                                                 | 350                                                     | 107                                                     | 5                                                 | 1609                               |
| 15     | 303.75 - 326.25             | 0                                                     | 349                | 301                | 235                                                 | 75                                                      | 12                                                      | 0                                                 | 972                                |
| 16     | 326.25 - 348.75             | 0                                                     | 352                | 214                | 122                                                 | 13                                                      | 5                                                       | 1                                                 | 707                                |
| Total  |                             | 150                                                   | 4154               | 7923               | 16067                                               | 13362                                                   | 1653                                                    | 539                                               | 43848                              |

Notes:

Wind direction is referenced to north and increases in the clockwise direction.

Calms are hours with wind speed less than one knot. Plume behaviour during calm hours is modeled by a seperate meandering algorithm in AERMOD.

Table J-2. Wind Speed Class Distribution of MM5 Meteorological Dataset (2008 to 2012)

| Sector  | Wind Direction<br>(degrees) | Fraction of<br>Hours Less<br>Than 0.97<br>knots (Calms) | Fraction of<br>Hours<br>Between 0.97<br>- 4.08 knots | Fraction of<br>Hours<br>Between 4.08<br>- 7.00 knots | Fraction of<br>Hours<br>Between 7.00<br>- 11.08 knots | Fraction of<br>Hours<br>Between<br>11.08 - 17.11<br>knots | Fraction of<br>Hours<br>Between<br>17.11 - 21.58<br>knots | Fraction of<br>Hours Greater<br>Than 21.58<br>knots | Fraction of<br>Hours at Any<br>Speed |
|---------|-----------------------------|---------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|--------------------------------------|
| 0       | Calms                       | 0.00342                                                 | 0                                                    | 0                                                    | 0                                                     | 0                                                         | 0                                                         | 0                                                   | 0.00342                              |
| 1       | 348.75 - 11.25              | 0                                                       | 0.00762                                              | 0.00623                                              | 0.00411                                               | 0.00087                                                   | 0.00007                                                   | 0                                                   | 0.0189                               |
| 2       | 11.25 - 33.75               | 0                                                       | 0.00513                                              | 0.00823                                              | 0.00814                                               | 0.00205                                                   | 0.00027                                                   | 0                                                   | 0.02382                              |
| 3       | 33.75 - 56.25               | 0                                                       | 0.00515                                              | 0.00878                                              | 0.0161                                                | 0.00586                                                   | 0.00114                                                   | 0.00018                                             | 0.03721                              |
| 4       | 56.25 - 78.75               | 0                                                       | 0.00356                                              | 0.0083                                               | 0.01503                                               | 0.01186                                                   | 0.00135                                                   | 0.00014                                             | 0.04024                              |
| 5       | 78.75 - 101.25              | 0                                                       | 0.00363                                              | 0.008                                                | 0.0177                                                | 0.01097                                                   | 0.00123                                                   | 0                                                   | 0.04153                              |
| 6       | 101.25 - 123.75             | 0                                                       | 0.00447                                              | 0.01473                                              | 0.0476                                                | 0.01542                                                   | 0                                                         | 0                                                   | 0.08222                              |
| 7       | 123.75 - 146.25             | 0                                                       | 0.00607                                              | 0.01282                                              | 0.02687                                               | 0.00883                                                   | 0                                                         | 0                                                   | 0.05459                              |
| 8       | 146.25 - 168.75             | 0                                                       | 0.00693                                              | 0.0083                                               | 0.01065                                               | 0.00331                                                   | 0                                                         | 0                                                   | 0.02919                              |
| 9       | 168.75 - 191.25             | 0                                                       | 0.00689                                              | 0.01437                                              | 0.01954                                               | 0.01136                                                   | 0.00005                                                   | 0.00009                                             | 0.0523                               |
| 10      | 191.25 - 213.75             | 0                                                       | 0.00629                                              | 0.01884                                              | 0.07198                                               | 0.12388                                                   | 0.00855                                                   | 0.00415                                             | 0.23369                              |
| 11      | 213.75 - 236.25             | 0                                                       | 0.00477                                              | 0.01519                                              | 0.05526                                               | 0.06919                                                   | 0.0177                                                    | 0.00691                                             | 0.16902                              |
| 12      | 236.25 - 258.75             | 0                                                       | 0.00509                                              | 0.0174                                               | 0.03932                                               | 0.02141                                                   | 0.00353                                                   | 0.00059                                             | 0.08734                              |
| 13      | 258.75 - 281.25             | 0                                                       | 0.00643                                              | 0.01754                                              | 0.01679                                               | 0.00974                                                   | 0.00098                                                   | 0.00009                                             | 0.05157                              |
| 14      | 281.25 - 303.75             | 0                                                       | 0.00673                                              | 0.01022                                              | 0.00921                                               | 0.00798                                                   | 0.00244                                                   | 0.00011                                             | 0.03669                              |
| 15      | 303.75 - 326.25             | 0                                                       | 0.00796                                              | 0.00686                                              | 0.00536                                               | 0.00171                                                   | 0.00027                                                   | 0                                                   | 0.02216                              |
| 16      | 326.25 - 348.75             | 0                                                       | 0.00803                                              | 0.00488                                              | 0.00278                                               | 0.0003                                                    | 0.00011                                                   | 0.00002                                             | 0.01612                              |
| Subtota |                             | 0.00342                                                 | 0.09475                                              | 0.18069                                              | 0.36644                                               | 0.30474                                                   | 0.03769                                                   | 0.01228                                             | 1                                    |

Notes:

Wind direction is referenced to north and increases in the clockwise direction.

Calms are hours with wind speed less than one knot. Plume behaviour during calm hours is modeled by a seperate meandering algorithm in AERMOD.

# Surface & Upper Air Met Data AERMET/AERMOD Preprocessed from MM5 Data

May 30, 2013

## **Met Data Order Information:**

| Order #:                                     | MET133753                               |  |  |
|----------------------------------------------|-----------------------------------------|--|--|
| Ordered by:                                  | Scott Cohen                             |  |  |
| Company:                                     | Sespe Consulting, Inc.                  |  |  |
| Met Data Type:                               | AERMET-Ready (Surface & Upper Air Data) |  |  |
| Start-End Date:                              | Jan 01, 2008 - Dec 31, 2012             |  |  |
| Latitude:                                    | 34.351308 N                             |  |  |
| Longitude:                                   | 116.973803 W                            |  |  |
| Datum:                                       | WGS 84                                  |  |  |
| Site Time Zone:                              | UTC/GMT UTC - 8 hour(s)                 |  |  |
| Closest City & Country: Lucerne Valley - USA |                                         |  |  |

## **Calculated Pseudo Met Station Parameters:**

| Anemometer Height:      | 13 m       |
|-------------------------|------------|
| Station Base Elevation: | 1543 m     |
| Upper Air Adjustment:   | +8 hour(s) |





Web: www.webLakes.com

#### **MM5-Processed Grid Cell**

Grid cell centre (Lat, Lon): 34.351308 N, 116.973803 W

Grid cell dimension: 12 km x 12 km

• Output period: Jan 01, 2008 to Dec 31, 2012

For more information on MM5 Mesoscale Model, see link below:

http://www.mmm.ucar.edu/mm5/mm5-home.html

## **Hourly Surface Met Data (\*.sam)**

Format: SAMSON (surface met data for preprocessing by AERMET)

• Anemometer height: 13 meters

Base elevation above MSL = 1543 meters

• Time Zone: UTC/GMT UTC - 8 hour(s) (data reported in local time)

Output interval: hourly

• File format description: <a href="http://www.webmet.com/MetGuide/Samson.html">http://www.webmet.com/MetGuide/Samson.html</a>

| Column | Parameter                   | Unit                             |
|--------|-----------------------------|----------------------------------|
| 6      | Total cloud cover           | tenths                           |
| 7      | Opaque cloud cover          | tenths                           |
| 8      | Dry bulb temperature        | degrees Celsius (°C)             |
| 9      | Dew point temperature       | degrees Celsius (°C)             |
| 10     | Relative humidity           | Percentage (%)                   |
| 11     | Station pressure            | millibars (mb)                   |
| 12     | Wind direction              | degrees (deg)                    |
| 13     | Wind speed                  | meters/second (m/s)              |
| 15     | Ceiling height              | meters (m)                       |
|        |                             | 77777 = unlimited ceiling height |
| 21     | Hourly precipitation amount | hundredths of inches             |

#### Note:

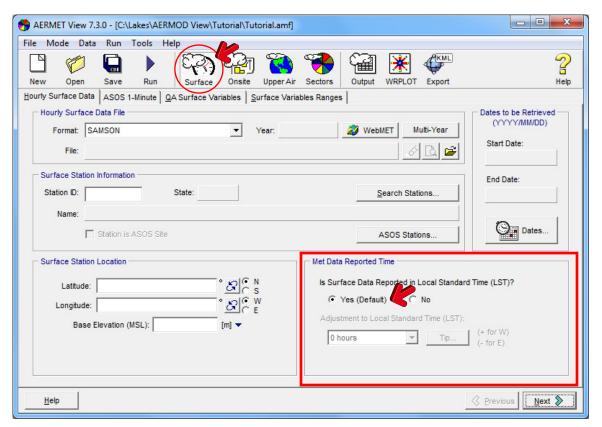
Although not necessary, if the surface file (\*.SAM) is opened in a text editor (e.g., Windows NotePad), it may become apparent the file contains numerous 99999 entries in several columns. This is expected as the SAMSON format contains numerous columns which corresponds to parameters that are not used by the current version of the US EPA AERMET model. This does not affect the met data quality and is an artifact generated during MM5 processing to ensure the file is in the correct format for use in AERMET. Rest assured the data needed to support modeling in AERMET is included and not affected by the presence of columns with 99999 data flags.

### **Upper Air Data (\*.ua)**

- Format: TD-6201 Fixed Length (upper air met data for preprocessing by AERMET)
- Data reported in Universal Time Coordinate (UTC) / GMT
- Output interval: 00Z and 12Z
- File format description: http://www.webmet.com/MetGuide/TD6200.html



#### **AERMET View Instructions**


See below some tips on processing your surface (\*.sam) and upper air (\*.ua) met data files using **AERMET View**.

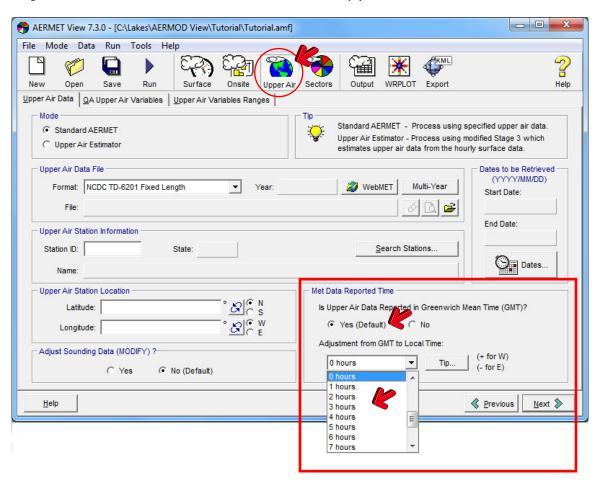


### **Hourly Surface Met Data**

Since the surface data in SAMSON format (\*.sam) is provided in local time, you must specify in AERMET View that the surface data does not need to be adjusted to local time by specifying the following:

Is Surface Data Reported in Local Standard Time (LST)? Yes (Default) Adjustment to Local Standard Time (LST): 0 hours

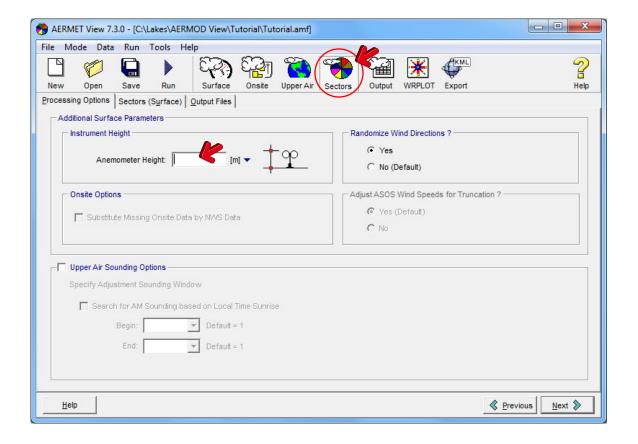



## **Upper Air Met Data**

Since the Upper Air data (\*.ua) is provided in UTC/GMT time then you must specify in AERMET View that the data must be adjusted to local time by specifying the following:

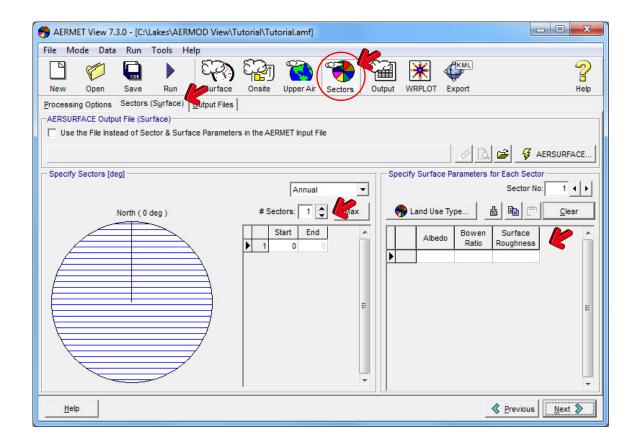
Format: NCDC TD-6201 - Fixed Length

Is Upper Air Reported in Greenwich Mean Time (GMT)? Yes


**Adjustment from GMT to Local Time:** +8 hour(s)



## **Application Site Parameters**


In **AERMET View**, press the **Sectors** menu toolbar button and then under the **Processing Options** tab, specify the following parameter:

**Anemometer Height =** 13 [m]



### **Sectors & Surface Parameters**

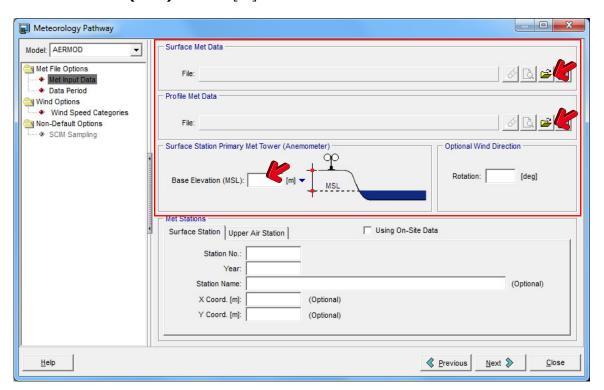
Under the **Sectors (Surface)** tab, specify the number of sectors and the corresponding surface parameters around the facility you are modeling for.



#### **AERMOD View Instructions**

Start your **AERMOD View** project and go to the **Meteorology Pathway** – **Met Input Data** window.




After you preprocess your surface (\*.SAM) and upper air (\*.UA) met data using **AERMET View**, two (2) meteorological output files will be generated:

- 1. Surface Met Data (\*.SFC)
- 2. Profile Met Data (\*.PFL)

Under the **Meteorology Pathway** – **Met Input Data** window, specify the Surface Met Data file (\*.SFC) and the Profile Met Data file (\*.PFL) generated by AERMET.

Under the same window, specify the base elevation for the surface station as:

### **Base Elevation (MSL) =** 1543 [m]



# **Having Problems?**

If you have any problems with the met data you received from us or need additional information on the above steps, please do not hesitate to contact us by sending an email to:

### sales@webLakes.com

When contacting us, please provide:

- Met data Order # MET133753
- Detailed description of the problem



8 of 8

Air Quality and Greenhouse Gas Impact Assessment October 25, 2017

Appendix K: Mitigated Emissions

|       | Total Sentinel<br>Butterfield | Total White Knob | Total Processing Plant | Total Off-site | Total Project w/o<br>White Knob<br>Reductions | Total Project w/<br>White Knob<br>Reductions |
|-------|-------------------------------|------------------|------------------------|----------------|-----------------------------------------------|----------------------------------------------|
| НС    | 2.69                          | -1.54            | 0.01                   | 0.11           | 2.82                                          | 1.27                                         |
| NOx   | 48.1                          | -26.4            | 0.10                   | 2.07           | 50.3                                          | 23.9                                         |
| CO    | 32.6                          | -21.1            | 0.07                   | 0.50           | 33.1                                          | 12.0                                         |
| SOx   | 0.0022                        | -0.0010          | 0.0000                 | 0.0027         | 0.0049                                        | 0.0038                                       |
| TSP   | 167                           | -151             | 3.57                   | 2.93           | 174                                           | 23                                           |
| PM10  | 55.2                          | -54.5            | 0.62                   | 0.68           | 56.6                                          | 2.1                                          |
| PM2.5 | 8.7                           | -12.5            | 0.17                   | 0.25           | 9.1                                           | -3.39                                        |
| CO2   | 9,900                         | -4,978           | 28.3                   | 0.1            | 9,929                                         | 4,951                                        |

| Unpaved Road Emissions Factors         |      |      |       |                |  |  |  |  |
|----------------------------------------|------|------|-------|----------------|--|--|--|--|
| EF= k * (S/12)^a * (W/3)^b * [(N-P)/N] |      |      |       |                |  |  |  |  |
|                                        | TSP  | PM10 | PM2.5 |                |  |  |  |  |
| k=                                     | 4.9  | 1.5  | 0.15  |                |  |  |  |  |
| a=                                     | 0.7  | 0.9  | 0.9   |                |  |  |  |  |
| b=                                     | 0.45 | 0.45 | 0.45  |                |  |  |  |  |
| N=                                     | 365  | 365  | 365   | (days/yr)      |  |  |  |  |
| P (Los Angeles-MDAB)=                  | 33   | 33   | 33    | (rain days/yr) |  |  |  |  |

Sources: AP-42, Section 13.2.2 (Nov. 2006), CalEEMod User Manual Appendix D CalEEMod User Manual, Appendix D

#### UNCONTROLLED FACTOR

8.3 % S=

Control Factor =

| Parameter                     | Weight (tons) | TSP (lb/VMT) | PM10 E.F.<br>(lb/VMT) | PM2.5 E.F.<br>(lb/VMT) |
|-------------------------------|---------------|--------------|-----------------------|------------------------|
| Full =                        | 120           | 19.91        | 5.66                  | 0.57                   |
| Empty =                       | 45            | 12.80        | 3.64                  | 0.36                   |
| Average =                     | 82.5          | 16.36        | 4.65                  | 0.47                   |
| Annual Average <sup>1</sup> = |               | 14.88        | 4.23                  | 0.42                   |

#### **UNMITIGATED FACTOR**

8.3 % S=

Control Eactor<sup>2</sup> -

| CONTROL - 75%              |        |              |           |            |  |  |  |  |
|----------------------------|--------|--------------|-----------|------------|--|--|--|--|
| Parameter                  | Weight |              | PM10 E.F. | PM2.5 E.F. |  |  |  |  |
|                            | (tons) | TSP (lb/VMT) | (lb/VMT)  | (lb/VMT)   |  |  |  |  |
| Full =                     | 120    | 4.98         | 1.42      | 0.14       |  |  |  |  |
| Empty =                    | 45     | 3.20         | 0.91      | 0.09       |  |  |  |  |
| Average =                  | 82.5   | 4.09         | 1.16      | 0.12       |  |  |  |  |
| Annual Avg. <sup>1</sup> = | -      | 3.72         | 1.06      | 0.11       |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> Annual average emissions factors take into account the rainfall adjustment factor [(N-P)/N]. This adjustment factor is not included in the daily emissions estimate.

MITIGATED All Roads S= 8.3 % Control Factor<sup>2</sup> = 80%

| Parameter                  | Weight<br>(tons) | TSP (lb/VMT) | PM10 E.F.<br>(lb/VMT) | PM2.5 E.F.<br>(lb/VMT) |
|----------------------------|------------------|--------------|-----------------------|------------------------|
| Full =                     | 120              | 3.98         | 1.13                  | 0.11                   |
| Empty =                    | 45               | 2.56         | 0.73                  | 0.07                   |
| Average =                  | 82.5             | 3.27         | 0.93                  | 0.09                   |
| Annual Avg. <sup>1</sup> = |                  | 2.98         | 0.85                  | 0.08                   |

**Paved Road Emissions Factors** 

EF= k \* (sL)^a \* (W)^b \* (1-P/4N) TSP PM10 PM2.5 0.011 0.0022 0.00054 a= 0.91 0.91 0.91 b= 1.02 1.02 1.02 P= 33 33 33 365 365 365

Source: AP-42, Section 13.2.1 (Jan. 2011)

#### OFFSITE

 $0.1 \text{ g/m}^2$ 

| 32             | 0.1              | ь,              |                       |                        |
|----------------|------------------|-----------------|-----------------------|------------------------|
| Parameter      | Weight<br>(tons) | TSP<br>(lb/VMT) | PM10 E.F.<br>(lb/VMT) | PM2.5 E.F.<br>(lb/VMT) |
| Full =         | 40               | 0.0583          | 0.0117                | 0.0029                 |
| Empty =        | 12               | 0.0171          | 0.0034                | 0.0008                 |
| Average =      | 26               | 0.0377          | 0.0075                | 0.0018                 |
| Annual Avg.1 = |                  | 0.0368          | 0.0074                | 0.0018                 |

<sup>&</sup>lt;sup>1</sup> Annual average emissions factors take into account the rainfall adjustment factor [(N-P)/N]. This adjustment factor is not included in the hourly and daily emissions estimates. Default silt loading in CalEEMod is 0.1 g/m2 and is used to model offsite road emissions.

Road to B5 Pad 8.3 %

Control Factor<sup>2</sup> = 80%

|    |                           |        | TSP     |           |            |
|----|---------------------------|--------|---------|-----------|------------|
|    | Parameter                 | Weight | (lb/VMT | PM10 E.F. | PM2.5 E.F. |
|    |                           | (tons) | )       | (lb/VMT)  | (lb/VMT)   |
|    | Full =                    | 120    | 3.98    | 1.13      | 0.11       |
|    | Empty =                   | 45     | 2.56    | 0.73      | 0.07       |
|    | Average =                 | 82.5   | 3.27    | 0.93      | 0.09       |
| Ar | nnual Avg. <sup>1</sup> = |        | 2.98    | 0.85      | 0.08       |

<sup>&</sup>lt;sup>2</sup> The control factor for the unmitigated emissions is chemical dust suppressants applied 0.15 g/sq.yd./month as reported in 2008.

|                 | А        |         |          | В        |         |          |
|-----------------|----------|---------|----------|----------|---------|----------|
|                 | per Year | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 1,618.07 | 15.34   | 1.84     | 962.78   | 11.05   | 1.33     |
| VMT (%)         | 1.21%    | 0.99%   | 1.05%    | 0.72%    | 0.71%   | 0.76%    |
| TSP - Dust      | 6,018.41 | 57.06   | 6.85     | 3,581.04 | 41.09   | 4.93     |
| PM10 - Dust     | 1,711.42 | 16.23   | 1.95     | 1,018.32 | 11.68   | 1.40     |
| PM2.5 - Dust    | 171.14   | 1.62    | 0.19     | 101.83   | 1.17    | 0.14     |
| TSP - Exhaust   | 36.22    | 0.34    | 0.04     | 21.55    | 0.25    | 0.03     |
| PM10 - Exhaust  | 36.22    | 0.34    | 0.04     | 21.55    | 0.25    | 0.03     |
| PM2.5 - Exhaust | 33.32    | 0.32    | 0.04     | 19.83    | 0.23    | 0.03     |
| HC              | 62.81    | 0.60    | 0.07     | 37.37    | 0.43    | 0.05     |
| NOx             | 1,160    | 11.00   | 1.32     | 690      | 7.92    | 0.95     |
| со              | 757      | 7.17    | 0.86     | 450      | 5.17    | 0.62     |
| SOx             | 0.05     | 0.00    | 0.00     | 0.03     | 0.00    | 0.00     |
| CO2             | 121.05   | -       | -        | 72.03    | -       | -        |

**Project** 1.40 scale factor from Project VMT/yr over Baseline VMT/yr

| ,               | 1110 State factor from Froject VIII/ 11 over Baseline VIII/ 11 |         |          |           |         |          |
|-----------------|----------------------------------------------------------------|---------|----------|-----------|---------|----------|
|                 | А                                                              |         |          | В         |         |          |
|                 | per Year                                                       | per Day | per Hour | per Year  | per Day | per Hour |
| VMT (miles)     | 7,319.05                                                       | 45.77   | 5.49     | 7,340.91  | 46.04   | 5.52     |
| VMT (%)         | 3.91%                                                          | 3.90%   | 3.90%    | 3.92%     | 3.92%   | 3.92%    |
| TSP - Dust      | 21,778.55                                                      | 136.18  | 16.34    | 21,843.58 | 136.98  | 16.44    |
| PM10 - Dust     | 6,193.03                                                       | 38.73   | 4.65     | 6,211.53  | 38.95   | 4.67     |
| PM2.5 - Dust    | 619.30                                                         | 3.87    | 0.46     | 621.15    | 3.90    | 0.47     |
| TSP - Exhaust   | 163.84                                                         | 1.02    | 0.12     | 164.33    | 1.03    | 0.12     |
| PM10 - Exhaust  | 163.84                                                         | 1.02    | 0.12     | 164.33    | 1.03    | 0.12     |
| PM2.5 - Exhaust | 150.73                                                         | 0.94    | 0.11     | 151.18    | 0.95    | 0.11     |
| HC              | 284.11                                                         | 1.78    | 0.21     | 284.96    | 1.79    | 0.21     |
| NOx             | 5,246.83                                                       | 32.81   | 3.94     | 5,262.50  | 33.00   | 3.96     |
| со              | 3,422.78                                                       | 21.40   | 2.57     | 3,433.00  | 0.90    | 0.11     |
| SOx             | 0.22                                                           | 0.00    | 0.00     | 0.22      | 0.00    | 0.00     |
| CO2 (tons)      | 547.54                                                         | -       | -        | 549.17    | -       | -        |

| increment       |           |         |          |           |         |          |
|-----------------|-----------|---------|----------|-----------|---------|----------|
|                 | A B       |         |          |           |         |          |
|                 | per Year  | per Day | per Hour | per Year  | per Day | per Hour |
| VMT (miles)     | 5,700.98  | 30.42   | 3.65     | 6,378.13  | 34.99   | 4.20     |
| TSP - Dust      | 15,760.14 | 79.12   | 9.49     | 18,262.54 | 95.90   | 11.51    |
| PM10 - Dust     | 4,481.61  | 22.50   | 2.70     | 5,193.21  | 27.27   | 3.27     |
| PM2.5 - Dust    | 448.16    | 2.25    | 0.27     | 519.32    | 2.73    | 0.33     |
| TSP - Exhaust   | 127.62    | 0.68    | 0.08     | 142.78    | 0.78    | 0.09     |
| PM10 - Exhaust  | 127.62    | 0.68    | 0.08     | 142.78    | 0.78    | 0.09     |
| PM2.5 - Exhaust | 117.41    | 0.63    | 0.08     | 131.35    | 0.72    | 0.09     |
| HC              | 221.30    | 1.18    | 0.14     | 247.58    | 1.36    | 0.16     |
| NOx             | 4,086.88  | 21.81   | 2.62     | 4,572.31  | 25.08   | 3.01     |
| со              | 2,666.08  | 14.23   | 1.71     | 2,982.75  | -4.27   | -0.51    |
| SOx             | 0.17      | 0.00    | 0.00     | 0.19      | 0.00    | 0.00     |
| CO2 (tons)      | 426.49    | -       | -        | 477.15    | -       | -        |

|                 | С        |         |          | D        |         |          |
|-----------------|----------|---------|----------|----------|---------|----------|
|                 | per Year | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 1,355.33 | 16.39   | 1.97     | -        | -       | -        |
| VMT (%)         | 1.01%    | 1.05%   | 1.13%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 5,041.15 | 60.95   | 7.31     | -        | -       | -        |
| PM10 - Dust     | 1,433.52 | 17.33   | 2.08     | -        | -       | -        |
| PM2.5 - Dust    | 143.35   | 1.73    | 0.21     | -        | -       | -        |
| TSP - Exhaust   | 30.34    | 0.37    | 0.04     | -        | -       | -        |
| PM10 - Exhaust  | 30.34    | 0.37    | 0.04     | -        | -       | -        |
| PM2.5 - Exhaust | 27.91    | 0.34    | 0.04     | -        | -       | -        |
| HC              | 52.61    | 0.64    | 0.08     | -        | -       | -        |
| NOx             | 972      | 11.75   | 1.41     | -        | -       | -        |
| СО              | 634      | 7.66    | 0.92     | -        | -       | -        |
| SOx             | 0.04     | 0.00    | 0.00     | -        | -       | -        |
| CO2             | 101.39   | -       | -        | -        | -       | -        |

#### **Project**

| rioject         |           |         |          |          |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | С         |         |          | D        |         |          |
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 6,135.41  | 38.52   | 4.62     | -        | -       | -        |
| VMT (%)         | 3.28%     | 3.28%   | 3.28%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 18,256.50 | 114.63  | 13.76    | -        | -       | -        |
| PM10 - Dust     | 5,191.49  | 32.60   | 3.91     | -        | -       | -        |
| PM2.5 - Dust    | 519.15    | 3.26    | 0.39     | -        | -       | -        |
| TSP - Exhaust   | 137.34    | 0.86    | 0.10     | -        | -       | -        |
| PM10 - Exhaust  | 137.34    | 0.86    | 0.10     | -        | -       | -        |
| PM2.5 - Exhaust | 126.35    | 0.79    | 0.10     | -        | -       | -        |
| HC              | 238.16    | 1.50    | 0.18     | -        | -       | -        |
| NOx             | 4,398.31  | 27.62   | 3.31     | -        | -       | -        |
| со              | 2,869.24  | 18.02   | 2.16     | -        | -       | -        |
| SOx             | 0.18      | 0.00    | 0.00     | -        | -       | -        |
| CO2 (tons)      | 458.99    | -       | -        | -        | -       | -        |

|                 | С         |         |          | D        |         |          |  |
|-----------------|-----------|---------|----------|----------|---------|----------|--|
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |  |
| VMT (miles)     | 4,780.08  | 22.14   | 2.66     | ; -      | -       | -        |  |
| TSP - Dust      | 13,215.36 | 53.69   | 6.44     | -        |         |          |  |
| PM10 - Dust     | 3,757.97  | 15.27   | 1.83     | -        |         |          |  |
| PM2.5 - Dust    | 375.80    | 1.53    | 0.18     | -        | -       |          |  |
| TSP - Exhaust   | 107.00    | 0.50    | 0.06     | ; -      | -       |          |  |
| PM10 - Exhaust  | 107.00    | 0.50    | 0.06     | ; -      | -       | -        |  |
| PM2.5 - Exhaust | 98.44     | 0.46    | 0.05     | -        | -       | -        |  |
| HC              | 185.55    | 0.86    | 0.10     | -        |         |          |  |
| NOx             | 3,426.71  | 15.87   | 1.90     | -        |         |          |  |
| СО              | 2,235.42  | 10.35   | 1.24     | -        | -       |          |  |
| SOx             | 0.14      | 0.00    | 0.00     | -        | -       |          |  |
| CO2 (tons)      | 357.60    | -       | -        | -        |         | -        |  |

|                 | E         |         |          | F        |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 8,012.74  | 93.45   | 11.21    | -        | -       | -        |
| VMT (%)         | 6.00%     | 6.01%   | 6.42%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 29,803.34 | 347.60  | 41.71    | -        | -       | -        |
| PM10 - Dust     | 8,475.00  | 98.85   | 11.86    | -        | -       | -        |
| PM2.5 - Dust    | 847.50    | 9.88    | 1.19     | -        | -       | -        |
| TSP - Exhaust   | 179.37    | 2.09    | 0.25     | -        | -       | -        |
| PM10 - Exhaust  | 179.37    | 2.09    | 0.25     | -        | -       | -        |
| PM2.5 - Exhaust | 165.02    | 1.92    | 0.23     | -        | -       | -        |
| НС              | 311.04    | 3.63    | 0.44     | -        | -       | -        |
| NOx             | 5,744     | 66.99   | 8.04     | -        | -       | -        |
| СО              | 3,747     | 43.70   | 5.24     | -        | -       | -        |
| SOx             | 0.24      | 0.00    | 0.00     | -        | -       | -        |
| CO2             | 599.43    | -       | -        | -        | -       | -        |

#### **Project**

| rioject         |            |         |          |          |         |          |
|-----------------|------------|---------|----------|----------|---------|----------|
|                 | E          |         |          | F        |         |          |
|                 | per Year   | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 34,529.77  | 216.74  | 26.01    | -        | -       | -        |
| VMT (%)         | 18.46%     | 18.47%  | 18.47%   | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 102,746.66 | 644.93  | 77.39    | -        | -       | -        |
| PM10 - Dust     | 29,217.45  | 183.39  | 22.01    | -        | -       | -        |
| PM2.5 - Dust    | 2,921.74   | 18.34   | 2.20     | -        | -       | -        |
| TSP - Exhaust   | 772.95     | 4.85    | 0.58     | -        | -       | -        |
| PM10 - Exhaust  | 772.95     | 4.85    | 0.58     | -        | -       | -        |
| PM2.5 - Exhaust | 711.12     | 4.46    | 0.54     | -        | -       | -        |
| HC              | 1,340.37   | 8.41    | 1.01     | -        | -       | -        |
| NOx             | 24,753.46  | 155.37  | 18.64    | -        | -       | -        |
| со              | 16,147.95  | 101.36  | 12.16    | -        | -       | -        |
| SOx             | 1.03       | 0.01    | 0.00     | -        | -       | -        |
| CO2 (tons)      | 2,583.16   | -       | -        | -        | -       | -        |

|                 | E         |         |          | F        |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 26,517.04 | 123.29  | 14.79    | -        | -       | -        |
| TSP - Dust      | 72,943.32 | 297.33  | 35.68    | -        | -       | -        |
| PM10 - Dust     | 20,742.45 | 84.55   | 10.15    | -        | -       | -        |
| PM2.5 - Dust    | 2,074.25  | 8.45    | 1.01     | -        | -       | -        |
| TSP - Exhaust   | 593.59    | 2.76    | 0.33     | -        | -       | -        |
| PM10 - Exhaust  | 593.59    | 2.76    | 0.33     | -        | -       | -        |
| PM2.5 - Exhaust | 546.10    | 2.54    | 0.30     | -        | -       | -        |
| HC              | 1,029.33  | 4.79    | 0.57     | -        | -       | -        |
| NOx             | 19,009.34 | 88.38   | 10.61    | -        | -       | -        |
| CO              | 12,400.77 | 57.65   | 6.92     | -        | -       | -        |
| SOx             | 0.79      | 0.00    | 0.00     | -        | -       | -        |
| CO2 (tons)      | 1,983.73  | -       | -        | -        | -       | -        |

|                 | G          |          |          | Н          |          |          |
|-----------------|------------|----------|----------|------------|----------|----------|
|                 | per Year   | per Day  | per Hour | per Year   | per Day  | per Hour |
| VMT (miles)     | 72,587.16  | 815.66   | 97.88    | 33,745.62  | 416.59   | 41.66    |
| VMT (%)         | 54.34%     | 52.46%   | 56.04%   | 25.26%     | 26.79%   | 23.85%   |
| TSP - Dust      | 269,987.62 | 3,033.83 | 364.06   | 125,516.67 | 1,549.49 | 154.95   |
| PM10 - Dust     | 76,774.75  | 862.71   | 103.53   | 35,692.42  | 440.62   | 44.06    |
| PM2.5 - Dust    | 7,677.47   | 86.27    | 10.35    | 3,569.24   | 44.06    | 4.41     |
| TSP - Exhaust   | 1,624.87   | 18.26    | 2.19     | 755.40     | 9.33     | 0.93     |
| PM10 - Exhaust  | 1,624.87   | 18.26    | 2.19     | 755.40     | 9.33     | 0.93     |
| PM2.5 - Exhaust | 1,494.88   | 16.80    | 2.02     | 694.97     | 8.58     | 0.86     |
| HC              | 2,817.67   | 31.66    | 3.80     | 1,309.93   | 16.17    | 1.62     |
| NOx             | 52,036     | 584.72   | 70.17    | 24,191     | 298.64   | 29.86    |
| СО              | 33,946     | 381.44   | 45.77    | 15,781     | 194.82   | 19.48    |
| SOx             | 2.17       | 0.02     | 0.00     | 1.01       | 0.01     | 0.00     |
| CO2             | 5,430.22   | -        | -        | 2,524.50   | -        | -        |

#### **Project**

| TTOJECE         |            |          |          |          |         |          |
|-----------------|------------|----------|----------|----------|---------|----------|
|                 | G          |          |          | Н        |         |          |
|                 | per Year   | per Day  | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 130,505.05 | 818.42   | 98.21    | -        | -       | -        |
| VMT (%)         | 69.76%     | 69.75%   | 69.75%   | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 388,330.34 | 2,435.28 | 292.23   | -        | -       | -        |
| PM10 - Dust     | 110,427.15 | 692.51   | 83.10    | -        | -       | -        |
| PM2.5 - Dust    | 11,042.72  | 69.25    | 8.31     | -        | -       | -        |
| TSP - Exhaust   | 2,921.37   | 18.32    | 2.20     | -        | -       | -        |
| PM10 - Exhaust  | 2,921.37   | 18.32    | 2.20     | -        | -       | -        |
| PM2.5 - Exhaust | 2,687.66   | 16.85    | 2.02     | -        | -       | -        |
| нс              | 5,065.92   | 31.77    | 3.81     | -        | -       | -        |
| NOx             | 93,555.53  | 586.70   | 70.40    | -        | -       | -        |
| со              | 61,031.06  | 382.74   | 45.93    | -        | -       | -        |
| SOx             | 3.89       | 0.02     | 0.00     | -        | -       | -        |
| CO2 (tons)      | 9,763.04   | -        | -        | -        | -       | -        |

|                 | G          | Н       |          |             |           |          |  |
|-----------------|------------|---------|----------|-------------|-----------|----------|--|
|                 | per Year   | per Day | per Hour | per Year    | per Day   | per Hour |  |
| VMT (miles)     | 57,917.89  | 2.76    | 0.33     | -33,745.62  | -416.59   | -41.66   |  |
| TSP - Dust      | 118,342.72 | -598.55 | -71.83   | -125,516.67 | -1,549.49 | -154.95  |  |
| PM10 - Dust     | 33,652.40  | -170.21 | -20.42   | -35,692.42  | -440.62   | -44.06   |  |
| PM2.5 - Dust    | 3,365.24   | -17.02  | -2.04    | -3,569.24   | -44.06    | -4.41    |  |
| TSP - Exhaust   | 1,296.50   | 0.06    | 0.01     | -755.40     | -9.33     | -0.93    |  |
| PM10 - Exhaust  | 1,296.50   | 0.06    | 0.01     | -755.40     | -9.33     | -0.93    |  |
| PM2.5 - Exhaust | 1,192.78   | 0.06    | 0.01     | -694.97     | -8.58     | -0.86    |  |
| HC              | 2,248.24   | 0.11    | 0.01     | -1,309.93   | -16.17    | -1.62    |  |
| NOx             | 41,519.76  | 1.98    | 0.24     | -24,191.32  | -298.64   | -29.86   |  |
| СО              | 27,085.46  | 1.29    | 0.16     | -15,781.23  | -194.82   | -19.48   |  |
| SOx             | 1.73       | 0.00    | 0.00     | -1.01       | -0.01     | -0.00    |  |
| CO2 (tons)      | 4,332.82   | -       | -        | -2,524.50   | -         | -        |  |

|                 | I        | J       |          |           |         |          |  |
|-----------------|----------|---------|----------|-----------|---------|----------|--|
|                 | per Year | per Day | per Hour | per Year  | per Day | per Hour |  |
| VMT (miles)     | 1,204.93 | 14.10   | 1.57     | 8,719.27  | 106.44  | 10.64    |  |
| VMT (%)         | 0.90%    | 0.91%   | 0.90%    | 6.53%     | 6.85%   | 6.09%    |  |
| TSP - Dust      | 4,481.74 | 52.45   | 5.83     | 32,431.27 | 395.90  | 39.59    |  |
| PM10 - Dust     | 1,274.45 | 14.92   | 1.66     | 9,222.28  | 112.58  | 11.26    |  |
| PM2.5 - Dust    | 127.44   | 1.49    | 0.17     | 922.23    | 11.26   | 1.13     |  |
| TSP - Exhaust   | 26.97    | 0.32    | 0.04     | 195.18    | 2.38    | 0.24     |  |
| PM10 - Exhaust  | 26.97    | 0.32    | 0.04     | 195.18    | 2.38    | 0.24     |  |
| PM2.5 - Exhaust | 24.81    | 0.29    | 0.03     | 179.57    | 2.19    | 0.22     |  |
| НС              | 46.77    | 0.55    | 0.06     | 338.46    | 4.13    | 0.41     |  |
| NOx             | 864      | 10.11   | 1.12     | 6,251     | 76.30   | 7.63     |  |
| со              | 563      | 6.59    | 0.73     | 4,078     | 49.78   | 4.98     |  |
| SOx             | 0.04     | 0.00    | 0.00     | 0.26      | 0.00    | 0.00     |  |
| CO2             | 90.14    | -       | -        | 652.29    | -       | -        |  |

#### **Project**

| ,               |          |         |          |          |         |          |
|-----------------|----------|---------|----------|----------|---------|----------|
|                 | 1        |         |          | J        |         |          |
|                 | per Year | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 1,253.54 | 7.86    | 0.94     | -        | -       | -        |
| VMT (%)         | 0.67%    | 0.67%   | 0.67%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 3,730.02 | 23.39   | 2.81     | -        | -       | -        |
| PM10 - Dust     | 1,060.68 | 6.65    | 0.80     | -        | -       | -        |
| PM2.5 - Dust    | 106.07   | 0.67    | 0.08     | -        | -       | -        |
| TSP - Exhaust   | 28.06    | 0.18    | 0.02     | -        | -       | -        |
| PM10 - Exhaust  | 28.06    | 0.18    | 0.02     | -        | -       | -        |
| PM2.5 - Exhaust | 25.82    | 0.16    | 0.02     | -        | -       | -        |
| нс              | 48.66    | 0.31    | 0.04     | -        | -       | -        |
| NOx             | 898.63   | 5.64    | 0.68     | -        | -       | -        |
| со              | 586.22   | 3.68    | 0.44     | -        | -       | -        |
| SOx             | 0.04     | 0.00    | 0.00     | -        | -       | -        |
| CO2 (tons)      | 93.78    | -       | -        | -        | -       | -        |

|                 | I        | J       |          |            |         |          |  |
|-----------------|----------|---------|----------|------------|---------|----------|--|
|                 | per Year | per Day | per Hour | per Year   | per Day | per Hour |  |
| VMT (miles)     | 48.60    | -6.24   | -0.62    | -8,719.27  | -106.44 | -10.64   |  |
| TSP - Dust      | -751.73  | -29.06  | -3.02    | -32,431.27 | -395.90 | -39.59   |  |
| PM10 - Dust     | -213.76  | -8.26   | -0.86    | -9,222.28  | -112.58 | -11.26   |  |
| PM2.5 - Dust    | -21.38   | -0.83   | -0.09    | -922.23    | -11.26  | -1.13    |  |
| TSP - Exhaust   | 1.09     | -0.14   | -0.01    | -195.18    | -2.38   | -0.24    |  |
| PM10 - Exhaust  | 1.09     | -0.14   | -0.01    | -195.18    | -2.38   | -0.24    |  |
| PM2.5 - Exhaust | 1.00     | -0.13   | -0.01    | -179.57    | -2.19   | -0.22    |  |
| HC              | 1.89     | -0.24   | -0.02    | -338.46    | -4.13   | -0.41    |  |
| NOx             | 34.84    | -4.47   | -0.45    | -6,250.60  | -76.30  | -7.63    |  |
| со              | 22.73    | -2.92   | -0.29    | -4,077.59  | -49.78  | -4.98    |  |
| SOx             | 0.00     | -0.00   | -0.00    | -0.26      | -0.00   | -0.00    |  |
| CO2 (tons)      | 3.64     | -       | -        | -652.29    | -       | -        |  |

|                 | K         |         |          | L         |         |          |
|-----------------|-----------|---------|----------|-----------|---------|----------|
|                 | per Year  | per Day | per Hour | per Year  | per Day | per Hour |
| VMT (miles)     | 20,421.14 | 239.00  | 26.56    | 5,383.71  | 65.72   | 6.57     |
| VMT (%)         | 0.00%     | 0.00%   | 0.00%    | 4.03%     | 4.23%   | 3.76%    |
| TSP - Dust      | 751.91    | 8.80    | 0.98     | 20,024.68 | 244.45  | 24.44    |
| PM10 - Dust     | 150.38    | 1.76    | 0.20     | 5,694.30  | 69.51   | 6.95     |
| PM2.5 - Dust    | 36.91     | 0.43    | 0.05     | 569.43    | 6.95    | 0.70     |
| TSP - Exhaust   | 31.80     | 0.37    | 0.04     | 120.51    | 1.47    | 0.15     |
| PM10 - Exhaust  | 31.80     | 0.37    | 0.04     | 120.51    | 1.47    | 0.15     |
| PM2.5 - Exhaust | 29.25     | 0.34    | 0.04     | 110.87    | 1.35    | 0.14     |
| HC              | 29.32     | 0.34    | 0.04     | 208.98    | 2.55    | 0.26     |
| NOx             | 553.40    | 6.48    | 0.72     | 3,859     | 47.11   | 4.71     |
| со              | 132.81    | 1.55    | 0.17     | 2,518     | 30.73   | 3.07     |
| SOx             | 0.72      | 0.01    | 0.00     | 0.16      | 0.00    | 0.00     |
| CO2             | -         | -       | -        | 402.75    | -       | -        |

