VB objects for MARC and UTF-8

by

Gary L. Strawn

Authorities Librarian, etc.

Northwestern University Library

Northwestern University Library

Evanston, Illinois

2004

The following trademarks, registered trademarks and service marks are used in this document: Visual Basic®, Windows®: Microsoft Corporation; Unicode™, Unicode Inc.

This documentation, and the Visual Basic® code modules it describes, are made available at no cost by Northwestern University to interested parties. The code modules may be incorporated into other programs developed by other parties, and freely redistributed with such other programs. The documentation may likewise be freely reproduced and redistributed. The following restrictions are placed on this free redistribution:

1. There must be no charge of any kind assessed for programs that incorporate any of these code modules.

2. There must be no charge assessed for copies of the documentation.

3. The documentation will be distributed as is, without changes of any kind, and especially without removal of marks identifying it as having been produced by Northwestern University.

Those wishing to incorporate the code modules into programs distributed under other conditions should contact the following organization for the terms under which this distribution may be allowed:

Technology Transfer Program

Northwestern University

1801 Maple Avenue

Evanston, IL 60208

847/491-3005

Copyright © 2003-2004 Northwestern University. All rights reserved.

Introduction

This document describes a set of code modules—some ‘objects’, some plain code—written in the Visual Basic programming language. These modules provide tools for the manipulation of records in the MARC21 format; programs that incorporate these modules are able to read, modify and write MARC records, without the programs needing to be aware of the intricacies of MARC record structure.

These modules incorporate functionality previously made available by Northwestern University Library in the code module UtilMisc.bas and other modules. Given the amount of change needed to adapt these modules to work successfully with records encoded according to the Unicode™ standard, it seemed easiest to scrap the existing code-based work altogether, and begin again in a more object-oriented manner. Although this means that just about every program distributed by Northwestern University Library will have to be rewritten to incorporate the changed modules, the advantages outweigh the disadvantages.

· The new modules will work equally well with records in all of the character sets in use in 2002 (the MARC-8 character set and its OCLC and Vger dialects) as well as the Unicode character set;
 the modules can translate any of these encoding schemes into any other of the others.

· Properly written programs will be able to recognize their operating environment (UTF-8 or MARC‑8), and will be able to alter their behavior as appropriate. Properly written programs that incorporate these modules, and use them for all MARC manipulation, will not need to be recompiled when the local library system changes from the MARC‑8 character repertoire to UTF‑8.

This document describes three ‘object’ modules, and one code module. Together, these four modules provide a complete set of tools for working with MARC records, and files of MARC records.

· Utf8Char.cls (creatable class: Utf8CharClass): functions for working with the Unicode character sets at the character level. This module provides a large number of properties for each character (Unicode representation, UTF-8 representation, MARC-8 representation, character category, normalized form, length in octets, uppercase form, etc.). In most cases, programs will not need to reference the properties of this library directly, but instead reference them indirectly through Utf8MarcRecordClass.

· Utf8MarcRecord.cls (creatable class: Utf8MarcRecordClass): functions for working with records in the MARC21 communications format. This module provides tools for the translation of a record from one character set to another; the adding, changing and deleting of fields and subfields; searching for fields and subfields, etc. The module provides a number of MARC-related functions, and a set of ‘safe’ string-handling functions that are aware of the special nature of the UTF-8 character repertoire; these functions work correctly with data encoded in according to both the MARC-8 and UTF-8 schemes. Most programs should be able to do all of their manipulation of MARC records with this class. Many of the features of this module are sensitive to the setting of the CharacterSetOut property; they change their behavior, to suit MARC-8 or UTF-8 data. In this group are the important string-handling functions whose names begin “Safe”: use these instead of the functions with similar names built into Visual Basic or other programming languages.

· Utf8MarcFile.cls (creatable class: Utf8MarcFileClass): functions for reading files of records in the MARC21 communications format.

· UtilMiscNonUtf8.bas: miscellaneous functions of general utility (drawn from the former UtilMisc.bas). These general functions are not sensitive to the character set used to encode data; they work equally well with MARC-8 and UTF-8 data.

These class modules depend on each other to some extent: the MARC record class includes an instance of the Utf8Character class; the MARC file class includes an instance of both the MARC record and Utf8Character classes. These classes may also draw on the common routines in the file UtilMiscNonUtf8.bas.

Any project that includes the MARC record class (Utf8MarcRecord.cls) must also include the module INI.bas. (The INI.bas module is not described in this document.)

Utf8MarcFileClass
Source file: Utf8MarcFile.cls

Utf8MarcFileClass is a library of routines for handling files of MARC records. These routines work equally well on files of records encoded in the UTF-8 and MARC-8 schemes. These functions perform no operation that is sensitive to the scheme used to encode data in the records in a file.

CharacterizeCharacterSet function

Determines the scheme used to represent the data in a file of MARC records.