#### **Project**

| TTOJECE         |           |         |          |          |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | K         |         |          | L        |         |          |
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 28,452.92 | 178.43  | 21.41    | -        | -       | -        |
| VMT (%)         | 0.00%     | 0.00%   | 0.00%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 1,047.65  | 6.57    | 0.79     | -        | -       | -        |
| PM10 - Dust     | 209.53    | 1.31    | 0.16     | -        | -       | -        |
| PM2.5 - Dust    | 51.43     | 0.32    | 0.04     | -        | -       | -        |
| TSP - Exhaust   | 44.30     | 0.28    | 0.03     | -        | -       | -        |
| PM10 - Exhaust  | 44.30     | 0.28    | 0.03     | -        | -       | -        |
| PM2.5 - Exhaust | 40.76     | 0.26    | 0.03     | -        | -       | -        |
| НС              | 40.85     | 0.26    | 0.03     | -        | -       | -        |
| NOx             | 771.05    | 4.84    | 0.58     | -        | -       | -        |
| со              | 185.05    | 1.16    | 0.14     | -        | -       | -        |
| SOx             | 1.01      | 0.01    | 0.00     | -        | -       | -        |
| CO2 (tons)      | -         | -       | -        | -        | -       | -        |

| increment       |          |         |          |            |         |          |
|-----------------|----------|---------|----------|------------|---------|----------|
|                 | K        |         |          | L          |         |          |
|                 | per Year | per Day | per Hour | per Year   | per Day | per Hour |
| VMT (miles)     | 8,031.78 | -60.57  | -5.14    | -5,383.71  | -65.72  | -6.57    |
| TSP - Dust      | 295.73   | -2.23   | -0.19    | -20,024.68 | -244.45 | -24.44   |
| PM10 - Dust     | 59.15    | -0.45   | -0.04    | -5,694.30  | -69.51  | -6.95    |
| PM2.5 - Dust    | 14.52    | -0.11   | -0.01    | -569.43    | -6.95   | -0.70    |
| TSP - Exhaust   | 12.51    | -0.09   | -0.01    | -120.51    | -1.47   | -0.15    |
| PM10 - Exhaust  | 12.51    | -0.09   | -0.01    | -120.51    | -1.47   | -0.15    |
| PM2.5 - Exhaust | 11.51    | -0.09   | -0.01    | -110.87    | -1.35   | -0.14    |
| НС              | 11.53    | -0.09   | -0.01    | -208.98    | -2.55   | -0.26    |
| NOx             | 217.66   | -1.64   | -0.14    | -3,859.43  | -47.11  | -4.71    |
| СО              | 52.24    | -0.39   | -0.03    | -2,517.71  | -30.73  | -3.07    |
| SOx             | 0.28     | -0.00   | -0.00    | -0.16      | -0.00   | -0.00    |
| CO2 (tons)      | -        | -       | -        | -402.75    | -       | -        |

|                 | М        |       |        |          |       | Total On-site |          |          |
|-----------------|----------|-------|--------|----------|-------|---------------|----------|----------|
|                 | per Year | pe    | er Day | per Hour |       | per Year      | per Day  | per Hour |
| VMT (miles)     |          | -     | -      |          | -     | 133,589.61    | 1,554.73 | 174.67   |
| VMT (%)         |          | 0.00% | 0.00%  |          | 0.00% | 100.00%       | 100.00%  | 100.00%  |
| TSP - Dust      |          | -     | -      |          | -     | 496,885.92    | 5,782.81 | 649.67   |
| PM10 - Dust     |          | -     | -      |          | -     | 141,296.45    | 1,644.42 | 184.74   |
| PM2.5 - Dust    |          | -     | -      |          | -     | 14,129.64     | 164.44   | 18.47    |
| TSP - Exhaust   |          | -     | -      |          | -     | 2,990.42      | 34.80    | 3.91     |
| PM10 - Exhaust  |          | -     | -      |          | -     | 2,990.42      | 34.80    | 3.91     |
| PM2.5 - Exhaust |          | -     | -      |          | -     | 2,751.18      | 32.02    | 3.60     |
| HC              |          | -     | -      |          | -     | 5,185.65      | 60.35    | 6.78     |
| NOx             |          | -     | -      |          | -     | 95,766.76     | 1,114.54 | 125.21   |
| СО              |          | -     | -      |          | -     | 62,473.56     | 727.07   | 81.68    |
| SOx             |          | -     | -      |          | -     | 3.99          | 0.05     | 0.01     |
| CO2             |          | -     | -      |          | -     | 9,994         |          |          |

Project 1.40

| - 7             |          |         |        |       |               |          |          |
|-----------------|----------|---------|--------|-------|---------------|----------|----------|
|                 | М        |         |        |       | Total On-site |          |          |
|                 | per Year | per Day | per Ho | ır    | per Year      | per Day  | per Hour |
| VMT (miles)     |          | -       | -      | -     | 187,083.73    | 1,173.35 | 140.80   |
| VMT (%)         |          | 0.00%   | 0.00%  | 0.00% | 100.00%       | 100.00%  | 100.00%  |
| TSP - Dust      |          | -       | -      | -     | 556,685.65    | 3,491.40 | 418.97   |
| PM10 - Dust     |          | -       | -      | -     | 158,301.33    | 992.83   | 119.14   |
| PM2.5 - Dust    |          | -       | -      | -     | 15,830.13     | 99.28    | 11.91    |
| TSP - Exhaust   |          | -       | -      | -     | 4,187.89      | 26.27    | 3.15     |
| PM10 - Exhaust  |          | -       | -      | -     | 4,187.89      | 26.27    | 3.15     |
| PM2.5 - Exhaust |          | -       | -      | -     | 3,852.86      | 24.16    | 2.90     |
| HC              |          | -       | -      | -     | 7,262.18      | 45.55    | 5.47     |
| NOx             |          | -       | -      | -     | 134,115.25    | 841.14   | 100.94   |
| со              |          | -       | -      | -     | 84,004.83     | 504.98   | 60.65    |
| SOx             |          | -       | -      | -     | 5.58          | 0.04     | 0.00     |
| CO2 (tons)      | 1        | -       | -      | -     | 13,995.68     | -        | _        |

|                 | М        |         | Total On-site |          |           |           |          |  |  |
|-----------------|----------|---------|---------------|----------|-----------|-----------|----------|--|--|
|                 | per Year | per Day | per Hour      | per Year |           | per Day   | per Hour |  |  |
| VMT (miles)     |          | -       | -             | -        | 53,494.12 | -381.39   | -33.87   |  |  |
| TSP - Dust      |          | -       | -             | -        | 59,799.73 | -2,291.41 | -230.71  |  |  |
| PM10 - Dust     |          | -       | -             | -        | 17,004.89 | -651.59   | -65.60   |  |  |
| PM2.5 - Dust    |          | -       | -             | -        | 1,700.49  | -65.16    | -6.56    |  |  |
| TSP - Exhaust   |          | -       | -             | -        | 1,197.47  | -8.54     | -0.76    |  |  |
| PM10 - Exhaust  |          | -       | -             | -        | 1,197.47  | -8.54     | -0.76    |  |  |
| PM2.5 - Exhaust |          | -       | -             | -        | 1,101.67  | -7.85     | -0.70    |  |  |
| НС              |          | -       | -             | -        | 2,076.52  | -14.80    | -1.31    |  |  |
| NOx             |          | -       | -             | -        | 38,348.48 | -273.40   | -24.28   |  |  |
| СО              |          | -       | -             | -        | 21,531.28 | -222.09   | -21.04   |  |  |
| SOx             |          | -       | -             | -        | 1.60      | -0.01     | -0.00    |  |  |
| CO2 (tons)      |          | -       | -             | -        | 4,001.88  | -         | -        |  |  |

|                 | Total Offsite |              |              | Total        |              |              |
|-----------------|---------------|--------------|--------------|--------------|--------------|--------------|
|                 | per Year      | per Day      | per Hour     | per Year     | per Day      | per Hour     |
| VMT (miles)     | 3,787,945.55  | 3,787,945.55 | 3,787,945.55 | 3,921,535.16 | 3,789,500.28 | 3,788,120.22 |
| VMT (%)         | 100.00%       | 100.00%      | 100.00%      |              |              |              |
| TSP - Dust      | 139,473.29    | 139,473.29   | 139,473.29   | 636,359.21   | 145,256.10   | 140,122.96   |
| PM10 - Dust     | 27,894.66     | 27,894.66    | 27,894.66    | 169,191.10   | 29,539.08    | 28,079.40    |
| PM2.5 - Dust    | 6,846.87      | 6,846.87     | 6,846.87     | 20,976.52    | 7,011.31     | 6,865.35     |
| TSP - Exhaust   | 5,898.06      | 5,898.06     | 5,898.06     | 8,888.47     | 5,932.86     | 5,901.97     |
| PM10 - Exhaust  | 5,898.06      | 5,898.06     | 5,898.06     | 8,888.47     | 5,932.86     | 5,901.97     |
| PM2.5 - Exhaust | 5,426.21      | 5,426.21     | 5,426.21     | 8,177.40     | 5,458.23     | 5,429.81     |
| HC              | 5,437.75      | 5,437.75     | 5,437.75     | 10,623.40    | 5,498.10     | 5,444.53     |
| NOx             | 102,650.55    | 102,650.55   | 102,650.55   | 198,417.31   | 103,765.10   | 102,775.77   |
| со              | 24,635.25     | 24,635.25    | 24,635.25    | 87,108.81    | 25,362.33    | 24,716.94    |
| SOx             | 133.92        | 133.92       | 133.92       | 137.90       | 133.96       | 133.92       |
| CO2             | 7,067.22      | 7,067.22     | 7,067.22     | 17,061.02    | 7,067.22     | 7,067.22     |

#### **Project**

| Froject         |               |              |              |              |              |              |
|-----------------|---------------|--------------|--------------|--------------|--------------|--------------|
|                 | Total Offsite |              |              | Total        |              |              |
|                 | per Year      | per Day      | per Hour     | per Year     | per Day      | per Hour     |
| VMT (miles)     | 3,940,736.00  | 3,940,736.00 | 3,940,736.00 | 4,127,819.73 | 3,941,909.35 | 3,940,876.80 |
| VMT (%)         | 100.00%       | 100.00%      | 100.00%      |              |              |              |
| TSP - Dust      | 145,099.08    | 145,099.08   | 145,099.08   | 701,784.73   | 148,590.48   | 145,518.05   |
| PM10 - Dust     | 29,019.82     | 29,019.82    | 29,019.82    | 187,321.15   | 30,012.64    | 29,138.96    |
| PM2.5 - Dust    | 7,123.05      | 7,123.05     | 7,123.05     | 22,953.18    | 7,222.33     | 7,134.96     |
| TSP - Exhaust   | 6,135.96      | 6,135.96     | 6,135.96     | 10,323.85    | 6,162.23     | 6,139.11     |
| PM10 - Exhaust  | 6,135.96      | 6,135.96     | 6,135.96     | 10,323.85    | 6,162.23     | 6,139.11     |
| PM2.5 - Exhaust | 5,645.08      | 5,645.08     | 5,645.08     | 9,497.94     | 5,669.25     | 5,647.98     |
| HC              | 5,657.09      | 5,657.09     | 5,657.09     | 12,919.27    | 5,702.63     | 5,662.55     |
| NOx             | 106,791.06    | 106,791.06   | 106,791.06   | 240,906.31   | 107,632.20   | 106,892.00   |
| со              | 25,628.94     | 25,628.94    | 25,628.94    | 109,633.77   | 26,133.92    | 25,689.59    |
| SOx             | 139.32        | 139.32       | 139.32       | 144.90       | 139.35       | 139.32       |
| CO2 (tons)      | 7,339.35      | 7,339.35     | 7,339.35     | 21,335.03    | 7,339.35     | 7,339.35     |

|                 | Total Offsite |            |            | Total      |            |            |
|-----------------|---------------|------------|------------|------------|------------|------------|
|                 | per Year      | per Day    | per Hour   | per Year   | per Day    | per Hour   |
| VMT (miles)     | 152,790.45    | 152,790.45 | 152,790.45 | 206,284.57 | 152,409.06 | 152,756.58 |
| TSP - Dust      | 5,625.79      | 5,625.79   | 5,625.79   | 65,425.52  | 3,334.38   | 5,395.08   |
| PM10 - Dust     | 1,125.16      | 1,125.16   | 1,125.16   | 18,130.05  | 473.56     | 1,059.55   |
| PM2.5 - Dust    | 276.18        | 276.18     | 276.18     | 1,976.66   | 211.02     | 269.61     |
| TSP - Exhaust   | 237.90        | 237.90     | 237.90     | 1,435.38   | 229.37     | 237.15     |
| PM10 - Exhaust  | 237.90        | 237.90     | 237.90     | 1,435.38   | 229.37     | 237.15     |
| PM2.5 - Exhaust | 218.87        | 218.87     | 218.87     | 1,320.55   | 211.02     | 218.17     |
| HC              | 219.34        | 219.34     | 219.34     | 2,295.86   | 204.53     | 218.02     |
| NOx             | 4,140.51      | 4,140.51   | 4,140.51   | 42,488.99  | 3,867.10   | 4,116.23   |
| со              | 993.69        | 993.69     | 993.69     | 22,524.96  | 771.59     | 972.65     |
| SOx             | 5.40          | 5.40       | 5.40       | 7.00       | 5.39       | 5.40       |
| CO2 (tons)      | 272.13        | 272.13     | 272.13     | 4,274.01   | 272.13     | 272.13     |

#### 2008 Emissions from Processing Plant Area

360,117 tons produced in 2008

| EMISSION SOURCE / OPERATION / ACTIVITY          | DEVICE ID # | CRITERIA | EMISSIO | NS (tons p | er year) | )    |      |      |           |     |      |
|-------------------------------------------------|-------------|----------|---------|------------|----------|------|------|------|-----------|-----|------|
|                                                 |             | TSP      | PM10    | PM2.5      | СО       | NO   | x TO | OG   | ROG / VOC | SOx |      |
| DRILLING                                        | 90,010      | -        | -       |            | -        | -    | -    | -    |           | -   | -    |
| BLASTING                                        | 90,011      | -        | -       |            | -        | -    | -    | -    |           | -   | _ '  |
| EXPLOSIVES                                      | 90,011      | -        | -       |            | -        | -    | -    | -    |           | -   | _ '  |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL    | 90012a      | 0.10     | 0.05    | (          | 0.02     | -    | -    | -    |           | -   | _ '  |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT      | 90006,7,8,9 | 0.00     | 0.00    | (          | 0.00     | -    | -    | -    |           | -   | _ '  |
| Ball Mill #1                                    | 2,002       | 0.93     | 0.06    | (          | 0.02     | -    | -    | -    |           | -   | -    |
| Tertiary Crushing                               | 757         | 19.09    | 1.24    | (          | 0.38     | -    | -    | -    |           | -   | -    |
| Roller Mill #1                                  | 763         | 1.99     | 0.13    | (          | 0.04     | -    | -    | -    |           | -   | -    |
| Roller Mill #2                                  | 763         | 1.46     | 0.09    | (          | 0.03     | -    | -    | -    |           | -   | -    |
| Roller Mill #3                                  | 3,935       | 0.89     | 0.06    | (          | 0.02     | -    | -    | -    |           | -   | _ '  |
| Roller Mill #4                                  | 7,674       | 0.88     | 0.06    | (          | 0.02     | -    | -    | -    |           | -   | _ '  |
| Surface Treating Plant                          | 2,003       | 0.01     | 0.00    | (          | 0.00     | -    | -    | -    |           | -   | _ '  |
| Rock Storage System/Plan                        | 754         | 10.77    | 3.01    | (          | 0.94     | -    | -    | -    |           | -   | _ '  |
| Optical Sorter                                  | 763         | 0.01     | 0.01    | (          | 0.00     | -    | -    | -    |           | -   | -    |
| Coarse Product Storage System                   | 2,009       | 0.27     | 0.04    | (          | 0.01     | -    | -    | -    |           | -   | -    |
| Silo 81-70c                                     | 4,967       | 0.32     | 0.05    | (          | 0.01     | -    | -    | -    |           | -   | _    |
| Bulk Loadout 82 System                          | 2,007       | 0.09     | 0.01    | (          | 0.00     | -    | -    | -    |           | -   | -    |
| Bulk Loadout 83 System                          | 2,009       | 0.02     | 0.00    | (          | 0.00     | -    | -    | -    |           | -   | -    |
| STOCKPILES - WIND EROSION                       | 90,015      | 1.06     | 0.53    | (          | 0.21     | -    | -    | -    |           | -   | -    |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT     | VARIOUS     | 0.03     | 0.03    | (          | 0.03     | 0.07 | 0.26 | 0.00 | 0.00      | ) ( | 0.07 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT        | 90001,2     |          |         |            |          |      |      |      |           |     |      |
| PAVED ROADS - ENTRAINED DUST                    | =           | -        | -       |            | -        | -    | -    | -    |           | -   | -    |
| UNPAVED ROADS - ENTRAINED DUST                  | 90,013      | 16.99    | 5.01    | (          | ).77     | -    | -    | -    |           | -   | -    |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND | ROA 90014a  | 11.25    | 5.62    | 2          | 2.25     | -    | -    | -    |           | -   | -    |
|                                                 | GRAND TOTAL | 66.15    | 16.01   |            | 1.75     | 0.07 | 0.26 | 0.00 | 0.00      | ) ( | 0.07 |

#### 2008 Emissions from Sentinel-Butterfield Quarry Area

449,672 tons excavated in 2008

| EMISSION SOURCE / OPERATION / ACTIVITY            | DEVICE ID # | CRITERIA | EMISSIO | NS (tons per | year) |        |      |          |      |      |
|---------------------------------------------------|-------------|----------|---------|--------------|-------|--------|------|----------|------|------|
|                                                   |             | TSP      | PM10    | PM2.5        | СО    | NOx    | TOG  | ROG / VO | C SC | )x   |
| DRILLING                                          | 90,010      | 0.22     | 0.18    | 0.18         | 3     | -      | -    | -        | -    | -    |
| BLASTING                                          | 90,011      | 10.42    | 5.42    | 0.33         | l     | -      | -    | -        | -    | -    |
| EXPLOSIVES                                        | 30,502,514  | -        | -       |              | - 2.9 | 5 0.75 | 5    | -        | -    | -    |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL      | 90,012      | 0.05     | 0.02    | 0.03         | L     | -      | -    | -        | -    | -    |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT        | 90006,7,8,9 | 0.28     | 0.14    | 0.04         | 1     | -      | -    | -        | -    | -    |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1    | 751         | 6.08     | 1.06    | 0.33         | 3     | -      | -    | -        | -    | -    |
| STOCKPILES - WIND EROSION                         | 90,015      | 0.67     | 0.34    | 0.13         | 3     | -      | -    | -        | -    | -    |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT       | VARIOUS     | 0.03     | 0.03    | 0.03         | 0.0   | 8 0.38 | 3 0. | 03 0.    | .03  | 0.00 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT          | 90001,2     |          |         |              |       |        |      |          |      |      |
| UNPAVED ROADS - ENTRAINED DUST                    | 90,013      |          |         |              |       |        |      |          |      |      |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND I | ROA 90,014  | 20.10    | 10.05   | 4.02         | 2     | -      | -    | -        | -    | -    |
|                                                   | GRAND TOTAL | 37.84    | 17.23   | 5.05         | 3.0   | 3 1.12 | 2 0. | 03 0.    | .03  | 0.00 |

#### 2008 Emissions from White Knob Quarry Area

243,036 tons excavated in 2008

| EMISSION SOURCE / OPERATION / ACTIVITY          | DEVICE ID # | CRITERIA | EMISSIO | NS (tons pe | r year) |      |      |     |           |     |   |
|-------------------------------------------------|-------------|----------|---------|-------------|---------|------|------|-----|-----------|-----|---|
|                                                 |             | TSP      | PM10    | PM2.5       | CO      | N    | Юx   | TOG | ROG / VOC | SOx |   |
| DRILLING                                        | 90,010      | 0.12     | 0.10    | 0.          | 10      | -    | -    |     | -         | -   | - |
| BLASTING                                        | 90,011      | 2.84     | 1.47    | 0.          | 09      | -    | -    |     | -         | -   | - |
| EXPLOSIVES                                      | 90,011      | -        | -       |             | -       | 1.94 | 0.49 |     | -         | -   | - |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL    | 90012a      | 11.01    | 5.35    | 1.          | 64      | -    | -    |     | -         | -   | - |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT      | 90006,7,8,9 | 0.87     | 0.42    | 0.          | 13      | -    | -    |     | -         | -   | - |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1  | 2,456       | 6.20     | 2.01    | 0.          | 63      | -    | -    |     | -         | -   | - |
| STOCKPILES - WIND EROSION                       | 90,015      | 0.18     | 0.09    | 0.          | 04      | -    | -    |     | -         | -   | - |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT     | VARIOUS     |          |         |             |         |      |      |     |           |     |   |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT        | 90001,2     |          |         |             |         |      |      |     |           |     |   |
| UNPAVED ROADS - ENTRAINED DUST                  | 90,013      |          |         |             |         |      |      |     |           |     |   |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND | ROA 90014a  | 20.66    | 10.33   | 4.          | 13      | -    | -    |     | -         | -   | - |
|                                                 | GRAND TOTAL | 41.88    | 19.78   | 6.          | 75      | 1.94 | 0.49 |     | -         | -   | _ |

Notes: There are no paved roads on-site. Exhaust from stationary and portable equipment excludes White Knob generator which is calculated elsewhere. Exhaust from mobile/vehicular equipment and travel on unpaved roads is calculated elsewhere. Wind erosion is not expected to change because the active area that is disturbed on a daily basis will not change with project.

### **Baseline Emissions from Processing Plant Area**

653,635 tons produced in Baseline

| EMISSION SOURCE / OPERATION / ACTIVITY | CRITERIA EMISSIONS (tons per year |
|----------------------------------------|-----------------------------------|
|                                        |                                   |

|                                                     | Multiplier | TSP    | PM10   | PM2.5  | CO N | NOx T | ГОG  | ROG / VOC SO | x    |
|-----------------------------------------------------|------------|--------|--------|--------|------|-------|------|--------------|------|
| DRILLING                                            | -          | -      |        | -      | -    | -     | -    | -            | -    |
| BLASTING                                            | -          | -      |        | -      | -    | -     | -    | -            | -    |
| EXPLOSIVES                                          | -          | -      |        | -      | -    | -     | -    | -            | -    |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 1.82       | 0.185  | 0.090  | 0.028  | -    | -     | -    | -            | -    |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 1.82       | 0.0072 | 0.0035 | 0.0011 | -    | -     | -    | -            | -    |
| Ball Mill #1                                        | 1.82       | 1.68   | 0.106  | 0.033  | -    | -     | -    | -            | -    |
| Tertiary Crushing                                   | 1.82       | 34.7   | 2.25   | 0.69   | -    | -     | -    | -            | -    |
| Roller Mill #1                                      | 1.82       | 3.61   | 0.242  | 0.076  | -    | -     | -    | -            | -    |
| Roller Mill #2                                      | 1.82       | 2.66   | 0.167  | 0.052  | -    | -     | -    | -            | -    |
| Roller Mill #3                                      | 1.82       | 1.62   | 0.104  | 0.033  | -    | -     | -    | -            | -    |
| Roller Mill #4                                      | 1.82       | 1.60   | 0.104  | 0.033  | -    | -     | -    | -            | -    |
| Surface Treating Plant                              | 1.82       | 0.011  | 0.0010 | 0.0003 | -    | -     | -    | -            | -    |
| Rock Storage System/Plan                            | 1.82       | 19.5   | 5.47   | 1.71   | -    | -     | -    | -            | -    |
| Optical Sorter                                      | 1.82       | 0.019  | 0.014  | 0.004  | -    | -     | -    | -            | -    |
| Coarse Product Storage System                       | 1.82       | 0.48   | 0.080  | 0.025  | -    | -     | -    | -            | -    |
| Silo 81-70c                                         | 1.82       | 0.58   | 0.082  | 0.026  | -    | -     | -    | -            | -    |
| Bulk Loadout 82 System                              | 1.82       | 0.16   | 0.025  | 0.008  | -    | -     | -    | -            | -    |
| Bulk Loadout 83 System                              | 1.82       | 0.028  | 0.005  | 0.001  | -    | -     | -    | -            | -    |
| STOCKPILES - WIND EROSION                           | 1.00       | 1.06   | 0.53   | 0.21   | -    | -     | -    | -            | -    |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 1.82       | 0.047  | 0.046  | 0.046  | 0.12 | 0.48  | 0.01 | 0.01         | 0.13 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          | -      |        |        | -    | -     | -    | -            | -    |
| PAVED ROADS - ENTRAINED DUST                        |            | -      |        |        | -    | -     | -    | -            | -    |
| UNPAVED ROADS - ENTRAINED DUST                      | 1.82       | 30.84  | 9.10   | 1.40   | -    | -     | -    | -            | -    |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | 1.00       | 11.25  | 5.62   | 2.25   | -    | -     | -    | -            | -    |
|                                                     |            | 110.03 | 24.04  | 6.62   | 0.12 | 0.48  | 0.01 | 0.01         | 0.13 |

### Baseline Emissions from Sentinel-Butterfield Quarry Area

624,191 tons excavated in Baseline

| EMISSION SOURCE / OPERATION / ACTIVITY              |            | CRITERIA E | MISSIONS ( | tons per ye | ar) |      |      |       |             |        |
|-----------------------------------------------------|------------|------------|------------|-------------|-----|------|------|-------|-------------|--------|
|                                                     | Multiplier | TSP        | PM10       | PM2.5       | СО  | NOx  | TC   | OG RO | og / voc so | Оx     |
| DRILLING                                            | 1.39       | 0.31       | 0.25       | 0.25        |     | -    | -    | -     | -           | -      |
| BLASTING                                            | 1.39       | 14.46      | 7.52       | 0.43        |     | -    | -    | -     | -           | -      |
| EXPLOSIVES                                          | 1.39       | -          | -          | -           |     | 4.09 | 1.04 | -     | -           | -      |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 2.57       | 28.27      | 13.75      | 4.20        |     | -    | -    | -     | -           | -      |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 1.39       | 0.39       | 0.19       | 0.06        |     | -    | -    | -     | -           | -      |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      | 1.39       | 8.43       | 1.48       | 0.46        |     | -    | -    | -     | -           | -      |
| STOCKPILES - WIND EROSION                           | 1.00       | 0.67       | 0.34       | 0.13        |     | -    | -    | -     | -           | -      |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 1.39       | 0.04       | 0.04       | 0.04        |     | 0.11 | 0.52 | 0.042 | 0.037       | 0.0017 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          | -          | -          | -           |     | -    | -    | -     | -           | -      |
| UNPAVED ROADS - ENTRAINED DUST                      | -          | -          | -          | -           |     | -    | -    | -     | -           | -      |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | 1.00       | 20.10      | 10.05      | 4.02        |     | -    | -    | -     | -           |        |
| ·                                                   |            | 72 66      | 33 61      | 9 59        |     | 4.2  | 1.6  | 0.042 | 0.037       | 0.0017 |

## Baseline Emissions from White Knob Quarry Area

463,467 tons excavated in Baseline

| EMISSION SOURCE / OPERATION / ACTIVITY CRITERIA EMISSIONS (tons per year) |            |       |       |       |    |      |      |    |             |   |
|---------------------------------------------------------------------------|------------|-------|-------|-------|----|------|------|----|-------------|---|
|                                                                           | Multiplier | TSP   | PM10  | PM2.5 | СО | NOx  | TOG  | RO | G / VOC SOx |   |
| DRILLING                                                                  | 1.91       | 0.23  | 0.19  | 0.19  |    | -    | -    | -  | -           | - |
| BLASTING                                                                  | 1.91       | 5.41  | 2.81  | 0.16  |    | -    | -    | -  | -           | - |
| EXPLOSIVES                                                                | 1.91       | -     | -     | -     |    | 3.71 | 0.94 | -  | -           | - |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL                              | 1.91       | 20.99 | 10.21 | 3.12  |    | -    | -    | -  | -           | - |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT                                | 1.91       | 1.65  | 0.81  | 0.25  |    | -    | -    | -  | -           | - |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1                            | 1.91       | 11.83 | 3.83  | 1.20  | )  | -    | -    | -  | -           | - |
| STOCKPILES - WIND EROSION                                                 | 1.00       | 0.18  | 0.09  | 0.04  |    | -    | -    | -  | -           | - |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT                               | -          | -     | -     | -     |    | -    | -    | -  | -           | - |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT                                  | -          | -     | -     | -     |    | -    | -    | -  | -           | - |
| UNPAVED ROADS - ENTRAINED DUST                                            | -          | -     | -     | -     |    | -    | -    | -  | -           | - |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA                       | 1.00       | 20.66 | 10.33 | 4.13  |    | -    | -    | -  | -           | - |
|                                                                           |            | 60.96 | 28.27 | 9.08  | ;  | 3.71 | 0.94 | -  | -           |   |

Note: Sentinel-Butterfield bulldozing scaled based on White Knob Quarry activity level to reflect increased overburden with project.

PAVED ROADS - ENTRAINED DUST UNPAVED ROADS - ENTRAINED DUST

WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA

#### Project Plus Baseline Emissions from Processing Plant Area

680,000 tons produced with Project

**EMISSION SOURCE / OPERATION / ACTIVITY** CRITERIA EMISSIONS (tons per year) Multiplier PM10 СО NOx TOG ROG / VOC SOx PM2.5 DRILLING BLASTING EXPLOSIVES BULLDOZING, SCRAPING AND GRADING OF MATERIAL 1.89 0.19 0.09 0.03 LOADING OF MATERIAL(S) MINE / QUARRY / PIT 1 89 0.01 0.00 0.00 Ball Mill #1 1.89 1.75 0.11 0.03 Tertiary Crushing 36.05 2.34 0.72 1.89 Roller Mill #1 1.89 3.75 0.25 0.08 Roller Mill #2 1.89 2.77 0.17 0.05 Roller Mill #3 1.89 1.68 0.11 0.03 Roller Mill #4 1.89 1.67 0.11 0.03 Surface Treating Plant 1.89 0.01 0.00 0.00 Rock Storage System/Plan 1.89 20.33 5.69 1.78 Optical Sorter 1.89 0.02 0.01 0.00 Coarse Product Storage System 1.89 0.50 0.08 0.03 Silo 81-70c 0.09 1 89 0.60 0.03 Bulk Loadout 82 System 1.89 0.16 0.03 0.01 Bulk Loadout 83 System 0.00 0.00 1.89 0.03 STOCKPILES - WIND EROSION 1.00 1.06 0.53 0.21 **EXHAUST - STATIONARY AND PORTABLE EQUIPMENT** 0.50 0.01 0.0054 1.89 0.05 0.05 0.05 0.12 0.13 EXHAUST - MOBILE AND VEHICULAR EQUIPMENT

#### Project Plus Baseline Emissions from Sentinel-Butterfield Quarry Area

9.47

5.62

24 77

1.45

2.25

6.79

0.01

0.01

0.13

0.50

0.12

1,487,500 tons excavated with Project

32.08

11.25

113.97

1.89

1.00

|                                                     | -, ,       |            |          | ,           |      |      |     |      |             |        |
|-----------------------------------------------------|------------|------------|----------|-------------|------|------|-----|------|-------------|--------|
| EMISSION SOURCE / OPERATION / ACTIVITY              |            | CRITERIA E | MISSIONS | tons per ye | ar)  |      |     |      |             |        |
|                                                     | Multiplier | TSP        | PM10     | PM2.5       | СО   | NOx  | TOG | R    | og / voc so | Ox     |
| DRILLING                                            | 3.31       | 0.74       | 0.60     | 0.60        |      | -    | -   | -    | -           | -      |
| BLASTING                                            | 3.31       | 34.46      | 17.92    | 1.03        |      | -    | -   | -    | -           | -      |
| EXPLOSIVES                                          | 3.31       | -          | -        | -           | 9.7  | 5 2. | 47  | -    | -           | -      |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 6.12       | 41.84      | 20.35    | 6.22        |      | -    | -   | -    | -           | -      |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 3.31       | 0.92       | 0.45     | 0.14        |      | -    | -   | -    | -           | -      |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      | 3.31       | 20.10      | 3.52     | 1.09        |      | -    | -   | -    | -           | -      |
| STOCKPILES - WIND EROSION                           | 1.00       | 0.67       | 0.34     | 0.13        |      | -    | -   | -    | -           | -      |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 3.31       | 0.09       | 0.09     | 0.09        | 0.2  | 7 1. | 24  | 0.10 | 0.088       | 0.0041 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          | -          | -        | -           |      | -    | -   | -    | -           | -      |
| UNPAVED ROADS - ENTRAINED DUST                      | -          | -          | -        | -           |      | -    | -   | -    | -           | -      |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | 1.00       | 20.10      | 10.05    | 4.02        |      | -    | -   | -    | -           | -      |
|                                                     |            | 118.91     | 53.31    | 13.32       | 10.0 | 2 3. | 72  |      |             |        |

#### Project Plus Baseline Emissions from White Knob Quarry Area

- tons excavated with Project

| EMISSION SOURCE / OPERATION / ACTIVITY              |            | CRITERIA. | A EMISSION | S (tons per | year) |     |     |     |           |   |
|-----------------------------------------------------|------------|-----------|------------|-------------|-------|-----|-----|-----|-----------|---|
|                                                     | Multiplier | TSP       | PM10       | PM2.5       | СО    | NOx | TOG | ROG | / VOC SOx |   |
| DRILLING                                            |            | -         | -          | -           | -     | -   | -   | -   | -         | - |
| BLASTING                                            |            | -         | -          | -           | -     | -   | -   | -   | -         | - |
| EXPLOSIVES                                          |            | -         | -          | -           | -     | -   | -   | -   | -         | - |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        |            | -         | -          | -           | -     | -   | -   | -   | -         | - |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          |            | -         | -          | -           | -     | -   | -   | -   | -         | - |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      |            | -         | -          | -           | -     | -   | -   | -   | -         | - |
| STOCKPILES - WIND EROSION                           |            | -         | -          | -           | -     | -   | -   | -   | -         | - |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         |            | -         | -          | -           | -     | -   | -   | -   | -         | - |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            |            | -         | -          | -           | -     | -   | -   | -   | -         | - |
| UNPAVED ROADS - ENTRAINED DUST                      |            | -         | -          | -           | -     | -   | -   | -   | -         | - |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | <b>A</b>   | -         | -          | -           | -     | -   | -   | -   | -         | - |
|                                                     |            | •         | _          | _           | _     | _   | _   | _   | _         |   |

Note: Sentinel-Butterfield bulldozing scaled based on White Knob Quarry activity level to reflect increased overburden with project. Grading mitigated by watering . Baseline control efficiency from 2008 emissions inventory of 62.1% control was increased to 85.6% control from increased moisture in material affected due to watering.

EXHAUST - MOBILE AND VEHICULAR EQUIPMENT

WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA

PAVED ROADS - ENTRAINED DUST UNPAVED ROADS - ENTRAINED DUST

### **Project Emissions from Processing Plant Area**

|                                              | Project Em | issions  | 26,365      | tons chan | ge from b | aseline |      |            |      |
|----------------------------------------------|------------|----------|-------------|-----------|-----------|---------|------|------------|------|
| EMISSION SOURCE / OPERATION / ACTIVITY       | CRITERIA E | MISSIONS | tons per ye | ar)       |           |         |      |            |      |
|                                              | TSP        | PM10     | PM2.5       | CO        | NOx       | TOG     | RO   | G / VOC SO | <    |
| DRILLING                                     | -          | -        | -           |           | -         | -       | -    | -          | -    |
| BLASTING                                     | -          |          | -           |           | -         | -       | -    | -          | -    |
| EXPLOSIVES                                   | -          | -        | -           |           | -         | -       | -    | -          | -    |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL | 0.01       | 0.00     | 0.00        |           | -         | -       | -    | -          | -    |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT   | 0.00       | 0.00     | 0.00        |           | -         | -       | -    | -          | -    |
| Ball Mill #1                                 | 0.07       | 0.00     | 0.00        |           | -         | -       | -    | -          | -    |
| Tertiary Crushing                            | 1.40       | 0.09     | 0.03        |           | -         | -       | -    | -          | -    |
| Roller Mill #1                               | 0.15       | 0.01     | 0.00        |           | -         | -       | -    | -          | -    |
| Roller Mill #2                               | 0.11       | 0.01     | 0.00        |           | -         | -       | -    | -          | -    |
| Roller Mill #3                               | 0.07       | 0.00     | 0.00        |           | -         | -       | -    | -          | -    |
| Roller Mill #4                               | 0.06       | 0.00     | 0.00        |           | -         | -       | -    | -          | -    |
| Surface Treating Plant                       | 0.00       | 0.00     | 0.00        |           | -         | -       | -    | -          | -    |
| Rock Storage System/Plan                     | 0.79       | 0.22     | 0.07        |           | -         | -       | -    | -          | -    |
| Optical Sorter                               | 0.00       | 0.00     | 0.00        |           | -         | -       | -    | -          | -    |
| Coarse Product Storage System                | 0.02       | 0.00     | 0.00        |           | -         | -       | -    | -          | -    |
| Silo 81-70c                                  | 0.02       | 0.00     | 0.00        |           | -         | -       | -    | -          | -    |
| Bulk Loadout 82 System                       | 0.01       | 0.00     | 0.00        |           | -         | -       | -    | -          | -    |
| Bulk Loadout 83 System                       | 0.00       | 0.00     | 0.00        |           | -         | -       | -    | -          | -    |
| STOCKPILES - WIND EROSION                    | -          |          |             |           | -         | -       | -    | -          | -    |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT  | 0.00       | 0.00     | 0.00        | 0.00      | 0.        | .02 (   | 0.00 | 0.00       | 0.01 |

### Project Emissions from Sentinel-Butterfield Quarry Area

0.06

0.17

0.00

0.02

0.00

0.00

0.01

0.37

0.72

|                                                     | Project Em | issions    | 863,309     | tons | change fror | n baselin | ne    |              |       |
|-----------------------------------------------------|------------|------------|-------------|------|-------------|-----------|-------|--------------|-------|
| EMISSION SOURCE / OPERATION / ACTIVITY              | CRITERIA E | MISSIONS ( | tons per ye | ar)  |             |           |       |              |       |
|                                                     | TSP        | PM10       | PM2.5       | CO   | NOx         | TC        | OG    | ROG / VOC SC | lχ    |
| DRILLING                                            | 0.43       | 0.35       | 0.35        | i    | -           | -         | -     | -            |       |
| BLASTING                                            | 20.00      | 10.40      | 0.60        | )    | -           | -         | -     | -            |       |
| EXPLOSIVES                                          | -          | -          | -           |      | 5.66        | 1.44      | -     | -            |       |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 13.57      | 6.60       | 2.02        |      | -           | -         | -     | -            |       |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 0.53       | 0.26       | 0.08        | ;    | -           | -         | -     | -            |       |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      | 11.66      | 2.04       | 0.63        |      | -           | -         | -     | -            |       |
| STOCKPILES - WIND EROSION                           | -          | -          | -           |      | -           | -         | -     | -            |       |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 0.05       | 0.05       | 0.05        |      | 0.16        | 0.72      | 0.06  | 0.05         | 0.00  |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          | -          | -           |      | -           | -         | -     | -            |       |
| UNPAVED ROADS - ENTRAINED DUST                      | -          | -          | -           |      | -           | -         | -     | -            |       |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | -          | -          | -           |      | -           | -         | -     | -            |       |
|                                                     | 46.25      | 19.70      | 3.72        |      | 5.82        | 2.16      | -0.04 | -0.04        | -0.00 |

1.24

3.94

#### Project Emissions from White Knob Quarry Area

| EMISSION SOURCE / OPERATION / ACTIVITY              | Project Em<br>CRITERIA E |        | -463,467<br>tons per ye |    | change fro | m baseline |    |             |   |
|-----------------------------------------------------|--------------------------|--------|-------------------------|----|------------|------------|----|-------------|---|
|                                                     | TSP                      | PM10   | PM2.5                   | СО | NOx        | TOG        | RO | G / VOC SOx |   |
| DRILLING                                            | -0.23                    | -0.19  | -0.19                   |    | -          | -          | -  | -           | - |
| BLASTING                                            | -5.41                    | -2.81  | -0.16                   |    | -          | -          | -  | -           | - |
| EXPLOSIVES                                          | -                        | -      | -                       |    | -3.71      | -0.94      | -  | -           | - |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | -20.99                   | -10.21 | -3.12                   |    | -          | -          | -  | -           | - |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | -1.65                    | -0.81  | -0.25                   |    | -          | -          | -  | -           | - |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      | -11.83                   | -3.83  | -1.20                   |    | -          | -          | -  | -           | - |
| STOCKPILES - WIND EROSION                           | -0.18                    | -0.09  | -0.04                   |    | -          | -          | -  | -           | - |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | -                        | -      | -                       |    | -          | -          | -  | -           | - |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -                        | -      | -                       |    | -          | -          | -  | -           | - |
| UNPAVED ROADS - ENTRAINED DUST                      | -                        | -      | -                       |    | -          | -          | -  | -           | - |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | -20.66                   | -10.33 | -4.13                   |    | -          | -          | -  | -           | - |
|                                                     | -60.96                   | -28.27 | -9.08                   |    | -3.71      | -0.94      | -  | -           | - |

|                               | VOL1              | VOL2                         | VOL3     | VOL4               | VOL5        | VOL6       | VOL7       | VOL8       | VOL9       | VOL10      |
|-------------------------------|-------------------|------------------------------|----------|--------------------|-------------|------------|------------|------------|------------|------------|
| MitTSPann                     | -3.50E-01         | -8.14E-01                    | 0.00E+00 | -3.00E-01          | -3.00E-01   | 1.14E-01   | 2.50E-01   | 8.23E-03   | 3.41E-01   | 7.46E-01   |
| MitTSPday                     | -1.28E+00         | -2.97E+00                    | 0.00E+00 | -1.09E+00          | -1.09E+00   | 4.15E-01   | 9.12E-01   | 3.01E-02   | 1.24E+00   | 2.72E+00   |
| MitPM10ann                    | -1.17E-01         | -4.10E-01                    | 0.00E+00 | -1.48E-01          | -1.48E-01   | 2.10E-02   | 1.29E-01   | 4.30E-03   | 6.40E-02   | 3.84E-01   |
| MitPM10day                    | -4.29E-01         | -1.50E+00                    | 0.00E+00 | -5.40E-01          | -5.40E-01   | 7.66E-02   | 4.71E-01   | 1.57E-02   | 2.33E-01   | 1.40E+00   |
| MitPM25ann                    | -4.03E-02         | -1.27E-01                    | 0.00E+00 | -5.23E-02          | -5.23E-02   | 5.06E-03   | 2.50E-02   | 1.71E-03   | 2.34E-02   | 7.15E-02   |
| MitPM25day                    | -1.47E-01         | -4.62E-01                    | 0.00E+00 | -1.91E-01          | -1.91E-01   | 1.85E-02   | 9.12E-02   | 6.22E-03   | 8.53E-02   | 2.61E-01   |
| TSPann (lb/yr/src)            | -24344.179        | -56602.499                   | 0        | -20836.774         | -20836.774  | 7899.79756 | 17369.395  | 572.507122 | 23689.7697 | 51866.6732 |
| TSPday (lb/day/src)           | -243.44179        | -566.02499                   | 0        | -208.36774         | -208.36774  | 78.9979756 | 173.69395  | 5.72507122 | 236.897697 | 518.666732 |
| PM10ann (lb/yr/src)           | -8167.1132        |                              | 0        | -10281.845         | -10281.845  | 1459.43901 | 8973.87565 | 298.702889 | 4446.23095 | 26680.1152 |
| PM10day (lb/day/src)          | -81.671132        | -285.07675                   | 0        | -102.81845         | -102.81845  | 14.5943901 | 89.7387565 | 2.98702889 | 44.4623095 | 266.801152 |
| PM25ann (lb/yr/src)           | -2803.8977        | -8798.7133                   | 0        | -3636.8902         | -3636.8902  | 351.818377 | 1736.9307  | 118.568524 | 1625.57054 | 4969.28041 |
| PM25day (lb/day/src)          | -28.038977        | -87.987133                   | 0        | -36.368902         | -36.368902  | 3.51818377 | 17.369307  | 1.18568524 | 16.2557054 | 49.6928041 |
|                               |                   |                              |          |                    |             |            |            |            |            |            |
| TSPann (lb/yr)                | -24,344           | -56,602                      | 0        | -20,837            | -20,837     | 7,900      | 17,369     | 573        | 23,690     | 51,867     |
| TSPday (lb/day)               | -243              | -566                         | 0        | -208               | -208        | 79         | 174        | 6          | 237        | 519        |
| PM10ann (lb/yr)               | -8,167            | -28,508                      | 0        | -10,282            | -10,282     | 1,459      | 8,974      | 299        | 4,446      | 26,680     |
| PM10day (lb/day)              | -82               | -285                         | 0        | -103               | -103        | 15         | 90         | 3          | 44         | 267        |
| PM25ann (lb/yr)               | -2,804            | -8,799                       | 0        | -3,637             | -3,637      | 352        | 1,737      | 119        | 1,626      | 4,969      |
| PM25day (lb/day)              | -28               | -88                          | 0        | -36                | -36         | 4          | 17         | 1          | 16         | 50         |
| HC (lb/yr)                    | -640              | -554                         | 0        | -16                | -16         | 23         | 344        | 61         | 330        | 720        |
| NOx (lb/yr)                   | -640<br>-9,898    | -554<br>-8,146               | 0        | -16<br>-240        | -16<br>-240 | 23<br>174  | 5,076      | 893        | 7,092      | 10,584     |
| CO (lb/yr)                    | -9,898<br>-14,201 | -8,146<br>-5,306             | 0        | -240<br>-156       | -156        | 114        | 2,822      | 581        | 7,092      | 6,894      |
| SOx (lb/yr)                   | -14,201           | -5,30 <del>0</del><br>-0.292 | 0        | -0.009             | -0.009      | 0.006      | 0.164      | 0.032      | 0.731      | 0.379      |
| CO2 (ton/yr)                  | -0.305            | -0.292<br>-769               | 0        | -0.009             | -0.009      | 25         | 433        | 84         | 806        | 999        |
| TSP (lb/yr)                   | -364<br>-24,344   | -769<br>-56,602              | 0        | -20,837            | -20,837     | 7,900      | 17,369     | 573        | 23,690     | 51,867     |
| PM10 (lb/yr)                  | -24,344<br>-8,167 | -36,602<br>-28,508           | 0        | -20,837<br>-10,282 | -20,837     | 1,459      | 8,974      | 299        | 4,446      | 26,680     |
| PM10 (lb/yr)<br>PM2.5 (lb/yr) | -8,167<br>-2,804  | -28,508<br>-8,799            | 0        | -10,282            | -10,282     | 352        | 1,737      | 119        | 1,626      | 4,969      |
| 1 1012.3 (10/91)              | -2,004            | -0,733                       | U        | -3,037             | -3,037      | 332        | 1,/3/      | 119        | 1,020      | 4,505      |

|                      | Α          | В          | С          | EO         | G          | 327      | Н          | I          | J          | K          | L          |
|----------------------|------------|------------|------------|------------|------------|----------|------------|------------|------------|------------|------------|
| MitTSPann            | 6.01E-03   | 1.56E-02   | 1.37E-02   | 1.96E-02   | 5.26E-03   | 0.00E+00 | -8.90E-03  | -2.70E-03  | -1.30E-02  | 5.54E-05   | -1.45E-02  |
| MitTSPday            | 1.10E-02   | 2.99E-02   | 2.03E-02   | 2.92E-02   | -9.61E-03  | 0.00E+00 | -4.01E-02  | -3.83E-02  | -5.81E-02  | -1.53E-04  | -6.46E-02  |
| MitPM10ann           | 1.74E-03   | 4.51E-03   | 3.97E-03   | 5.68E-03   | 1.54E-03   | 0.00E+00 | -2.57E-03  | -7.65E-04  | -3.76E-03  | 1.29E-05   | -4.18E-03  |
| MitPM10day           | 3.20E-03   | 8.66E-03   | 5.91E-03   | 8.49E-03   | -2.73E-03  | 0.00E+00 | -1.16E-02  | -1.10E-02  | -1.68E-02  | -3.55E-05  | -1.86E-02  |
| MitPM25ann           | 2.14E-04   | 5.51E-04   | 4.87E-04   | 6.98E-04   | 2.00E-04   | 0.00E+00 | -3.01E-04  | -7.33E-05  | -4.40E-04  | 4.68E-06   | -4.89E-04  |
| MitPM25day           | 3.97E-04   | 1.06E-03   | 7.43E-04   | 1.07E-03   | -2.72E-04  | 0.00E+00 | -1.35E-03  | -1.25E-03  | -1.96E-03  | -1.29E-05  | -2.18E-03  |
|                      |            |            |            |            |            |          |            |            |            |            |            |
| TSPann (lb/yr/src)   | 418.098759 | 1082.66541 | 951.597207 | 1361.79462 | 365.869163 |          | -618.98074 | -187.66009 | -906.29025 | 3.85298136 | -1007.2595 |
| TSPday (lb/day/src)  | 2.09995884 | 5.68721127 | 3.870112   | 5.55714444 | -1.8302301 |          | -7.6412474 | -7.3003763 | -11.063298 | -0.0290572 | -12.295853 |
| PM10ann (lb/yr/src)  | 121.295568 | 313.881316 | 276.069581 | 395.111822 | 106.877374 |          | -178.66577 | -53.169119 | -261.59625 | 0.89565587 | -290.74053 |
| PM10day (lb/day/src) | 0.60997849 | 1.65021006 | 1.12585241 | 1.6168252  | -0.5203162 |          | -2.2056087 | -2.100959  | -3.1933668 | -0.0067546 | -3.5491379 |
| PM25ann (lb/yr/src)  | 14.8833978 | 38.274931  | 33.8742506 | 48.5249021 | 13.9388933 |          | -20.902984 | -5.0938793 | -30.605429 | 0.32529078 | -34.015161 |
| PM25day (lb/day/src) | 0.07569418 | 0.20280163 | 0.14161156 | 0.20358981 | -0.0518766 |          | -0.258045  | -0.2387362 | -0.3736076 | -0.0024532 | -0.4152311 |
|                      |            |            |            |            |            |          |            |            |            |            |            |
| TSPann (lb/yr)       | 15,888     | 18,405     | 13,322     | 73,537     | 119,639    | -72      | -126,272   | -751       | -32,626    | 308        | -20,145    |
| TSPday (lb/day)      | 80         | 97         | 54         | 300        | -598       |          | -1,559     | -29        | -398       | -2         | -246       |
| PM10ann (lb/yr)      | 4,609      | 5,336      | 3,865      | 21,336     | 34,949     | -20      | -36,448    | -213       | -9,417     | 72         | -5,815     |
| PM10day (lb/day)     | 23         | 28         | 16         | 87         | -170       |          | -450       | -8         | -115       | -1         | -71        |
| PM25ann (lb/yr)      | 566        | 651        | 474        | 2,620      | 4,558      | -2       | -4,264     | -20        | -1,102     | 26         | -680       |
| PM25day (lb/day)     | 3          | 3          | 2          | 11         | -17        |          | -53        | -1         | -13        | 0          | -8         |
|                      |            |            |            |            |            |          |            |            |            |            |            |
| HC (lb/yr)           | 221        | 248        | 186        | 1,029      | 2,248      | 0        | -1,310     | 2          | -338       | 12         | -209       |
| NOx (lb/yr)          | 4,087      | 4,572      | 3,427      | 19,009     | 41,520     | 0        | -24,191    | 35         | -6,251     | 218        | -3,859     |
| CO (lb/yr)           | 2,666      | 2,983      | 2,235      | 12,401     | 27,085     | 0        | -15,781    | 23         | -4,078     | 52         | -2,518     |
| SOx (lb/yr)          | 0.170      | 0.190      | 0.143      | 0.791      | 1.728      | 0.000    | -1.007     | 0.001      | -0.260     | 0.284      | -0.161     |
| CO2 (ton/yr)         | 426        | 477        | 358        | 1,984      | 4,333      | 0        | -2,524     | 4          | -652       | 0          | -403       |
| TSP (lb/yr)          | 15,888     | 18,405     | 13,322     | 73,537     | 119,639    | -72      | -126,272   | -751       | -32,626    | 308        | -20,145    |
| PM10 (lb/yr)         | 4,609      | 5,336      | 3,865      | 21,336     | 34,949     | -20      | -36,448    | -213       | -9,417     | 72         | -5,815     |
| PM2.5 (lb/yr)        | 566        | 651        | 474        | 2,620      | 4,558      | -2       | -4,264     | -20        | -1,102     | 26         | -680       |

|                                                                                                  | М                     |
|--------------------------------------------------------------------------------------------------|-----------------------|
| MitTSPann                                                                                        | 0.00E+00              |
| MitTSPday                                                                                        | 0.00E+00              |
| MitPM10ann                                                                                       | 0.00E+00              |
| MitPM10day                                                                                       | 0.00E+00              |
| MitPM25ann                                                                                       | 0.00E+00              |
| MitPM25day                                                                                       | 0.00E+00              |
| TSPann (lb/yr/src)                                                                               | 0                     |
| TSPday (lb/day/src)                                                                              | 0                     |
| PM10ann (lb/yr/src)                                                                              | 0                     |
| PM10day (lb/day/src)                                                                             | 0                     |
| PM25ann (lb/yr/src)                                                                              | 0                     |
| PM25day (lb/day/src)                                                                             | 0                     |
| TSPann (lb/yr) TSPday (lb/day) PM10ann (lb/yr) PM10day (lb/day) PM25ann (lb/yr) PM25day (lb/day) | 0<br>0<br>0<br>0<br>0 |
| HC (lb/yr)                                                                                       | 0                     |
| NOx (lb/yr)                                                                                      | 0                     |
| CO (lb/yr)                                                                                       | 0                     |
| SOx (lb/yr)                                                                                      | 0                     |
| CO2 (ton/yr)                                                                                     | 0                     |
| TSP (lb/yr)                                                                                      | 0                     |
| PM10 (lb/yr)                                                                                     | 0                     |
| PM2.5 (lb/yr)                                                                                    | 0                     |

|                      | Total Sentinel Butterfield | Total White Knob | Total Processing Plant | Total Off-site |
|----------------------|----------------------------|------------------|------------------------|----------------|
| MitTSPann            |                            |                  |                        |                |
| MitTSPday            |                            |                  |                        |                |
| MitPM10ann           |                            |                  |                        |                |
| MitPM10day           |                            |                  |                        |                |
| MitPM25ann           |                            |                  |                        |                |
| MitPM25day           |                            |                  |                        |                |
| TSPann (lb/yr/src)   |                            |                  |                        |                |
| TSPday (lb/day/src)  |                            |                  |                        |                |
| PM10ann (lb/yr/src)  |                            |                  |                        |                |
| PM10day (lb/day/src) |                            |                  |                        |                |
| PM25ann (lb/yr/src)  |                            |                  |                        |                |
| PM25day (lb/day/src) |                            |                  |                        |                |
|                      |                            |                  |                        |                |
| TSPann (lb/yr)       | 334,290                    | -301,664         | 7,149                  |                |
| TSPday (lb/day)      | 867                        | -3,429           | 50                     |                |
| PM10ann (lb/yr)      | 110,494                    | -108,919         | 1,247                  |                |
| PM10day (lb/day)     | 388                        | -1,208           | 6                      |                |
| PM25ann (lb/yr)      | 17,319                     | -24,923          | 331                    |                |
| PM25day (lb/day)     | 87                         | -263             | 3                      |                |
|                      |                            |                  |                        |                |
| HC (lb/yr)           | 5,387                      | -3,085           | 25                     | 219.3          |
| NOx (lb/yr)          | 96,259                     | -52,825          | 209                    | 4140.5         |
| CO (lb/yr)           | 65,105                     | -42,195          | 134                    | 993.7          |
| SOx (lb/yr)          | 4                          | -2               | 0                      | 5.4            |
| CO2 (ton/yr)         | 9,900                      | -4,978           | 28                     | 272.1          |
| TSP (lb/yr)          | 334,290                    | -301,664         | 7,149                  | 5863.7         |
| PM10 (lb/yr)         | 110,494                    | -108,919         | 1,247                  |                |
| PM2.5 (lb/yr)        | 17,319                     | -24,923          | 331                    | 495.0          |

|                     | Total Project w/o White Knob            | Total Project w/ White Knob | Volume Source Identifiers                    |   |
|---------------------|-----------------------------------------|-----------------------------|----------------------------------------------|---|
| MitTSPann           | , , , , , , , , , , , , , , , , , , , , |                             | LOCATION VOL1 VOLUME 498771.228 3802380.117  | 0 |
| MitTSPday           |                                         |                             | ** DESCRSRC White Knob Crushing              |   |
| ,<br>MitPM10ann     |                                         |                             | LOCATION VOL2 VOLUME 498410.694 3802532.330  | 0 |
| MitPM10day          |                                         |                             | ** DESCRSRC White Knob Pit                   |   |
| MitPM25ann          |                                         |                             | LOCATION VOL3 VOLUME 499367.635 3802416.274  | 0 |
| MitPM25day          |                                         |                             | ** DESCRSRC White Ridge Pit                  |   |
|                     |                                         |                             | LOCATION VOL4 VOLUME 499169.967 3802653.553  | 0 |
| TSPann (lb/yr/src)  |                                         |                             | ** DESCRSRC OB1                              |   |
| TSPday (lb/day/src) |                                         |                             | LOCATION VOL5 VOLUME 498786.819 3802108.559  | 0 |
| PM10ann (lb/yr/src) |                                         |                             | ** DESCRSRC OB2                              |   |
| PM10day (lb/day/srd |                                         |                             | LOCATION VOL6 VOLUME 505294.247 3804607.151  | 0 |
| PM25ann (lb/yr/src) |                                         |                             | ** DESCRSRC Processing Plant                 |   |
| PM25day (lb/day/srd |                                         |                             | LOCATION VOL7 VOLUME 504322.000 3798695.000  | 0 |
|                     |                                         |                             | ** DESCRSRC Butterfield Pit                  |   |
|                     |                                         |                             | LOCATION VOL8 VOLUME 505430.000 3797960.000  | 0 |
|                     |                                         |                             | ** DESCRSRC B5 Pad Expansion                 |   |
| TSPann (lb/yr)      | 341,439                                 | 39,775                      | ** DESCRSRC Butterfield-Sentinel Crushing    |   |
| TSPday (lb/day)     | 917                                     | -2,512                      | LOCATION VOL10 VOLUME 505808.000 3798770.000 | ( |
| PM10ann (lb/yr)     | 111,741                                 | 2,822                       | ** DESCRSRC Sentinel Pit                     |   |
| PM10day (lb/day)    | 394                                     | -814                        |                                              |   |
| PM25ann (lb/yr)     | 17,651                                  | -7,272                      |                                              |   |
| PM25day (lb/day)    | 89                                      | -174                        |                                              |   |
|                     |                                         |                             |                                              |   |
|                     |                                         |                             |                                              |   |
|                     |                                         |                             |                                              |   |
| HC (lb/yr)          | 5,631                                   | 2,547                       |                                              |   |
| NOx (lb/yr)         | 100,609                                 | 47,784                      |                                              |   |
| CO (lb/yr)          | 66,233                                  | 24,037                      |                                              |   |
| SOx (lb/yr)         | 10                                      | 8                           |                                              |   |
| CO2 (ton/yr)        | 10,201                                  | 5,223                       |                                              |   |
| TSP (lb/yr)         | 347,303                                 | 45,639                      |                                              |   |
| PM10 (lb/yr)        | 113,104                                 | 4,185                       |                                              |   |
| PM2.5 (lb/yr)       | 18,146                                  | -6,777                      |                                              |   |

OM01\_SB-AQHRCCIA\_fnl.docx

|       | Total Sentinel<br>Butterfield | Total White Knob | Total Processing Plant | Total Offsite | Total Project w/o<br>White Knob<br>Reductions | Total Project w/<br>White Knob<br>Reductions |
|-------|-------------------------------|------------------|------------------------|---------------|-----------------------------------------------|----------------------------------------------|
| HC    | 1.61                          | -0.97            | 0.01                   | 0.11          | 1.74                                          | 0.77                                         |
| NOx   | 29.0                          | -15.8            | 0.10                   | 2.07          | 31.1                                          | 15.3                                         |
| CO    | 19.9                          | -14.2            | 0.07                   | 0.50          | 20.4                                          | 6.2                                          |
| SOx   | 0.0013                        | -0.0006          | 0.0000                 | 0.0027        | 0.0040                                        | 0.0035                                       |
| TSP   | 155                           | -103             | 4.04                   | 2.93          | 162                                           | 60                                           |
| PM10  | 52.0                          | -38.5            | 0.76                   | 0.68          | 53.4                                          | 14.9                                         |
| PM2.5 | 8.6                           | -10.6            | 0.18                   | 0.25          | 9.1                                           | -1.58                                        |
| CO2   | 5,980                         | -2,765           | 28.3                   | 272.13        | 6,280                                         | 3,515                                        |

## 2008 Emissions from Processing Plant Area

360,117 tons produced in 2008

| EMISSION SOURCE / OPERATION / ACTIVITY          | DEVICE ID # | CRITERIA | EMISSIO | NS (tons per yea | ar)  |      |      |           |     |
|-------------------------------------------------|-------------|----------|---------|------------------|------|------|------|-----------|-----|
|                                                 |             | TSP      | PM10    | PM2.5            | :O N | Ox T | rog  | ROG / VOC | SOx |
| DRILLING                                        | 90,010      | -        | -       | -                | -    | -    | -    |           | -   |
| BLASTING                                        | 90,011      | -        | -       | -                | -    | -    | -    |           | -   |
| EXPLOSIVES                                      | 90,011      | -        | -       | -                | -    | -    | -    |           | -   |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL    | 90012a      | 0.10     | 0.05    | 0.02             | -    | -    | -    |           | -   |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT      | 90006,7,8,9 | 0.00     | 0.00    | 0.00             | -    | -    | -    |           | -   |
| Ball Mill #1                                    | 2,002       | 0.93     | 0.06    | 0.02             | -    | -    | -    |           | -   |
| Tertiary Crushing                               | 757         | 19.09    | 1.24    | 0.38             | -    | -    | -    |           | -   |
| Roller Mill #1                                  | 763         | 1.99     | 0.13    | 0.04             | -    | -    | -    |           | -   |
| Roller Mill #2                                  | 763         | 1.46     | 0.09    | 0.03             | -    | -    | -    |           | -   |
| Roller Mill #3                                  | 3,935       | 0.89     | 0.06    | 0.02             | -    | -    | -    |           | -   |
| Roller Mill #4                                  | 7,674       | 0.88     | 0.06    | 0.02             | -    | -    | -    |           | -   |
| Surface Treating Plant                          | 2,003       | 0.01     | 0.00    | 0.00             | -    | -    | -    |           | -   |
| Rock Storage System/Plan                        | 754         | 10.77    | 3.01    | 0.94             | -    | -    | -    |           | -   |
| Optical Sorter                                  | 763         | 0.01     | 0.01    | 0.00             | -    | -    | -    |           | -   |
| Coarse Product Storage System                   | 2,009       | 0.27     | 0.04    | 0.01             | -    | -    | -    |           | -   |
| Silo 81-70c                                     | 4,967       | 0.32     | 0.05    | 0.01             | -    | -    | -    |           | -   |
| Bulk Loadout 82 System                          | 2,007       | 0.09     | 0.01    | 0.00             | -    | -    | -    |           | -   |
| Bulk Loadout 83 System                          | 2,009       | 0.02     | 0.00    | 0.00             | -    | -    | -    |           | -   |
| STOCKPILES - WIND EROSION                       | 90,015      | 1.06     | 0.53    | 0.21             | -    | -    | -    |           | -   |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT     | VARIOUS     | 0.03     | 0.03    | 0.03             | 0.07 | 0.26 | 0.00 | 0.00      | 0.0 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT        | 90001,2     |          |         |                  |      |      |      |           |     |
| PAVED ROADS - ENTRAINED DUST                    | -           | -        | -       | -                | -    | -    | -    |           | -   |
| UNPAVED ROADS - ENTRAINED DUST                  | 90,013      | 16.99    | 5.01    | 0.77             | -    | -    | -    |           | -   |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND | ROA 90014a  | 11.25    | 5.62    | 2.25             | -    | -    | -    |           | -   |
|                                                 | GRAND TOTAL | 66.15    | 16.01   | 4.75             | 0.07 | 0.26 | 0.00 | 0.00      | 0.0 |

### 2008 Emissions from Sentinel-Butterfield Quarry Area

449,672 tons excavated in 2008

| EMISSION SOURCE / OPERATION / ACTIVITY            | DEVICE ID # | CRITERIA | <b>EMISSIOI</b> | NS (tons per | year) |        |       |           |    |      |
|---------------------------------------------------|-------------|----------|-----------------|--------------|-------|--------|-------|-----------|----|------|
|                                                   |             | TSP      | PM10            | PM2.5        | СО    | NOx    | TOG   | ROG / VOC | SO | x    |
| DRILLING                                          | 90,010      | 0.22     | 0.18            | 0.1          | 8     | -      | -     | -         | -  | -    |
| BLASTING                                          | 90,011      | 10.42    | 5.42            | 0.3          | 1     | -      | -     | -         | -  | -    |
| EXPLOSIVES                                        | 30,502,514  | -        | -               |              | - 2.9 | 5 0.7  | 5     | -         | -  | -    |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL      | 90,012      | 0.05     | 0.02            | 0.0          | 1     | -      | -     | -         | -  | -    |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT        | 90006,7,8,9 | 0.28     | 0.14            | 0.0          | 4     | -      | -     | -         | -  | -    |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1    | 751         | 6.08     | 1.06            | 0.3          | 3     | -      | -     | -         | -  | -    |
| STOCKPILES - WIND EROSION                         | 90,015      | 0.67     | 0.34            | 0.1          | 3     | -      | -     | -         | -  | -    |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT       | VARIOUS     | 0.03     | 0.03            | 0.0          | 3 0.0 | 8 0.3  | 8 0.0 | 0.0       | )3 | 0.00 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT          | 90001,2     |          |                 |              |       |        |       |           |    |      |
| UNPAVED ROADS - ENTRAINED DUST                    | 90,013      |          |                 |              |       |        |       |           |    |      |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND I | ROA 90,014  | 20.10    | 10.05           | 4.0          | 2     |        | -     | -         | -  |      |
|                                                   | GRAND TOTAL | 37.84    | 17.23           | 5.0          | 5 3.0 | 3 1.13 | 2 0.0 | 0.0       | )3 | 0.00 |

## 2008 Emissions from White Knob Quarry Area

243,036 tons excavated in 2008

| EMISSION SOURCE / OPERATION / ACTIVITY          | DEVICE ID # | CRITERIA | <b>EMISSIO</b> | NS (tons per | year) |     |        |      |         |     |   |
|-------------------------------------------------|-------------|----------|----------------|--------------|-------|-----|--------|------|---------|-----|---|
|                                                 |             | TSP      | PM10           | PM2.5        | CO    | NO  | Ox TOG | i RO | G / VOC | SOx |   |
| DRILLING                                        | 90,010      | 0.12     | 0.10           | 0.1          | 0     | -   | -      | -    |         | -   | - |
| BLASTING                                        | 90,011      | 2.84     | 1.47           | 0.0          | 9     | -   | -      | -    |         | -   | - |
| EXPLOSIVES                                      | 90,011      | -        | -              |              | - 1   | .94 | 0.49   | -    |         | -   | - |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL    | 90012a      | 11.01    | 5.35           | 1.6          | 4     | -   | -      | -    |         | -   | - |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT      | 90006,7,8,9 | 0.87     | 0.42           | 0.1          | 3     | -   | -      | -    |         | -   | - |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1  | 2,456       | 6.20     | 2.01           | 0.6          | 3     | -   | -      | -    |         | -   | - |
| STOCKPILES - WIND EROSION                       | 90,015      | 0.18     | 0.09           | 0.0          | 4     | -   | -      | -    |         | -   | - |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT     | VARIOUS     |          |                |              |       |     |        |      |         |     |   |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT        | 90001,2     |          |                |              |       |     |        |      |         |     |   |
| UNPAVED ROADS - ENTRAINED DUST                  | 90,013      |          |                |              |       |     |        |      |         |     |   |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND | ROA 90014a  | 20.66    | 10.33          | 4.1          | 3     | -   | -      | -    |         | -   | - |
|                                                 | GRAND TOTAL | 41.88    | 19.78          | 6.7          | 5 1   | .94 | 0.49   | -    |         | -   | _ |

Notes: There are no paved roads on-site. Exhaust from stationary and portable equipment excludes White Knob generator which is calculated elsewhere. Exhaust from mobile/vehicular equipment and travel on unpaved roads is calculated elsewhere. Wind erosion is not expected to change because the active area that is disturbed on a daily basis will not change with project.

# Baseline Emissions from Processing Plant Area

653,635 tons produced in Baseline

| EMISSION SOURCE / OPERATION / ACTIVITY | CRITERIA EMISSIONS (tons per year) |
|----------------------------------------|------------------------------------|
|                                        |                                    |

|                                                     | Multiplier | TSP    | PM10   | PM2.5  | CO N | NOx T | ГОG  | ROG / VOC SO | x    |
|-----------------------------------------------------|------------|--------|--------|--------|------|-------|------|--------------|------|
| DRILLING                                            | -          | -      |        | -      | -    | -     | -    | -            | -    |
| BLASTING                                            | -          | -      |        | -      | -    | -     | -    | -            | -    |
| EXPLOSIVES                                          | -          | -      |        | -      | -    | -     | -    | -            | -    |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 1.82       | 0.185  | 0.090  | 0.028  | -    | -     | -    | -            | -    |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 1.82       | 0.0072 | 0.0035 | 0.0011 | -    | -     | -    | -            | -    |
| Ball Mill #1                                        | 1.82       | 1.68   | 0.106  | 0.033  | -    | -     | -    | -            | -    |
| Tertiary Crushing                                   | 1.82       | 34.7   | 2.25   | 0.69   | -    | -     | -    | -            | -    |
| Roller Mill #1                                      | 1.82       | 3.61   | 0.242  | 0.076  | -    | -     | -    | -            | -    |
| Roller Mill #2                                      | 1.82       | 2.66   | 0.167  | 0.052  | -    | -     | -    | -            | -    |
| Roller Mill #3                                      | 1.82       | 1.62   | 0.104  | 0.033  | -    | -     | -    | -            | -    |
| Roller Mill #4                                      | 1.82       | 1.60   | 0.104  | 0.033  | -    | -     | -    | -            | -    |
| Surface Treating Plant                              | 1.82       | 0.011  | 0.0010 | 0.0003 | -    | -     | -    | -            | -    |
| Rock Storage System/Plan                            | 1.82       | 19.5   | 5.47   | 1.71   | -    | -     | -    | -            | -    |
| Optical Sorter                                      | 1.82       | 0.019  | 0.014  | 0.004  | -    | -     | -    | -            | -    |
| Coarse Product Storage System                       | 1.82       | 0.48   | 0.080  | 0.025  | -    | -     | -    | -            | -    |
| Silo 81-70c                                         | 1.82       | 0.58   | 0.082  | 0.026  | -    | -     | -    | -            | -    |
| Bulk Loadout 82 System                              | 1.82       | 0.16   | 0.025  | 0.008  | -    | -     | -    | -            | -    |
| Bulk Loadout 83 System                              | 1.82       | 0.028  | 0.005  | 0.001  | -    | -     | -    | -            | -    |
| STOCKPILES - WIND EROSION                           | 1.00       | 1.06   | 0.53   | 0.21   | -    | -     | -    | -            | -    |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 1.82       | 0.047  | 0.046  | 0.046  | 0.12 | 0.48  | 0.01 | 0.01         | 0.13 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          | -      |        |        | -    | -     | -    | -            | -    |
| PAVED ROADS - ENTRAINED DUST                        |            | -      |        |        | -    | -     | -    | -            | -    |
| UNPAVED ROADS - ENTRAINED DUST                      | 1.82       | 30.84  | 9.10   | 1.40   | -    | -     | -    | -            | -    |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | 1.00       | 11.25  | 5.62   | 2.25   | -    | -     | -    | -            | -    |
|                                                     |            | 110.03 | 24.04  | 6.62   | 0.12 | 0.48  | 0.01 | 0.01         | 0.13 |

### Baseline Emissions from Sentinel-Butterfield Quarry Area

624,191 tons excavated in Baseline

| EMISSION SOURCE / OPERATION / ACTIVITY              |            | CRITERIA E | MISSIONS | tons per ye) | ar) |      |      |       |            |        |
|-----------------------------------------------------|------------|------------|----------|--------------|-----|------|------|-------|------------|--------|
|                                                     | Multiplier | TSP        | PM10     | PM2.5        | СО  | NOx  | TC   | OG RO | OG / VOC S | Оx     |
| DRILLING                                            | 1.39       | 0.31       | 0.25     | 0.25         |     | -    | -    | -     | -          | -      |
| BLASTING                                            | 1.39       | 14.46      | 7.52     | 0.43         |     | -    | -    | -     | -          | -      |
| EXPLOSIVES                                          | 1.39       | -          | -        | -            |     | 4.09 | 1.04 | -     | -          | -      |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 2.57       | 28.27      | 13.75    | 4.20         |     | -    | -    | -     | -          | -      |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 1.39       | 0.39       | 0.19     | 0.06         |     | -    | -    | -     | -          | -      |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      | 1.39       | 8.43       | 1.48     | 0.46         |     | -    | -    | -     | -          | -      |
| STOCKPILES - WIND EROSION                           | 1.00       | 0.67       | 0.34     | 0.13         |     | -    | -    | -     | -          | -      |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 1.39       | 0.04       | 0.04     | 0.04         |     | 0.11 | 0.52 | 0.042 | 0.037      | 0.0017 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          | -          | -        | -            |     | -    | -    | -     | -          | -      |
| UNPAVED ROADS - ENTRAINED DUST                      | -          | -          | -        | -            |     | -    | -    | -     | -          | -      |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | 1.00       | 20.10      | 10.05    | 4.02         |     | -    | -    | -     | -          |        |
|                                                     |            | 72 66      | 33 61    | 9 59         |     | 12   | 1.6  | 0.042 | 0.037      | 0.0017 |

#### **Baseline Emissions from White Knob Quarry Area**

463,467 tons excavated in Baseline

| EMISSION SOURCE / OPERATION / ACTIVITY              |            | CRITERIA E | MISSIONS | tons per ye | ar) |      |      |    |             |   |
|-----------------------------------------------------|------------|------------|----------|-------------|-----|------|------|----|-------------|---|
|                                                     | Multiplier | TSP        | PM10     | PM2.5       | СО  | NOx  | TOG  | RO | G / VOC SOx |   |
| DRILLING                                            | 1.91       | 0.23       | 0.19     | 0.19        |     | -    | -    | -  | -           | - |
| BLASTING                                            | 1.91       | 5.41       | 2.81     | 0.16        |     | -    | -    | -  | -           | - |
| EXPLOSIVES                                          | 1.91       | -          | -        |             |     | 3.71 | 0.94 | -  | -           | - |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 1.91       | 20.99      | 10.21    | 3.12        |     | -    | -    | -  | -           | - |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 1.91       | 1.65       | 0.81     | 0.25        |     | -    | -    | -  | -           | - |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      | 1.91       | 11.83      | 3.83     | 1.20        |     | -    | -    | -  | -           | - |
| STOCKPILES - WIND EROSION                           | 1.00       | 0.18       | 0.09     | 0.04        |     | -    | -    | -  | -           | - |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | -          | -          | -        |             |     | -    | -    | -  | -           | - |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          | -          | -        |             |     | -    | -    | -  | -           | - |
| UNPAVED ROADS - ENTRAINED DUST                      | -          | -          | -        |             |     | -    | -    | -  | -           | - |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | 1.00       | 20.66      | 10.33    | 4.13        |     | -    | -    | -  | -           | - |
| _                                                   |            | 60.96      | 28.27    | 9.08        |     | 3.71 | 0.94 | -  | -           | - |

Note: Sentinel-Butterfield bulldozing scaled based on White Knob Quarry activity level to reflect increased overburden with project.

#### **Project Plus Baseline Emissions from Processing Plant Area**

680,000 tons produced with Project

| EMISSION SOURCE / OPERATION / ACTIVITY              |            | CRITERIA EM | ISSIONS ( | tons per year) |      |       |      |              |      |
|-----------------------------------------------------|------------|-------------|-----------|----------------|------|-------|------|--------------|------|
|                                                     | Multiplier | TSP PI      | M10       | PM2.5 CC       | O NO | C TOG | i F  | ROG / VOC SO | x    |
| DRILLING                                            | -          | -           | -         | -              | -    | -     | -    | -            | -    |
| BLASTING                                            | -          | -           | -         | -              | -    | -     | -    | -            | -    |
| EXPLOSIVES                                          | -          | -           | -         | -              | -    | -     | -    | -            | -    |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 1.89       | 0.19        | 0.09      | 0.03           | -    | -     | -    | -            | -    |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 1.89       | 0.01        | 0.00      | 0.00           | -    | -     | -    | -            | -    |
| Ball Mill #1                                        | 1.89       | 1.75        | 0.11      | 0.03           | -    | -     | -    | -            | -    |
| Tertiary Crushing                                   | 1.89       | 36.05       | 2.34      | 0.72           | -    | -     | -    | -            | -    |
| Roller Mill #1                                      | 1.89       | 3.75        | 0.25      | 0.08           | -    | -     | -    | -            | -    |
| Roller Mill #2                                      | 1.89       | 2.77        | 0.17      | 0.05           | -    | -     | -    | -            | -    |
| Roller Mill #3                                      | 1.89       | 1.68        | 0.11      | 0.03           | -    | -     | -    | -            | -    |
| Roller Mill #4                                      | 1.89       | 1.67        | 0.11      | 0.03           | -    | -     | -    | -            | -    |
| Surface Treating Plant                              | 1.89       | 0.01        | 0.00      | 0.00           | -    | -     | -    | -            | -    |
| Rock Storage System/Plan                            | 1.89       | 20.33       | 5.69      | 1.78           | -    | -     | -    | -            | -    |
| Optical Sorter                                      | 1.89       | 0.02        | 0.01      | 0.00           | -    | -     | -    | -            | -    |
| Coarse Product Storage System                       | 1.89       | 0.50        | 0.08      | 0.03           | -    | -     | -    | -            | -    |
| Silo 81-70c                                         | 1.89       | 0.60        | 0.09      | 0.03           | -    | -     | -    | -            | -    |
| Bulk Loadout 82 System                              | 1.89       | 0.16        | 0.03      | 0.01           | -    | -     | -    | -            | -    |
| Bulk Loadout 83 System                              | 1.89       | 0.03        | 0.00      | 0.00           | -    | -     | -    | -            | -    |
| STOCKPILES - WIND EROSION                           | 1.00       | 1.06        | 0.53      | 0.21           | -    | -     | -    | -            | -    |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 1.89       | 0.05        | 0.05      | 0.05           | 0.12 | 0.50  | 0.01 | 0.0054       | 0.13 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          | -           | -         | -              | -    | -     | -    | -            | -    |
| PAVED ROADS - ENTRAINED DUST                        | -          | -           | -         | -              | -    | -     | -    | -            | -    |
| UNPAVED ROADS - ENTRAINED DUST                      | 1.89       | 32.08       | 9.47      | 1.45           | -    | -     | -    | -            | -    |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | 1.00       | 11.25       | 5.62      | 2.25           | -    | -     | -    | -            | -    |
| ·                                                   | •          | 113.97      | 24.77     | 6.79           | 0.12 | 0.50  | 0.01 | 0.01         | 0.13 |

### Project Plus Baseline Emissions from Sentinel-Butterfield Quarry Area

1,145,375 tons excavated with Project

| EMISSION SOURCE / OPERATION / ACTIVITY              |            | CRITERIA E | MISSIONS ( | tons per ye | ar) |      |      |      |            |        |
|-----------------------------------------------------|------------|------------|------------|-------------|-----|------|------|------|------------|--------|
|                                                     | Multiplier | TSP        | PM10       | PM2.5       | СО  | NOx  | TOG  | R    | og / voc s | Ox     |
| DRILLING                                            | 2.55       | 0.57       | 0.46       | 0.46        |     | -    | -    | -    | -          | -      |
| BLASTING                                            | 2.55       | 26.53      | 13.80      | 0.80        |     | -    | -    | -    | -          | -      |
| EXPLOSIVES                                          | 2.55       | -          | -          | -           |     | 7.51 | 1.91 | -    | -          | -      |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 4.71       | 51.87      | 25.23      | 7.71        |     | -    | -    | -    | -          | -      |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 2.55       | 0.71       | 0.34       | 0.11        |     | -    | -    | -    | -          | -      |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      | 2.55       | 15.47      | 2.71       | 0.84        |     | -    | -    | -    | -          | -      |
| STOCKPILES - WIND EROSION                           | 1.00       | 0.67       | 0.34       | 0.13        |     | -    | -    | -    | -          | -      |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 2.55       | 0.07       | 0.07       | 0.07        |     | 0.21 | 0.96 | 0.08 | 0.067      | 0.0032 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -          | -          | -          | -           |     | -    | -    | -    | -          | -      |
| UNPAVED ROADS - ENTRAINED DUST                      | -          | -          | -          | -           |     | -    | -    | -    | -          | -      |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | 1.00       | 20.10      | 10.05      | 4.02        |     | -    | -    | -    | -          | -      |
|                                                     |            | 116.00     | 53.00      | 1/113       |     | 7 72 | 2.86 |      |            |        |

#### Project Plus Baseline Emissions from White Knob Quarry Area

- tons excavated with Project

| EMISSION SOURCE / OPERATION / ACTIVITY              | CRITERIA EMISSIONS (tons per year) |     |      |       |    |     |     |     |           |   |  |
|-----------------------------------------------------|------------------------------------|-----|------|-------|----|-----|-----|-----|-----------|---|--|
|                                                     | Multiplier                         | TSP | PM10 | PM2.5 | СО | NOx | TOG | ROG | / VOC SOx |   |  |
| DRILLING                                            |                                    | -   | -    | -     | -  | -   | -   | -   | -         | - |  |
| BLASTING                                            |                                    | -   | -    | -     | -  | -   | -   | -   | -         | - |  |
| EXPLOSIVES                                          |                                    | -   | -    | -     | -  | -   | -   | -   | -         | - |  |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        |                                    | -   | -    | -     | -  | -   | -   | -   | -         | - |  |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          |                                    | -   | -    | -     | -  | -   | -   | -   | -         | - |  |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      |                                    | -   | -    | -     | -  | -   | -   | -   | -         | - |  |
| STOCKPILES - WIND EROSION                           |                                    | -   | -    | -     | -  | -   | -   | -   | -         | - |  |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         |                                    | -   | -    | -     | -  | -   | -   | -   | -         | - |  |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            |                                    | -   | -    | -     | -  | -   | -   | -   | -         | - |  |
| UNPAVED ROADS - ENTRAINED DUST                      |                                    | -   | -    | -     | -  | -   | -   | -   | -         | - |  |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA |                                    | -   | -    | -     | -  | -   | -   | -   | -         | - |  |
|                                                     | •                                  | •   | _    | _     | _  | _   | _   |     | _         |   |  |

Note: Sentinel-Butterfield bulldozing scaled based on White Knob Quarry activity level to reflect increased overburden with project.

#### **Project Emissions from Processing Plant Area**

| Project Emissions        | 26,365 tons change from baseline |
|--------------------------|----------------------------------|
| CRITERIA EMISSIONIS /+ox | ac par vaarl                     |

| EMISSION SOURCE / OPERATION / ACTIVITY             | CRITERIA EM |      |       | r)   | e iioiii bas | eiiiie |           |      |
|----------------------------------------------------|-------------|------|-------|------|--------------|--------|-----------|------|
| EMISSION SCORE / OF EMITTION / NOTIVITY            | 1           | M10  | PM2.5 | CO   | NOx          | TOG    | ROG / VOC | SOx  |
| DRILLING                                           | -           | -    | -     | -    | -            |        |           | -    |
| BLASTING                                           | -           | -    |       | -    |              |        |           | -    |
| EXPLOSIVES                                         | -           | -    | -     | -    | -            |        |           | -    |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL       | 0.01        | 0.00 | 0.00  | -    |              |        |           | -    |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT         | 0.00        | 0.00 | 0.00  | -    |              |        |           | -    |
| Ball Mill #1                                       | 0.07        | 0.00 | 0.00  | -    |              |        |           | -    |
| Tertiary Crushing                                  | 1.40        | 0.09 | 0.03  | -    |              |        |           | -    |
| Roller Mill #1                                     | 0.15        | 0.01 | 0.00  | -    |              |        |           | -    |
| Roller Mill #2                                     | 0.11        | 0.01 | 0.00  | -    |              |        |           | -    |
| Roller Mill #3                                     | 0.07        | 0.00 | 0.00  | -    |              |        |           | -    |
| Roller Mill #4                                     | 0.06        | 0.00 | 0.00  | -    |              |        |           | -    |
| Surface Treating Plant                             | 0.00        | 0.00 | 0.00  | -    |              |        |           | -    |
| Rock Storage System/Plan                           | 0.79        | 0.22 | 0.07  |      |              |        |           | -    |
| Optical Sorter                                     | 0.00        | 0.00 | 0.00  | -    |              |        |           | -    |
| Coarse Product Storage System                      | 0.02        | 0.00 | 0.00  | -    |              |        |           | -    |
| Silo 81-70c                                        | 0.02        | 0.00 | 0.00  | -    | -            |        |           | -    |
| Bulk Loadout 82 System                             | 0.01        | 0.00 | 0.00  | -    |              |        |           | -    |
| Bulk Loadout 83 System                             | 0.00        | 0.00 | 0.00  | -    |              |        |           | -    |
| STOCKPILES - WIND EROSION                          | -           | -    | -     |      | -            |        |           | -    |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT        | 0.00        | 0.00 | 0.00  | 0.00 | 0.02         | 0.00   | 0.00      | 0.01 |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT           | -           | -    | -     | -    | -            |        |           | -    |
| PAVED ROADS - ENTRAINED DUST                       | _           | -    | -     | -    | -            |        |           | -    |
| UNPAVED ROADS - ENTRAINED DUST                     | 1.24        | 0.37 | 0.06  | ; -  |              |        |           | -    |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND RO | Α -         | -    | -     | -    | -            |        |           | -    |
|                                                    | 3.94        | 0.72 | 0.17  | 0.00 | 0.02         | 0.00   | 0.00      | 0.01 |

### Project Emissions from Sentinel-Butterfield Quarry Area

| Project Emissions      | 521,184 tons change from baseline |
|------------------------|-----------------------------------|
| CRITERIA EMISSIONS (to | ns per year)                      |

|                                                     | I TOJECE EIII                      | 13310113 | 321,104 | toris criai | ige ironi ba | JCIIIIC |       |              |       |  |
|-----------------------------------------------------|------------------------------------|----------|---------|-------------|--------------|---------|-------|--------------|-------|--|
| EMISSION SOURCE / OPERATION / ACTIVITY              | CRITERIA EMISSIONS (tons per year) |          |         |             |              |         |       |              |       |  |
|                                                     | TSP                                | PM10     | PM2.5   | СО          | NOx          | TOG     | R     | OG / VOC SOx |       |  |
| DRILLING                                            | 0.26                               | 0.21     | 0.21    |             | -            | -       | -     | -            | -     |  |
| BLASTING                                            | 12.07                              | 6.28     | 0.36    |             | -            | -       | -     | -            | -     |  |
| EXPLOSIVES                                          | -                                  | -        | -       | 3.4         | 2 0.8        | 7       | -     | -            | -     |  |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | 23.60                              | 11.48    | 3.51    |             | -            | -       | -     | -            | -     |  |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | 0.32                               | 0.16     | 0.05    |             | -            | -       | -     | -            | -     |  |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      | 7.04                               | 1.23     | 0.38    |             | -            | -       | -     | -            | -     |  |
| STOCKPILES - WIND EROSION                           | -                                  | -        | -       |             | -            | -       | -     | -            | -     |  |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | 0.03                               | 0.03     | 0.03    | 0.0         | 9 0.4        | 3       | 0.03  | 0.03         | 0.00  |  |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -                                  | -        | -       |             | -            | -       | -     | -            | -     |  |
| UNPAVED ROADS - ENTRAINED DUST                      | -                                  | -        | -       |             | -            | -       | -     | -            | -     |  |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | -                                  | -        | -       |             | -            | -       | -     | -            | -     |  |
|                                                     | 43.33                              | 19.39    | 4.54    | 3.5         | 1 1.3        | 0 -     | -0.04 | -0.04        | -0.00 |  |
|                                                     |                                    |          |         |             |              |         |       |              |       |  |

## **Project Emissions from White Knob Quarry Area**

-463,467 tons change from baseline **Project Emissions** 

| EMISSION SOURCE / OPERATION / ACTIVITY              | CRITERIA EMISSIONS (tons per year) |        |       |    |      |       |     |             |   |  |  |
|-----------------------------------------------------|------------------------------------|--------|-------|----|------|-------|-----|-------------|---|--|--|
|                                                     | TSP                                | PM10   | PM2.5 | СО | NC   | x TOG | ROC | G / VOC SOx |   |  |  |
| DRILLING                                            | -0.23                              | -0.19  | -0.19 |    | -    | -     | -   | -           | - |  |  |
| BLASTING                                            | -5.41                              | -2.81  | -0.16 |    | -    | -     | -   | -           | - |  |  |
| EXPLOSIVES                                          | -                                  | -      | -     | -  | 3.71 | -0.94 | -   | -           | - |  |  |
| BULLDOZING, SCRAPING AND GRADING OF MATERIAL        | -20.99                             | -10.21 | -3.12 |    | -    | -     | -   | -           | - |  |  |
| LOADING OF MATERIAL(S) MINE / QUARRY / PIT          | -1.65                              | -0.81  | -0.25 |    | -    | -     | -   | -           | - |  |  |
| AGGREGATE HANDLING, CRUSHING, AND SCREENING #1      | -11.83                             | -3.83  | -1.20 |    | -    | -     | -   | -           | - |  |  |
| STOCKPILES - WIND EROSION                           | -0.18                              | -0.09  | -0.04 |    | -    | -     | -   | -           | - |  |  |
| EXHAUST - STATIONARY AND PORTABLE EQUIPMENT         | -                                  | -      | -     |    | -    | -     | -   | -           | - |  |  |
| EXHAUST - MOBILE AND VEHICULAR EQUIPMENT            | -                                  | -      | -     |    | -    | -     | -   | -           | - |  |  |
| UNPAVED ROADS - ENTRAINED DUST                      | -                                  | -      | -     |    | -    | -     | -   | -           | _ |  |  |
| WIND EROSION FROM UNPAVED OPERATIONAL AREAS AND ROA | -20.66                             | -10.33 | -4.13 |    | -    | -     | -   | -           | - |  |  |
|                                                     | -60.96                             | -28.27 | -9.08 | -  | 3.71 | -0.94 | -   | -           | - |  |  |

| Basel |  |
|-------|--|
|       |  |
|       |  |
|       |  |

|            | VOL1         | WK Crusher |          | VOL2         | WK Pit    | ,        | VOL3     | WR Pit  |          |
|------------|--------------|------------|----------|--------------|-----------|----------|----------|---------|----------|
|            | Per Year     | Per Day    | Per Hour | Per Year     | Per Day   | Per Hour | Per Year | Per Day | Per Hour |
| hp-hr      | 1,002,598.38 | 10,025.98  | 1,671.00 | 1,320,206.27 | 13,202.06 | 2,200.34 | -        |         |          |
| HC (lb)    | 640.25       | 6.40       | 1.07     | 554.35       | 5.54      | 0.92     | -        |         |          |
| NOx (lb)   | 9,898.01     | 98.98      | 16.50    | 8,146.06     | 81.46     | 13.58    | -        |         |          |
| PM (lb)    | 327.63       | 3.28       | 0.55     | 358.76       | 3.59      | 0.60     | -        |         |          |
| CO (lb)    | 14,200.65    | 142.01     | 23.67    | 5,306.16     | 53.06     | 8.84     | -        |         |          |
| SOx (lb)   | 0.31         | 0.00       | 0.00     | 0.29         | 0.00      | 0.00     | -        |         |          |
| CO2 (tons) | 583.94       | 5.84       | 0.97     | 768.93       | 7.69      | 1.28     | _        |         |          |

# Project

|            | VOL1 WK Crusher |         |          | VOL2     | WK Pit  |          | VOL3     | WR Pit  |          |  |
|------------|-----------------|---------|----------|----------|---------|----------|----------|---------|----------|--|
|            | Per Year        | Per Day | Per Hour | Per Year | Per Day | Per Hour | Per Year | Per Day | Per Hour |  |
| hp-hr      |                 |         | -        |          |         | -        | -        |         | -        |  |
| HC (lb)    |                 |         | -        |          |         |          | -        |         |          |  |
| NOx (lb)   |                 |         | -        |          |         | -        | -        |         |          |  |
| PM (lb)    |                 |         | -        |          |         | -        | -        |         |          |  |
| CO (lb)    |                 |         | -        |          |         | -        | -        |         |          |  |
| SOx (lb)   |                 |         | -        |          |         | -        | -        |         |          |  |
| CO2 (tons) |                 |         | -        |          |         |          |          |         |          |  |

|            | VOL1 WK Crusher |            |           | VOL2          | WK Pit     | ,         | VOL3     | WR Pit  |          |
|------------|-----------------|------------|-----------|---------------|------------|-----------|----------|---------|----------|
|            | Per Year        | Per Day    | Per Hour  | Per Year      | Per Day    | Per Hour  | Per Year | Per Day | Per Hour |
| hp-hr      | -1,002,598.38   | -10,025.98 | -1,671.00 | -1,320,206.27 | -13,202.06 | -2,200.34 | -        | -       | -        |
| HC (lb)    | -640.25         | -6.40      | -1.07     | -554.35       | -5.54      | -0.92     | -        | -       | -        |
| NOx (lb)   | -9,898.01       | -98.98     | -16.50    | -8,146.06     | -81.46     | -13.58    | -        | -       | -        |
| PM (lb)    | -327.63         | -3.28      | -0.55     | -358.76       | -3.59      | -0.60     | -        | -       | -        |
| CO (lb)    | -14,200.65      | -142.01    | -23.67    | -5,306.16     | -53.06     | -8.84     | -        | -       | -        |
| SOx (lb)   | -0.31           | -0.00      | -0.00     | -0.29         | -0.00      | -0.00     | -        | -       | -        |
| CO2 (tons) | -583.94         | -5.84      | -0.97     | -768.93       | -7.69      | -1.28     | -        | -       | -        |

| Basel | ine |  |
|-------|-----|--|
|       |     |  |

|            | VOL4      | OB1     | ,        | VOL5      | OB2     |          | VOL6         | Plant     |          | VOL7       | BF Pit   |          |
|------------|-----------|---------|----------|-----------|---------|----------|--------------|-----------|----------|------------|----------|----------|
|            | Per Year  | Per Day | Per Hour | Per Year  | Per Day | Per Hour | Per Year     | Per Day   | Per Hour | Per Year   | Per Day  | Per Hour |
| hp-hr      | 38,829.60 | 388.30  | 64.72    | 38,829.60 | 388.30  | 64.72    | 1,050,976.27 | 10,509.76 | 1,751.63 | 271,610.60 | 2,716.11 | 452.68   |
| HC (lb)    | 16.30     | 0.16    | 0.03     | 16.30     | 0.16    | 0.03     | 578.23       | 5.78      | 0.96     | 114.05     | 1.14     | 0.19     |
| NOx (lb)   | 239.59    | 2.40    | 0.40     | 239.59    | 2.40    | 0.40     | 4,316.04     | 43.16     | 7.19     | 1,675.92   | 16.76    | 2.79     |
| PM (lb)    | 10.55     | 0.11    | 0.02     | 10.55     | 0.11    | 0.02     | 396.46       | 3.96      | 0.66     | 73.81      | 0.74     | 0.12     |
| CO (lb)    | 156.06    | 1.56    | 0.26     | 156.06    | 1.56    | 0.26     | 2,764.55     | 27.65     | 4.61     | 1,091.65   | 10.92    | 1.82     |
| SOx (lb)   | 0.01      | 0.00    | 0.00     | 0.01      | 0.00    | 0.00     | 0.14         | 0.00      | 0.00     | 0.06       | 0.00     | 0.00     |
| CO2 (tons) | 22.62     | 0.23    | 0.04     | 22.62     | 0.23    | 0.04     | 612.12       | 6.12      | 1.02     | 158.19     | 1.58     | 0.26     |

# Project

|            | VOL4     | OB1     |          | VOL5     | OB2     |          | VOL6         | Plant     |          | VOL7       | BF Pit   |          |
|------------|----------|---------|----------|----------|---------|----------|--------------|-----------|----------|------------|----------|----------|
|            | Per Year | Per Day | Per Hour | Per Year | Per Day | Per Hour | Per Year     | Per Day   | Per Hour | Per Year   | Per Day  | Per Hour |
| hp-hr      | -        |         |          | -        |         | -        | 1,093,368.41 | 10,933.68 | 1,822.28 | 417,091.86 | 4,170.92 | 695.15   |
| HC (lb)    | -        |         |          | -        |         | -        | 601.55       | 6.02      | 1.00     | 187.97     | 1.88     | 0.31     |
| NOx (lb)   | -        |         |          | -        |         | -        | 4,490.13     | 44.90     | 7.48     | 2,773.07   | 27.73    | 4.62     |
| PM (lb)    | -        |         |          | -        |         | -        | 412.45       | 4.12      | 0.69     | 127.19     | 1.27     | 0.21     |
| CO (lb)    | -        |         |          | -        |         | -        | 2,876.06     | 28.76     | 4.79     | 1,607.40   | 16.07    | 2.68     |
| SOx (lb)   | -        |         |          | -        |         | -        | 0.15         | 0.00      | 0.00     | 0.09       | 0.00     | 0.00     |
| CO2 (tons) | -        |         |          | -        |         | -        | 636.81       | 6.37      | 1.06     | 242.93     | 2.43     | 0.40     |

| inci cinciic |            |         |          |            |         |          |           |         |          |            |          |          |
|--------------|------------|---------|----------|------------|---------|----------|-----------|---------|----------|------------|----------|----------|
|              | VOL4       | OB1     | ,        | VOL5       | OB2     | \        | /OL6      | Plant   |          | VOL7       | BF Pit   |          |
|              | Per Year   | Per Day | Per Hour | Per Year   | Per Day | Per Hour | Per Year  | Per Day | Per Hour | Per Year   | Per Day  | Per Hour |
| hp-hr        | -38,829.60 | -388.30 | -64.72   | -38,829.60 | -388.30 | -64.72   | 42,392.14 | 423.92  | 70.65    | 145,481.26 | 1,454.81 | 242.47   |
| HC (lb)      | -16.30     | -0.16   | -0.03    | -16.30     | -0.16   | -0.03    | 23.32     | 0.23    | 0.04     | 73.92      | 0.74     | 0.12     |
| NOx (lb)     | -239.59    | -2.40   | -0.40    | -239.59    | -2.40   | -0.40    | 174.09    | 1.74    | 0.29     | 1,097.15   | 10.97    | 1.83     |
| PM (lb)      | -10.55     | -0.11   | -0.02    | -10.55     | -0.11   | -0.02    | 15.99     | 0.16    | 0.03     | 53.39      | 0.53     | 0.09     |
| CO (lb)      | -156.06    | -1.56   | -0.26    | -156.06    | -1.56   | -0.26    | 111.51    | 1.12    | 0.19     | 515.74     | 5.16     | 0.86     |
| SOx (lb)     | -0.01      | -0.00   | -0.00    | -0.01      | -0.00   | -0.00    | 0.01      | 0.00    | 0.00     | 0.03       | 0.00     | 0.00     |
| CO2 (tons)   | -22.62     | -0.23   | -0.04    | -22.62     | -0.23   | -0.04    | 24.69     | 0.25    | 0.04     | 84.73      | 0.85     | 0.14     |

SOx (lb)

CO2 (tons)

0.02

50.86

0.00

0.08

0.00

0.51

0.55

592.61

0.01

5.93

| Baseline   |            |          |          |              |            |          |              |           |          |              |           |           |
|------------|------------|----------|----------|--------------|------------|----------|--------------|-----------|----------|--------------|-----------|-----------|
|            | VOL8       | B5       |          | VOL9         | SB Crusher |          | VOL10        | Sen Pit   |          | Total        |           |           |
|            | Per Year   | Per Day  | Per Hour | Per Year     | Per Day    | Per Hour | Per Year     | Per Day   | Per Hour | Per Year     | Per Day   | Per Hour  |
| hp-hr      | 104,590.39 | 1,045.90 | 174.32   | 209,180.78   | 2,091.81   | 348.63   | 1,506,426.05 | 15,064.26 | 2,510.71 | 5,543,247.93 | 55,432.48 | 9,238.75  |
| HC (lb)    | 43.92      | 0.44     | 0.07     | 87.83        | 0.88       | 0.15     | 632.55       | 6.33      | 1.05     | 2,683.79     | 26.84     | 4.47      |
| NOx (lb)   | 645.35     | 6.45     | 1.08     | 1,290.71     | 12.91      | 2.15     | 9,295.09     | 92.95     | 15.49    | 35,746.35    | 357.46    | 59.58     |
| PM (lb)    | 28.42      | 0.28     | 0.05     | 56.84        | 0.57       | 0.09     | 409.36       | 4.09      | 0.68     | 1,672.38     | 16.72     | 2.79      |
| CO (lb)    | 420.37     | 4.20     | 0.70     | 840.74       | 8.41       | 1.40     | 6,054.61     | 60.55     | 10.09    | 30,990.85    | 309.91    | 51.65     |
| SOx (lb)   | 0.02       | 0.00     | 0.00     | 0.05         | 0.00       | 0.00     | 0.33         | 0.00      | 0.00     | 1.22         | 0.01      | 0.00      |
| CO2 (tons) | 60.92      | 0.61     | 0.10     | 121.83       | 1.22       | 0.20     | 877.39       | 8.77      | 1.46     | 3,228.55     | 32.29     | 5.38      |
|            |            |          |          |              |            |          |              |           |          |              |           |           |
| Project    |            |          |          |              |            |          |              |           |          |              |           |           |
| •          | VOL8       | B5       |          | VOL9         | SB Crusher |          | VOL10        | Sen Pit   |          | Total        |           |           |
|            | Per Year   | Per Day  | Per Hour | Per Year     | Per Day    | Per Hour | Per Year     | Per Day   | Per Hour | Per Year     | Per Day   | Per Hour  |
| hp-hr      | 191,920.67 | 1,919.21 | 319.87   | 1,989,179.67 | 19,891.80  | 3,315.30 | 2,845,559.54 | 28,455.60 | 4,742.60 | 6,537,120.15 | 65,371.20 | 10,895.20 |
| HC (lb)    | 80.59      | 0.81     | 0.13     | 321.71       | 3.22       | 0.54     | 1,194.85     | 11.95     | 1.99     | 2,386.67     | 23.87     | 3.98      |
| NOx (lb)   | 1,184.21   | 11.84    | 1.97     | 6,454.98     | 64.55      | 10.76    | 17,557.93    | 175.58    | 29.26    | 32,460.32    | 324.60    | 54.10     |
| PM (lb)    | 52.15      | 0.52     | 0.09     | 243.62       | 2.44       | 0.41     | 773.26       | 7.73      | 1.29     | 1,608.67     | 16.09     | 2.68      |
| CO (lb)    | 771.37     | 7.71     | 1.29     | 6,373.72     | 63.74      | 10.62    | 11,436.84    | 114.37    | 19.06    | 23,065.38    | 230.65    | 38.44     |
| SOx (lb)   | 0.04       | 0.00     | 0.00     | 0.60         | 0.01       | 0.00     | 0.63         | 0.01      | 0.00     | 1.51         | 0.02      | 0.00      |
| CO2 (tons) | 111.78     | 1.12     | 0.19     | 714.44       | 7.14       | 1.19     | 1,657.34     | 16.57     | 2.76     | 3,363.29     | 33.63     | 5.61      |
|            |            |          |          |              |            |          |              |           |          |              |           |           |
| Increment  |            |          |          |              |            |          |              |           |          |              |           |           |
|            | VOL8       | B5       |          | VOL9         | SB Crusher |          | VOL10        | Sen Pit   |          |              |           |           |
|            | Per Year   | Per Day  | Per Hour | Per Year     | Per Day    | Per Hour | Per Year     | Per Day   | Per Hour | Per Year     | Per Day   | Per Hour  |
| hp-hr      | 87,330.28  | 873.30   | 145.55   | 1,779,998.89 | 17,799.99  | 2,966.66 | 1,339,133.49 | 13,391.33 | 2,231.89 | 993,872.22   | 9,938.72  | 1,656.45  |
| HC (lb)    | 36.67      | 0.37     | 0.06     | 233.88       | 2.34       | 0.39     | 562.30       | 5.62      | 0.94     | -297.12      | -2.97     | -0.50     |
| NOx (lb)   | 538.85     | 5.39     | 0.90     | 5,164.27     | 51.64      | 8.61     | 8,262.84     | 82.63     | 13.77    | -3,286.03    | -32.86    | -5.48     |
| PM (lb)    | 23.73      | 0.24     | 0.04     | 186.77       | 1.87       | 0.31     | 363.90       | 3.64      | 0.61     | -63.71       | -0.64     | -0.11     |
| CO (lb)    | 351.00     | 3.51     | 0.58     | 5,532.98     | 55.33      | 9.22     | 5,382.23     | 53.82     | 8.97     | -7,925.47    | -79.25    | -13.21    |

0.00

0.99

0.30

779.95

0.00

7.80

0.00

1.30

0.29

134.74

0.00

1.35

0.00

0.22

| Baseline Offroad  | Baseline Flee | Baseline Fleet Characteristics |             |            |            |             |           |  |  |  |  |  |
|-------------------|---------------|--------------------------------|-------------|------------|------------|-------------|-----------|--|--|--|--|--|
|                   | Avg. (hp-hr)  | HC (lb/yr)                     | NOx (lb/yr) | PM (lb/yr) | CO (lb/yr) | SOx (lb/yr) | CO2 (tpy) |  |  |  |  |  |
| Pit Subtotal      | 3,644,992     | 1,643                          | 24,234      | 1,112      | 14,047     | 0.81        | 2,123     |  |  |  |  |  |
| Plant Subtotal    | 1,050,976     | 624                            | 3,785       | 325        | 2,668      | 0.15        | 612       |  |  |  |  |  |
| Roads Subtotal    | 17,158,834    | 6,706                          | 115,562     | 4,059      | 111,011    | 3.99        | 9,994     |  |  |  |  |  |
| Total w/o Generat | 21,854,802    | 8,973                          | 143,581     | 5,495      | 127,726    | 4.95        | 12,729    |  |  |  |  |  |
| Total w/ Generato | r 22,702,082  | 9,548                          | 152,520     | 5,781      | 141,303    | 5.22        | 13,222    |  |  |  |  |  |
| Generator         | 847,280       | 575                            | 8,940       | 285        | 13,576     | 0.27        | 493       |  |  |  |  |  |
|                   |               |                                |             |            |            |             |           |  |  |  |  |  |

| Baseline Offroad Activity |                                                                    |                                                                                         | 2012 Fleet Characteristics                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|---------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Avg. (hp-hr)              | HC (lb/yr)                                                         | NOx (lb/yr)                                                                             | PM (lb/yr)                                                                                                                      | CO (lb/yr)                                                                                                                                                                                                                                                                               | SOx (lb/yr)                                                                                                                                                                                                                                                                                                                                                  | CO2 (tpy)                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 3,644,992                 | 1,531                                                              | 22,491                                                                                  | 990                                                                                                                             | 14,650                                                                                                                                                                                                                                                                                   | 0.81                                                                                                                                                                                                                                                                                                                                                         | 2,123                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 1,041,576                 | 578                                                                | 4,316                                                                                   | 396                                                                                                                             | 2,765                                                                                                                                                                                                                                                                                    | 0.14                                                                                                                                                                                                                                                                                                                                                         | 612                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 17,158,834                | 5,186                                                              | 95,767                                                                                  | 2,990                                                                                                                           | 62,474                                                                                                                                                                                                                                                                                   | 3.99                                                                                                                                                                                                                                                                                                                                                         | 9,994                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 21,845,402                | 7,294                                                              | 122,573                                                                                 | 4,377                                                                                                                           | 79,888                                                                                                                                                                                                                                                                                   | 4.94                                                                                                                                                                                                                                                                                                                                                         | 12,729                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 22,692,682                | 7,869                                                              | 131,513                                                                                 | 4,663                                                                                                                           | 93,464                                                                                                                                                                                                                                                                                   | 5.21                                                                                                                                                                                                                                                                                                                                                         | 13,222                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                           | Avg. (hp-hr)<br>3,644,992<br>1,041,576<br>17,158,834<br>21,845,402 | Avg. (hp-hr) HC (lb/yr) 3,644,992 1,531 1,041,576 578 17,158,834 5,186 21,845,402 7,294 | Avg. (hp-hr) HC (lb/yr) NOx (lb/yr) 3,644,992 1,531 22,491 1,041,576 578 4,316 17,158,834 5,186 95,767 21,845,402 7,294 122,573 | Avg. (hp-hr)       HC (lb/yr)       NOx (lb/yr)       PM (lb/yr)         3,644,992       1,531       22,491       990         1,041,576       578       4,316       396         17,158,834       5,186       95,767       2,990         21,845,402       7,294       122,573       4,377 | Avg. (hp-hr)       HC (lb/yr)       NOx (lb/yr)       PM (lb/yr)       CO (lb/yr)         3,644,992       1,531       22,491       990       14,650         1,041,576       578       4,316       396       2,765         17,158,834       5,186       95,767       2,990       62,474         21,845,402       7,294       122,573       4,377       79,888 | Avg. (hp-hr)       HC (lb/yr)       NOx (lb/yr)       PM (lb/yr)       CO (lb/yr)       SOx (lb/yr)         3,644,992       1,531       22,491       990       14,650       0.81         1,041,576       578       4,316       396       2,765       0.14         17,158,834       5,186       95,767       2,990       62,474       3.99         21,845,402       7,294       122,573       4,377       79,888       4.94 |  |  |  |  |  |

### **Baseline Offroad Allocations**

|             | Ton Excavated | hp-hr     | Pit (hp-hr) | Fill (hp-hr) | Loadout (hp-hr) |
|-------------|---------------|-----------|-------------|--------------|-----------------|
| White Knob  | 463,467       | 1,553,184 | 1,320,206   | 77,659       | 155,318         |
| Sentinel    | 528,841       | 1,772,266 | 1,506,426   | 88,613       | 177,227         |
| Butterfield | 95,351        | 319,542   | 271,611     | 15,977       | 31,954          |
| Total       | 1,087,658     | 3,644,992 | 3,098,243   | 182,250      | 364,499         |

## **Project Offroad Allocations**

|             | Ton Excavated | hp-hr     | Pit (hp-hr) | Fill (hp-hr) | Loadout (hp-h Pe | rcentage |
|-------------|---------------|-----------|-------------|--------------|------------------|----------|
| White Knob  | -             | -         |             |              |                  |          |
| Sentinel    | 998,952       | 3,347,717 | 2,845,560   | 167,386      | 334,772          | 87%      |
| Butterfield | 146,423       | 490,696   | 417,092     | 24,535       | 49,070           | 13%      |
| Total       | 1,145,375     | 3,838,413 | 3,262,651   | 191,921      | 383,841          |          |

| Project Offroad A     | Baseline Flee      | Baseline Fleet Characteristics |             |            |            |             |           |  |  |  |  |  |
|-----------------------|--------------------|--------------------------------|-------------|------------|------------|-------------|-----------|--|--|--|--|--|
|                       | Avg. (hp-hr)       | HC (lb/yr)                     | NOx (lb/yr) | PM (lb/yr) | CO (lb/yr) | SOx (lb/yr) | CO2 (tpy) |  |  |  |  |  |
| Pit Subtotal          | 3,838,413          | 1,612                          | 23,684      | 1,043      | 15,427     | 0.85        | 2,236     |  |  |  |  |  |
| Plant Subtotal        | 1,093,368          | 607                            | 4,531       | 416        | 2,902      | 0.15        | 643       |  |  |  |  |  |
| <b>Roads Subtotal</b> | 22,495,165         | 6,798                          | 125,550     | 3,920      | 81,903     | 5.23        | 13,102    |  |  |  |  |  |
| Mobile Crusher        | 1,605,338          | 161                            | 4,087       | 139        | 4,831      | 0.51        | 491       |  |  |  |  |  |
| Total                 | 29,032,285         | 9,178                          | 157,851     | 5,519      | 105,063    | 6.74        | 16,471    |  |  |  |  |  |
| Increment             | 6,339,603          | 1,308                          | 26,338      | 856        | 11,598     | 1.53        | 3,249     |  |  |  |  |  |
| Mobile Crusher        |                    |                                |             |            |            |             |           |  |  |  |  |  |
| Tier 3 E.F. (g/hp-h   | r (CalEEMod 2013.2 | 0.12                           | 2.32        | 0.088      | 2.6        | 0.000276    | 528.4     |  |  |  |  |  |
| Fuel Correction Fa    | 0.720              | 0.948                          | 0.852       | 1          | 1          | 1           |           |  |  |  |  |  |
| 0.52                  | 5 load factor      |                                |             |            |            |             |           |  |  |  |  |  |

<sup>10%</sup> of Pit Subtotal assumed to be loading at plant

<sup>5%</sup> of Pit Subtotal assumed to be placement of fill

<sup>85%</sup> of Pit Subtotal assumed to be excavation

<sup>100</sup> maximum days are used to estimate daily emissions from annual activity levels

<sup>6</sup> maximum hours are assumed to occur on the maximum day in order to determine peak hour

|                        |                  | Activ           | vity Data |            |          |            |                   | Vehicle        | Miles | Traveled per      | Year             |                         |                         |                     |                                             |
|------------------------|------------------|-----------------|-----------|------------|----------|------------|-------------------|----------------|-------|-------------------|------------------|-------------------------|-------------------------|---------------------|---------------------------------------------|
| Locaiton               | Tons/Year        | Tons/Day        | Tons/Hour | Trips/Year | Trips/Da | Trips/Hour | Links<br>Traveled | A -<br>Butteri |       | B - Waste<br>Pile | C - West<br>Road | D - Sentinel<br>Crusher | E -<br>Senteniel<br>Pit | F - Crushed<br>Pile | G -<br>Sentinel/B<br>utterfield<br>to Plant |
| Ore to Primary Crusher | •                | •               | •         |            | •        |            |                   | 4              | 065   | 1,800             | 1,460            | _                       | 6,045                   | _                   | 38,000                                      |
| Sentinel               | 535,438          | 4,361           | 523       | 14,278     | 116      | 14         | E                 | ''             | -     | -                 |                  | _                       | 16,347                  | _                   | 50,000                                      |
| Butterfield 3          | 78,483           | 639             | 77        | 2,093      | 17       |            | A, C              | 1              | 611   |                   | 579              |                         | 10,547                  | _                   | -                                           |
| White Knob             | 183,379          | 4,000           | 400       | 4,890      | 107      | 11         |                   |                | -     | _                 | -                | _                       | _                       | _                   | _                                           |
| Sentinel - Butterfield | 613,921          | 5,000           | 600       | 16,371     | 133      | 16         |                   |                |       |                   |                  |                         |                         |                     |                                             |
| TOTAL                  | 797,300          | 9,000           | 1,000     | 21,261     | 240      | 27         | _                 |                |       |                   |                  |                         |                         |                     |                                             |
| Ore Hauled to Plant    | 737,300          | 3,000           | 1,000     | 21,201     | 2-10     | -,         |                   |                |       | _                 |                  |                         |                         |                     |                                             |
| Sentinel               | 456,664          | 3,719.24        | 446.31    | 12,178     | 99       | 12         | G, I              |                | _     | _                 | _                | _                       | _                       | _                   | 87,643                                      |
| Butterfield 3          | 66,936           | 545.15          | 65.42     | 1,785      | 15       | 2          | -                 |                | _     | _                 | _                | _                       | _                       | _                   | 12,846                                      |
| White Knob             | 156,400          | 3,412           | 341       | 4,171      | 91       | 9          | H, L, I           |                | _     | _                 | -                | _                       | _                       | _                   | ,                                           |
| Sentinel - Butterfield | 523,600          | 4,264           | 512       | 13,963     | 114      | 14         | -                 |                |       |                   |                  |                         |                         |                     |                                             |
| TOTAL                  | 680,000          | 7,676           |           | 18,133     | 205      | 23         | -                 |                |       |                   |                  |                         |                         |                     |                                             |
| Waste Crusher Fines    | •                | ,               |           | ,          |          |            |                   |                |       |                   |                  |                         |                         |                     |                                             |
| Sentinel               | 78,775           | 642             | 77        | 2,101      | 17       | 2          | B, C              |                | -     | 716               | 581              | -                       | -                       | -                   | -                                           |
| Butterfield 3          | 11,546           | 94              | 11        | 308        | 3        | 0          | B, C              |                | -     | 105               | 85               | -                       | -                       | -                   | -                                           |
| White Knob             | 26,979           | 588             | 59        | 719        | 16       | 2          | L                 |                | -     | -                 | -                | -                       | -                       | -                   | -                                           |
| Sentinel - Butterfield | 90,321           | 736             | 88        | 2,409      | 20       | 2          | -                 |                |       |                   |                  |                         |                         |                     |                                             |
| TOTAL                  | 117,300          | 1,324           | 147       | 3,128      | 35       | 4          | -                 |                |       |                   |                  |                         |                         |                     |                                             |
| Waste Rock Not Process | ed               |                 |           |            |          |            |                   |                |       |                   |                  |                         |                         |                     |                                             |
| Sentinel               | 463,514          | 3,775           | 453       | 12,360     | 101      | 12         | B, C, E           |                | -     | 4,214             | 3,418            | -                       | 14,151                  | -                   | -                                           |
| Butterfield 3          | 67,940           | 553             | 66        | 1,812      | 15       | 2          | A, B              | 1,             | 395   | 618               | -                | -                       | -                       | -                   | -                                           |
| White Knob             | 158,746          | 3,463           | 346       | 4,233      | 92       | 9          | J, L              |                | -     | -                 | -                | -                       | -                       | -                   | -                                           |
| Sentinel - Butterfield | 531,454          | 4,328           | 519       | 14,172     | 115      | 14         | -                 |                |       |                   |                  |                         |                         |                     |                                             |
| TOTAL                  | 690,200          | 7,791           | 866       | 18,405     | 208      | 23         | -                 |                |       |                   |                  |                         |                         |                     |                                             |
|                        | 1,487,500        | tons, total exc | avated    |            |          |            |                   |                | Α     | В                 | С                | D                       | E                       | F                   | G                                           |
| Total VMT:             | not used on this | s page.         |           |            |          |            |                   | 3,             | .006  | 5,653             | 4,663            | -                       | 30,498                  | -                   | 100,489                                     |
| % of VMT:              | not used on this | s page.         |           |            |          |            |                   |                | 2%    | 3%                | 3%               | 6 0%                    | 17%                     | 0%                  | 57%                                         |

|       | Alternative | Baseline % of Total | Baseline % of BS |
|-------|-------------|---------------------|------------------|
| 76.1% | 67%         | 50% sentinel        | 87.2%            |
| 23.9% | 10%         | 7% butterfield      | 12.8%            |
|       | 23%         | 42% white knot      | )                |
|       | 77%         | 58% butterfield     | and sentinel     |

|                        |                 | Acti            | vity Data | Vehicle Miles                  | Traveled per      | Year                  |                           |                                  |                        |
|------------------------|-----------------|-----------------|-----------|--------------------------------|-------------------|-----------------------|---------------------------|----------------------------------|------------------------|
| Locaiton               | Tons/Year       | Tons/Day        | Tons/Hour | H - White<br>Ridge to<br>Plant | I - Plant<br>Feed | J - White<br>Knob Pit | K - On-<br>Road<br>Trucks | L - Crusher<br>to White<br>Ridge | M - White<br>Ridge Pit |
| Ore to Primary Crusher |                 | -               |           | 24,260                         | 365               | 3,725                 | 6,186                     | 2,300                            | 1,300                  |
| Sentinel               | 535,438         | 4,361           | 523       | -                              | -                 | -                     | -                         | -                                | -                      |
| Butterfield 3          | 78,483          | 639             | 77        | _                              | _                 | _                     | -                         | _                                | _                      |
| White Knob             | 183,379         | 4,000           | 400       | -                              | -                 | 3,450                 | -                         | -                                | -                      |
| Sentinel - Butterfield | 613,921         | 5,000           | 600       |                                | -                 | , -                   |                           | -                                | -                      |
| TOTAL                  | 797,300         | 9,000           | 1,000     |                                | -                 | -                     |                           | -                                | -                      |
| Ore Hauled to Plant    |                 |                 |           |                                |                   | -                     |                           | -                                | -                      |
| Sentinel               | 456,664         | 3,719.24        | 446.31    | -                              | 842               | -                     | -                         | -                                | -                      |
| Butterfield 3          | 66,936          | 545.15          | 65.42     | -                              | 123               | -                     | -                         | -                                | -                      |
| White Knob             | 156,400         | 3,412           | 341       | 19,163                         | 288               | -                     | -                         | 1,817                            | -                      |
| Sentinel - Butterfield | 523,600         | 4,264           | 512       |                                |                   | -                     |                           | -                                | -                      |
| TOTAL                  | 680,000         | 7,676           | 853       |                                |                   | -                     | 21,244.85                 | -                                | -                      |
| Waste Crusher Fines    |                 |                 |           |                                |                   | -                     |                           | -                                | -                      |
| Sentinel               | 78,775          | 642             | 77        | -                              | -                 | -                     | -                         | -                                | -                      |
| Butterfield 3          | 11,546          | 94              | 11        | -                              | -                 | -                     | -                         | -                                | -                      |
| White Knob             | 26,979          | 588             | 59        | -                              | -                 | -                     | -                         | 313                              | -                      |
| Sentinel - Butterfield | 90,321          | 736             | 88        |                                |                   | -                     |                           | -                                | -                      |
| TOTAL                  | 117,300         | 1,324           | 147       |                                |                   | -                     |                           | -                                | -                      |
| Waste Rock Not Process | ed              |                 |           |                                |                   | -                     |                           | -                                | -                      |
| Sentinel               | 463,514         | 3,775           | 453       | -                              | -                 | -                     | -                         | -                                | -                      |
| Butterfield 3          | 67,940          | 553             | 66        | -                              | -                 | -                     | -                         | -                                | -                      |
| White Knob             | 158,746         | 3,463           | 346       | -                              | -                 | 2,987                 | -                         | 1,844                            | -                      |
| Sentinel - Butterfield | 531,454         | 4,328           | 519       |                                |                   | -                     |                           | -                                | -                      |
| TOTAL                  | 690,200         | 7,791           | 866       |                                |                   |                       |                           |                                  |                        |
|                        | 1,487,500       | tons, total exc | avated    | Н                              | 1                 | J                     | K                         | L                                | M                      |
| Total VMT:             | not used on thi | s page.         |           | 19,163                         | 1,254             | 6,436                 | 21,245                    | 3,974                            | -                      |
| % of VMT:              | not used on thi | s page.         |           | 11%                            | 1%                | 4%                    |                           | 2%                               | 0%<br>100%             |

|       | Alternative | Baseline % ι |
|-------|-------------|--------------|
| 76.1% | 67%         | 50%          |
| 23.9% | 10%         | 7%           |
|       | 23%         | 42%          |
|       | 77%         | 58%          |

| Activity Data          |                    |                 |           | Vehicle Miles Traveled per Day |                      |                  |                                   |                         |                        |                                                 |
|------------------------|--------------------|-----------------|-----------|--------------------------------|----------------------|------------------|-----------------------------------|-------------------------|------------------------|-------------------------------------------------|
| Locaiton               | Tons/Year          | Tons/Day        | Tons/Hour | A -<br>Butterfiel<br>d Pit     | B -<br>Waste<br>Pile | C - West<br>Road | D -<br>Butterfie<br>Id<br>Crusher | E -<br>Senteniel<br>Pit | F -<br>Crushed<br>Pile | G -<br>Sentinel,<br>Butterfie<br>Id to<br>Plant |
| Ore to Primary Crusher |                    | ,,              |           | 4,065                          | 1,800                | 1.460            | _                                 | 6,045                   | -                      | 38,000                                          |
| Sentinel               | F2F 420            | 4.261           | 523       | 4,003                          | 1,800                | 1,400            | _                                 | 133.14                  | -                      | 38,000                                          |
| Butterfield 3          | 535,438<br>78,483  | 4,361<br>639    | 523<br>77 | 13.12                          | -                    | -<br>4.71        | -                                 | 133.14                  | -                      |                                                 |
| White Knob             | •                  |                 | 400       | 13.12                          |                      | 4.71             | -                                 | -                       | -                      | -                                               |
| Sentinel - Butterfield | 183,379<br>613,921 | 4,000<br>5,000  | 600       | -                              | -                    | -                | -                                 | -                       | -                      | -                                               |
| TOTAL                  | 797,300            | 9,000           | 1,000     |                                |                      |                  |                                   |                         |                        |                                                 |
| Ore Hauled to Plant    | 797,300            | 9,000           | 1,000     |                                |                      |                  |                                   |                         |                        |                                                 |
| Sentinel               | 450.004            | 2 710 24        | 446.31    |                                |                      |                  |                                   |                         |                        | 713.79                                          |
| Butterfield 3          | 456,664            | 3,719.24        | 65.42     | -                              | -                    | -                | -                                 | -                       | -                      |                                                 |
| White Knob             | 66,936             | 545.15<br>3,412 | 341       | -                              | -                    | -                | -                                 | -                       | -                      | 104.63                                          |
| Sentinel - Butterfield | 156,400<br>523,600 | 4,264           | 512       | -                              | -                    | -                | -                                 | -                       | -                      | -                                               |
| TOTAL                  | 680,000            | 7,676           | 853       |                                |                      |                  |                                   |                         |                        |                                                 |
| Waste Crusher Fines    | 680,000            | 7,070           | 853       |                                |                      |                  |                                   |                         |                        |                                                 |
| Sentinel               | 78,775             | 642             | 77        | _                              | 5.83                 | 4.73             |                                   |                         |                        |                                                 |
| Butterfield 3          | •                  | 94              | 11        | -                              | 0.85                 | 0.69             | -                                 | -                       | -                      | -                                               |
| White Knob             | 11,546<br>26,979   | 588             | 59        | -                              |                      | 0.69             | -                                 | -                       | -                      | -                                               |
| Sentinel - Butterfield | 90,321             | 736             | 59<br>88  | -                              | -                    | -                | -                                 | -                       | -                      | -                                               |
| TOTAL                  | 117,300            | 1,324           | 147       |                                |                      |                  |                                   |                         |                        |                                                 |
| Waste Rock Not Process | ,                  | 1,324           | 147       |                                |                      |                  |                                   |                         |                        |                                                 |
| Sentinel               | 463,514            | 3,775           | 453       | _                              | 34.32                | 27.84            |                                   | 115.25                  |                        | _                                               |
| Butterfield 3          | 463,314<br>67,940  | 553             | 455<br>66 | 11.36                          | 5.03                 | 27.04            | -                                 | 115.25                  | -                      | -                                               |
| White Knob             | 158,746            |                 | 346       | 11.50                          | 5.05                 | -                | -                                 | -                       | -                      | -                                               |
| Sentinel - Butterfield | 531,454            | 3,463<br>4,328  | 519       | _                              | -                    | -                | -                                 | -                       | -                      | -                                               |
| TOTAL                  | 690,200            | 7,791           | 866       |                                |                      |                  |                                   |                         |                        |                                                 |
| TOTAL                  | ,                  | tons, total exc |           | A                              | В                    | С                | D                                 | E                       | F                      | G                                               |
| Total \/\AT.           |                    | -               | avateu    | A<br>24                        | _                    |                  | U                                 |                         | '                      | -                                               |
| Total VMT:             | not used on this   |                 |           |                                | 46<br>3%             | 38               | - 0%                              | 248                     | - 0%                   | 818                                             |
| % of VMT:              | not used on this   | s page.         |           | 1%                             | 3%                   | 2%               | 0%                                | 14%                     | 0%                     | 45%                                             |

|       | Alternative | Baseline % ι |
|-------|-------------|--------------|
| 76.1% | 67%         | 50%          |
| 23.9% | 10%         | 7%           |
|       | 23%         | 42%          |
|       | 77%         | 58%          |

|                         |                  | Activ           | vity Data | Vehicle Mi                        | les Travele       | d per Day             |                           |                                     |                           |
|-------------------------|------------------|-----------------|-----------|-----------------------------------|-------------------|-----------------------|---------------------------|-------------------------------------|---------------------------|
| Locaiton                | Tons/Year        | Tons/Day        | Tons/Hour | H -<br>White<br>Ridge to<br>Plant | I - Plant<br>Feed | J - White<br>Knob Pit | K - On-<br>Road<br>Trucks | L -<br>Crusher<br>to White<br>Ridge | M -<br>White<br>Ridge Pit |
| Ore to Primary Crusher  |                  |                 |           | 24,260                            | 365               | 3,725                 | 6,186                     | 2,300                               | 1,300                     |
| Sentinel                | 535,438          | 4,361           | 523       | - 1,-00                           | -                 | -                     | -,                        | _,===                               | _,                        |
| Butterfield 3           | 78,483           | 639             | 77        | _                                 | _                 | _                     | _                         | _                                   | _                         |
| White Knob              | 183,379          | 4,000           | 400       | _                                 | _                 | 75.25                 | _                         | _                                   | _                         |
| Sentinel - Butterfield  | 613,921          | 5,000           | 600       |                                   |                   | 75.25                 |                           |                                     |                           |
| TOTAL                   | 797,300          | 9,000           | 1,000     |                                   |                   |                       |                           |                                     |                           |
| Ore Hauled to Plant     | . ,              | -,              | ,         |                                   |                   |                       |                           |                                     |                           |
| Sentinel                | 456,664          | 3,719.24        | 446.31    | -                                 | 6.86              | -                     | -                         | -                                   | -                         |
| Butterfield 3           | 66,936           | 545.15          | 65.42     | -                                 | 1.00              | -                     | _                         | -                                   | _                         |
| White Knob              | 156,400          | 3,412           | 341       | 418.00                            | 6.29              | -                     | -                         | 39.63                               | -                         |
| Sentinel - Butterfield  | 523,600          | 4,264           | 512       |                                   |                   |                       |                           |                                     |                           |
| TOTAL                   | 680,000          | 7,676           | 853       |                                   |                   |                       | 239.81                    |                                     |                           |
| Waste Crusher Fines     |                  |                 |           |                                   |                   |                       |                           |                                     |                           |
| Sentinel                | 78,775           | 642             | 77        | -                                 | -                 | -                     | -                         | -                                   | -                         |
| Butterfield 3           | 11,546           | 94              | 11        | -                                 | -                 | -                     | -                         | -                                   | -                         |
| White Knob              | 26,979           | 588             | 59        | -                                 | -                 | -                     | -                         | 6.84                                | -                         |
| Sentinel - Butterfield  | 90,321           | 736             | 88        |                                   |                   |                       |                           |                                     |                           |
| TOTAL                   | 117,300          | 1,324           | 147       |                                   |                   |                       |                           |                                     |                           |
| Waste Rock Not Processe | ed               |                 |           |                                   |                   |                       |                           |                                     |                           |
| Sentinel                | 463,514          | 3,775           | 453       | -                                 | -                 | -                     | -                         | -                                   | -                         |
| Butterfield 3           | 67,940           | 553             | 66        | -                                 | -                 | -                     | -                         | -                                   | -                         |
| White Knob              | 158,746          | 3,463           | 346       | -                                 | -                 | 65.14                 | -                         | 40.22                               | -                         |
| Sentinel - Butterfield  | 531,454          | 4,328           | 519       |                                   |                   |                       |                           |                                     |                           |
| TOTAL                   | 690,200          | 7,791           | 866       |                                   |                   |                       |                           |                                     |                           |
|                         | 1,487,500        | tons, total exc | avated    | Н                                 | 1                 | J                     | K                         | L                                   | M                         |
| Total VMT:              | not used on this | page.           |           | 418                               | 14                | 140                   | 240                       | 87                                  | -                         |
| % of VMT:               | not used on this | page.           |           | 23%                               | 1%                | 8%                    |                           | 5%                                  | 0%                        |

|       | Alternative | Baseline % ι |
|-------|-------------|--------------|
| 76.1% | 67%         | 50%          |
| 23.9% | 10%         | 7%           |
|       | 23%         | 42%          |
|       | 77%         | 58%          |

|                        |                  | Activ           | vity Data | Vehicle Mile | es Travele | d per Hour |           |           |      |                  |
|------------------------|------------------|-----------------|-----------|--------------|------------|------------|-----------|-----------|------|------------------|
|                        |                  |                 |           |              |            |            | D -       | _         | _    | G -<br>Sentinel/ |
|                        |                  |                 |           | Α-           | В -        |            | Butterfie |           | F -  | Butterfie        |
|                        |                  |                 |           | Butterfie    | Waste      | C - West   | ld        | Senteniel |      | ld to            |
| Locaiton               | Tons/Year        | Tons/Day        | Tons/Hour | ld Pit       | Pile       | Road       | Crusher   | Pit       | Pile | Plant            |
| Ore to Primary Crusher |                  |                 |           | 4,065        | 1,800      | 1,460      | -         | 6,045     | -    | 38,000           |
| Sentinel               | 535,438          | 4,361           | 523       | -            | -          | -          | -         | 15.98     | -    | -                |
| Butterfield 3          | 78,483           | 639             | 77        | 1.57         |            | 0.57       | -         | -         | -    | -                |
| White Knob             | 183,379          | 4,000           | 400       | -            | -          | -          | -         | -         | -    | -                |
| Sentinel - Butterfield | 613,921          | 5,000           | 600       |              |            |            |           |           |      |                  |
| TOTAL                  | 797,300          | 9,000           | 1,000     |              |            |            |           |           |      |                  |
| Ore Hauled to Plant    |                  |                 |           |              |            |            |           |           |      |                  |
| Sentinel               | 456,664          | 3,719.24        | 446.31    | -            | -          | -          | -         | -         | -    | 85.66            |
| Butterfield 3          | 66,936           | 545.15          | 65.42     | -            | -          | -          | -         | -         | -    | 12.56            |
| White Knob             | 156,400          | 3,412           | 341       | -            | -          | -          | -         | -         | -    | -                |
| Sentinel - Butterfield | 523,600          | 4,264           | 512       |              |            |            |           |           |      |                  |
| TOTAL                  | 680,000          | 7,676           | 853       |              |            |            |           |           |      |                  |
| Waste Crusher Fines    |                  |                 |           |              |            |            |           |           |      |                  |
| Sentinel               | 78,775           | 642             | 77        | -            | 0.70       | 0.57       | -         | -         | -    | -                |
| Butterfield 3          | 11,546           | 94              | 11        | -            | 0.10       | 0.08       | -         | -         | -    | -                |
| White Knob             | 26,979           | 588             | 59        | -            | -          | -          | -         | -         | -    | -                |
| Sentinel - Butterfield | 90,321           | 736             | 88        |              |            |            |           |           |      |                  |
| TOTAL                  | 117,300          | 1,324           | 147       |              |            |            |           |           |      |                  |
| Waste Rock Not Process | sed              |                 |           |              |            |            |           |           |      |                  |
| Sentinel               | 463,514          | 3,775           | 453       | -            | 4.12       | 3.34       | -         | 13.83     | -    | -                |
| Butterfield 3          | 67,940           | 553             | 66        | 1.36         | 0.60       | -          | -         | -         | -    | -                |
| White Knob             | 158,746          | 3,463           | 346       | -            | -          | -          | -         | -         | -    | -                |
| Sentinel - Butterfield | 531,454          | 4,328           | 519       |              |            |            |           |           |      |                  |
| TOTAL                  | 690,200          | 7,791           | 866       |              |            |            |           |           |      |                  |
|                        | 1,487,500        | tons, total exc | avated    | Α            | В          | С          | D         | E         | F    | G                |
| Total VMT:             | not used on this | s page.         |           | 2.94         | 5.52       | 4.56       | -         | 29.81     | -    | 98.21            |
| % of VMT:              | not used on this | page.           |           | 1%           | 3%         | 2%         | 0%        | 14%       | 0%   | 47%              |

|       | Alternative | Baseline % ( |
|-------|-------------|--------------|
| 76.1% | 67%         | 50%          |
| 23.9% | 10%         | 7%           |
|       | 23%         | 42%          |
|       | 77%         | 58%          |

|                         |                  | Activ           | vity Data | Vehicle Miles Traveled per Hour   |                   |                       |                           |                                         |                           | Off-site |
|-------------------------|------------------|-----------------|-----------|-----------------------------------|-------------------|-----------------------|---------------------------|-----------------------------------------|---------------------------|----------|
| Locaiton                | Tons/Year        | Tons/Day        | Tons/Hour | H -<br>White<br>Ridge to<br>Plant | I - Plant<br>Feed | J - White<br>Knob Pit | K - On-<br>Road<br>Trucks | L -<br>Crusher<br>to White<br>Ridge     | M -<br>White<br>Ridge Pit | per Year |
| Ore to Primary Crusher  |                  |                 |           | 24,260                            | 365               | 3,725                 | 6,186                     | 2,300                                   | 1,300                     | Ī        |
| Sentinel                | 535,438          | 4,361           | 523       |                                   | -                 | -                     | -                         | _,===================================== | _,                        |          |
| Butterfield 3           | 78,483           | 639             | 77        | _                                 | _                 | _                     | _                         | _                                       | _                         |          |
| White Knob              | 183,379          | 4,000           | 400       | _                                 | _                 | 7.53                  | _                         | _                                       | _                         |          |
| Sentinel - Butterfield  | 613,921          | 5,000           | 600       |                                   |                   | 7.55                  |                           |                                         |                           |          |
| TOTAL                   | 797,300          | 9,000           | 1,000     |                                   |                   |                       |                           |                                         |                           |          |
| Ore Hauled to Plant     | ,                | 2,000           | _,        |                                   |                   |                       |                           |                                         |                           |          |
| Sentinel                | 456,664          | 3,719.24        | 446.31    | -                                 | 0.82              | -                     | -                         | -                                       | -                         |          |
| Butterfield 3           | 66,936           | 545.15          | 65.42     | -                                 | 0.12              | -                     | -                         | -                                       | -                         |          |
| White Knob              | 156,400          | 3,412           | 341       | 41.80                             | 0.63              | -                     | -                         | 3.96                                    | -                         |          |
| Sentinel - Butterfield  | 523,600          | 4,264           | 512       |                                   |                   |                       |                           |                                         |                           |          |
| TOTAL                   | 680,000          | 7,676           | 853       |                                   |                   |                       | 26.65                     |                                         |                           | 394073   |
| Waste Crusher Fines     |                  |                 |           |                                   |                   |                       |                           |                                         |                           |          |
| Sentinel                | 78,775           | 642             | 77        | -                                 | -                 | -                     | -                         | -                                       | -                         |          |
| Butterfield 3           | 11,546           | 94              | 11        | -                                 | -                 | -                     | -                         | -                                       | -                         |          |
| White Knob              | 26,979           | 588             | 59        | -                                 | -                 | -                     | -                         | 0.68                                    | -                         |          |
| Sentinel - Butterfield  | 90,321           | 736             | 88        |                                   |                   |                       |                           |                                         |                           |          |
| TOTAL                   | 117,300          | 1,324           | 147       |                                   |                   |                       |                           |                                         |                           |          |
| Waste Rock Not Processe | d                |                 |           |                                   |                   |                       |                           |                                         |                           |          |
| Sentinel                | 463,514          | 3,775           | 453       | -                                 | -                 | -                     | -                         | -                                       | -                         |          |
| Butterfield 3           | 67,940           | 553             | 66        | -                                 | -                 | -                     | -                         | -                                       | -                         |          |
| White Knob              | 158,746          | 3,463           | 346       | -                                 | -                 | 6.51                  | -                         | 4.02                                    | -                         |          |
| Sentinel - Butterfield  | 531,454          | 4,328           | 519       |                                   |                   |                       |                           |                                         |                           |          |
| TOTAL                   | 690,200          | 7,791           | 866       |                                   |                   |                       |                           |                                         |                           |          |
|                         | 1,487,500        | tons, total exc | avated    | Н                                 | 1                 | J                     | K                         | L                                       | М                         |          |
| Total VMT:              | not used on this | page.           |           | 41.80                             | 1.57              | 14.04                 | 26.65                     | 8.67                                    | -                         |          |
| % of VMT:               | not used on this | page.           |           | 20%                               | 1%                | 7%                    |                           | 4%                                      | 0%                        |          |

|       | Alternative | Baseline % ( |
|-------|-------------|--------------|
| 76.1% | 67%         | 50%          |
| 23.9% | 10%         | 7%           |
|       | 23%         | 42%          |
|       | 77%         | 58%          |

|                 | А        |         |          | В        |         |          |  |
|-----------------|----------|---------|----------|----------|---------|----------|--|
|                 | per Year | per Day | per Hour | per Year | per Day | per Hour |  |
| VMT (miles)     | 1,618.07 | 15.34   | 1.84     | 962.78   | 11.05   | 1.33     |  |
| VMT (%)         | 1.21%    | 0.99%   | 1.05%    | 0.72%    | 0.71%   | 0.76%    |  |
| TSP - Dust      | 6,018.41 | 57.06   | 6.85     | 3,581.04 | 41.09   | 4.93     |  |
| PM10 - Dust     | 1,711.42 | 16.23   | 1.95     | 1,018.32 | 11.68   | 1.40     |  |
| PM2.5 - Dust    | 171.14   | 1.62    | 0.19     | 101.83   | 1.17    | 0.14     |  |
| TSP - Exhaust   | 36.22    | 0.34    | 0.04     | 21.55    | 0.25    | 0.03     |  |
| PM10 - Exhaust  | 36.22    | 0.34    | 0.04     | 21.55    | 0.25    | 0.03     |  |
| PM2.5 - Exhaust | 33.32    | 0.32    | 0.04     | 19.83    | 0.23    | 0.03     |  |
| HC              | 62.81    | 0.60    | 0.07     | 37.37    | 0.43    | 0.05     |  |
| NOx             | 1,160    | 11.00   | 1.32     | 690      | 7.92    | 0.95     |  |
| со              | 757      | 7.17    | 0.86     | 450      | 5.17    | 0.62     |  |
| SOx             | 0.05     | 0.00    | 0.00     | 0.03     | 0.00    | 0.00     |  |
| CO2             | 121.05   | -       | -        | 72.03    | -       | -        |  |

## **Project**

### 1.31 scale factor from Project VMT/yr over Baseline VMT/yr

| TTOJECE         | 1.51 Scale factor from Project vivily yr over baseline vivily yr |         |          |           |         |          |  |  |
|-----------------|------------------------------------------------------------------|---------|----------|-----------|---------|----------|--|--|
|                 | Α                                                                |         |          | В         |         |          |  |  |
|                 | per Year                                                         | per Day | per Hour | per Year  | per Day | per Hour |  |  |
| VMT (miles)     | 3,006.10                                                         | 24.48   | 2.94     | 5,652.50  | 46.04   | 5.52     |  |  |
| VMT (%)         | 1.72%                                                            | 1.33%   | 1.42%    | 3.23%     | 2.51%   | 2.67%    |  |  |
| TSP - Dust      | 11,181.19                                                        | 91.06   | 10.93    | 21,024.45 | 171.23  | 20.55    |  |  |
| PM10 - Dust     | 3,179.53                                                         | 25.90   | 3.11     | 5,978.59  | 48.69   | 5.84     |  |  |
| PM2.5 - Dust    | 317.95                                                           | 2.59    | 0.31     | 597.86    | 4.87    | 0.58     |  |  |
| TSP - Exhaust   | 67.29                                                            | 0.55    | 0.07     | 126.53    | 1.03    | 0.12     |  |  |
| PM10 - Exhaust  | 67.29                                                            | 0.55    | 0.07     | 126.53    | 1.03    | 0.12     |  |  |
| PM2.5 - Exhaust | 61.91                                                            | 0.50    | 0.06     | 116.41    | 0.95    | 0.11     |  |  |
| HC              | 116.69                                                           | 0.95    | 0.11     | 219.42    | 1.79    | 0.21     |  |  |
| NOx             | 2,154.99                                                         | 17.55   | 2.11     | 4,052.12  | 33.00   | 3.96     |  |  |
| со              | 1,405.81                                                         | 11.45   | 1.37     | 2,643.41  | 21.53   | 2.58     |  |  |
| SOx             | 0.09                                                             | 0.00    | 0.00     | 0.17      | 0.00    | 0.00     |  |  |
| CO2 (tons)      | 224.89                                                           | -       | -        | 422.86    | -       | -        |  |  |

| Increment       |          |         |          |           |         |          |  |  |
|-----------------|----------|---------|----------|-----------|---------|----------|--|--|
|                 | Α        |         |          | В         |         |          |  |  |
|                 | per Year | per Day | per Hour | per Year  | per Day | per Hour |  |  |
| VMT (miles)     | 1,388.03 | 9.14    | 1.10     | 4,689.72  | 34.99   | 4.20     |  |  |
| TSP - Dust      | 5,162.78 | 34.00   | 4.08     | 17,443.40 | 130.15  | 15.62    |  |  |
| PM10 - Dust     | 1,468.11 | 9.67    | 1.16     | 4,960.27  | 37.01   | 4.44     |  |  |
| PM2.5 - Dust    | 146.81   | 0.97    | 0.12     | 496.03    | 3.70    | 0.44     |  |  |
| TSP - Exhaust   | 31.07    | 0.20    | 0.02     | 104.98    | 0.78    | 0.09     |  |  |
| PM10 - Exhaust  | 31.07    | 0.20    | 0.02     | 104.98    | 0.78    | 0.09     |  |  |
| PM2.5 - Exhaust | 28.59    | 0.19    | 0.02     | 96.58     | 0.72    | 0.09     |  |  |
| HC              | 53.88    | 0.35    | 0.04     | 182.04    | 1.36    | 0.16     |  |  |
| NOx             | 995.04   | 6.55    | 0.79     | 3,361.94  | 25.08   | 3.01     |  |  |
| со              | 649.12   | 4.27    | 0.51     | 2,193.16  | 16.36   | 1.96     |  |  |
| SOx             | 0.04     | 0.00    | 0.00     | 0.14      | 0.00    | 0.00     |  |  |
| CO2 (tons)      | 103.84   | -       | -        | 350.84    | -       | -        |  |  |

|                 | С        |         |          | D        |         |          |  |
|-----------------|----------|---------|----------|----------|---------|----------|--|
|                 | per Year | per Day | per Hour | per Year | per Day | per Hour |  |
| VMT (miles)     | 1,355.33 | 16.39   | 1.97     | -        | -       | -        |  |
| VMT (%)         | 1.01%    | 1.05%   | 1.13%    | 0.00%    | 0.00%   | 0.00%    |  |
| TSP - Dust      | 5,041.15 | 60.95   | 7.31     | -        | -       | -        |  |
| PM10 - Dust     | 1,433.52 | 17.33   | 2.08     | -        | -       | -        |  |
| PM2.5 - Dust    | 143.35   | 1.73    | 0.21     | -        | -       | -        |  |
| TSP - Exhaust   | 30.34    | 0.37    | 0.04     | -        | -       | -        |  |
| PM10 - Exhaust  | 30.34    | 0.37    | 0.04     | -        | -       | -        |  |
| PM2.5 - Exhaust | 27.91    | 0.34    | 0.04     | -        | -       | -        |  |
| HC              | 52.61    | 0.64    | 0.08     | -        | -       | -        |  |
| NOx             | 972      | 11.75   | 1.41     | -        | -       | -        |  |
| со              | 634      | 7.66    | 0.92     | -        | -       | -        |  |
| SOx             | 0.04     | 0.00    | 0.00     | -        | -       | -        |  |
| CO2             | 101.39   | -       | -        | -        | -       | -        |  |

### **Project**

| Project         |           |         |          |          |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | С         |         |          | D        |         |          |
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 4,662.54  | 37.97   | 4.56     | -        | -       | -        |
| VMT (%)         | 2.66%     | 2.07%   | 2.20%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 17,342.31 | 141.24  | 16.95    | -        | -       | -        |
| PM10 - Dust     | 4,931.53  | 40.16   | 4.82     | -        | -       | -        |
| PM2.5 - Dust    | 493.15    | 4.02    | 0.48     | -        | -       | -        |
| TSP - Exhaust   | 104.37    | 0.85    | 0.10     | -        | -       | -        |
| PM10 - Exhaust  | 104.37    | 0.85    | 0.10     | -        | -       | -        |
| PM2.5 - Exhaust | 96.02     | 0.78    | 0.09     | -        | -       | -        |
| HC              | 180.99    | 1.47    | 0.18     | -        | -       | -        |
| NOx             | 3,342.45  | 27.22   | 3.27     | -        | -       | -        |
| СО              | 2,180.45  | 17.76   | 2.13     | -        | -       | -        |
| SOx             | 0.14      | 0.00    | 0.00     | -        | -       | -        |
| CO2 (tons)      | 348.80    | -       | -        | -        | -       | -        |

| increment       |           |         |          |          |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | С         |         |          | D        |         |          |
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 3,307.21  | 21.59   | 2.59     | -        | -       | -        |
| TSP - Dust      | 12,301.16 | 80.30   | 9.64     | -        | -       | -        |
| PM10 - Dust     | 3,498.01  | 22.83   | 2.74     | -        | -       | -        |
| PM2.5 - Dust    | 349.80    | 2.28    | 0.27     | -        | -       | -        |
| TSP - Exhaust   | 74.03     | 0.48    | 0.06     | -        | -       | -        |
| PM10 - Exhaust  | 74.03     | 0.48    | 0.06     | -        | -       | -        |
| PM2.5 - Exhaust | 68.11     | 0.44    | 0.05     | -        | -       | -        |
| HC              | 128.38    | 0.84    | 0.10     | -        | -       | -        |
| NOx             | 2,370.85  | 15.48   | 1.86     | -        | -       | -        |
| со              | 1,546.63  | 10.10   | 1.21     | -        | -       | -        |
| SOx             | 0.10      | 0.00    | 0.00     | -        | -       | -        |
| CO2 (tons)      | 247.41    | -       | -        | -        | -       | -        |

|                 | E         |         |          | F        |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 8,012.74  | 93.45   | 11.21    | -        | -       | -        |
| VMT (%)         | 6.00%     | 6.01%   | 6.42%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 29,803.34 | 347.60  | 41.71    | -        | -       | -        |
| PM10 - Dust     | 8,475.00  | 98.85   | 11.86    | -        | -       | -        |
| PM2.5 - Dust    | 847.50    | 9.88    | 1.19     | -        | -       | -        |
| TSP - Exhaust   | 179.37    | 2.09    | 0.25     | -        | -       | -        |
| PM10 - Exhaust  | 179.37    | 2.09    | 0.25     | -        | -       | -        |
| PM2.5 - Exhaust | 165.02    | 1.92    | 0.23     | -        | -       | -        |
| HC              | 311.04    | 3.63    | 0.44     | -        | -       | -        |
| NOx             | 5,744     | 66.99   | 8.04     | -        | -       | -        |
| со              | 3,747     | 43.70   | 5.24     | -        | -       | -        |
| SOx             | 0.24      | 0.00    | 0.00     | -        | -       | -        |
| CO2             | 599.43    | -       | -        | -        | -       | -        |

#### **Project**

| rioject         |            |         |          |          |         |          |  |
|-----------------|------------|---------|----------|----------|---------|----------|--|
|                 | Е          |         |          | F        |         |          |  |
|                 | per Year   | per Day | per Hour | per Year | per Day | per Hour |  |
| VMT (miles)     | 30,498.31  | 248.39  | 29.81    | -        | -       | -        |  |
| VMT (%)         | 17.41%     | 13.54%  | 14.39%   | 0.00%    | 0.00%   | 0.00%    |  |
| TSP - Dust      | 113,438.33 | 923.88  | 110.87   | -        | -       | -        |  |
| PM10 - Dust     | 32,257.77  | 262.72  | 31.53    | -        | -       | -        |  |
| PM2.5 - Dust    | 3,225.78   | 26.27   | 3.15     | -        | -       | -        |  |
| TSP - Exhaust   | 682.71     | 5.56    | 0.67     | -        | -       | -        |  |
| PM10 - Exhaust  | 682.71     | 5.56    | 0.67     | -        | -       | -        |  |
| PM2.5 - Exhaust | 628.09     | 5.12    | 0.61     | -        | -       | -        |  |
| HC              | 1,183.88   | 9.64    | 1.16     | -        | -       | -        |  |
| NOx             | 21,863.41  | 178.06  | 21.37    | -        | -       | -        |  |
| со              | 14,262.62  | 116.16  | 13.94    | -        | -       | -        |  |
| SOx             | 0.91       | 0.01    | 0.00     | -        | -       | -        |  |
| CO2 (tons)      | 2,281.57   | -       | -        | -        | -       | -        |  |

|                 | Е         |         |          | F        | F       |          |  |  |
|-----------------|-----------|---------|----------|----------|---------|----------|--|--|
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |  |  |
| VMT (miles)     | 22,485.58 | 154.94  | 18.59    | -        |         |          |  |  |
| TSP - Dust      | 83,634.99 | 576.28  | 69.15    | -        |         |          |  |  |
| PM10 - Dust     | 23,782.78 | 163.87  | 19.66    | -        |         |          |  |  |
| PM2.5 - Dust    | 2,378.28  | 16.39   | 1.97     | -        |         |          |  |  |
| TSP - Exhaust   | 503.34    | 3.47    | 0.42     | -        |         |          |  |  |
| PM10 - Exhaust  | 503.34    | 3.47    | 0.42     | -        |         |          |  |  |
| PM2.5 - Exhaust | 463.07    | 3.19    | 0.38     | -        |         |          |  |  |
| HC              | 872.84    | 6.01    | 0.72     | -        |         |          |  |  |
| NOx             | 16,119.30 | 111.07  | 13.33    | -        |         |          |  |  |
| СО              | 10,515.44 | 72.46   | 8.69     | -        |         |          |  |  |
| SOx             | 0.67      | 0.00    | 0.00     | -        |         |          |  |  |
| CO2 (tons)      | 1,682.14  | -       | -        | -        |         |          |  |  |

|                 | G          |          |          | Н          |          |          |
|-----------------|------------|----------|----------|------------|----------|----------|
|                 | per Year   | per Day  | per Hour | per Year   | per Day  | per Hour |
| VMT (miles)     | 72,587.16  | 815.66   | 97.88    | 33,745.62  | 416.59   | 41.66    |
| VMT (%)         | 54.34%     | 52.46%   | 56.04%   | 25.26%     | 26.79%   | 23.85%   |
| TSP - Dust      | 269,987.62 | 3,033.83 | 364.06   | 125,516.67 | 1,549.49 | 154.95   |
| PM10 - Dust     | 76,774.75  | 862.71   | 103.53   | 35,692.42  | 440.62   | 44.06    |
| PM2.5 - Dust    | 7,677.47   | 86.27    | 10.35    | 3,569.24   | 44.06    | 4.41     |
| TSP - Exhaust   | 1,624.87   | 18.26    | 2.19     | 755.40     | 9.33     | 0.93     |
| PM10 - Exhaust  | 1,624.87   | 18.26    | 2.19     | 755.40     | 9.33     | 0.93     |
| PM2.5 - Exhaust | 1,494.88   | 16.80    | 2.02     | 694.97     | 8.58     | 0.86     |
| HC              | 2,817.67   | 31.66    | 3.80     | 1,309.93   | 16.17    | 1.62     |
| NOx             | 52,036     | 584.72   | 70.17    | 24,191     | 298.64   | 29.86    |
| СО              | 33,946     | 381.44   | 45.77    | 15,781     | 194.82   | 19.48    |
| SOx             | 2.17       | 0.02     | 0.00     | 1.01       | 0.01     | 0.00     |
| CO2             | 5,430.22   | -        | -        | 2,524.50   | -        | -        |

# Project

| 110,000         |            |          |          |           |          |          |
|-----------------|------------|----------|----------|-----------|----------|----------|
|                 | G          |          |          | Н         |          |          |
|                 | per Year   | per Day  | per Hour | per Year  | per Day  | per Hour |
| VMT (miles)     | 100,488.89 | 818.42   | 98.21    | 19,162.95 | 418.00   | 41.80    |
| VMT (%)         | 57.38%     | 44.61%   | 47.42%   | 10.94%    | 22.78%   | 20.18%   |
| TSP - Dust      | 373,767.95 | 3,044.10 | 365.29   | 71,276.50 | 1,554.74 | 155.47   |
| PM10 - Dust     | 106,286.13 | 865.63   | 103.88   | 20,268.47 | 442.11   | 44.21    |
| PM2.5 - Dust    | 10,628.61  | 86.56    | 10.39    | 2,026.85  | 44.21    | 4.42     |
| TSP - Exhaust   | 2,249.45   | 18.32    | 2.20     | 327.21    | 7.14     | 0.71     |
| PM10 - Exhaust  | 2,249.45   | 18.32    | 2.20     | 327.21    | 7.14     | 0.71     |
| PM2.5 - Exhaust | 2,069.50   | 16.85    | 2.02     | 301.03    | 6.57     | 0.66     |
| НС              | 3,900.76   | 31.77    | 3.81     | 743.86    | 16.23    | 1.62     |
| NOx             | 72,037.76  | 586.70   | 70.40    | 13,737.40 | 299.65   | 29.97    |
| СО              | 46,993.91  | 382.74   | 45.93    | 8,961.61  | 195.48   | 19.55    |
| SOx             | 3.00       | 0.02     | 0.00     | 0.57      | 0.01     | 0.00     |
| CO2 (tons)      | 7,517.54   | -        | -        | 1,433.57  | -        | -        |

| increment       |            |         |          |            |         |          |  |
|-----------------|------------|---------|----------|------------|---------|----------|--|
|                 | G          | G H     |          |            |         |          |  |
|                 | per Year   | per Day | per Hour | per Year   | per Day | per Hour |  |
| VMT (miles)     | 27,901.72  | 2.76    | 0.33     | -14,582.67 | 1.41    | 0.14     |  |
| TSP - Dust      | 103,780.33 | 10.27   | 1.23     | -54,240.17 | 5.25    | 0.52     |  |
| PM10 - Dust     | 29,511.39  | 2.92    | 0.35     | -15,423.95 | 1.49    | 0.15     |  |
| PM2.5 - Dust    | 2,951.14   | 0.29    | 0.04     | -1,542.39  | 0.15    | 0.01     |  |
| TSP - Exhaust   | 624.58     | 0.06    | 0.01     | -428.19    | -2.19   | -0.22    |  |
| PM10 - Exhaust  | 624.58     | 0.06    | 0.01     | -428.19    | -2.19   | -0.22    |  |
| PM2.5 - Exhaust | 574.62     | 0.06    | 0.01     | -393.94    | -2.01   | -0.20    |  |
| HC              | 1,083.08   | 0.11    | 0.01     | -566.07    | 0.05    | 0.01     |  |
| NOx             | 20,001.99  | 1.98    | 0.24     | -10,453.92 | 1.01    | 0.10     |  |
| СО              | 13,048.32  | 1.29    | 0.16     | -6,819.63  | 0.66    | 0.07     |  |
| SOx             | 0.83       | 0.00    | 0.00     | -0.44      | 0.00    | 0.00     |  |
| CO2 (tons)      | 2,087.32   | -       | -        | -1,090.93  | -       | -        |  |

|                 | I        | J       |          |           |         |          |  |
|-----------------|----------|---------|----------|-----------|---------|----------|--|
|                 | per Year | per Day | per Hour | per Year  | per Day | per Hour |  |
| VMT (miles)     | 1,204.93 | 14.10   | 1.57     | 8,719.27  | 106.44  | 10.64    |  |
| VMT (%)         | 0.90%    | 0.91%   | 0.90%    | 6.53%     | 6.85%   | 6.09%    |  |
| TSP - Dust      | 4,481.74 | 52.45   | 5.83     | 32,431.27 | 395.90  | 39.59    |  |
| PM10 - Dust     | 1,274.45 | 14.92   | 1.66     | 9,222.28  | 112.58  | 11.26    |  |
| PM2.5 - Dust    | 127.44   | 1.49    | 0.17     | 922.23    | 11.26   | 1.13     |  |
| TSP - Exhaust   | 26.97    | 0.32    | 0.04     | 195.18    | 2.38    | 0.24     |  |
| PM10 - Exhaust  | 26.97    | 0.32    | 0.04     | 195.18    | 2.38    | 0.24     |  |
| PM2.5 - Exhaust | 24.81    | 0.29    | 0.03     | 179.57    | 2.19    | 0.22     |  |
| НС              | 46.77    | 0.55    | 0.06     | 338.46    | 4.13    | 0.41     |  |
| NOx             | 864      | 10.11   | 1.12     | 6,251     | 76.30   | 7.63     |  |
| со              | 563      | 6.59    | 0.73     | 4,078     | 49.78   | 4.98     |  |
| SOx             | 0.04     | 0.00    | 0.00     | 0.26      | 0.00    | 0.00     |  |
| CO2             | 90.14    | -       | -        | 652.29    | -       | -        |  |

### **Project**

| ,               |          |         |          |           |         |          |  |
|-----------------|----------|---------|----------|-----------|---------|----------|--|
|                 | I        | J       |          |           |         |          |  |
|                 | per Year | per Day | per Hour | per Year  | per Day | per Hour |  |
| VMT (miles)     | 1,253.54 | 14.15   | 1.57     | 6,436.44  | 140.40  | 14.04    |  |
| VMT (%)         | 0.72%    | 0.77%   | 0.76%    | 3.68%     | 7.65%   | 6.78%    |  |
| TSP - Dust      | 4,662.52 | 52.63   | 5.85     | 23,940.32 | 522.20  | 52.22    |  |
| PM10 - Dust     | 1,325.85 | 14.97   | 1.66     | 6,807.76  | 148.50  | 14.85    |  |
| PM2.5 - Dust    | 132.59   | 1.50    | 0.17     | 680.78    | 14.85   | 1.48     |  |
| TSP - Exhaust   | 28.06    | 0.32    | 0.04     | 144.08    | 3.14    | 0.31     |  |
| PM10 - Exhaust  | 28.06    | 0.32    | 0.04     | 144.08    | 3.14    | 0.31     |  |
| PM2.5 - Exhaust | 25.82    | 0.29    | 0.03     | 132.55    | 2.89    | 0.29     |  |
| НС              | 48.66    | 0.55    | 0.06     | 249.85    | 5.45    | 0.54     |  |
| NOx             | 898.63   | 10.14   | 1.13     | 4,614.11  | 100.65  | 10.06    |  |
| со              | 586.22   | 6.62    | 0.74     | 3,010.02  | 65.66   | 6.57     |  |
| SOx             | 0.04     | 0.00    | 0.00     | 0.19      | 0.00    | 0.00     |  |
| CO2 (tons)      | 93.78    | -       | -        | 481.51    | -       | -        |  |

|                 | J J      |         |          |           |         |          |
|-----------------|----------|---------|----------|-----------|---------|----------|
|                 | per Year | per Day | per Hour | per Year  | per Day | per Hour |
| VMT (miles)     | 48.60    | 0.05    | 0.01     | -2,282.82 | 33.96   | 3.40     |
| TSP - Dust      | 180.78   | 0.18    | 0.02     | -8,490.95 | 126.31  | 12.63    |
| PM10 - Dust     | 51.41    | 0.05    | 0.01     | -2,414.52 | 35.92   | 3.59     |
| PM2.5 - Dust    | 5.14     | 0.01    | 0.00     | -241.45   | 3.59    | 0.36     |
| TSP - Exhaust   | 1.09     | 0.00    | 0.00     | -51.10    | 0.76    | 0.08     |
| PM10 - Exhaust  | 1.09     | 0.00    | 0.00     | -51.10    | 0.76    | 0.08     |
| PM2.5 - Exhaust | 1.00     | 0.00    | 0.00     | -47.01    | 0.70    | 0.07     |
| НС              | 1.89     | 0.00    | 0.00     | -88.61    | 1.32    | 0.13     |
| NOx             | 34.84    | 0.03    | 0.00     | -1,636.49 | 24.34   | 2.43     |
| СО              | 22.73    | 0.02    | 0.00     | -1,067.57 | 15.88   | 1.59     |
| SOx             | 0.00     | 0.00    | 0.00     | -0.07     | 0.00    | 0.00     |
| CO2 (tons)      | 3.64     | -       | -        | -170.78   | -       | -        |

|                 | K         |          |          | L         |         |          |
|-----------------|-----------|----------|----------|-----------|---------|----------|
|                 | per Year  | per Day  | per Hour | per Year  | per Day | per Hour |
| VMT (miles)     | 20,421.14 | 1 239.00 | 26.56    | 5,383.71  | 65.72   | 6.57     |
| VMT (%)         | 0.00%     | 6 0.00%  | 0.00%    | 4.03%     | 4.23%   | 3.76%    |
| TSP - Dust      | 751.93    | L 8.80   | 0.98     | 20,024.68 | 244.45  | 24.44    |
| PM10 - Dust     | 150.38    | 3 1.76   | 0.20     | 5,694.30  | 69.51   | 6.95     |
| PM2.5 - Dust    | 36.92     | L 0.43   | 0.05     | 569.43    | 6.95    | 0.70     |
| TSP - Exhaust   | 31.80     | 0.37     | 0.04     | 120.51    | 1.47    | 0.15     |
| PM10 - Exhaust  | 31.80     | 0.37     | 0.04     | 120.51    | 1.47    | 0.15     |
| PM2.5 - Exhaust | 29.25     | 0.34     | 0.04     | 110.87    | 1.35    | 0.14     |
| НС              | 29.32     | 0.34     | 0.04     | 208.98    | 2.55    | 0.26     |
| NOx             | 553.40    | 6.48     | 0.72     | 3,859     | 47.11   | 4.71     |
| со              | 132.83    | L 1.55   | 0.17     | 2,518     | 30.73   | 3.07     |
| SOx             | 0.72      | 2 0.01   | 0.00     | 0.16      | 0.00    | 0.00     |
| CO2             |           |          | -        | 402.75    | -       | -        |

### **Project**

| 1.0,000         |           |         |          |          |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | K         |         |          | L        |         |          |
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 21,244.85 | 239.81  | 26.65    | 3,974.18 | 86.69   | 8.67     |
| VMT (%)         | 0.00%     | 0.00%   | 0.00%    | 2.27%    | 4.73%   | 4.19%    |
| TSP - Dust      | 782.24    | 8.83    | 0.98     | -        | -       | -        |
| PM10 - Dust     | 156.45    | 1.77    | 0.20     | 4,203.45 | 91.69   | 9.17     |
| PM2.5 - Dust    | 38.40     | 0.43    | 0.05     | 420.35   | 9.17    | 0.92     |
| TSP - Exhaust   | 33.08     | 0.37    | 0.04     | 88.96    | 1.94    | 0.19     |
| PM10 - Exhaust  | 33.08     | 0.37    | 0.04     | 88.96    | 1.94    | 0.19     |
| PM2.5 - Exhaust | 30.43     | 0.34    | 0.04     | 81.85    | 1.79    | 0.18     |
| нс              | 30.50     | 0.34    | 0.04     | 154.27   | 3.37    | 0.34     |
| NOx             | 575.72    | 6.50    | 0.72     | 2,848.98 | 62.14   | 6.21     |
| со              | 138.17    | 1.56    | 0.17     | 1,858.54 | 40.54   | 4.05     |
| SOx             | 0.75      | 0.01    | 0.00     | 0.12     | 0.00    | 0.00     |
| CO2 (tons)      | -         | -       | -        | 297.31   | -       | -        |

| increment       |          |         |          |      |            |         |          |
|-----------------|----------|---------|----------|------|------------|---------|----------|
|                 | K        |         |          |      | L          |         |          |
|                 | per Year | per Day | per Hour |      | per Year   | per Day | per Hour |
| VMT (miles)     | 823.     | 71      | 0.81     | 0.09 | -1,409.53  | 20.97   | 2.10     |
| TSP - Dust      | 30.3     | 33      | 0.03     | 0.00 | -20,024.68 | -244.45 | -24.44   |
| PM10 - Dust     | 6.0      | 07      | 0.01     | 0.00 | -1,490.84  | 22.18   | 2.22     |
| PM2.5 - Dust    | 1.4      | 49      | 0.00     | 0.00 | -149.08    | 2.22    | 0.22     |
| TSP - Exhaust   | 1.3      | 28      | 0.00     | 0.00 | -31.55     | 0.47    | 0.05     |
| PM10 - Exhaust  | 1.3      | 28      | 0.00     | 0.00 | -31.55     | 0.47    | 0.05     |
| PM2.5 - Exhaust | 1.:      | 18      | 0.00     | 0.00 | -29.03     | 0.43    | 0.04     |
| HC              | 1.:      | 18      | 0.00     | 0.00 | -54.71     | 0.81    | 0.08     |
| NOx             | 22.:     | 32      | 0.02     | 0.00 | -1,010.45  | 15.03   | 1.50     |
| со              | 5.3      | 36      | 0.01     | 0.00 | -659.17    | 9.81    | 0.98     |
| SOx             | 0.0      | 03      | 0.00     | 0.00 | -0.04      | 0.00    | 0.00     |
| CO2 (tons)      |          | -       | -        | -    | -105.45    | -       | -        |

|                 | М        |       |       |          |       | Total On-site |          |          |
|-----------------|----------|-------|-------|----------|-------|---------------|----------|----------|
|                 | per Year | per l | Day   | per Hour |       | per Year      | per Day  | per Hour |
| VMT (miles)     |          | -     | -     |          | -     | 133,589.61    | 1,554.73 | 174.67   |
| VMT (%)         |          | 0.00% | 0.00% |          | 0.00% | 100.00%       | 100.00%  | 100.00%  |
| TSP - Dust      |          | -     | -     |          | -     | 496,885.92    | 5,782.81 | 649.67   |
| PM10 - Dust     |          | -     | -     |          | -     | 141,296.45    | 1,644.42 | 184.74   |
| PM2.5 - Dust    |          | -     | -     |          | -     | 14,129.64     | 164.44   | 18.47    |
| TSP - Exhaust   |          | -     | -     |          | -     | 2,990.42      | 34.80    | 3.91     |
| PM10 - Exhaust  |          | -     | -     |          | -     | 2,990.42      | 34.80    | 3.91     |
| PM2.5 - Exhaust |          | -     | -     |          | -     | 2,751.18      | 32.02    | 3.60     |
| HC              |          | -     | -     |          | -     | 5,185.65      | 60.35    | 6.78     |
| NOx             |          | -     | -     |          | -     | 95,766.76     | 1,114.54 | 125.21   |
| со              |          | -     | -     |          | -     | 62,473.56     | 727.07   | 81.68    |
| SOx             |          | -     | -     |          | -     | 3.99          | 0.05     | 0.01     |
| CO2             |          | -     | -     |          | -     | 9,994         |          |          |

Project 1.31

|                 | M        |         |       |       | Total On-site |          |          |
|-----------------|----------|---------|-------|-------|---------------|----------|----------|
|                 | per Year | per Day | per   | Hour  | per Year      | per Day  | per Hour |
| VMT (miles)     |          | -       | -     | -     | 175,135.46    | 1,834.53 | 207.12   |
| VMT (%)         |          | 0.00%   | 0.00% | 0.00% | 100.00%       | 100.00%  | 100.00%  |
| TSP - Dust      |          | -       | -     | -     | 636,633.57    | 6,501.10 | 738.12   |
| PM10 - Dust     |          | -       | -     | -     | 185,239.09    | 1,940.37 | 219.07   |
| PM2.5 - Dust    |          | -       | -     | -     | 18,523.91     | 194.04   | 21.91    |
| TSP - Exhaust   |          | -       | -     | -     | 3,818.66      | 38.85    | 4.41     |
| PM10 - Exhaust  |          | -       | -     | -     | 3,818.66      | 38.85    | 4.41     |
| PM2.5 - Exhaust |          | -       | -     | -     | 3,513.17      | 35.74    | 4.06     |
| HC              |          | -       | -     | -     | 6,798.37      | 71.21    | 8.04     |
| NOx             |          | -       | -     | -     | 125,549.85    | 1,315.13 | 148.48   |
| со              |          | -       | -     | -     | 81,902.59     | 857.92   | 96.86    |
| SOx             |          | -       | -     | -     | 5.23          | 0.05     | 0.01     |
| CO2 (tons)      |          | -       | -     | -     | 13,101.83     | -        | -        |

| Increment       |          |         |          |    |              |         |          |
|-----------------|----------|---------|----------|----|--------------|---------|----------|
|                 | М        |         |          | To | otal On-site |         |          |
|                 | per Year | per Day | per Hour | ре | er Year      | per Day | per Hour |
| VMT (miles)     |          | -       | -        | -  | 41,545.85    | 279.80  | 32.45    |
| TSP - Dust      |          | -       | -        | -  | 139,747.65   | 718.28  | 88.45    |
| PM10 - Dust     |          | -       | -        | -  | 43,942.65    | 295.94  | 34.32    |
| PM2.5 - Dust    |          | -       | -        | -  | 4,394.26     | 29.59   | 3.43     |
| TSP - Exhaust   |          | -       | -        | -  | 828.25       | 4.04    | 0.50     |
| PM10 - Exhaust  |          | -       | -        | -  | 828.25       | 4.04    | 0.50     |
| PM2.5 - Exhaust |          | -       | -        | -  | 761.99       | 3.72    | 0.46     |
| НС              |          | -       | -        | -  | 1,612.72     | 10.86   | 1.26     |
| NOx             |          | -       | -        | -  | 29,783.09    | 200.58  | 23.26    |
| СО              |          | -       | -        | -  | 19,429.03    | 130.85  | 15.17    |
| SOx             |          | -       | -        | -  | 1.24         | 0.01    | 0.00     |
| CO2 (tons)      |          | -       | -        | -  | 3,108.03     | -       | -        |

|                 | Total Offsite |              |              | Total        |              |              |
|-----------------|---------------|--------------|--------------|--------------|--------------|--------------|
|                 | per Year      | per Day      | per Hour     | per Year     | per Day      | per Hour     |
| VMT (miles)     | 3,787,945.55  | 3,787,945.55 | 3,787,945.55 | 3,921,535.16 | 3,789,500.28 | 3,788,120.22 |
| VMT (%)         | 100.00%       | 100.00%      | 100.00%      |              |              |              |
| TSP - Dust      | 139,473.29    | 139,473.29   | 139,473.29   | 636,359.21   | 145,256.10   | 140,122.96   |
| PM10 - Dust     | 27,894.66     | 27,894.66    | 27,894.66    | 169,191.10   | 29,539.08    | 28,079.40    |
| PM2.5 - Dust    | 6,846.87      | 6,846.87     | 6,846.87     | 20,976.52    | 7,011.31     | 6,865.35     |
| TSP - Exhaust   | 5,898.06      | 5,898.06     | 5,898.06     | 8,888.47     | 5,932.86     | 5,901.97     |
| PM10 - Exhaust  | 5,898.06      | 5,898.06     | 5,898.06     | 8,888.47     | 5,932.86     | 5,901.97     |
| PM2.5 - Exhaust | 5,426.21      | 5,426.21     | 5,426.21     | 8,177.40     | 5,458.23     | 5,429.81     |
| HC              | 5,437.75      | 5,437.75     | 5,437.75     | 10,623.40    | 5,498.10     | 5,444.53     |
| NOx             | 102,650.55    | 102,650.55   | 102,650.55   | 198,417.31   | 103,765.10   | 102,775.77   |
| со              | 24,635.25     | 24,635.25    | 24,635.25    | 87,108.81    | 25,362.33    | 24,716.94    |
| SOx             | 133.92        | 133.92       | 133.92       | 137.90       | 133.96       | 133.92       |
| CO2             | 7,067.22      | 7,067.22     | 7,067.22     | 17,061.02    | 7,067.22     | 7,067.22     |

## **Project**

| Project         |               |         |          |       |              |          |          |
|-----------------|---------------|---------|----------|-------|--------------|----------|----------|
|                 | Total Offsite |         |          |       | Total        |          |          |
|                 | per Year      | per Day | per Hour |       | per Year     | per Day  | per Hour |
| VMT (miles)     | 3,940,736.00  | -       |          | -     | 4,115,871.46 | 1,834.53 | 207.12   |
| VMT (%)         | 100.00%       | 100.00% | 10       | 0.00% |              |          |          |
| TSP - Dust      | 145,099.08    | -       |          | -     | 781,732.65   | 6,501.10 | 738.12   |
| PM10 - Dust     | 29,019.82     | -       |          | -     | 214,258.91   | 1,940.37 | 219.07   |
| PM2.5 - Dust    | 7,123.05      | -       |          | -     | 25,646.95    | 194.04   | 21.91    |
| TSP - Exhaust   | 6,135.96      | -       |          | -     | 9,954.63     | 38.85    | 4.41     |
| PM10 - Exhaust  | 6,135.96      | -       |          | -     | 9,954.63     | 38.85    | 4.41     |
| PM2.5 - Exhaust | 5,645.08      | -       |          | -     | 9,158.26     | 35.74    | 4.06     |
| HC              | 5,657.09      | -       |          | -     | 12,455.46    | 71.21    | 8.04     |
| NOx             | 106,791.06    | -       |          | -     | 232,340.91   | 1,315.13 | 148.48   |
| со              | 25,628.94     | -       |          | -     | 107,531.53   | 857.92   | 96.86    |
| SOx             | 139.32        | -       |          | -     | 144.54       | 0.05     | 0.01     |
| CO2 (tons)      | 7,339.35      | -       |          | -     | 20,441.18    | -        | -        |

| increment       |               |               |               |            |               |               |
|-----------------|---------------|---------------|---------------|------------|---------------|---------------|
|                 | Total Offsite |               |               | Total      |               |               |
|                 | per Year      | per Day       | per Hour      | per Year   | per Day       | per Hour      |
| VMT (miles)     | 152,790.45    | -3,787,945.55 | -3,787,945.55 | 194,336.30 | -3,787,665.75 | -3,787,913.10 |
| TSP - Dust      | 5,625.79      | -139,473.29   | -139,473.29   | 145,373.44 | -138,755.01   | -139,384.84   |
| PM10 - Dust     | 1,125.16      | -27,894.66    | -27,894.66    | 45,067.80  | -27,598.72    | -27,860.34    |
| PM2.5 - Dust    | 276.18        | -6,846.87     | -6,846.87     | 4,670.44   | -6,817.28     | -6,843.44     |
| TSP - Exhaust   | 237.90        | -5,898.06     | -5,898.06     | 1,066.15   | -5,894.01     | -5,897.55     |
| PM10 - Exhaust  | 237.90        | -5,898.06     | -5,898.06     | 1,066.15   | -5,894.01     | -5,897.55     |
| PM2.5 - Exhaust | 218.87        | -5,426.21     | -5,426.21     | 980.86     | -5,422.49     | -5,425.75     |
| HC              | 219.34        | -5,437.75     | -5,437.75     | 1,832.06   | -5,426.89     | -5,436.49     |
| NOx             | 4,140.51      | -102,650.55   | -102,650.55   | 33,923.60  | -102,449.97   | -102,627.29   |
| со              | 993.69        | -24,635.25    | -24,635.25    | 20,422.72  | -24,504.40    | -24,620.08    |
| SOx             | 5.40          | -133.92       | -133.92       | 6.64       | -133.91       | -133.92       |
| CO2 (tons)      | 272.13        | -7,067.22     | -7,067.22     | 3,380.17   | -7,067.22     | -7,067.22     |

|                     | VOL1     | VOL2      | VOL3 | VOL4     | VOL5     | VOL6    | VOL7    | VOL8      | VOL9     | VOL10    |
|---------------------|----------|-----------|------|----------|----------|---------|---------|-----------|----------|----------|
| altTSPann           |          | -8.14E-01 |      |          |          |         |         |           |          | 7.84E-01 |
| altTSPday           |          | -2.97E+00 |      |          |          |         |         |           |          | 2.86E+00 |
| altPM10ann          |          | -4.10E-01 |      |          |          |         |         |           |          | 3.95E-01 |
| altPM10day          |          | -1.50E+00 |      |          |          |         |         |           |          | 1.44E+00 |
| altPM25ann          |          | -1.27E-01 |      |          |          |         |         |           |          | 9.38E-02 |
| altPM25day          |          | -4.62E-01 |      |          |          |         |         |           | 5.31E-02 |          |
| ,                   |          |           |      |          |          |         |         |           |          |          |
| TSPann (lb/yr/src)  | -24344.2 | -56602.5  | 0    | -20836.8 | -20836.8 | 7899.8  | 18102.1 | 345.62535 | 14331.7  | 54510.2  |
| TSPday (lb/day/src) | -243.442 | -566.025  | 0    | -208.368 | -208.368 | 78.998  | 181.021 | 3.4562535 | 143.317  | 545.102  |
| PM10ann (lb/yr/sro  | -8167.11 | -28507.7  | 0    | -10281.8 | -10281.8 | 1459.44 | 9077.02 | 180.3284  | 2714.3   | 27434.8  |
| PM10day (lb/day/s   | -81.6711 | -285.077  | 0    | -102.818 | -102.818 | 14.5944 | 90.7702 | 1.803284  | 27.143   | 274.348  |
| PM25ann (lb/yr/sro  | -2803.9  | -8798.71  | 0    | -3636.89 | -3636.89 | 351.818 | 2104.94 | 71.580398 | 1011.45  | 6518.57  |
| PM25day (lb/day/s   | -28.039  | -87.9871  | 0    | -36.3689 | -36.3689 | 3.51818 | 21.0494 | 0.715804  | 10.1145  | 65.1857  |
|                     |          |           |      |          |          |         |         |           |          |          |
|                     |          |           |      |          |          |         |         |           |          |          |
|                     |          |           |      |          |          |         |         |           |          |          |
| TSPann (lb/yr)      | -24,344  | -56,602   | 0    | -20,837  | -20,837  | 7,900   | 18,102  | 346       | 14,332   | 54,510   |
| TSPday (lb/day)     | -243     | -566      | 0    | -208     | -208     | 79      | 181     | 3         | 143      | 545      |
| PM10ann (lb/yr)     | -8,167   | -28,508   | 0    | -10,282  | -10,282  | 1,459   | 9,077   | 180       | 2,714    | 27,435   |
| PM10day (lb/day)    | -82      | -285      | 0    | -103     | -103     | 15      | 91      | 2         | 27       | 274      |
| PM25ann (lb/yr)     | -2,804   | -8,799    | 0    | -3,637   | -3,637   | 352     | 2,105   | 72        | 1,011    | 6,519    |
| PM25day (lb/day)    | -28      | -88       | 0    | -36      | -36      | 4       | 21      | 1         | 10       | 65       |
|                     |          |           |      |          |          |         |         |           |          |          |
| HC (lb/yr)          | -640     | -554      | 0    | -16      | -16      | 23      | 74      | 37        | 234      | 562      |
| NOx (lb/yr)         | -9,898   | -8,146    | 0    | -240     | -240     | 174     | 1,097   | 539       | 5,164    | 8,263    |
| CO (lb/yr)          | -14,201  | -5,306    | 0    | -156     | -156     | 112     | 516     | 351       | 5,533    | 5,382    |
| SOx (lb/yr)         | -0.305   | -0.292    | 0    | -0.009   | -0.009   | 0.006   | 0.032   | 0.019     | 0.552    | 0.296    |
| CO2 (ton/yr)        | -584     | -769      | 0    | -23      | -23      | 25      | 85      | 51        | 593      | 780      |
| TSP (lb/yr)         | -24,344  | -56,602   | 0    | -20,837  | -20,837  | 7,900   | 18,102  | 346       | 14,332   | 54,510   |
| PM10 (lb/yr)        | -8,167   | -28,508   | 0    | -10,282  | -10,282  | 1,459   | 9,077   | 180       | 2,714    | 27,435   |
| PM2.5 (lb/yr)       | -2,804   | -8,799    | 0    | -3,637   | -3,637   | 352     | 2,105   | 72        | 1,011    | 6,519    |

|                     | A        | В         | С        | E0       | G        | H         | 1        | 1         | K        | 1         | М        |
|---------------------|----------|-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|
| altTSPann           |          |           | _        |          | _        |           | 6 54F-04 | -3.41E-03 |          | -1.44E-02 |          |
| altTSPday           |          |           |          | 5.64E-02 |          | 7.87E-05  |          | 1.85E-02  |          |           | 0.00E+00 |
| altPM10ann          |          |           |          |          |          | -1.12E-03 |          | -9.85E-04 |          |           |          |
| altPM10day          |          |           |          |          |          | -1.79E-05 | 6.77E-05 |           |          |           | 0.00E+00 |
| altPM25ann          |          |           |          |          |          |           |          | -1.15E-04 |          |           | 0.00E+00 |
| altPM25day          |          |           |          |          |          |           |          | 6.26E-04  |          |           | 0.00E+00 |
| arti Wizsaay        | 1.002 04 | 1.57 L 05 | 1.021 03 | 1.502 05 | 3.002 00 | 4.002 03  | 7.322 00 | 0.202 04  | 1.722 07 | 0.552 04  | 0.002.00 |
| TSPann (lb/yr/src)  | 136.6803 | 1032.26   | 883.942  | 1558.12  | 319.281  | -267.982  | 45.4659  | -237.279  | 0.39515  | -1002.81  | 0        |
| TSPday (lb/day/src) | 0.900105 | 7.70169   | 5.77     | 10.7361  | 0.03161  | 0.014996  | 0.04467  | 3.52967   | 0.00039  | -12.1988  | 0        |
| PM10ann (lb/yr/src  | 39.45211 | 297.956   | 255.146  | 449.743  | 92.1589  | -77.7066  | 13.1235  | -68.4895  | 0.09185  | -76.1198  | 0        |
| PM10day (lb/day/s   | 0.259811 | 2.22306   | 1.66548  | 3.09892  | 0.00912  | -0.00341  | 0.0129   | 1.01882   | 9E-05    | 1.13233   | 0        |
| PM25ann (lb/yr/src  | 4.615696 | 34.8594   | 29.8507  | 52.6176  | 10.7821  | -9.49183  | 1.53538  | -8.01292  | 0.03336  | -8.90563  | 0        |
| PM25day (lb/day/s   | 0.030397 | 0.26009   | 0.19485  | 0.36256  | 0.00107  | -0.00914  | 0.00151  | 0.1192    | 3.3E-05  | 0.13248   | 0        |
|                     |          |           |          |          |          |           |          |           |          |           |          |
|                     |          |           |          |          |          |           |          |           |          |           |          |
| TSPann (lb/yr)      | 5,194    | 17,548    | 12,375   | 84,138   | 104,405  | -54,668   | 182      | -8,542    | 32       | -20,056   | 0        |
| TSPday (lb/day)     | 34       | 131       | 81       | 580      | 10       | 3         | 0        | 127       | 0.031    | -244      | 0        |
| PM10ann (lb/yr)     | 1,499    | 5,065     | 3,572    | 24,286   | 30,136   | -15,852   | 52       | -2,466    | 7        | -1,522    | 0        |
| PM10day (lb/day)    | 10       | 38        | 23       | 167      | 3        | -1        | 0        | 37        | 0        | 23        | 0        |
| PM25ann (lb/yr)     | 175      | 593       | 418      | 2,841    | 3,526    | -1,936    | 6        | -288      | 3        | -178      | 0        |
| PM25day (lb/day)    | 1        | 4         | 3        | 20       | 0        | -2        | 0        | 4         | 0        | 3         | 0        |
| HC (lb/yr)          | 54       | 182       | 128      | 873      | 1,083    | -566      | 2        | -89       | 1        | -55       | 0        |
| NOx (lb/yr)         | 995      | 3,362     | 2,371    | 16,119   | 20,002   | -10,454   | 35       | -1,636    | 22       | -1,010    | 0        |
| CO (lb/yr)          | 649      | 2,193     | 1,547    | 10,515   | 13,048   | -6,820    | 23       | -1,068    | 5        | -659      | 0        |
| SOx (lb/yr)         | 0.041    | 0.140     | 0.099    | 0.671    | 0.833    | -0.435    | 0.001    | -0.068    | 0.029    | -0.042    | 0        |
| CO2 (ton/yr)        | 104      | 351       | 247      | 1,682    | 2,087    | -1,091    | 4        | -171      | 0        | -105      | 0        |
| TSP (lb/yr)         | 5,194    | 17,548    | 12,375   | 84,138   | 104,405  | -54,668   | 182      | -8,542    | 32       | -20,056   | 0        |
| PM10 (lb/yr)        | 1,499    | 5,065     | 3,572    | 24,286   | 30,136   | -15,852   | 52       | -2,466    | 7        | -1,522    | 0        |
| PM2.5 (lb/yr)       | 175      | 593       | 418      | 2,841    | 3,526    | -1,936    | 6        | -288      | 3        | -178      | 0        |

|                     | Total Sentinel Butterfield | Total White Knob | Total Processing Plant | Total Offsite |
|---------------------|----------------------------|------------------|------------------------|---------------|
| altTSPann           |                            |                  |                        |               |
| altTSPday           |                            |                  |                        |               |
| altPM10ann          |                            |                  |                        |               |
| altPM10day          |                            |                  |                        |               |
| altPM25ann          |                            |                  |                        |               |
| altPM25day          |                            |                  |                        |               |
|                     |                            |                  |                        |               |
| TSPann (lb/yr/src)  |                            |                  |                        |               |
| TSPday (lb/day/src) |                            |                  |                        |               |
| PM10ann (lb/yr/sro  |                            |                  |                        |               |
| PM10day (lb/day/s   |                            |                  |                        |               |
| PM25ann (lb/yr/sro  |                            |                  |                        |               |
| PM25day (lb/day/s   |                            |                  |                        |               |
|                     |                            |                  |                        |               |
|                     |                            |                  |                        |               |
|                     |                            |                  |                        |               |
| TSPann (lb/yr)      | 310,950                    | -205,887         | 8,082                  |               |
| TSPday (lb/day)     | 1,709                      | -1,340           | 79                     |               |
| PM10ann (lb/yr)     | 103,965                    | -77,079          | 1,512                  |               |
| PM10day (lb/day)    | 635                        | -514             | 15                     |               |
| PM25ann (lb/yr)     | 17,260                     | -21,279          | 358                    |               |
| PM25day (lb/day)    | 125                        | -184             | 4                      |               |
|                     |                            |                  |                        |               |
| HC (lb/yr)          | 3,227                      | -1,937           | 25                     | 219.3         |
| NOx (lb/yr)         | 57,912                     | -31,624          | 209                    | 4140.5        |
| CO (lb/yr)          | 39,735                     | -28,365          | 134                    | 993.7         |
| SOx (lb/yr)         | 3                          | -1               | 0                      | 5.4           |
| CO2 (ton/yr)        | 5,980                      | -2,765           | 28                     | 272.1         |
| TSP (lb/yr)         | 310,950                    | -205,887         | 8,082                  | 5863.7        |
| PM10 (lb/yr)        | 103,965                    | -77,079          | 1,512                  | 1363.1        |
| PM2.5 (lb/yr)       | 17,260                     | -21,279          | 358                    | 495.0         |

|                    | Total Project w/o White Knob | Total Project w/ White Knob | Volume Source Identifiers                    |
|--------------------|------------------------------|-----------------------------|----------------------------------------------|
| altTSPann          |                              |                             | LOCATION VOL1 VOLUME 498771.228 3802380.117  |
| altTSPday          |                              |                             | ** DESCRSRC White Knob Crushing              |
| altPM10ann         |                              |                             | LOCATION VOL2 VOLUME 498410.694 3802532.330  |
| altPM10day         |                              |                             | ** DESCRSRC White Knob Pit                   |
| altPM25ann         |                              |                             | LOCATION VOL3 VOLUME 499367.635 3802416.274  |
| altPM25day         |                              |                             | ** DESCRSRC White Ridge Pit                  |
|                    |                              |                             | LOCATION VOL4 VOLUME 499169.967 3802653.553  |
| TSPann (lb/yr/src) |                              |                             | ** DESCRSRC OB1                              |
| TSPday (lb/day/src |                              |                             | LOCATION VOL5 VOLUME 498786.819 3802108.559  |
| PM10ann (lb/yr/sro |                              |                             | ** DESCRSRC OB2                              |
| PM10day (lb/day/s  |                              |                             | LOCATION VOL6 VOLUME 505294.247 3804607.151  |
| PM25ann (lb/yr/sro |                              |                             | ** DESCRSRC Processing Plant                 |
| PM25day (lb/day/s  |                              |                             | LOCATION VOL7 VOLUME 504322.000 3798695.000  |
|                    |                              |                             | ** DESCRSRC Butterfield Pit                  |
|                    |                              |                             | LOCATION VOL8 VOLUME 505430.000 3797960.000  |
|                    |                              |                             | ** DESCRSRC B5 Pad Expansion                 |
|                    |                              |                             | LOCATION VOL9 VOLUME 505555.000 3798545.000  |
| TSPann (lb/yr)     | 319,032                      | •                           | ** DESCRSRC Butterfield-Sentinel Crushing    |
| TSPday (lb/day)    | 1,788                        |                             | LOCATION VOL10 VOLUME 505808.000 3798770.000 |
| PM10ann (lb/yr)    | 105,477                      |                             | ** DESCRSRC Sentinel Pit                     |
| PM10day (lb/day)   | 650                          |                             |                                              |
| PM25ann (lb/yr)    | 17,618                       | -3,662                      |                                              |
| PM25day (lb/day)   | 129                          | -55                         |                                              |
| HC (lb/yr)         | 3,252                        | 1,316                       |                                              |
| NOx (lb/yr)        | 58,121                       | · ·                         |                                              |
| CO (lb/yr)         | 39,869                       | 11,504                      |                                              |
| SOx (lb/yr)        | 3                            | 2                           |                                              |
| CO2 (ton/yr)       | 6,008                        | 3,243                       |                                              |
| TSP (lb/yr)        | 319,032                      | 113,145                     |                                              |
| PM10 (lb/yr)       | 105,477                      |                             |                                              |
| PM2.5 (lb/yr)      | 17,618                       | -3,662                      |                                              |

|                                 | ID       | # of sources |
|---------------------------------|----------|--------------|----------|--------------|----------|--------------|----------|--------------|
|                                 | Α        | 38           | В        | 17           | С        | 14           | E0       | 54           |
| CHEMICAL                        | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      |
| arsenic                         | 0.00058  | 2.0933E-06   | 0.004377 | 3.92963E-06  | 0.003748 | 2.94402E-06  | 0.006606 | 5.47787E-06  |
| bromine                         | 0.000695 | 3.82022E-06  | 0.005252 | 4.7244E-06   | 0.004497 | 3.53945E-06  | 0.007928 | 6.58577E-06  |
| cadmium                         | 0.000502 | 2.49268E-05  | 0.003793 | 3.56196E-06  | 0.003248 | 2.66857E-06  | 0.005725 | 4.96534E-06  |
| chlorine                        | 0.032607 | 5.11159E-05  | 0.246263 | 0.000220656  | 0.21088  | 0.000165312  | 0.371716 | 0.000307593  |
| copper                          | 0.006104 | 5.55191E-05  | 0.046101 | 4.16184E-05  | 0.039478 | 3.11799E-05  | 0.069587 | 5.80157E-05  |
| lead                            | 0.005022 | 1.21457E-05  | 0.037932 | 3.40162E-05  | 0.032481 | 2.54845E-05  | 0.057255 | 4.74183E-05  |
| manganese                       | 0.035351 | 7.53605E-05  | 0.26698  | 0.000239353  | 0.22862  | 0.00017932   | 0.402986 | 0.000333657  |
| mercury                         | 0.000541 | 6.15109E-06  | 0.004085 | 3.69603E-06  | 0.003498 | 2.76901E-06  | 0.006166 | 5.15224E-06  |
| nickel                          | 0.001429 | 8.48863E-06  | 0.010796 | 9.71556E-06  | 0.009245 | 7.27876E-06  | 0.016296 | 1.35434E-05  |
| selenium                        | 0.000116 | 6.63291E-06  | 0.000875 | 8.27944E-07  | 0.00075  | 6.20284E-07  | 0.001321 | 1.15415E-06  |
| vanadium (fume or dust)         | 0.002975 | 3.16856E-06  | 0.022467 | 2.01208E-05  | 0.019239 | 1.50742E-05  | 0.033912 | 2.80483E-05  |
| Silica, Crystln                 | 1.545378 | 0.001221246  | 11.67124 | 0.010449513  | 9.994305 | 0.007828625  | 17.61687 | 0.014566538  |
| Asbestos                        | 0        | 0            | 0        | 0            | 0        | 0            | 0        | 0            |
| 1,3-butadiene                   | 0        | 2.12897E-06  | 0        | 1.82164E-05  | 0        | 1.36474E-05  | 0        | 2.53935E-05  |
| acetaldehyde                    | 0        | 8.23574E-05  | 0        | 0.000704686  | 0        | 0.000527941  | 0        | 0.000982327  |
| benzene                         | 0        | 2.24102E-05  | 0        | 0.000191751  | 0        | 0.000143657  | 0        | 0.0002673    |
| ethyl benzene                   | 0        | 3.47358E-06  | 0        | 2.97215E-05  | 0        | 2.22669E-05  | 0        | 4.14315E-05  |
| formaldehyde                    | 0        | 0.000164827  | 0        | 0.001410331  | 0        | 0.0010566    | 0        | 0.00196599   |
| hexane                          | 0        | 1.79281E-06  | 0        | 1.53401E-05  | 0        | 1.14926E-05  | 0        | 2.1384E-05   |
| methanol                        | 0        | 3.36153E-07  | 0        | 2.87627E-06  | 0        | 2.15486E-06  | 0        | 4.0095E-06   |
| methyl ethyl ketone {2-butanone | 0        | 1.65835E-05  | 0        | 0.000141896  | 0        | 0.000106306  | 0        | 0.000197802  |
| m-xylene                        | 0        | 6.8351E-06   | 0        | 5.84841E-05  | 0        | 4.38155E-05  | 0        | 8.15264E-05  |
| naphthalene                     | 0        | 1.00846E-06  | 0        | 8.62881E-06  | 0        | 6.46458E-06  | 0        | 1.20285E-05  |
| o-xylene                        | 0        | 3.80973E-06  | 0        | 3.25977E-05  | 0        | 2.44217E-05  | 0        | 4.5441E-05   |
| propylene                       | 0        | 2.91332E-05  | 0        | 0.000249277  | 0        | 0.000186755  | 0        | 0.00034749   |
| p-xylene                        | 0        | 1.12051E-06  | 0        | 9.58756E-06  | 0        | 7.18287E-06  | 0        | 1.3365E-05   |
| styrene                         | 0        | 6.72305E-07  | 0        | 5.75254E-06  | 0        | 4.30972E-06  | 0        | 8.01899E-06  |
| toluene                         | 0        | 1.64715E-05  | 0        | 0.000140937  | 0        | 0.000105588  | 0        | 0.000196465  |
| DieselExhPM                     | 0.817664 | 0            | 6.175289 | 0            | 5.288019 | 0            | 9.321145 | 0            |

|                                 | ID          | # of sources | ID       | # of sources | ID       | # of sources | ID       | # of sources |
|---------------------------------|-------------|--------------|----------|--------------|----------|--------------|----------|--------------|
|                                 | G           | 327          | Н        | 204          | 1        | 4            | J        | 36           |
| CHEMICAL                        | (lb/yr)     | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      |
| arsenic                         | 0.001353733 | 1.61271E-08  | -0.00113 | 8.82633E-09  | 0.000193 | 2.11058E-08  | -0.00101 | 1.50078E-06  |
| bromine                         | 0.00162448  | 1.93888E-08  | -0.00136 | 8.87546E-09  | 0.000231 | 2.53745E-08  | -0.00121 | 1.80432E-06  |
| cadmium                         | 0.001173236 | 1.46182E-08  | -0.00098 | -2.26689E-08 | 0.000167 | 1.91311E-08  | -0.00087 | 1.36037E-06  |
| chlorine                        | 0.076170059 | 9.05569E-07  | -0.06381 | 5.8408E-07   | 0.010847 | 1.18513E-06  | -0.05661 | 8.42719E-05  |
| copper                          | 0.014259324 | 1.70801E-07  | -0.01195 | 4.90662E-08  | 0.002031 | 2.2353E-07   | -0.0106  | 1.58947E-05  |
| lead                            | 0.011732355 | 1.39602E-07  | -0.00983 | 8.43605E-08  | 0.001671 | 1.82699E-07  | -0.00872 | 1.29913E-05  |
| manganese                       | 0.08257773  | 9.82301E-07  | -0.06918 | 6.07052E-07  | 0.011759 | 1.28555E-06  | -0.06137 | 9.14127E-05  |
| mercury                         | 0.001263484 | 1.51684E-08  | -0.00106 | 2.73197E-09  | 0.00018  | 1.98512E-08  | -0.00094 | 1.41157E-06  |
| nickel                          | 0.003339209 | 3.98725E-08  | -0.0028  | 1.74098E-08  | 0.000476 | 5.21818E-08  | -0.00248 | 3.71052E-06  |
| selenium                        | 0.000270747 | 3.39787E-09  | -0.00023 | -6.38638E-09 | 3.86E-05 | 4.44685E-09  | -0.0002  | 3.16205E-07  |
| vanadium (fume or dust)         | 0.006949164 | 8.25755E-08  | -0.00582 | 5.52478E-08  | 0.00099  | 1.08068E-07  | -0.00516 | 7.68446E-06  |
| Silica, Crystln                 | 3.609955422 | 4.28846E-05  | -3.0243  | 2.92573E-05  | 0.51406  | 5.61238E-05  | -2.6828  | 0.003990828  |
| Asbestos                        | 0           | 0            | 0        | 0            | 0        | 0            | 0        | 0            |
| 1,3-butadiene                   | 0           | 7.47596E-08  | 0        | 5.10036E-08  | 0        | 9.78392E-08  | 0        | 6.95711E-06  |
| acetaldehyde                    | 0           | 2.89202E-06  | 0        | 1.97303E-06  | 0        | 3.78483E-06  | 0        | 0.00026913   |
| benzene                         | 0           | 7.86944E-07  | 0        | 5.3688E-07   | 0        | 1.02989E-06  | 0        | 7.32327E-05  |
| ethyl benzene                   | 0           | 1.21976E-07  | 0        | 8.32164E-08  | 0        | 1.59632E-07  | 0        | 1.13511E-05  |
| formaldehyde                    | 0           | 5.78797E-06  | 0        | 3.94875E-06  | 0        | 7.57482E-06  | 0        | 0.000538627  |
| hexane                          | 0           | 6.29555E-08  | 0        | 4.29504E-08  | 0        | 8.23909E-08  | 0        | 5.85862E-06  |
| methanol                        | 0           | 1.18042E-08  | 0        | 8.0532E-09   | 0        | 1.54483E-08  | 0        | 1.09849E-06  |
| methyl ethyl ketone {2-butanone | 0           | 5.82338E-07  | 0        | 3.97291E-07  | 0        | 7.62116E-07  | 0        | 5.41922E-05  |
| m-xylene                        | 0           | 2.40018E-07  | 0        | 1.63748E-07  | 0        | 3.14115E-07  | 0        | 2.2336E-05   |
| naphthalene                     | 0           | 3.54125E-08  | 0        | 2.41596E-08  | 0        | 4.63449E-08  | 0        | 3.29547E-06  |
| o-xylene                        | 0           | 1.3378E-07   | 0        | 9.12696E-08  | 0        | 1.75081E-07  | 0        | 1.24496E-05  |
| propylene                       | 0           | 1.02303E-06  | 0        | 6.97944E-07  | 0        | 1.33885E-06  | 0        | 9.52026E-05  |
| p-xylene                        | 0           | 3.93472E-08  | 0        | 2.6844E-08   | 0        | 5.14943E-08  | 0        | 3.66164E-06  |
| styrene                         | 0           | 2.36083E-08  | 0        | 1.61064E-08  | 0        | 3.08966E-08  | 0        | 2.19698E-06  |
| toluene                         | 0           | 5.78404E-07  | 0        | 3.94607E-07  | 0        | 7.56967E-07  | 0        | 5.38261E-05  |
| DieselExhPM                     | 1.910039205 | 0            | -2.09899 | 0            | 0.271991 | 0            | -1.41948 | 0            |

|                                 | ID          | # of sources | ID       | # of sources | ID      | # of sources | ID          | # of sources | ID        | # of sources |
|---------------------------------|-------------|--------------|----------|--------------|---------|--------------|-------------|--------------|-----------|--------------|
|                                 | K           | 80           | L        | 20           | M       | 12           | VOL1        | 1            | VOL2      | 1            |
| CHEMICAL                        | (lb/yr)     | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr) | (lb/hr)      | (lb/yr)     | (lb/hr)      | (lb/yr)   | (lb/hr)      |
| arsenic                         | 2.93341E-05 | 1.27673E-10  | -0.00112 | 1.66799E-06  | (       | 0            | -0.6271584  | -0.001046    | -2.251914 | -0.003754    |
| bromine                         | 3.52009E-05 | 1.56008E-10  | -0.00134 | 2.00534E-06  | (       | 0            | -0.391974   | -0.000655    | -1.407446 | -0.002348    |
| cadmium                         | 2.54229E-05 | 1.60126E-10  | -0.00097 | 1.51192E-06  | (       | 0            | -0.6271584  | -0.001062    | -2.251914 | -0.003771    |
| chlorine                        | 0.00165053  | 7.04101E-09  | -0.06291 | 9.36606E-05  | (       | 0            | -140.091507 | -0.233503    | -503.0212 | -0.838387    |
| copper                          | 0.000308985 | 1.41647E-09  | -0.01178 | 1.76655E-05  | (       | 0            | -5.56603079 | -0.009311    | -19.98573 | -0.033347    |
| lead                            | 0.000254229 | 1.09366E-09  | -0.00969 | 1.44387E-05  | (       | 0            | -13.5623004 | -0.022609    | -48.69763 | -0.081169    |
| manganese                       | 0.001789378 | 7.67602E-09  | -0.06821 | 0.000101597  | (       | 0            | -5.09566199 | -0.008524    | -18.2968  | -0.030529    |
| mercury                         | 2.73785E-05 | 1.28146E-10  | -0.00104 | 1.56883E-06  | (       | 0            | -0.0783948  | -0.000134    | -0.281489 | -0.000473    |
| nickel                          | 7.23574E-05 | 3.22044E-10  | -0.00276 | 4.12391E-06  | (       | 0            | -2.2734492  | -0.003794    | -8.163187 | -0.013611    |
| selenium                        | 5.86681E-06 | 3.88371E-11  | -0.00022 | 3.51433E-07  | (       | 0            | -4.39010879 | -0.007321    | -15.76339 | -0.026277    |
| vanadium (fume or dust)         | 0.000150582 | 6.39167E-10  | -0.00574 | 8.54058E-06  | (       | 0            | -0.1567896  | -0.000262    | -0.562978 | -0.000939    |
| Silica, Crystln                 | 0.078224169 | 3.31126E-07  | -2.98169 | 0.004435444  | (       | 0            | -313.5792   | -0.522632    | -1125.957 | -1.876595    |
| Asbestos                        | 0           | 0            | 0        | 0            | (       | 0            | 0           | 0            | 0         | 0            |
| 1,3-butadiene                   | 0           | 2.75948E-08  | 0        | 7.7322E-06   | (       | 0            | 0           | -0.002027    | 0         | -0.001755    |
| acetaldehyde                    | 0           | 1.06748E-06  | 0        | 0.000299114  | (       | 0            | 0           | -0.078431    | 0         | -0.067908    |
| benzene                         | 0           | 2.90472E-07  | 0        | 8.13916E-05  | (       | 0            | 0           | -0.021342    | 0         | -0.018478    |
| ethyl benzene                   | 0           | 4.50231E-08  | 0        | 1.26157E-05  | (       | 0            | 0           | -0.003308    | 0         | -0.002864    |
| formaldehyde                    | 0           | 2.13642E-06  | 0        | 0.000598635  | (       | 0            | 0           | -0.156968    | 0         | -0.135909    |
| hexane                          | 0           | 2.32377E-08  | 0        | 6.51132E-06  | (       | 0            | 0           | -0.001707    | 0         | -0.001478    |
| methanol                        | 0           | 4.35708E-09  | 0        | 1.22087E-06  | (       | 0            | 0           | -0.00032     | 0         | -0.000277    |
| methyl ethyl ketone {2-butanone | . 0         | 2.14949E-07  | 0        | 6.02298E-05  | (       | 0            | 0           | -0.015793    | 0         | -0.013674    |
| m-xylene                        | 0           | 8.85939E-08  | 0        | 2.48244E-05  | (       | 0            | 0           | -0.006509    | 0         | -0.005636    |
| naphthalene                     | 0           | 1.30712E-08  | 0        | 3.66262E-06  | (       | 0            | 0           | -0.00096     | 0         | -0.000832    |
| o-xylene                        | 0           | 4.93802E-08  | 0        | 1.38366E-05  | (       | 0            | 0           | -0.003628    | 0         | -0.003141    |
| propylene                       | 0           | 3.77613E-07  | 0        | 0.000105809  | (       | 0            | 0           | -0.027744    | 0         | -0.024022    |
| p-xylene                        | 0           | 1.45236E-08  | 0        | 4.06958E-06  | (       | 0            | 0           | -0.001067    | 0         | -0.000924    |
| styrene                         | 0           | 8.71415E-09  | 0        | 2.44175E-06  | (       | 0            | 0           | -0.00064     | 0         | -0.000554    |
| toluene                         | 0           | 2.13497E-07  | 0        | 5.98228E-05  | (       | 0            | 0           | -0.015686    | 0         | -0.013582    |
| DieselExhPM                     | 0.016032001 | 0            | -1.57762 | 0            | C       | 0            | -327.633166 | 0            | -358.7551 | 0            |

|                                 | ID      | # of sources | ID        | # of sources | ID        | # of sources | ID       | # of sources |
|---------------------------------|---------|--------------|-----------|--------------|-----------|--------------|----------|--------------|
|                                 | VOL3    | 1            | VOL4      | 1            | VOL5      | 1            | VOL6     | 1            |
| CHEMICAL                        | (lb/yr) | (lb/hr)      | (lb/yr)   | (lb/hr)      | (lb/yr)   | (lb/hr)      | (lb/yr)  | (lb/hr)      |
| arsenic                         | (       | 0 0          | -0.821704 | -0.001370304 | -0.821704 | -0.001369541 | 0.115476 | 0.000192513  |
| bromine                         | (       | 0 0          | -0.513565 | -0.000857538 | -0.513565 | -0.000856011 | 0.072172 | 0.000120394  |
| cadmium                         | (       | 0 0          | -0.821704 | -0.001381485 | -0.821704 | -0.001370033 | 0.115476 | 0.000193259  |
| chlorine                        | (       | 0 0          | -183.548  | -0.305925746 | -183.548  | -0.305913912 | 25.7944  | 0.042991501  |
| copper                          | (       | 0 0          | -7.292619 | -0.012179122 | -7.292619 | -0.012155455 | 1.024848 | 0.001709732  |
| lead                            | (       | 0 0          | -17.76934 | -0.029619557 | -17.76934 | -0.02961574  | 2.497164 | 0.004162207  |
| manganese                       | (       | 0 0          | -6.676341 | -0.011150395 | -6.676341 | -0.011128255 | 0.938241 | 0.001565281  |
| mercury                         | (       | 0 0          | -0.102713 | -0.000173983 | -0.102713 | -0.000171311 | 0.014434 | 2.4244E-05   |
| nickel                          | (       | 0 0          | -2.978675 | -0.004968053 | -2.978675 | -0.004964617 | 0.4186   | 0.000697906  |
| selenium                        | (       | 0 0          | -5.751925 | -0.009589735 | -5.751925 | -0.009586682 | 0.808331 | 0.001347431  |
| vanadium (fume or dust)         | (       | 0 0          | -0.205426 | -0.000342776 | -0.205426 | -0.000342394 | 0.028869 | 4.81416E-05  |
| Silica, Crystln                 | (       | 0 0          | -410.8518 | -0.68475292  | -410.8518 | -0.68475292  | 57.7379  | 0.096229826  |
| Asbestos                        | (       | 0 0          | 0         | 0            | 0         | 0            | 0        | 0            |
| 1,3-butadiene                   | (       | 0 0          | 0         | -5.1631E-05  | 0         | -5.1631E-05  | 0        | 7.38573E-05  |
| acetaldehyde                    | (       | 0 0          | 0         | -0.001997304 | 0         | -0.001997304 | 0        | 0.002857111  |
| benzene                         | (       | 0 0          | 0         | -0.000543484 | 0         | -0.000543484 | 0        | 0.000777445  |
| ethyl benzene                   | (       | 0 0          | 0         | -8.424E-05   | 0         | -8.424E-05   | 0        | 0.000120504  |
| formaldehyde                    | (       | 0 0          | 0         | -0.003997326 | 0         | -0.003997326 | 0        | 0.00571811   |
| hexane                          | (       | 0 0          | 0         | -4.34787E-05 | 0         | -4.34787E-05 | 0        | 6.21956E-05  |
| methanol                        | (       | 0 0          | 0         | -8.15226E-06 | 0         | -8.15226E-06 | 0        | 1.16617E-05  |
| methyl ethyl ketone {2-butanonε | (       | 0 0          | 0         | -0.000402178 | 0         | -0.000402178 | 0        | 0.00057531   |
| m-xylene                        | (       | 0 0          | 0         | -0.000165763 | 0         | -0.000165763 | 0        | 0.000237121  |
| naphthalene                     | (       | 0 0          | 0         | -2.44568E-05 | 0         | -2.44568E-05 | 0        | 3.4985E-05   |
| o-xylene                        | (       | 0 0          | 0         | -9.23923E-05 | 0         | -9.23923E-05 | 0        | 0.000132166  |
| propylene                       | (       | 0 0          | 0         | -0.000706529 | 0         | -0.000706529 | 0        | 0.001010679  |
| p-xylene                        | (       | 0 0          | 0         | -2.71742E-05 | 0         | -2.71742E-05 | 0        | 3.88723E-05  |
| styrene                         | (       | 0 0          | 0         | -1.63045E-05 | 0         | -1.63045E-05 | 0        | 2.33234E-05  |
| toluene                         | (       | 0 0          | 0         | -0.000399461 | 0         | -0.000399461 | 0        | 0.000571422  |
| DieselExhPM                     | (       | 0 0          | -10.55162 | 0            | -10.55162 | 0            | 15.99162 | 0            |

|                                 | ID       | # of sources |
|---------------------------------|----------|--------------|----------|--------------|----------|--------------|----------|--------------|
|                                 | VOL7     | 1            | VOL8     | 1            | VOL9     | 1            | VOL10    | 1            |
| CHEMICAL                        | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      | (lb/yr)  | (lb/hr)      |
| arsenic                         | 0.721891 | 0.001203329  | 0.012528 | 2.09587E-05  | 0.202202 | 0.000337626  | 2.165672 | 0.003610666  |
| bromine                         | 0.451182 | 0.000752325  | 0.00783  | 1.3208E-05   | 0.126376 | 0.000211872  | 1.353545 | 0.002258334  |
| cadmium                         | 0.721891 | 0.00120582   | 0.012528 | 2.20662E-05  | 0.202202 | 0.000346342  | 2.165672 | 0.003627648  |
| chlorine                        | 161.2523 | 0.268756609  | 2.79839  | 0.00466521   | 45.16687 | 0.07528776   | 483.7569 | 0.806280353  |
| copper                          | 6.406779 | 0.010683482  | 0.111184 | 0.000187759  | 1.794543 | 0.003010204  | 19.22034 | 0.032071498  |
| lead                            | 15.61088 | 0.02601903   | 0.270913 | 0.000451917  | 4.372618 | 0.007290809  | 46.83265 | 0.078060485  |
| manganese                       | 5.865361 | 0.009780762  | 0.101788 | 0.000171941  | 1.642891 | 0.002756206  | 17.59608 | 0.029361982  |
| mercury                         | 0.090236 | 0.000151017  | 0.001566 | 2.88682E-06  | 0.025275 | 4.43044E-05  | 0.270709 | 0.000455427  |
| nickel                          | 2.616853 | 0.004362223  | 0.045413 | 7.60446E-05  | 0.732982 | 0.001224439  | 7.85056  | 0.013089725  |
| selenium                        | 5.053234 | 0.008422769  | 0.087694 | 0.000146474  | 1.415414 | 0.002361513  | 15.1597  | 0.025271023  |
| vanadium (fume or dust)         | 0.180473 | 0.000300877  | 0.003132 | 5.25946E-06  | 0.05055  | 8.45621E-05  | 0.541418 | 0.00090297   |
| Silica, Crystln                 | 360.9453 | 0.601575491  | 6.263885 | 0.010439808  | 101.101  | 0.168501645  | 1082.836 | 1.804726472  |
| Asbestos                        | 0        | 0            | 0        | 0            | 0        | 0            | 0        | 0            |
| 1,3-butadiene                   | 0        | 0.000234075  | 0        | 0.000116121  | 0        | 0.000740611  | 0        | 0.001780621  |
| acetaldehyde                    | 0        | 0.009055004  | 0        | 0.004492066  | 0        | 0.028649961  | 0        | 0.06888191   |
| benzene                         | 0        | 0.002463947  | 0        | 0.001222331  | 0        | 0.007795908  | 0        | 0.018743377  |
| ethyl benzene                   | 0        | 0.000381912  | 0        | 0.000189461  | 0        | 0.001208366  | 0        | 0.002905223  |
| formaldehyde                    | 0        | 0.018122327  | 0        | 0.008990244  | 0        | 0.057338901  | 0        | 0.137857537  |
| hexane                          | 0        | 0.000197116  | 0        | 9.77865E-05  | 0        | 0.000623673  | 0        | 0.00149947   |
| methanol                        | 0        | 3.69592E-05  | 0        | 1.8335E-05   | 0        | 0.000116939  | 0        | 0.000281151  |
| methyl ethyl ketone {2-butanonε | 0        | 0.00182332   | 0        | 0.000904525  | 0        | 0.005768972  | 0        | 0.013870099  |
| m-xylene                        | 0        | 0.000751504  | 0        | 0.000372811  | 0        | 0.002377752  | 0        | 0.00571673   |
| naphthalene                     | 0        | 0.000110878  | 0        | 5.50049E-05  | 0        | 0.000350816  | 0        | 0.000843452  |
| o-xylene                        | 0        | 0.000418871  | 0        | 0.000207796  | 0        | 0.001325304  | 0        | 0.003186374  |
| propylene                       | 0        | 0.003203131  | 0        | 0.00158903   | 0        | 0.01013468   | 0        | 0.02436639   |
| p-xylene                        | 0        | 0.000123197  | 0        | 6.11165E-05  | 0        | 0.000389795  | 0        | 0.000937169  |
| styrene                         | 0        | 7.39184E-05  | 0        | 3.66699E-05  | 0        | 0.000233877  | 0        | 0.000562301  |
| toluene                         | 0        | 0.001811001  | 0        | 0.000898413  | 0        | 0.005729992  | 0        | 0.013776382  |
| DieselExhPM                     | 53.38591 | 0            | 23.73128 | 0            | 186.7733 | 0            | 363.8984 | 0            |

|       | Total Sentinel<br>Butterfield | Total White Knob | Total Processing Plant | Total Project w/o<br>White Knob<br>Reductions | Total Project w/<br>White Knob<br>Reductions |
|-------|-------------------------------|------------------|------------------------|-----------------------------------------------|----------------------------------------------|
| НС    | 1.61                          | -0.97            | 0.01                   | 1.63                                          | 0.66                                         |
| NOx   | 29.0                          | -15.8            | 0.10                   | 29.06                                         | 13.2                                         |
| CO    | 19.9                          | -14.2            | 0.07                   | 19.93                                         | 5.8                                          |
| SOx   | 0.0013                        | -0.0006          | 0.0000                 | 0.0013                                        | 0.0008                                       |
| TSP   | 102                           | -112             | 3.57                   | 105.37                                        | -7                                           |
| PM10  | 36.7                          | -41.7            | 0.62                   | 37.34                                         | -4.3                                         |
| PM2.5 | 7.1                           | -11.0            | 0.17                   | 7.27                                          | -3.7                                         |
| CO2   | 5,980                         | -2,765           | 28.3                   | 6,008.02                                      | 3,243                                        |

|                 | А        |         |          | В        |         |          |
|-----------------|----------|---------|----------|----------|---------|----------|
|                 | per Year | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 1,618.07 | 15.34   | 1.84     | 962.78   | 11.05   | 1.33     |
| VMT (%)         | 1.21%    | 0.99%   | 1.05%    | 0.72%    | 0.71%   | 0.76%    |
| TSP - Dust      | 6,018.41 | 57.06   | 6.85     | 3,581.04 | 41.09   | 4.93     |
| PM10 - Dust     | 1,711.42 | 16.23   | 1.95     | 1,018.32 | 11.68   | 1.40     |
| PM2.5 - Dust    | 171.14   | 1.62    | 0.19     | 101.83   | 1.17    | 0.14     |
| TSP - Exhaust   | 36.22    | 0.34    | 0.04     | 21.55    | 0.25    | 0.03     |
| PM10 - Exhaust  | 36.22    | 0.34    | 0.04     | 21.55    | 0.25    | 0.03     |
| PM2.5 - Exhaust | 33.32    | 0.32    | 0.04     | 19.83    | 0.23    | 0.03     |
| HC              | 62.81    | 0.60    | 0.07     | 37.37    | 0.43    | 0.05     |
| NOx             | 1,160    | 11.00   | 1.32     | 690      | 7.92    | 0.95     |
| со              | 757      | 7.17    | 0.86     | 450      | 5.17    | 0.62     |
| SOx             | 0.05     | 0.00    | 0.00     | 0.03     | 0.00    | 0.00     |
| CO2             | 121.05   | -       | -        | 72.03    | -       | -        |

Project 1.31 s

|                 |          |         |          |           |         | · <i>'</i> |
|-----------------|----------|---------|----------|-----------|---------|------------|
|                 | А        |         |          | В         |         |            |
|                 | per Year | per Day | per Hour | per Year  | per Day | per Hour   |
| VMT (miles)     | 3,006.10 | 24.48   | 2.94     | 5,652.50  | 46.04   | 5.52       |
| VMT (%)         | 1.72%    | 1.33%   | 1.42%    | 3.23%     | 2.51%   | 2.67%      |
| TSP - Dust      | 8,944.95 | 72.85   | 8.74     | 16,819.56 | 136.98  | 16.44      |
| PM10 - Dust     | 2,543.62 | 20.72   | 2.49     | 4,782.88  | 38.95   | 4.67       |
| PM2.5 - Dust    | 254.36   | 2.07    | 0.25     | 478.29    | 3.90    | 0.47       |
| TSP - Exhaust   | 67.29    | 0.55    | 0.07     | 126.53    | 1.03    | 0.12       |
| PM10 - Exhaust  | 67.29    | 0.55    | 0.07     | 126.53    | 1.03    | 0.12       |
| PM2.5 - Exhaust | 61.91    | 0.50    | 0.06     | 116.41    | 0.95    | 0.11       |
| HC              | 116.69   | 0.95    | 0.11     | 219.42    | 1.79    | 0.21       |
| NOx             | 2,154.99 | 17.55   | 2.11     | 4,052.12  | 33.00   | 3.96       |
| СО              | 1,405.81 | 11.45   | 1.37     | 2,643.41  | 0.85    | 0.10       |
| SOx             | 0.09     | 0.00    | 0.00     | 0.17      | 0.00    | 0.00       |
| CO2 (tons)      | 224.89   | -       | -        | 422.86    | -       | -          |

| increment       |          |         |          |           |         |          |  |
|-----------------|----------|---------|----------|-----------|---------|----------|--|
|                 | Α        | A B     |          |           |         |          |  |
|                 | per Year | per Day | per Hour | per Year  | per Day | per Hour |  |
| VMT (miles)     | 1,388.03 | 9.14    | 1.10     | 4,689.72  | 34.99   | 4.20     |  |
| TSP - Dust      | 2,926.54 | 15.79   | 1.89     | 13,238.51 | 95.90   | 11.51    |  |
| PM10 - Dust     | 832.20   | 4.49    | 0.54     | 3,764.56  | 27.27   | 3.27     |  |
| PM2.5 - Dust    | 83.22    | 0.45    | 0.05     | 376.46    | 2.73    | 0.33     |  |
| TSP - Exhaust   | 31.07    | 0.20    | 0.02     | 104.98    | 0.78    | 0.09     |  |
| PM10 - Exhaust  | 31.07    | 0.20    | 0.02     | 104.98    | 0.78    | 0.09     |  |
| PM2.5 - Exhaust | 28.59    | 0.19    | 0.02     | 96.58     | 0.72    | 0.09     |  |
| HC              | 53.88    | 0.35    | 0.04     | 182.04    | 1.36    | 0.16     |  |
| NOx             | 995.04   | 6.55    | 0.79     | 3,361.94  | 25.08   | 3.01     |  |
| СО              | 649.12   | 4.27    | 0.51     | 2,193.16  | -4.31   | -0.52    |  |
| SOx             | 0.04     | 0.00    | 0.00     | 0.14      | 0.00    | 0.00     |  |
| CO2 (tons)      | 103.84   | -       | -        | 350.84    | -       | -        |  |

|                 | С        |         |          | D        |         |          |
|-----------------|----------|---------|----------|----------|---------|----------|
|                 | per Year | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 1,355.33 | 16.39   | 1.97     | -        | -       | -        |
| VMT (%)         | 1.01%    | 1.05%   | 1.13%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 5,041.15 | 60.95   | 7.31     | -        | -       | -        |
| PM10 - Dust     | 1,433.52 | 17.33   | 2.08     | -        | -       | -        |
| PM2.5 - Dust    | 143.35   | 1.73    | 0.21     | -        | -       | -        |
| TSP - Exhaust   | 30.34    | 0.37    | 0.04     | -        | -       | -        |
| PM10 - Exhaust  | 30.34    | 0.37    | 0.04     | -        | -       | -        |
| PM2.5 - Exhaust | 27.91    | 0.34    | 0.04     | -        | -       | -        |
| HC              | 52.61    | 0.64    | 0.08     | -        | -       | -        |
| NOx             | 972      | 11.75   | 1.41     | -        | -       | -        |
| со              | 634      | 7.66    | 0.92     | -        | -       | -        |
| SOx             | 0.04     | 0.00    | 0.00     | -        | -       | -        |
| CO2             | 101.39   | -       | -        | -        | -       | -        |

#### **Project**

| Fioject         |           |         |          |          |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | С         |         |          | D        |         |          |
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 4,662.54  | 37.97   | 4.56     | -        | -       | -        |
| VMT (%)         | 2.66%     | 2.07%   | 2.20%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 13,873.84 | 112.99  | 13.56    | -        | -       | -        |
| PM10 - Dust     | 3,945.22  | 32.13   | 3.86     | -        | -       | -        |
| PM2.5 - Dust    | 394.52    | 3.21    | 0.39     | -        | -       | -        |
| TSP - Exhaust   | 104.37    | 0.85    | 0.10     | -        | -       | -        |
| PM10 - Exhaust  | 104.37    | 0.85    | 0.10     | -        | -       | -        |
| PM2.5 - Exhaust | 96.02     | 0.78    | 0.09     | -        | -       | -        |
| HC              | 180.99    | 1.47    | 0.18     | -        | -       | -        |
| NOx             | 3,342.45  | 27.22   | 3.27     | -        | -       | -        |
| со              | 2,180.45  | 17.76   | 2.13     | -        | -       | -        |
| SOx             | 0.14      | 0.00    | 0.00     | -        | -       | -        |
| CO2 (tons)      | 348.80    | -       | -        | -        | -       | -        |

|                 | С        |         |          | D        |         |          |  |
|-----------------|----------|---------|----------|----------|---------|----------|--|
|                 | per Year | per Day | per Hour | per Year | per Day | per Hour |  |
| VMT (miles)     | 3,307.21 | 21.59   | 2.59     | -        |         |          |  |
| TSP - Dust      | 8,832.70 | 52.05   | 6.25     | -        |         |          |  |
| PM10 - Dust     | 2,511.70 | 14.80   | 1.78     | -        |         |          |  |
| PM2.5 - Dust    | 251.17   | 1.48    | 0.18     | -        |         |          |  |
| TSP - Exhaust   | 74.03    | 0.48    | 0.06     | -        |         |          |  |
| PM10 - Exhaust  | 74.03    | 0.48    | 0.06     | -        |         |          |  |
| PM2.5 - Exhaust | 68.11    | 0.44    | 0.05     | -        |         |          |  |
| HC              | 128.38   | 0.84    | 0.10     | -        |         |          |  |
| NOx             | 2,370.85 | 15.48   | 1.86     | -        |         |          |  |
| СО              | 1,546.63 | 10.10   | 1.21     | -        |         |          |  |
| SOx             | 0.10     | 0.00    | 0.00     | -        |         |          |  |
| CO2 (tons)      | 247.41   | -       | -        | -        |         | <u> </u> |  |

|                 | E         |         |          | F        |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 8,012.74  | 93.45   | 11.21    | -        | -       | -        |
| VMT (%)         | 6.00%     | 6.01%   | 6.42%    | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 29,803.34 | 347.60  | 41.71    | -        | -       | -        |
| PM10 - Dust     | 8,475.00  | 98.85   | 11.86    | -        | -       | -        |
| PM2.5 - Dust    | 847.50    | 9.88    | 1.19     | -        | -       | -        |
| TSP - Exhaust   | 179.37    | 2.09    | 0.25     | -        | -       | -        |
| PM10 - Exhaust  | 179.37    | 2.09    | 0.25     | -        | -       | -        |
| PM2.5 - Exhaust | 165.02    | 1.92    | 0.23     | -        | -       | -        |
| HC              | 311.04    | 3.63    | 0.44     | -        | -       | -        |
| NOx             | 5,744     | 66.99   | 8.04     | -        | -       | -        |
| со              | 3,747     | 43.70   | 5.24     | -        | -       | -        |
| SOx             | 0.24      | 0.00    | 0.00     | -        | -       | -        |
| CO2             | 599.43    | -       | -        | -        | -       | -        |

#### **Project**

| rioject         |           |         |          |          |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | E         |         |          | F        |         |          |
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 30,498.31 | 248.39  | 29.81    | -        | -       | -        |
| VMT (%)         | 17.41%    | 13.54%  | 14.39%   | 0.00%    | 0.00%   | 0.00%    |
| TSP - Dust      | 90,750.67 | 739.11  | 88.69    | -        | -       | -        |
| PM10 - Dust     | 25,806.22 | 210.18  | 25.22    | -        | -       | -        |
| PM2.5 - Dust    | 2,580.62  | 21.02   | 2.52     | -        | -       | -        |
| TSP - Exhaust   | 682.71    | 5.56    | 0.67     | -        | -       | -        |
| PM10 - Exhaust  | 682.71    | 5.56    | 0.67     | -        | -       | -        |
| PM2.5 - Exhaust | 628.09    | 5.12    | 0.61     | -        | -       | -        |
| HC              | 1,183.88  | 9.64    | 1.16     | -        | -       | -        |
| NOx             | 21,863.41 | 178.06  | 21.37    | -        | -       | -        |
| со              | 14,262.62 | 116.16  | 13.94    | -        | -       | -        |
| SOx             | 0.91      | 0.01    | 0.00     | -        | -       | -        |
| CO2 (tons)      | 2,281.57  | -       | -        | -        | -       | -        |

|                 | Е         |         |          | F        |         |          |
|-----------------|-----------|---------|----------|----------|---------|----------|
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |
| VMT (miles)     | 22,485.58 | 154.94  | 18.59    |          | -       | -        |
| TSP - Dust      | 60,947.33 | 391.50  | 46.98    |          | -       | -        |
| PM10 - Dust     | 17,331.22 | 111.33  | 13.36    |          | -       | -        |
| PM2.5 - Dust    | 1,733.12  | 11.13   | 1.34     |          | -       | -        |
| TSP - Exhaust   | 503.34    | 3.47    | 0.42     |          | -       | -        |
| PM10 - Exhaust  | 503.34    | 3.47    | 0.42     |          | -       | -        |
| PM2.5 - Exhaust | 463.07    | 3.19    | 0.38     |          | -       | -        |
| HC              | 872.84    | 6.01    | 0.72     |          | -       | -        |
| NOx             | 16,119.30 | 111.07  | 13.33    |          | -       | -        |
| СО              | 10,515.44 | 72.46   | 8.69     |          | -       | -        |
| SOx             | 0.67      | 0.00    | 0.00     |          | -       | -        |
| CO2 (tons)      | 1,682.14  | -       | -        |          | -       | -        |

|                 | G          |          |          | Н          |          |          |
|-----------------|------------|----------|----------|------------|----------|----------|
|                 | per Year   | per Day  | per Hour | per Year   | per Day  | per Hour |
| VMT (miles)     | 72,587.16  | 815.66   | 97.88    | 33,745.62  | 416.59   | 41.66    |
| VMT (%)         | 54.34%     | 52.46%   | 56.04%   | 25.26%     | 26.79%   | 23.85%   |
| TSP - Dust      | 269,987.62 | 3,033.83 | 364.06   | 125,516.67 | 1,549.49 | 154.95   |
| PM10 - Dust     | 76,774.75  | 862.71   | 103.53   | 35,692.42  | 440.62   | 44.06    |
| PM2.5 - Dust    | 7,677.47   | 86.27    | 10.35    | 3,569.24   | 44.06    | 4.41     |
| TSP - Exhaust   | 1,624.87   | 18.26    | 2.19     | 755.40     | 9.33     | 0.93     |
| PM10 - Exhaust  | 1,624.87   | 18.26    | 2.19     | 755.40     | 9.33     | 0.93     |
| PM2.5 - Exhaust | 1,494.88   | 16.80    | 2.02     | 694.97     | 8.58     | 0.86     |
| HC              | 2,817.67   | 31.66    | 3.80     | 1,309.93   | 16.17    | 1.62     |
| NOx             | 52,036     | 584.72   | 70.17    | 24,191     | 298.64   | 29.86    |
| СО              | 33,946     | 381.44   | 45.77    | 15,781     | 194.82   | 19.48    |
| SOx             | 2.17       | 0.02     | 0.00     | 1.01       | 0.01     | 0.00     |
| CO2             | 5,430.22   | -        | -        | 2,524.50   | -        | -        |

#### **Project**

| 110,000         |            |          |          |           |          |          |
|-----------------|------------|----------|----------|-----------|----------|----------|
|                 | G          |          |          | Н         |          |          |
|                 | per Year   | per Day  | per Hour | per Year  | per Day  | per Hour |
| VMT (miles)     | 100,488.89 | 818.42   | 98.21    | 19,162.95 | 418.00   | 41.80    |
| VMT (%)         | 57.38%     | 44.61%   | 47.42%   | 10.94%    | 22.78%   | 20.18%   |
| TSP - Dust      | 299,014.36 | 2,435.28 | 292.23   | 57,021.20 | 1,243.79 | 124.38   |
| PM10 - Dust     | 85,028.91  | 692.51   | 83.10    | 16,214.77 | 353.69   | 35.37    |
| PM2.5 - Dust    | 8,502.89   | 69.25    | 8.31     | 1,621.48  | 35.37    | 3.54     |
| TSP - Exhaust   | 2,249.45   | 18.32    | 2.20     | 327.21    | 7.14     | 0.71     |
| PM10 - Exhaust  | 2,249.45   | 18.32    | 2.20     | 327.21    | 7.14     | 0.71     |
| PM2.5 - Exhaust | 2,069.50   | 16.85    | 2.02     | 301.03    | 6.57     | 0.66     |
| HC              | 3,900.76   | 31.77    | 3.81     | 743.86    | 16.23    | 1.62     |
| NOx             | 72,037.76  | 586.70   | 70.40    | 13,737.40 | 299.65   | 29.97    |
| со              | 46,993.91  | 382.74   | 45.93    | 8,961.61  | 195.48   | 19.55    |
| SOx             | 3.00       | 0.02     | 0.00     | 0.57      | 0.01     | 0.00     |
| CO2 (tons)      | 7,517.54   | -        | -        | 1,433.57  | -        | -        |

| increment       |           |         |          |            |         |          |  |
|-----------------|-----------|---------|----------|------------|---------|----------|--|
|                 | G         | G H     |          |            |         |          |  |
|                 | per Year  | per Day | per Hour | per Year   | per Day | per Hour |  |
| VMT (miles)     | 27,901.72 | 2.76    | 0.33     | -14,582.67 | 1.41    | 0.14     |  |
| TSP - Dust      | 29,026.74 | -598.55 | -71.83   | -68,495.47 | -305.70 | -30.57   |  |
| PM10 - Dust     | 8,254.16  | -170.21 | -20.42   | -19,477.64 | -86.93  | -8.69    |  |
| PM2.5 - Dust    | 825.42    | -17.02  | -2.04    | -1,947.76  | -8.69   | -0.87    |  |
| TSP - Exhaust   | 624.58    | 0.06    | 0.01     | -428.19    | -2.19   | -0.22    |  |
| PM10 - Exhaust  | 624.58    | 0.06    | 0.01     | -428.19    | -2.19   | -0.22    |  |
| PM2.5 - Exhaust | 574.62    | 0.06    | 0.01     | -393.94    | -2.01   | -0.20    |  |
| HC              | 1,083.08  | 0.11    | 0.01     | -566.07    | 0.05    | 0.01     |  |
| NOx             | 20,001.99 | 1.98    | 0.24     | -10,453.92 | 1.01    | 0.10     |  |
| СО              | 13,048.32 | 1.29    | 0.16     | -6,819.63  | 0.66    | 0.07     |  |
| SOx             | 0.83      | 0.00    | 0.00     | -0.44      | 0.00    | 0.00     |  |
| CO2 (tons)      | 2,087.32  | -       | -        | -1,090.93  | -       | -        |  |

|                 | I        |         |          | J         |         |          |
|-----------------|----------|---------|----------|-----------|---------|----------|
|                 | per Year | per Day | per Hour | per Year  | per Day | per Hour |
| VMT (miles)     | 1,204.93 | 14.10   | 1.57     | 8,719.27  | 106.44  | 10.64    |
| VMT (%)         | 0.90%    | 0.91%   | 0.90%    | 6.53%     | 6.85%   | 6.09%    |
| TSP - Dust      | 4,481.74 | 52.45   | 5.83     | 32,431.27 | 395.90  | 39.59    |
| PM10 - Dust     | 1,274.45 | 14.92   | 1.66     | 9,222.28  | 112.58  | 11.26    |
| PM2.5 - Dust    | 127.44   | 1.49    | 0.17     | 922.23    | 11.26   | 1.13     |
| TSP - Exhaust   | 26.97    | 0.32    | 0.04     | 195.18    | 2.38    | 0.24     |
| PM10 - Exhaust  | 26.97    | 0.32    | 0.04     | 195.18    | 2.38    | 0.24     |
| PM2.5 - Exhaust | 24.81    | 0.29    | 0.03     | 179.57    | 2.19    | 0.22     |
| HC              | 46.77    | 0.55    | 0.06     | 338.46    | 4.13    | 0.41     |
| NOx             | 864      | 10.11   | 1.12     | 6,251     | 76.30   | 7.63     |
| со              | 563      | 6.59    | 0.73     | 4,078     | 49.78   | 4.98     |
| SOx             | 0.04     | 0.00    | 0.00     | 0.26      | 0.00    | 0.00     |
| CO2             | 90.14    | -       | -        | 652.29    | -       | -        |

#### **Project**

| ,               |          |         |          |           |         |          |
|-----------------|----------|---------|----------|-----------|---------|----------|
|                 | I        |         |          | J         |         |          |
|                 | per Year | per Day | per Hour | per Year  | per Day | per Hour |
| VMT (miles)     | 1,253.54 | 14.15   | 1.57     | 6,436.44  | 140.40  | 14.04    |
| VMT (%)         | 0.72%    | 0.77%   | 0.76%    | 3.68%     | 7.65%   | 6.78%    |
| TSP - Dust      | 3,730.02 | 42.10   | 4.68     | 19,152.25 | 417.76  | 41.78    |
| PM10 - Dust     | 1,060.68 | 11.97   | 1.33     | 5,446.21  | 118.80  | 11.88    |
| PM2.5 - Dust    | 106.07   | 1.20    | 0.13     | 544.62    | 11.88   | 1.19     |
| TSP - Exhaust   | 28.06    | 0.32    | 0.04     | 144.08    | 3.14    | 0.31     |
| PM10 - Exhaust  | 28.06    | 0.32    | 0.04     | 144.08    | 3.14    | 0.31     |
| PM2.5 - Exhaust | 25.82    | 0.29    | 0.03     | 132.55    | 2.89    | 0.29     |
| НС              | 48.66    | 0.55    | 0.06     | 249.85    | 5.45    | 0.54     |
| NOx             | 898.63   | 10.14   | 1.13     | 4,614.11  | 100.65  | 10.06    |
| со              | 586.22   | 6.62    | 0.74     | 3,010.02  | 65.66   | 6.57     |
| SOx             | 0.04     | 0.00    | 0.00     | 0.19      | 0.00    | 0.00     |
| CO2 (tons)      | 93.78    | -       | -        | 481.51    | -       | -        |

|                 | J        |         |          |            |         |          |
|-----------------|----------|---------|----------|------------|---------|----------|
|                 | per Year | per Day | per Hour | per Year   | per Day | per Hour |
| VMT (miles)     | 48.60    | 0.05    | 0.01     | -2,282.82  | 33.96   | 3.40     |
| TSP - Dust      | -751.73  | -10.35  | -1.15    | -13,279.01 | 21.87   | 2.19     |
| PM10 - Dust     | -213.76  | -2.94   | -0.33    | -3,776.07  | 6.22    | 0.62     |
| PM2.5 - Dust    | -21.38   | -0.29   | -0.03    | -377.61    | 0.62    | 0.06     |
| TSP - Exhaust   | 1.09     | 0.00    | 0.00     | -51.10     | 0.76    | 0.08     |
| PM10 - Exhaust  | 1.09     | 0.00    | 0.00     | -51.10     | 0.76    | 0.08     |
| PM2.5 - Exhaust | 1.00     | 0.00    | 0.00     | -47.01     | 0.70    | 0.07     |
| HC              | 1.89     | 0.00    | 0.00     | -88.61     | 1.32    | 0.13     |
| NOx             | 34.84    | 0.03    | 0.00     | -1,636.49  | 24.34   | 2.43     |
| со              | 22.73    | 0.02    | 0.00     | -1,067.57  | 15.88   | 1.59     |
| SOx             | 0.00     | 0.00    | 0.00     | -0.07      | 0.00    | 0.00     |
| CO2 (tons)      | 3.64     | -       | -        | -170.78    | -       | -        |

|                 | K         | K L     |          |           |         |          |  |
|-----------------|-----------|---------|----------|-----------|---------|----------|--|
|                 | per Year  | per Day | per Hour | per Year  | per Day | per Hour |  |
| VMT (miles)     | 20,421.14 | 239.00  | 26.56    | 5,383.71  | 65.72   | 6.57     |  |
| VMT (%)         | 0.00%     | 0.00%   | 0.00%    | 4.03%     | 4.23%   | 3.76%    |  |
| TSP - Dust      | 751.91    | 8.80    | 0.98     | 20,024.68 | 244.45  | 24.44    |  |
| PM10 - Dust     | 150.38    | 1.76    | 0.20     | 5,694.30  | 69.51   | 6.95     |  |
| PM2.5 - Dust    | 36.91     | 0.43    | 0.05     | 569.43    | 6.95    | 0.70     |  |
| TSP - Exhaust   | 31.80     | 0.37    | 0.04     | 120.51    | 1.47    | 0.15     |  |
| PM10 - Exhaust  | 31.80     | 0.37    | 0.04     | 120.51    | 1.47    | 0.15     |  |
| PM2.5 - Exhaust | 29.25     | 0.34    | 0.04     | 110.87    | 1.35    | 0.14     |  |
| HC              | 29.32     | 0.34    | 0.04     | 208.98    | 2.55    | 0.26     |  |
| NOx             | 553.40    | 6.48    | 0.72     | 3,859     | 47.11   | 4.71     |  |
| со              | 132.81    | 1.55    | 0.17     | 2,518     | 30.73   | 3.07     |  |
| SOx             | 0.72      | 0.01    | 0.00     | 0.16      | 0.00    | 0.00     |  |
| CO2             | -         | -       | -        | 402.75    | -       | -        |  |

#### **Project**

| Froject         |           |         |          |          |         |          |  |
|-----------------|-----------|---------|----------|----------|---------|----------|--|
|                 | K         | L       |          |          |         |          |  |
|                 | per Year  | per Day | per Hour | per Year | per Day | per Hour |  |
| VMT (miles)     | 21,244.85 | 239.81  | 26.65    | 3,974.18 | 86.69   | 8.67     |  |
| VMT (%)         | 0.00%     | 0.00%   | 0.00%    | 2.27%    | 4.73%   | 4.19%    |  |
| TSP - Dust      | 782.24    | 8.83    | 0.98     | -        | -       | -        |  |
| PM10 - Dust     | 156.45    | 1.77    | 0.20     | 3,362.76 | 73.35   | 7.34     |  |
| PM2.5 - Dust    | 38.40     | 0.43    | 0.05     | 336.28   | 7.34    | 0.73     |  |
| TSP - Exhaust   | 33.08     | 0.37    | 0.04     | 88.96    | 1.94    | 0.19     |  |
| PM10 - Exhaust  | 33.08     | 0.37    | 0.04     | 88.96    | 1.94    | 0.19     |  |
| PM2.5 - Exhaust | 30.43     | 0.34    | 0.04     | 81.85    | 1.79    | 0.18     |  |
| НС              | 30.50     | 0.34    | 0.04     | 154.27   | 3.37    | 0.34     |  |
| NOx             | 575.72    | 6.50    | 0.72     | 2,848.98 | 62.14   | 6.21     |  |
| со              | 138.17    | 1.56    | 0.17     | 1,858.54 | 40.54   | 4.05     |  |
| SOx             | 0.75      | 0.01    | 0.00     | 0.12     | 0.00    | 0.00     |  |
| CO2 (tons)      | -         | -       | -        | 297.31   | -       | -        |  |

| increment       |          |         |          |      |            |         |          |
|-----------------|----------|---------|----------|------|------------|---------|----------|
|                 | K        |         |          |      | L          |         |          |
|                 | per Year | per Day | per Hour |      | per Year   | per Day | per Hour |
| VMT (miles)     | 823.     | 71      | 0.81     | 0.09 | -1,409.53  | 20.97   | 2.10     |
| TSP - Dust      | 30.3     | 33      | 0.03     | 0.00 | -20,024.68 | -244.45 | -24.44   |
| PM10 - Dust     | 6.0      | 07      | 0.01     | 0.00 | -2,331.53  | 3.84    | 0.38     |
| PM2.5 - Dust    | 1.4      | 49      | 0.00     | 0.00 | -233.15    | 0.38    | 0.04     |
| TSP - Exhaust   | 1.3      | 28      | 0.00     | 0.00 | -31.55     | 0.47    | 0.05     |
| PM10 - Exhaust  | 1.3      | 28      | 0.00     | 0.00 | -31.55     | 0.47    | 0.05     |
| PM2.5 - Exhaust | 1.:      | 18      | 0.00     | 0.00 | -29.03     | 0.43    | 0.04     |
| HC              | 1.:      | 18      | 0.00     | 0.00 | -54.71     | 0.81    | 0.08     |
| NOx             | 22.:     | 32      | 0.02     | 0.00 | -1,010.45  | 15.03   | 1.50     |
| со              | 5.3      | 36      | 0.01     | 0.00 | -659.17    | 9.81    | 0.98     |
| SOx             | 0.0      | 03      | 0.00     | 0.00 | -0.04      | 0.00    | 0.00     |
| CO2 (tons)      |          | -       | -        | -    | -105.45    | -       | -        |

|                 | М        |       |        |          |       | Total On-site |          |          |
|-----------------|----------|-------|--------|----------|-------|---------------|----------|----------|
|                 | per Year | pe    | er Day | per Hour |       | per Year      | per Day  | per Hour |
| VMT (miles)     |          | -     | -      |          | -     | 133,589.61    | 1,554.73 | 174.67   |
| VMT (%)         |          | 0.00% | 0.00%  |          | 0.00% | 100.00%       | 100.00%  | 100.00%  |
| TSP - Dust      |          | -     | -      |          | -     | 496,885.92    | 5,782.81 | 649.67   |
| PM10 - Dust     |          | -     | -      |          | -     | 141,296.45    | 1,644.42 | 184.74   |
| PM2.5 - Dust    |          | -     | -      |          | -     | 14,129.64     | 164.44   | 18.47    |
| TSP - Exhaust   |          | -     | -      |          | -     | 2,990.42      | 34.80    | 3.91     |
| PM10 - Exhaust  |          | -     | -      |          | -     | 2,990.42      | 34.80    | 3.91     |
| PM2.5 - Exhaust |          | -     | -      |          | -     | 2,751.18      | 32.02    | 3.60     |
| HC              |          | -     | -      |          | -     | 5,185.65      | 60.35    | 6.78     |
| NOx             |          | -     | -      |          | -     | 95,766.76     | 1,114.54 | 125.21   |
| СО              |          | -     | -      |          | -     | 62,473.56     | 727.07   | 81.68    |
| SOx             |          | -     | -      |          | -     | 3.99          | 0.05     | 0.01     |
| CO2             |          | -     | -      |          | -     | 9,994         |          |          |

Project 1.31

|                 |          |         |          |       | 1.51          |          |          |
|-----------------|----------|---------|----------|-------|---------------|----------|----------|
|                 | М        |         |          |       | Total On-site |          |          |
|                 | per Year | per Day | per Hour |       | per Year      | per Day  | per Hour |
| VMT (miles)     |          | -       | -        | -     | 175,135.46    | 1,834.53 | 207.12   |
| VMT (%)         |          | 0.00%   | 0.00%    | 0.00% | 100.00%       | 100.00%  | 100.00%  |
| TSP - Dust      |          | -       | -        | -     | 509,306.85    | 5,200.88 | 590.50   |
| PM10 - Dust     |          | -       | -        | -     | 148,191.27    | 1,552.29 | 175.25   |
| PM2.5 - Dust    |          | -       | -        | -     | 14,819.13     | 155.23   | 17.53    |
| TSP - Exhaust   |          | -       | -        | -     | 3,818.66      | 38.85    | 4.41     |
| PM10 - Exhaust  |          | -       | -        | -     | 3,818.66      | 38.85    | 4.41     |
| PM2.5 - Exhaust |          | -       | -        | -     | 3,513.17      | 35.74    | 4.06     |
| HC              |          | -       | -        | -     | 6,798.37      | 71.21    | 8.04     |
| NOx             |          | -       | -        | -     | 125,549.85    | 1,315.13 | 148.48   |
| СО              |          | -       | -        | -     | 76,303.04     | 761.11   | 86.54    |
| SOx             |          | -       | -        | -     | 5.23          | 0.05     | 0.01     |
| CO2 (tons)      |          | -       | -        | -     | 13,101.83     | -        | -        |

| increment       |          |         |          |    |             |         |          |
|-----------------|----------|---------|----------|----|-------------|---------|----------|
|                 | М        |         |          | To | tal On-site |         |          |
|                 | per Year | per Day | per Hour | pe | r Year      | per Day | per Hour |
| VMT (miles)     |          | -       | -        | -  | 41,545.85   | 279.80  | 32.45    |
| TSP - Dust      |          | -       | -        | -  | 12,420.94   | -581.94 | -59.17   |
| PM10 - Dust     |          | -       | -        | -  | 6,894.83    | -92.13  | -9.49    |
| PM2.5 - Dust    |          | -       | -        | -  | 689.48      | -9.21   | -0.95    |
| TSP - Exhaust   |          | -       | -        | -  | 828.25      | 4.04    | 0.50     |
| PM10 - Exhaust  |          | -       | -        | -  | 828.25      | 4.04    | 0.50     |
| PM2.5 - Exhaust |          | -       | -        | -  | 761.99      | 3.72    | 0.46     |
| HC              |          | -       | -        | -  | 1,612.72    | 10.86   | 1.26     |
| NOx             |          | -       | -        | -  | 29,783.09   | 200.58  | 23.26    |
| со              |          | -       | -        | -  | 13,829.48   | 34.03   | 4.85     |
| SOx             |          | -       | -        | -  | 1.24        | 0.01    | 0.00     |
| CO2 (tons)      |          | -       | -        | -  | 3,108.03    | -       | -        |

|                 | Total Offsite |              |              | Total        |              |              |
|-----------------|---------------|--------------|--------------|--------------|--------------|--------------|
|                 | per Year      | per Day      | per Hour     | per Year     | per Day      | per Hour     |
| VMT (miles)     | 3,787,945.55  | 3,787,945.55 | 3,787,945.55 | 3,921,535.16 | 3,789,500.28 | 3,788,120.22 |
| VMT (%)         | 100.00%       | 100.00%      | 100.00%      |              |              |              |
| TSP - Dust      | 139,473.29    | 139,473.29   | 139,473.29   | 636,359.21   | 145,256.10   | 140,122.96   |
| PM10 - Dust     | 27,894.66     | 27,894.66    | 27,894.66    | 169,191.10   | 29,539.08    | 28,079.40    |
| PM2.5 - Dust    | 6,846.87      | 6,846.87     | 6,846.87     | 20,976.52    | 7,011.31     | 6,865.35     |
| TSP - Exhaust   | 5,898.06      | 5,898.06     | 5,898.06     | 8,888.47     | 5,932.86     | 5,901.97     |
| PM10 - Exhaust  | 5,898.06      | 5,898.06     | 5,898.06     | 8,888.47     | 5,932.86     | 5,901.97     |
| PM2.5 - Exhaust | 5,426.21      | 5,426.21     | 5,426.21     | 8,177.40     | 5,458.23     | 5,429.81     |
| HC              | 5,437.75      | 5,437.75     | 5,437.75     | 10,623.40    | 5,498.10     | 5,444.53     |
| NOx             | 102,650.55    | 102,650.55   | 102,650.55   | 198,417.31   | 103,765.10   | 102,775.77   |
| СО              | 24,635.25     | 24,635.25    | 24,635.25    | 87,108.81    | 25,362.33    | 24,716.94    |
| SOx             | 133.92        | 133.92       | 133.92       | 137.90       | 133.96       | 133.92       |
| CO2             | 7,067.22      | 7,067.22     | 7,067.22     | 17,061.02    | 7,067.22     | 7,067.22     |

#### **Project**

| rioject         |               |         |          |      |              |          |          |
|-----------------|---------------|---------|----------|------|--------------|----------|----------|
|                 | Total Offsite |         |          |      | Total        |          |          |
|                 | per Year      | per Day | per Hour |      | per Year     | per Day  | per Hour |
| VMT (miles)     | 3,940,736.00  | -       |          | -    | 4,115,871.46 | 1,834.53 | 207.12   |
| VMT (%)         | 100.00%       | 100.00% | 100      | .00% |              |          |          |
| TSP - Dust      | 145,099.08    | -       |          | -    | 654,405.93   | 5,200.88 | 590.50   |
| PM10 - Dust     | 29,019.82     | -       |          | -    | 177,211.09   | 1,552.29 | 175.25   |
| PM2.5 - Dust    | 7,123.05      | -       |          | -    | 21,942.17    | 155.23   | 17.53    |
| TSP - Exhaust   | 6,135.96      | -       |          | -    | 9,954.63     | 38.85    | 4.41     |
| PM10 - Exhaust  | 6,135.96      | -       |          | -    | 9,954.63     | 38.85    | 4.41     |
| PM2.5 - Exhaust | 5,645.08      | -       |          | -    | 9,158.26     | 35.74    | 4.06     |
| HC              | 5,657.09      | -       |          | -    | 12,455.46    | 71.21    | 8.04     |
| NOx             | 106,791.06    | -       |          | -    | 232,340.91   | 1,315.13 | 148.48   |
| со              | 25,628.94     | -       |          | -    | 101,931.98   | 761.11   | 86.54    |
| SOx             | 139.32        | -       |          | -    | 144.54       | 0.05     | 0.01     |
| CO2 (tons)      | 7,339.35      | -       |          | -    | 20,441.18    | -        | -        |

| increment       |               |               |               |            |               |               |
|-----------------|---------------|---------------|---------------|------------|---------------|---------------|
|                 | Total Offsite |               |               | Total      |               |               |
|                 | per Year      | per Day       | per Hour      | per Year   | per Day       | per Hour      |
| VMT (miles)     | 152,790.45    | -3,787,945.55 | -3,787,945.55 | 194,336.30 | -3,787,665.75 | -3,787,913.10 |
| TSP - Dust      | 5,625.79      | -139,473.29   | -139,473.29   | 18,046.73  | -140,055.23   | -139,532.46   |
| PM10 - Dust     | 1,125.16      | -27,894.66    | -27,894.66    | 8,019.99   | -27,986.79    | -27,904.15    |
| PM2.5 - Dust    | 276.18        | -6,846.87     | -6,846.87     | 965.66     | -6,856.08     | -6,847.82     |
| TSP - Exhaust   | 237.90        | -5,898.06     | -5,898.06     | 1,066.15   | -5,894.01     | -5,897.55     |
| PM10 - Exhaust  | 237.90        | -5,898.06     | -5,898.06     | 1,066.15   | -5,894.01     | -5,897.55     |
| PM2.5 - Exhaust | 218.87        | -5,426.21     | -5,426.21     | 980.86     | -5,422.49     | -5,425.75     |
| HC              | 219.34        | -5,437.75     | -5,437.75     | 1,832.06   | -5,426.89     | -5,436.49     |
| NOx             | 4,140.51      | -102,650.55   | -102,650.55   | 33,923.60  | -102,449.97   | -102,627.29   |
| СО              | 993.69        | -24,635.25    | -24,635.25    | 14,823.17  | -24,601.22    | -24,630.40    |
| SOx             | 5.40          | -133.92       | -133.92       | 6.64       | -133.91       | -133.92       |
| CO2 (tons)      | 272.13        | -7,067.22     | -7,067.22     | 3,380.17   | -7,067.22     | -7,067.22     |

|                     | VOL1      | VOL2      | VOL3     | VOL4      | VOL5      | VOL6     | VOL7     | VOL8      | VOL9     | VOL10    |
|---------------------|-----------|-----------|----------|-----------|-----------|----------|----------|-----------|----------|----------|
| altMitTSPann        |           | -8.14E-01 |          | -3.00E-01 |           | 1.14E-01 | 2.60E-01 |           | 2.06E-01 | 7.84E-01 |
| altMitTSPday        |           | -2.97E+00 |          |           |           |          |          |           |          | 2.86E+00 |
| altMitPM10ann       |           | -4.10E-01 |          |           |           |          |          |           |          | 3.95E-01 |
| altMitPM10day       | -4.29E-01 | -1.50E+00 | 0.00E+00 | -5.40E-01 | -5.40E-01 | 7.66E-02 | 4.77E-01 |           |          | 1.44E+00 |
| altMitPM25ann       | -4.03E-02 | -1.27E-01 | 0.00E+00 | -5.23E-02 | -5.23E-02 | 5.06E-03 | 3.03E-02 | 1.03E-03  | 1.45E-02 | 9.38E-02 |
| altMitPM25day       | -1.47E-01 | -4.62E-01 | 0.00E+00 | -1.91E-01 | -1.91E-01 | 1.85E-02 | 1.11E-01 | 3.76E-03  | 5.31E-02 | 3.42E-01 |
|                     |           |           |          |           |           |          |          |           |          |          |
| TSPann (lb/yr/src)  | -24344.2  | -56602.5  | 0        | -20836.8  | -20836.8  | 7899.8   | 18102.1  | 345.62535 | 14331.7  | 54510.2  |
| TSPday (lb/day/src) | -243.442  | -566.025  | 0        | -208.368  | -208.368  | 78.998   | 181.021  | 3.4562535 | 143.317  | 545.102  |
| PM10ann (lb/yr/sro  | -8167.11  | -28507.7  | 0        | -10281.8  | -10281.8  | 1459.44  | 9077.02  | 180.3284  | 2714.3   | 27434.8  |
| PM10day (lb/day/s   | -81.6711  | -285.077  | 0        | -102.818  | -102.818  | 14.5944  | 90.7702  | 1.803284  | 27.143   | 274.348  |
| PM25ann (lb/yr/sro  | -2803.9   | -8798.71  | 0        | -3636.89  | -3636.89  | 351.818  | 2104.94  | 71.580398 | 1011.45  | 6518.57  |
| PM25day (lb/day/s   | -28.039   | -87.9871  | 0        | -36.3689  | -36.3689  | 3.51818  | 21.0494  | 0.715804  | 10.1145  | 65.1857  |
|                     |           |           |          |           |           |          |          |           |          |          |
|                     |           |           |          |           |           |          |          |           |          |          |
| TSPann (lb/yr)      | -24,344   | -56,602   | 0        | -20,837   | -20,837   | 7,900    | 18,102   | 346       | 14,332   | 54,510   |
| TSPday (lb/day)     | -243      | -566      | 0        | -208      | -208      | 79       | 181      | 3         | 143      | 545      |
| PM10ann (lb/yr)     | -8,167    | -28,508   | 0        | -10,282   | -10,282   | 1,459    | 9,077    | 180       | 2,714    | 27,435   |
| PM10day (lb/day)    | -82       | -285      | 0        | -103      | -103      | 15       | 91       | 2         | 27       | 274      |
| PM25ann (lb/yr)     | -2,804    | -8,799    | 0        | -3,637    | -3,637    | 352      | 2,105    | 72        | 1,011    | 6,519    |
| PM25day (lb/day)    | -28       | -88       | 0        | -36       | -36       | 4        | 21       | 1         | 10       | 65       |
|                     |           |           |          |           |           |          |          |           |          |          |
| HC (lb/yr)          | -640      | -554      | 0        | -16       | -16       | 23       | 74       | 37        | 234      | 562      |
| NOx (lb/yr)         | -9,898    | -8,146    | 0        | -240      | -240      | 174      | 1,097    | 539       | 5,164    | 8,263    |
| CO (lb/yr)          | -14,201   | -5,306    | 0        | -156      | -156      | 112      | 516      | 351       | 5,533    | 5,382    |
| SOx (lb/yr)         | -0.305    | -0.292    | 0        | -0.009    | -0.009    | 0.006    | 0.032    | 0.019     | 0.552    | 0.296    |
| CO2 (ton/yr)        | -584      | -769      | 0        | -23       | -23       | 25       | 85       | 51        | 593      |          |
| TSP (lb/yr)         | -24,344   | -56,602   | 0        | -20,837   | -20,837   | •        | 18,102   | 346       | 14,332   | ,        |
| PM10 (lb/yr)        | -8,167    | -28,508   | 0        | -10,282   | -10,282   | -        | 9,077    | 180       | 2,714    | 27,435   |
| PM2.5 (lb/yr)       | -2,804    | -8,799    | 0        | -3,637    | -3,637    | 352      | 2,105    | 72        | 1,011    | 6,519    |

| TSPann (lb/yr/src) TSPann (lb/yr) |                     |          |          |          |          |           |           |           |           |          |           |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|----------|-----------|----------|
| altMitTSPday altMitPM10ann altMitPM25ann alt |                     |          |          |          |          |           |           | I         | •         |          | _         |          |
| altMitPM10ann altMitPM10day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | altMitTSPann        | 1.12E-03 | 1.13E-02 | 9.15E-03 | 1.64E-02 |           |           |           |           | 5.68E-06 | -1.44E-02 | 0.00E+00 |
| altMitPM10day altMitPM25ann altMitPM25ann altMitPM25ann altMitPM25ann altMitPM25day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | altMitTSPday        | 2.21E-03 | 2.99E-02 | 1.97E-02 | 3.84E-02 | -9.61E-03 | -7.92E-03 | -1.36E-02 | 3.30E-03  | 2.04E-06 | -6.40E-02 | 0.00E+00 |
| altMitPM25ann altMitPM25ann altMitPM25day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | altMitPM10ann       |          |          |          |          | 3.91E-04  | -1.40E-03 | -7.65E-04 | -1.53E-03 | 1.32E-06 | -1.70E-03 | 0.00E+00 |
| Section   Sect   | altMitPM10day       | 6.48E-04 | 8.66E-03 | 5.73E-03 | 1.12E-02 | -2.73E-03 | -2.29E-03 | -3.86E-03 | 1.02E-03  | 4.74E-07 | 1.13E-03  | 0.00E+00 |
| TSPann (lb/yr/src) TSPann (lb/yr) TSPann (lb/yr | altMitPM25ann       | 4.23E-05 | 4.00E-04 | 3.28E-04 | 5.85E-04 | 6.16E-05  | -1.65E-04 | -7.33E-05 | -1.70E-04 | 4.80E-07 | -1.89E-04 | 0.00E+00 |
| TSPday (lb/day/src PM10ann (lb/yr/srd PM25ann (lb/yr/srd PM25ann (lb/yr/srd PM25ann (lb/yr/srd PM25ann (lb/yr) PM10ann (lb/yr) PM25ann (lb/yr) PM25ann (lb/yr) PM25and (lb/day) PM25ann (lb/yr) PM25ann (lb/yr) PM25ann (lb/yr) PM25and (lb/day) PM25ann (lb/yr) PM2 | altMitPM25day       | 8.80E-05 | 1.06E-03 | 7.22E-04 | 1.39E-03 | -2.72E-04 | -2.76E-04 | -3.85E-04 | 1.93E-04  | 1.72E-07 | 2.14E-04  | 0.00E+00 |
| TSPday (lb/day/src PM10ann (lb/yr/srd PM25ann (lb/yr/srd PM25ann (lb/yr/srd PM25ann (lb/yr/srd PM25ann (lb/yr) PM10ann (lb/yr) PM25ann (lb/yr) PM25ann (lb/yr) PM25and (lb/day) PM25ann (lb/yr) PM25ann (lb/yr) PM25ann (lb/yr) PM25and (lb/day) PM25ann (lb/yr) PM2 |                     |          |          |          |          |           |           |           |           |          |           |          |
| PM10ann (lb/yr/srd 22.71775 227.62 184.695 330.27 27.152115 -97.5776 -53.1691 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09185 -118.154 0.09180 -106.31 0.09180 -118.154 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 -106.31 0.09180 - | TSPann (lb/yr/src)  | 77.83195 | 784.911  | 636.195  | 1137.98  | 90.676831 | -337.861  | -187.66   | -370.281  | 0.39515  | -1002.81  | 0        |
| PM10day (lb/day/s   0.12352   1.65021   1.09171   2.12589   -0.520316   -0.43685   -0.73542   0.19384   9E-05   0.21544   0.4075   0.09184   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.12352   0.051877   0.05248   -0.07332   0.0367   0.3336   -13.1091   0.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TSPday (lb/day/src) | 0.420822 | 5.68721  | 3.75225  | 7.31431  | -1.83023  | -1.50926  | -2.58687  | 0.62854   | 0.00039  | -12.1988  | 0        |
| PM25ann (lb/yr/srd PM25day (lb/day/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PM10ann (lb/yr/srd  | 22.71775 | 227.62   | 184.695  | 330.27   | 27.152115 | -97.5776  | -53.1691  | -106.31   | 0.09185  | -118.154  | 0        |
| PM25day (lb/day/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PM10day (lb/day/s   | 0.12352  | 1.65021  | 1.09171  | 2.12589  | -0.520316 | -0.43685  | -0.73542  | 0.19384   | 9E-05    | 0.21544   | 0        |
| TSPann (lb/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PM25ann (lb/yr/src  | 2.94226  | 27.8257  | 22.8057  | 40.6703  | 4.2814437 | -11.4789  | -5.09388  | -11.795   | 0.03336  | -13.1091  | 0        |
| TSPday (lb/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM25day (lb/day/s   | 0.016767 | 0.2028   | 0.13748  | 0.26525  | -0.051877 | -0.05248  | -0.07332  | 0.0367    | 3.3E-05  | 0.04079   | 0        |
| TSPday (lb/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |          |          |          |          |           |           |           |           |          |           |          |
| TSPday (lb/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |          |          |          |          |           |           |           |           |          |           |          |
| TSPday (lb/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |          |          |          |          |           |           |           |           |          |           |          |
| TSPday (lb/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |          |          |          |          |           |           |           |           |          |           |          |
| PM10ann (lb/yr)         863         3,870         2,586         17,835         8,879         -19,906         -213         -3,827         7         -2,363         0           PM10day (lb/day)         5         28         15         115         -170         -89         -3         7         0         4         0           PM25ann (lb/yr)         112         473         319         2,196         1,400         -2,342         -20         -425         3         -262         0           PM25day (lb/day)         1         3         2         14         -17         -11         0         1         0         1         0           HC (lb/yr)         54         182         128         873         1,083         -566         2         -89         1         -55         0           NOx (lb/yr)         995         3,362         2,371         16,119         20,002         -10,454         35         -1,636         22         -1,010         0           CO (lb/yr)         649         2,193         1,547         10,515         13,048         -6,820         23         -1,068         5         -659         0           SOx (lb/yr)         0.041 <td>TSPann (lb/yr)</td> <td>2,958</td> <td>13,343</td> <td>8,907</td> <td>61,451</td> <td>29,651</td> <td>-68,924</td> <td>-751</td> <td>-13,330</td> <td>32</td> <td>-20,056</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TSPann (lb/yr)      | 2,958    | 13,343   | 8,907    | 61,451   | 29,651    | -68,924   | -751      | -13,330   | 32       | -20,056   | 0        |
| PM10day (lb/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TSPday (lb/day)     | 16       | 97       | 53       | 395      | -598      | -308      | -10       | 23        | 0        | -244      | 0        |
| PM25ann (lb/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM10ann (lb/yr)     | 863      | 3,870    | 2,586    | 17,835   | 8,879     | -19,906   | -213      | -3,827    | 7        | -2,363    | 0        |
| PM25day (lb/day)  1 3 2 14 -17 -11 0 1 0 1 0 1  HC (lb/yr)  54 182 128 873 1,083 -566 2 -89 1 -55 0  NOx (lb/yr)  995 3,362 2,371 16,119 20,002 -10,454 35 -1,636 22 -1,010 0  CO (lb/yr)  649 2,193 1,547 10,515 13,048 -6,820 23 -1,068 5 -659 0  SOx (lb/yr)  0.041 0.140 0.099 0.671 0.833 -0.435 0.001 -0.068 0.029 -0.042 0  CO2 (ton/yr)  104 351 247 1,682 2,087 -1,091 4 -171 0 -105 0  TSP (lb/yr)  2,958 13,343 8,907 61,451 29,651 -68,924 -751 -13,330 32 -20,056 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PM10day (lb/day)    | 5        | 28       | 15       | 115      | -170      | -89       | -3        | 7         | 0        | 4         | 0        |
| HC (lb/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PM25ann (lb/yr)     | 112      | 473      | 319      | 2,196    | 1,400     | -2,342    | -20       | -425      | 3        | -262      | 0        |
| NOx (lb/yr)       995       3,362       2,371       16,119       20,002       -10,454       35       -1,636       22       -1,010       0         CO (lb/yr)       649       2,193       1,547       10,515       13,048       -6,820       23       -1,068       5       -659       0         SOx (lb/yr)       0.041       0.140       0.099       0.671       0.833       -0.435       0.001       -0.068       0.029       -0.042       0         CO2 (ton/yr)       104       351       247       1,682       2,087       -1,091       4       -171       0       -105       0         TSP (lb/yr)       2,958       13,343       8,907       61,451       29,651       -68,924       -751       -13,330       32       -20,056       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PM25day (lb/day)    | 1        | 3        | 2        | 14       | -17       | -11       | 0         | 1         | 0        | 1         | 0        |
| NOx (lb/yr)       995       3,362       2,371       16,119       20,002       -10,454       35       -1,636       22       -1,010       0         CO (lb/yr)       649       2,193       1,547       10,515       13,048       -6,820       23       -1,068       5       -659       0         SOx (lb/yr)       0.041       0.140       0.099       0.671       0.833       -0.435       0.001       -0.068       0.029       -0.042       0         CO2 (ton/yr)       104       351       247       1,682       2,087       -1,091       4       -171       0       -105       0         TSP (lb/yr)       2,958       13,343       8,907       61,451       29,651       -68,924       -751       -13,330       32       -20,056       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |          |          |          |          |           |           |           |           |          |           |          |
| CO (lb/yr) 649 2,193 1,547 10,515 13,048 -6,820 23 -1,068 5 -659 0 SOx (lb/yr) 0.041 0.140 0.099 0.671 0.833 -0.435 0.001 -0.068 0.029 -0.042 0 CO2 (ton/yr) 104 351 247 1,682 2,087 -1,091 4 -171 0 -105 0 TSP (lb/yr) 2,958 13,343 8,907 61,451 29,651 -68,924 -751 -13,330 32 -20,056 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HC (lb/yr)          | 54       | 182      | 128      | 873      | 1,083     | -566      | 2         | -89       | 1        | -55       | 0        |
| SOx (lb/yr)       0.041       0.140       0.099       0.671       0.833       -0.435       0.001       -0.068       0.029       -0.042       0         CO2 (ton/yr)       104       351       247       1,682       2,087       -1,091       4       -171       0       -105       0         TSP (lb/yr)       2,958       13,343       8,907       61,451       29,651       -68,924       -751       -13,330       32       -20,056       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NOx (lb/yr)         | 995      | 3,362    | 2,371    | 16,119   | 20,002    | -10,454   | 35        | -1,636    | 22       | -1,010    | 0        |
| CO2 (ton/yr) 104 351 247 1,682 2,087 -1,091 4 -171 0 -105 0<br>TSP (lb/yr) 2,958 13,343 8,907 61,451 29,651 -68,924 -751 -13,330 32 -20,056 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO (lb/yr)          | 649      | 2,193    | 1,547    | 10,515   | 13,048    | -6,820    | 23        | -1,068    | 5        | -659      | 0        |
| CO2 (ton/yr) 104 351 247 1,682 2,087 -1,091 4 -171 0 -105 0<br>TSP (lb/yr) 2,958 13,343 8,907 61,451 29,651 -68,924 -751 -13,330 32 -20,056 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOx (lb/yr)         | 0.041    | 0.140    | 0.099    | 0.671    | 0.833     | -0.435    | 0.001     | -0.068    | 0.029    | -0.042    | 0        |
| TSP (lb/yr) 2,958 13,343 8,907 61,451 29,651 -68,924 -751 -13,330 32 -20,056 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | 104      |          |          | 1,682    |           |           |           |           |          | -105      | 0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 2,958    | 13,343   |          | -        |           |           | -751      | -13,330   | 32       | -20,056   | 0        |
| 1 10110 (10/91)   003 3,070 2,300 17,033 0,073 -13,300 -213 -3,027 7 -2,303 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PM10 (lb/yr)        | 863      | 3,870    | 2,586    | 17,835   | 8,879     | -19,906   | -213      | -3,827    | 7        | -2,363    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM2.5 (lb/yr)       |          | -        | -        | -        |           | -         |           | •         |          |           |          |

|                     | Total Sentinel Butterfield |     |     | Total White Knob |        |      |
|---------------------|----------------------------|-----|-----|------------------|--------|------|
| altMitTSPann        |                            |     |     |                  |        |      |
| altMitTSPday        |                            |     |     |                  |        |      |
| altMitPM10ann       |                            |     |     |                  |        |      |
| altMitPM10day       |                            |     |     |                  |        |      |
| altMitPM25ann       |                            |     |     |                  |        |      |
| altMitPM25day       |                            |     |     |                  |        |      |
| TSPann (lb/yr/src)  |                            |     |     |                  |        |      |
| TSPday (lb/day/src) |                            |     |     |                  |        |      |
| PM10ann (lb/yr/srd  |                            |     |     |                  |        |      |
| PM10day (lb/day/s   |                            |     |     |                  |        |      |
| PM25ann (lb/yr/sro  |                            |     |     |                  |        |      |
| PM25day (lb/day/s   |                            |     |     |                  |        |      |
|                     |                            |     |     |                  |        |      |
|                     |                            |     |     |                  |        |      |
| TSPann (lb/yr)      | 203,599                    | 835 | 141 | -224,930         | -1,448 | -227 |
| TSPday (lb/day)     | 835                        | -   | -   | -1,755           | -      | -    |
| PM10ann (lb/yr)     | 73,438                     | 387 | 65  | -83,335          | -561   | -94  |
| PM10day (lb/day)    | 387                        | -   | -   | -650             | -      | _    |
| PM25ann (lb/yr)     | 14,207                     | 100 | 17  | -21,905          | -187   | -31  |
| PM25day (lb/day)    | 100                        | -   | -   | -197             | -      | -    |
| HC (lb/yr)          | 3,227                      | 18  | 3   | -1,937           | -10    | -2   |
| NOx (lb/yr)         | 57,912                     | 311 | 44  | -31,624          | -146   | -27  |
| CO (lb/yr)          | 39,735                     | 202 | 30  | -28,365          | -173   | -30  |
| SOx (lb/yr)         | 3                          | 0   | 0   | -1               | -      | -    |
| CO2 (ton/yr)        | 5,980                      | 15  | 3   | -2,765           | -14    | -2   |
| TSP (lb/yr)         | 203,599                    | 835 | 141 | -224,930         | -1,448 | -227 |
| PM10 (lb/yr)        | 73,438                     | 387 | 65  | -83,335          | -561   | -94  |
| PM2.5 (lb/yr)       | 14,207                     | 100 | 17  | -21,905          | -187   | -31  |

|                     | Total Processing Plant |    |    | Total Project w/o White Knob |     |     |
|---------------------|------------------------|----|----|------------------------------|-----|-----|
| altMitTSPann        |                        |    |    |                              |     |     |
| altMitTSPday        |                        |    |    |                              |     |     |
| altMitPM10ann       |                        |    |    |                              |     |     |
| altMitPM10day       |                        |    |    |                              |     |     |
| altMitPM25ann       |                        |    |    |                              |     |     |
| altMitPM25day       |                        |    |    |                              |     |     |
| TSPann (lb/yr/src)  |                        |    |    |                              |     |     |
| TSPday (lb/day/src) |                        |    |    |                              |     |     |
| PM10ann (lb/yr/srd  |                        |    |    |                              |     |     |
| PM10day (lb/day/s   |                        |    |    |                              |     |     |
| PM25ann (lb/yr/sro  |                        |    |    |                              |     |     |
| PM25day (lb/day/s   |                        |    |    |                              |     |     |
|                     |                        |    |    |                              |     |     |
|                     |                        |    |    |                              |     |     |
| TSPann (lb/yr)      | 7,149                  | 69 | 12 | 210,749                      | 903 | 153 |
| TSPday (lb/day)     | 69                     | -  |    | 903                          | -   | -   |
| PM10ann (lb/yr)     | 1,247                  | 12 | 2  | 74,685                       | 398 | 67  |
| PM10day (lb/day)    | 12                     | -  | _  | 398                          | -   | _   |
| PM25ann (lb/yr)     | 331                    | 3  | 1  |                              | 104 | 17  |
| PM25day (lb/day)    | 3                      | -  | -  | 104                          | -   | -   |
|                     |                        |    |    |                              |     |     |
| HC (lb/yr)          | 25                     | 0  | 0  | 3,252                        | 18  | 3   |
| NOx (lb/yr)         | 209                    | 2  | 0  | -                            | 313 | 45  |
| CO (lb/yr)          | 134                    | 1  | 0  | -                            | 203 | 30  |
| SOx (lb/yr)         | 0                      | 0  | 0  |                              | 0   | 0   |
| CO2 (ton/yr)        | 28                     | 0  | 0  | -                            | 15  | 3   |
| TSP (lb/yr)         | 7,149                  | 69 | 12 | 210,749                      | 903 | 153 |
| PM10 (lb/yr)        | 1,247                  | 12 | 2  | 74,685                       | 398 | 67  |
| PM2.5 (lb/yr)       | 331                    | 3  | 1  | 14,538                       | 104 | 17  |

|                    | Total Project w/ White Knob |      |     | Volume Source Identifiers                    |   |
|--------------------|-----------------------------|------|-----|----------------------------------------------|---|
| altMitTSPann       |                             |      |     |                                              | 0 |
| altMitTSPday       |                             |      |     | ** DESCRSRC White Knob Crushing              | Ū |
| altMitPM10ann      |                             |      |     | 5                                            | 0 |
| altMitPM10day      |                             |      |     | ** DESCRSRC White Knob Pit                   | • |
| altMitPM25ann      |                             |      |     |                                              | 0 |
| altMitPM25day      |                             |      |     | ** DESCRSRC White Ridge Pit                  |   |
| ,                  |                             |      |     | _                                            | 0 |
| TSPann (lb/yr/src) |                             |      |     |                                              |   |
| TSPday (lb/day/srd |                             |      |     |                                              |   |
| PM10ann (lb/yr/sr  |                             |      |     |                                              |   |
| PM10day (lb/day/s  |                             |      |     |                                              |   |
| PM25ann (lb/yr/sr  |                             |      |     |                                              |   |
| PM25day (lb/day/s  | S                           |      |     |                                              |   |
|                    |                             |      |     |                                              |   |
|                    |                             |      |     |                                              |   |
|                    |                             |      |     |                                              |   |
| TSPann (lb/yr)     | -14,182                     | -544 | -74 | ** DESCRSRC OB1                              |   |
| TSPday (lb/day)    | -852                        | -    | -   | LOCATION VOL5 VOLUME 498786.819 3802108.559  | 0 |
| PM10ann (lb/yr)    | -8,650                      | -163 | -27 | ** DESCRSRC OB2                              |   |
| PM10day (lb/day)   | -252                        | -    | -   | LOCATION VOL6 VOLUME 505294.247 3804607.151  | 0 |
| PM25ann (lb/yr)    | -7,367                      | -83  | -14 | ** DESCRSRC Processing Plant                 |   |
| PM25day (lb/day)   | -94                         | -    | -   | LOCATION VOL7 VOLUME 504322.000 3798695.000  | 0 |
|                    |                             |      |     | ** DESCRSRC Butterfield Pit                  |   |
| HC (lb/yr)         | 1,316                       | 8    | 1   | LOCATION VOL8 VOLUME 505430.000 3797960.000  | 0 |
| NOx (lb/yr)        | 26,497                      | 167  | 18  | ** DESCRSRC B5 Pad Expansion                 |   |
| CO (lb/yr)         | 11,504                      | 30   | -1  | ** DESCRSRC Butterfield-Sentinel Crushing    |   |
| SOx (lb/yr)        | 2                           | 0    | 0   | LOCATION VOL10 VOLUME 505808.000 3798770.000 | ( |
| CO2 (ton/yr)       | 3,243                       | 1    | 0   | ** DESCRSRC Sentinel Pit                     |   |
| TSP (lb/yr)        | -14,182                     | -544 | -74 |                                              |   |
| PM10 (lb/yr)       | -8,650                      | -163 | -27 |                                              |   |
| PM2.5 (lb/yr)      | -7,367                      | -83  | -14 |                                              |   |





#### 8.0 CLASS I AREA ANALYSIS

As discussed in Section 2.0, this Project is not subject to either PSD or a conformity analysis. This section discusses the Class I area analysis, which is a CEQA/NEPA requirement.

For both the construction and operational phases, the emission increase associated with the mine expansion is less than 25 tpy of  $NO_x$ , less than 15 tpy of  $PM_{10}$ , and less than 2 tpy of  $PM_{2.5}$ , and the Project will be below the MDAQMD and CEQA significance thresholds. The  $SO_2$  increase associated with the Project is less than 0.05 tpy and is considered negligible.

For all of the discussion in Section 8.0, we are using the project emissions increase of 0.1 tons/year for  $NO_x$  emissions and 15 tons/year for  $PM_{10}$  emissions (rounded up from 14.2 tons/year, for simplicity).

# 8.1 Federal Land Manager (FLM) Requirements for Class I Areas

Class I areas are designated in 40 CFR Part 81 and are defined as areas of special national or regional value from a natural, scenic, recreational, or historic perspective. Mandatory federal Class I areas include the following areas in existence on August 7, 1977:

- International parks;
- National wilderness areas that exceed 5,000 acres in size:
- National memorial parks that exceed 5,000 acres in size; and
- National parks that exceed 6,000 acres in size.

These areas are administered by the National Park Service (NPS), the USFS, or the United States Fish and Wildlife Service (USFWS). These FLMs are also responsible for evaluating a project's air quality impacts in the Class I areas and may make recommendations to the permitting agency to approve or deny permit applications. The FLMs are also responsible for preparing NEPA documents for sources located on federal lands. The FLM is typically consulted prior to the preparation of the NEPA document, which allows the FLM to assess the need for a Class I area impact analysis and provides the source the opportunity to provide their own analysis and data to support the NEPA process.

The FLM has authority under the CAA to require impact analyses if any source is thought to impact the air quality related values (AQRVs) in a Class I area. Class I area impact analyses were historically performed for proposed projects located within 100 kilometers (km) of a Class I area, although this has been extended to 300 km for some large projects.

The nearest Class I area to the Project is the San Gorgonio Wilderness located approximately 21 km to the south of the Project in the San Bernardino National Forest. Other Class I areas located within 100 km of the facility are presented in Figure 1-5. All are under USFS management, except for Joshua Tree National Park, which is located 48 km from the site and is under the management of the NPS. Therefore, the only Class I areas that are located within 50 km of the source are the San Gorgonio Wilderness and Joshua Tree National Park.

The Class I area analysis typically consists of:

• An analysis of impacts on other AQRVs, such as impacts to flora and fauna, water, and cultural resources (AQRV impact analysis), which includes:

- ➤ A Visibility Impairment Analysis (VIA);
- > An ozone impact analysis; and
- An Acid Deposition Analysis (ADA).

# 8.2 AQRV Impact Analysis

The FLM Air Quality Related Values Work Group (FLAG) has published two FLM guidance documents, both titled Phase I Report. The first was published in December 2000 and an updated document was published in November 2010. These documents provide procedures the FLM should use for determining AQRVs in Class I areas and the procedures the applicant should use to evaluate impacts on AQRVs. To the extent practical, procedures described in the 2010 FLAG Phase I Report have been employed to demonstrate the likelihood that the Project will not result in adverse impacts to the region's Class I areas.

Prior to the establishment of FLAG and its predecessor, the Interagency Workgroup on Air Quality Modeling (IWAQM), the various FLMs had little coordination on how to implement the requirements for Class I areas. The IWAQM and FLAG reports have allowed the FLMs to act on Class I area analyses using a consistent framework. The first Phase I Report was prepared in 2000. In 2008, FLAG released a draft update to the 2000 report. The update was prepared after FLAG recognized the need to update information in the 2000 report based on new scientific data. In addition, an initial screening test was added to determine if a source would need to perform further analysis. After publishing a federal register notice requesting comments on the revised document, a draft document was finalized and published in November 2010, which is referred to hereinafter as the 2010 FLAG Phase I Report.

The 2010 FLAG Phase I Report instructs the FLMs to review each application on a case-by-case basis and take into account the following factors:

- Current conditions of sensitive AQRVs within the Class I area;
- Magnitude of emissions from the project;
- Distance of the project from the Class I area;
- Potential for source growth in the region surrounding the Class I area;
- Existing/prevailing meteorological conditions in the region; and
- Cumulative effects to AQRVs of the project with other regional sources.

The 2010 FLAG Phase I Report identifies three major AQRVs the FLM should focus on, specifically visibility impacts, ozone impacts, and deposition of nitrogen and sulfur compounds. The AQRVs are set by the FLM and are specific to each Class I Area. Wilderness area (acid **AQRVs** deposition can found **USFS** impact) be through the http://www.fs.fed.us/air/index.htm. Each major AQRV for the San Gorgonio Wilderness is presented in Appendix F. For the AQRV impact analysis, we are using the total Project emissions increase, including both mining fugitive source and mobile source Project emissions increases (as described in the previous sections).

## 8.2.1 Analysis for Class I Areas Located 50 km or More from the Site

For Class I areas located 50 km or more from the site, the 2010 FLAG Phase I Report provides a general screening method that was not available in the 2000 FLAG Phase I Report. If the total emissions of certain pollutants (tpy) divided by the distance to the Class I area in km is less than 10, no further analysis is necessary. The general screening method is applied to each area of concern: visibility impairment, ozone impacts, and acid deposition.

For MCC, the general screening method is quantified as follows:

$$(15 \text{ tpy of } PM_{10} + 0.1 \text{ tpy of } NO_x)/50 \text{ km} = 0.3 << 10$$

Based on this result, the FLMs will not be expected to require a more detailed analysis of visibility and haze impacts in Class I areas located beyond 50 km of the Project. This approach will also eliminate the requirements for ozone impacts and acid deposition impacts analysis for Class I areas beyond 50 km.

#### 8.2.2 Analysis for Class I Areas Located Within 50 km of the Site

The following sections specifically address visibility, ozone, and acid deposition impacts for Class I areas located within 50 km of the site. The following sections present results for the San Gorgonio Wilderness, which is the closest Class I area to the site. Assuming that results for San Gorgonio Wilderness show that the specified screening criteria are not exceeded, an analysis for Joshua Tree National Park is not needed because it is further away.

For sources located within 50 km of a Class I area, the general screening method described above (for Class I areas located beyond 50 km of the Project) does not apply and the FLM is to be consulted as to the availability of any initial screening methods for each analysis. If no initial screening methods are available, the next level of screening analysis (referred to as Level 1 Screening) will likely be required by the FLMs.

## 8.2.2.1 Visual Impacts Analysis

For the Class I areas less than 50 km from MCC (San Gorgonio Wilderness and a small corner of Joshua Tree National Park), the plume visibility impacts are evaluated using a tiered approach.

For the VIA, the 2010 FLAG Phase I Report calls for VISCREEN modeling as the correct screening approach (page 20). Note that the VIA screening method discussed in this section is distinct from the general screening method discussed in Section 8.2.1. The VISCREEN model uses worst-case meteorology to estimate plume visibility. The two parameters output by VISCREEN are delta E, a plume perceptibility parameter based on color differences and brightness, and the plume contrast, a spectral criterion defined for a green wavelength of 0.55 microns.

#### **VIA Summary**

The VISCREEN model was run for the Project using PM<sub>10</sub> and NO<sub>x</sub> emission rates of 15 and 25 tons/yr, both of which were conservatively set at threshold levels for the purpose of the VIA screening analysis. The nearest Class I area is the San Gorgonio Wilderness, with

the closest boundary located 21 km south of the Project. The most distant boundary in the San Gorgonio Wilderness is 42 km south of the Project.

A Level 2 VIA screening analysis was performed in accordance with the 2010 FLAG Phase I Report and USEPA guidance for VISCREEN (1992). Both meteorology and complex terrain were considered for the analysis, as follows:

- Wind direction: The boundaries of the San Gorgonio Wilderness lie within a southerly sector ranging from 153° to 204° of the Project. Since wind direction is measured at angles from which the wind is blowing, this sector corresponds to wind directions ranging from 333° to 24°. To further account for a plume angle of 11.25°, wind directions ranging from 322° to 35° were considered in the Level 2 VIA screening analysis.
- Stability class and wind speed: The VISCREEN guidance prescribes a procedure by which local hourly meteorological data is evaluated in order to identify the joint frequency of the occurrence of stability class, wind speed, and relevant wind directions. The meteorological data set used for AERMOD modeling was used in this analysis. Additionally, complex terrain was considered in selecting the stability class. A stability class of E and a wind speed of 2.0 meters per second (m/s) were selected based on this analysis, which is described below in greater detail.
- Background visual range: A background visual range of 257 km was obtained from the USFS website regarding AQRVs, and is identified as the average annual natural visibility in the wilderness area (USFS 2016).
- Other parameters: Neither the 2010 FLAG Phase I Report nor the MDAQMD have provided modeling guidelines or recommended parameters for the other VISCREEN inputs. Nearby air quality management districts do provide modeling guidelines and it is common to use other jurisdiction's guidelines if appropriate for the situation. For this analysis, we used the guidance in SCAQMD Rule 1303, Appendix B, Modeling Analysis for Visibility, which recommends that primary NO2, soot, and sulfate (SO4) emissions be set to 0 tpy, which is also the model default. The USEPA defaults for particle characteristics and background ozone were also used.

The threshold visibility values to which VISCREEN results should be compared are stated in the 2010 FLAG Phase I Report (page 21), and are the same as those listed in the USEPA guidance for VISCREEN, dated June 1992. These threshold values are 2.0 for the total color contrast (delta E) and 0.05 for contrast. The VISCREEN model output file is provided in Appendix G.

The VISCREEN modeling results are presented in Table 8-1 and show that the results inside the Class I area ("Plume") are below the threshold values ("Standard") for both delta E and contrast. A negative value for plume contrast is a valid result and indicates that the plume appears darker than the sky. The conservative nature of the VISCREEN model will ensure the proposed changes at MCC will not negatively impact visibility at nearby Class I areas.

Table 8-1: Maximum Visual Impacts Inside the Class I Area

|            |       |         |          | Delt  | a E      | Contrast |          |        |
|------------|-------|---------|----------|-------|----------|----------|----------|--------|
| Background | Theta | Azimuth | Distance | Alpha | Standard | Plume    | Standard | Plume  |
| SKY        | 10    | 158     | 42       | 10    | 2        | 0.428    | 0.05     | 0.009  |
| SKY        | 140   | 158     | 42       | 10    | 2        | 0.091    | 0.05     | -0.003 |
| TERRAIN    | 10    | 158     | 42       | 10    | 2        | 1.206    | 0.05     | 0.009  |
| TERRAIN    | 140   | 158     | 42       | 10    | 2        | 0.085    | 0.05     | 0.001  |

<u>Stability Class and Wind Speed Analysis for Use as Inputs to the VIA for Level 2</u> VISCREEN Modeling

The Level 2 VIA screening analysis consists of identifying the joint frequency distribution of wind direction, wind speed, and atmospheric stability as measured at or near the location of the emission source. As described previously, a sequential hourly 5-year meteorological data set was prepared for the purpose of performing an ambient air quality analysis of Project emissions using the AERMOD dispersion model. This 5-year data set was used for identifying the stability class and wind speed to be used in the VISCREEN analysis.

The first step in the analysis is to stratify the data set into four equal length time periods of the day, specifically with a duration of 6 hours each. The second step is to rank dispersion conditions by the calculated product of  $\sigma_y \times \sigma_z \times u$ , where u is the measured wind speed and  $\sigma_y$  and  $\sigma_z$  are the Pasquill-Gifford horizontal and vertical diffusion coefficients for the calculated stability class and downwind distance along the stable plume trajectory. Table 8-2 summarizes the results of these first two steps of the analysis.

**Table 8-2: Worst-Case Meteorological Conditions for Plume Visual Impact Calculations** 

| Dispersion Condition |                                         | Transport<br>Time | Frequency (f) and Cumulative Frequency (cf) of the Occurrence of Hourly Dispersion Conditions Associated with Class I Area Transport Wind Direction by Time of Day (Percent) |      |            |      |             |      |             |      |
|----------------------|-----------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|------|-------------|------|-------------|------|
| Stability Class,     | $\sigma_{v} \times \sigma_{z} \times u$ | (Hours)           | Hours 1-6                                                                                                                                                                    |      | Hours 7-12 |      | Hours 13-18 |      | Hours 19-24 |      |
| Wind Speed (m/s)     | $(m^3/s)$                               |                   | f                                                                                                                                                                            | cf   | f          | cf   | f           | cf   | f           | cf   |
| F, 1                 | 3.13E+04                                | 5.7               | 0.34                                                                                                                                                                         | 0.34 | 0.06       | 0.06 | 0.22        | 0.22 | 0.52        | 0.52 |
| F, 2                 | 6.26E+04                                | 2.9               | 0.31                                                                                                                                                                         | 0.65 | 0.04       | 0.10 | 0.12        | 0.34 | 0.66        | 1.18 |
| F, 3                 | 9.39E+04                                | 1.9               | 0.02                                                                                                                                                                         | 0.67 | 0.02       | 0.12 | 0.05        | 0.38 | _           | _    |
| E, 1                 | 8.53E+04                                | 5.7               | 0.00                                                                                                                                                                         | 0.67 | 0.00       | 0.12 | 0.00        | 0.38 | _           | _    |
| E, 2                 | 1.71E+05                                | 2.9               | 0.04                                                                                                                                                                         | 0.70 | 0.03       | 0.15 | 0.04        | 0.42 | _           | _    |
| D, 1                 | 2.09E+05                                | 5.7               | 0.00                                                                                                                                                                         | 0.70 | 0.03       | 0.17 | 0.03        | 0.45 | _           | _    |
| E, 3                 | 2.56E+05                                | 1.9               | 0.16                                                                                                                                                                         | 0.87 | 0.05       | 0.22 | 0.15        | 0.59 | _           | _    |
| E, 4                 | 3.41E+05                                | 1.4               | 0.04                                                                                                                                                                         | 0.90 | 0.00       | 0.22 | 0.04        | 0.63 | _           | _    |
| E, 5                 | 4.27E+05                                | 1.1               | 0.00                                                                                                                                                                         | 0.90 | 0.00       | 0.22 | 0.00        | 0.63 | _           | _    |
| D, 2                 | 4.19E+05                                | 2.9               | 0.00                                                                                                                                                                         | 0.90 | 0.02       | 0.24 | 0.09        | 0.72 | _           | _    |
| D, 3                 | 6.28E+05                                | 1.9               | 0.03                                                                                                                                                                         | 0.93 | 0.04       | 0.27 | 0.19        | 0.91 | _           | _    |
| D, 4                 | 8.38E+05                                | 1.4               | 0.06                                                                                                                                                                         | 0.99 | 0.05       | 0.32 | 0.27        | 1.19 | _           | _    |
| D, 5                 | 1.05E+06                                | 1.1               | 0.06                                                                                                                                                                         | 1.06 | 0.12       | 0.44 | _           | _    | _           | _    |
| D, 6                 | 1.26E+06                                | 1.0               | _                                                                                                                                                                            | _    | 0.17       | 0.61 | _           | _    | _           | _    |
| D, 7                 | 1.47E+06                                | 0.8               | _                                                                                                                                                                            | _    | 0.16       | 0.78 | _           | _    | _           | _    |
| C, 1                 | 1.51E+06                                | 5.7               | _                                                                                                                                                                            | _    | 0.01       | 0.79 | _           | _    | _           | _    |
| D, 8                 | 1.68E+06                                | 0.7               | _                                                                                                                                                                            | _    | 0.05       | 0.84 | _           | _    | _           | _    |
| D, 9                 | 1.88E+06                                | 0.6               | _                                                                                                                                                                            | _    | 0.06       | 0.90 | _           | _    | _           | _    |
| D, 10                | 2.09E+06                                | 0.6               | _                                                                                                                                                                            | _    | 0.05       | 0.96 | _           | _    | _           | _    |
| D, 11                | 2.30E+06                                | 0.5               | _                                                                                                                                                                            | _    | 0.02       | 0.98 | _           | _    | _           | _    |
| D, 12                | 2.51E+06                                | 0.5               | _                                                                                                                                                                            | _    | 0.01       | 0.99 | _           | _    | _           | _    |
| C, 2                 | 3.02E+06                                | 2.9               | _                                                                                                                                                                            | _    | 0.04       | 1.02 | -           | _    |             |      |

The next step is to select the worst-case 1<sup>st</sup> percentile meteorological condition as being indicative of worst-day plume visual impacts. In this case, the combination of F stability class and a wind speed of 2 m/s is selected based on the results for the meteorological hours from 19:00 to 24:00. While this time period is generally associated with nighttime hours, the USEPA VISCREEN guidance explicitly states that nighttime dispersion conditions must be considered because maximum plume visual impacts are often observed in the morning after a period of nighttime transport. However, the selection of meteorological conditions from this time period is conservative because the Project will not be operating beyond sunset. Nevertheless, for the purposes of the Level 2 VIA screening analysis of the Project, the combination of F stability class and a wind speed of 2 m/s was selected for further analysis.

The last step in the process is to evaluate complex terrain. The Project, at about 6,000 feet in elevation, is separated from the San Gorgonio Wilderness by a high ridge that exceeds 8,000 feet in elevation, the Big Bear Lake valley, and Sugarloaf Mountain (9,950 feet). The San Gorgonio Wilderness has terrain with elevations greater than 10,000 feet. The USEPA's VISCREEN guidance states that the selected stability class should be shifted to one category less stable if an observer in the Class I area is at least 500 meters above the emissions release height or if elevated terrain separates an observer in the Class I area from the emission source. In the case of an observer in the San Gorgonio Wilderness, both criteria are satisfied. Therefore, the combination of E stability class and a wind speed of 2 m/s was selected for input to VISCREEN.

## 8.2.2.2 Ozone Impact Analysis

The 2010 FLAG Phase I Report has identified ozone as an ambient air quality pollutant of concern. AQRVs have been established in Class I areas to determine if the ozone impacts are damaging to the flora of the area. The AQRV values for the San Gorgonio Wilderness are listed in Appendix F, which shows that the lowest AQRV for ozone is 45 parts per billion (ppb).

There are no recommended or approved models available for calculating ozone impacts from an individual project. As noted in the 2010 FLAG Phase I Report, ozone impacts are directly related to NO<sub>x</sub> concentrations. Therefore, we used calculated NO<sub>x</sub> concentration increases and then applied a reference that relates NO<sub>x</sub> concentration increases to ozone concentration increases. This approach is used because, in this instance, there is no standard approach provided by the 2010 FLAG Phase I Report. The NO<sub>x</sub> concentration used is based on AERMOD modeling for annual average concentrations at the Class I area, as discussed above. The threshold values applied for comparing with the model results are the ozone AQRVs published for the San Gorgonio Wilderness.

The USEPA-approved AERMOD dispersion model was used to estimate the annual  $NO_x$  concentration of the emissions from the Project at the northern edge of the San Gorgonio Wilderness boundary. The model was run with 5 years of meteorological data per USEPA modeling guidance in 40 CFR 51 Appendix W, which the 2010 FLAG Phase I Report references. Only the haul road emissions source was considered in this analysis, as that is the source that comprises the haul trucks and water trucks being evaluated. These trucks were assumed by AERMOD to operate for 10 hours each weekday from 7:00 am to 5:00 pm. Since the trucks operate on a schedule of 2,500 hours per year (10 hours each weekday,

50 weeks per year), the modeled  $NO_2$  emission rate is calculated by dividing 0.1 tpy by 2,500 operating hours. The resulting modeled emission rate is 0.13 lb/hr [0.017 grams per second (g/s)]. The model output file and input parameters for the worst-case year are provided in Appendices C and D.

AERMOD predicted a 5-year maximum annual X/Q of 0.00148 microgram per cubic meter  $(\mu g/m^3)/(g/s)$ , as shown in Appendices C and D. Multiplying this value by the modeled emission rate of 0.017 g/s results in a maximum predicted annual  $NO_2$  concentration of 0.  $\mu g/m^3$ . The USEPA national default ratio of  $NO_2$  to  $NO_x$  is 0.75 per 40 CFR 51 Appendix W. However, we have conservatively assumed that all  $NO_x$  is  $NO_2$ . Assuming all the  $NO_x$  as  $NO_2$ , this will translate to 0.00000195 parts per billion (ppb) of  $NO_2$ .

Using the ozone isopleths in the Seinfeld 1986 reference (see Appendix H), the worst-case ratio of the ozone increase to the NO<sub>2</sub> increase is less than 10. Therefore, as shown in Table 8-3, based on a NO<sub>x</sub> concentration of 0.000013 ppb, the maximum ozone increase is 0.00013 ppb. This is much less than the lowest AQRV for ozone in Appendix F, which is 45 ppb.

Table 8-3: Evaluation of Ozone Impacts Using Relationship between  $NO_x$  Concentration Increases and Ozone Concentration Increases

| Item                                                                                                  | Units             | Value    | Reference                   |
|-------------------------------------------------------------------------------------------------------|-------------------|----------|-----------------------------|
| Maximum annual NO <sub>x</sub> concentration at northern edge of the San Gorgonio Wilderness boundary | μg/m <sup>3</sup> | 0.000025 | AERMOD modeling             |
| Maximum NO <sub>2</sub> concentration in ppb                                                          | ppb               | 0.000013 | Conversion of µg/m³ to ppb  |
| Ratio of ozone increase to NO <sub>2</sub> concentration increase                                     | Ratio             | <10      | Seinfeld 1986               |
| Maximum ozone increase                                                                                | ppb               | 0.00013  | Calculated from above ratio |
| AQRV for ozone impacts                                                                                | ppb               | 45       | Appendix F                  |
| Is increase above AQRV?                                                                               | Yes/No            | No       | _                           |

For comparison, please note that the  $NO_x$  emissions from this Project were less than 0.1% of the total  $NO_x$  emissions in the MDAQMD territory in 2007.

## 8.2.2.3 Acid Deposition Analysis

Emissions of  $NO_x$  and  $SO_x$  may be converted into nitrates, sulfates, and sulfites in the atmosphere. These compounds, in turn, may then be deposited into water bodies and vegetative surfaces where the acidic nature of the compounds may damage the flora or fauna.

The FLM may request a nitrogen and sulfur deposition analysis. As mentioned, it is in the FLM's authority to request deposition impacts for sources if they suspect a detrimental impact on Class I areas. AQRVs for nitrogen and sulfur deposition have been established through the FLAG Phase I process. The AQRV values for the San Gorgonio Wilderness are listed in Appendix F, which shows that the lowest AQRV for acid deposition is 3.0 kilogram per hectare per year (kg/ha/year).

The following ADA screening method can be used to perform an ADA for Class I areas less than 50 km from the site. An USFS ADA screening methodology for calculating acid neutralizing capacity (ANC) change to high elevation lakes includes a calculation to determine the deposition rates of nitrogen and sulfur from ambient  $NO_x$  and  $SO_x$  concentrations. Dispersion modeling without the complex nitrogen and sulfur chemical mechanisms can then be used to determine the concentrations of  $NO_x$  and  $SO_x$  at the location of interest. If the ADA screening method estimates deposition rates above the AQRV values, more refined modeling may be required by the FLM.

The ADA screening methodology provided by the USFS was used to estimate the nitrogen deposition rates. This methodology was applied based on predicted NO<sub>2</sub> concentrations at the boundary of the San Gorgonio Wilderness. SO<sub>x</sub> emissions from the Project are insignificant and will not impact the acid deposition rates.

The 2010 FLAG Phase I Report specifies the MAGIC-WAND deposition model and also mentions the USFS Rocky Mountain Region's recommendation to use either CALPUFF or AERMOD modeling for nitrogen deposition (page 65). The 2010 FLAG Phase I Report also indicates that the Rocky Mountain Region recommends the USFS publication, "Screening Methodology for Calculating ANC Change to High Elevation Lakes," for ADA screening (page 65). The parameter values used are those found in the nitrogen deposition rate equation in the USFS publication (which calculates nitrogen deposition rate from NO<sub>x</sub> concentration and other parameters). The NO<sub>x</sub> concentration used is based on AERMOD modeling for annual average concentrations at the Class I area. The threshold values applied for comparing with the model results are the acid deposition AQRVs published for the San Gorgonio Wilderness.

The NO<sub>2</sub> deposition can be estimated from the NO<sub>2</sub> concentration according to the equation found in the USFS publication, "Screening Methodology for Calculating ANC Change to High Elevation Lakes":

The annual  $NO_x$  concentration at the Northern edge of the San Gorgonio Wilderness boundary was estimated, as described above, under ozone impact analysis. The estimated deposition according to the above equation is  $0.00014 \, kg/ha/year$ . As shown in Table 8-4, the estimated deposition is considerably less than the lowest listed AQRV threshold for the San Gorgonio Wilderness, as detailed in Appendix F.

**Table 8-4: Evaluation of Acid Deposition Based on USFS ADA Screening Methodology** 

| Item                                                                                                  | Units       | Value    | Reference                                            |
|-------------------------------------------------------------------------------------------------------|-------------|----------|------------------------------------------------------|
| Maximum annual NO <sub>x</sub> concentration at northern edge of the San Gorgonio Wilderness boundary | $\mu g/m^3$ | 0.000015 | AERMOD modeling                                      |
| Deposition rate                                                                                       | kg/ha/year  | 0.00014  | Calculated from above equation from USFS publication |
| AQRV for acid deposition                                                                              | kg/ha/year  | 0.005    | Appendix F                                           |
| Is increase above AQRV?                                                                               | Yes/No      | No       | <del>-</del>                                         |

# 9.0 CONCLUSIONS ABOUT SIGNIFICANCE FINDINGS AND CLASS I AREA ANALYSIS

Table 9-1 presents a summary of the Project construction and operational emission and health risk impacts and the comparison of this information to the significance thresholds for criteria pollutants and health risk.

The emission and health risk calculations for the construction and operational phases demonstrate that the construction and operational worst-case emissions and health risks from the Project, including Project design features and proposed mitigation measures, are below the criteria pollutant emissions and health risk significance thresholds.

The GHG emission calculations for the construction and operational phases demonstrated that the sum of the amortized construction GHG emissions and the operational GHG emissions from the Project are below the relevant significance threshold. As such, no mitigation is required. However, the truck fleet changes identified as mitigation for the  $PM_{10}$  and  $PM_{2.5}$  emissions will also reduce GHG emissions.

In conclusion, as presented in previous sections (5.0, 6.0, and 7.0), we have reached the conclusion that the Project air quality and GHG emissions for each of the construction and operational phases are less than significant with mitigation.

For Class I areas that are more than 50 km away from MCC, impact analyses are not required by the FLM because the initial screening method in the 2010 FLAG Phase I Report shows that the change in emission levels is below the level required to trigger analysis requirements.

For Class I areas within 50 km of the site, the screening air quality analysis performed for this study shows that the Project is not expected to impair visibility, cause adverse ozone impacts, or result in acid deposition impacts.