Syntax

object.CharacterizeCharacterSet

Remarks
This function reads each record in a file of MARC records, and calculates an aggregate value describing the character set used to represent the records in the file. Use this function when the scheme used to encode the records in a file is not known.

A container program should normally invoke this function before it reads any records from the file. This function reads the entire file; it passes each record to the MARC record object’s own CharacterizeCharacterSet function. On reaching the end of the file, this function closes the file, re-opens it, and returns to the record that was exposed when the function was invoked. (In other words, if the container program invokes this function before retrieving any records, the file is opened and ready to retrieve the first record after invoking this function; if the container program invokes this function after retrieving 15 records, the file is opened and pointed again at the 15th record after invoking this function, and so on.) The function returns a single-character code that describes the convention used to encode records in the file.

Because this function must read and inspect each record in a file (and perhaps then move back to the original location within the file), it can take quite a bit of time to process large files. If a container program can be made aware through some other means (through operator selection of an option, for example) of the character set used to encode records in a file, the container program might be able to bypass the use of this function, and thereby perform its work more quickly.

In the normal course of events, the container program will feed the value produced by this function directly into the CharacterSetIn property of an instance of the MARC record object, thereby preparing the MARC record object to handle correctly the records in the file.

To invoke this function reliably, the container program must first have opened a file explicitly by invoking the OpenFile method or implicitly by supplying the MarcFileName property.

If a file contains some records encoded in UTF-8 and some records in other encoding schemes, the function returns a value based on the scheme used in the non-UTF-8 records. The MARC record object will correctly adjust its behavior if presented with a record encoded in UTF-8 when it’s expecting something else.

Return value

Character string. The function returns one of the following values, described by the private constants in the module’s declarations area whose names begin ‘CHARACTERSET_’.

	Code
	Meaning

	M
	non-UTF-8; none of the records in the file contains any of the exceptional characters that distinguish the various non-UTF-8 character set flavors

	O
	non-UTF-8; the file contains records encoded in the OCLC character set

	U
	the file contains only records encoded in UTF-8

	V
	non-UTF-8; the file contains records encoded in the Vger character set (once known as the RLIN character set)

This function does not return either of the ‘ambiguous’ character set values defined among the constants in the module’s declarations section.

Associated error conditions

None.

CloseFile method

Closes the current file of MARC records.

Syntax

object.CloseFile

Remarks
This closes the input file of MARC records, and sets the EndOfFile property to true. The Marc​File​Name and Record​Index properties retain their values until the container program opens another file. The function does not modify the MarcFileName property; the container program may immediately re-open the file, if it wishes.

Associated error conditions

None. If no file is open, the function does nothing.

See also

EndOfFile property

EndOfFile property

Indicates that the last record in the file has been read. Read only at run time.

Syntax

object.EndOfFile

Remarks
This property indicates whether or not the end of the input file of MARC records has been reached. A container program will normally read a file of MARC records via the ReadNextRecord method within a loop, and exit from that loop when this property becomes True. The MARC record object automatically closes the file when it reaches the end of the file.

This property has the same value as was returned by the most recent invocation of the ReadNextRecod function. A container program can use either the EndOfFile property or the return value from the ReadNextRecord function to control a loop that reads a file of records.

Data type

Integer (Boolean)
Example

object.OpenFile

Do

object.ReadNextRecord sRecord$

If object.EndOfFile Then

Exit Do

End If

<handling of the record goes here>

Loop

FileIsSegmented property

Indicates that the file contains records in the segmented format. Read-only at run time.

Syntax

object.FileIsSegmented

Remarks
Files of MARC records from most suppliers contain MARC records laid end to end in an unbroken series, one right after another. A container program can find the beginning of any record by adding up the ‘record length’ values of the preceding records. MARC records obtained directly from the Library of Congress (this includes records from LC redistributed by entities such as Peter Ward) instead contain records stored in a ‘segmented’ form, which is a hold-over from the days in which MARC records were distributed solely on magnetic tape. (This structure is described in MARC documentation.
)

This property indicates whether or not the input file of MARC records is arranged in the ‘segmented’ form. The MARC record object automatically adjusts its behavior to suit the structure of the records in the file. A typical container program will not need to ‘know’ the format of the file; in the normal course of events, container programs will not read this property.

The MARC record object bases the value for this property on the first record read from each file; therefore, the value of this property has no meaning until the container program has invoked the ReadNextRecord function at least once.

Data type

Integer (Boolean)
MarcFileName property

The name of a file of MARC records

Syntax

object.MarcFileName [= file name]

Remarks
This is the name of the file from which the MARC record object is reading records. The file name supplied here by the container program must be the complete file name, including drive and folder designations. The container program supplies this property, and then begins reading records from the file.

When the container program supplies this property, the MARC record object simply invokes its own OpenFile method. If the container program reads this property, it will find the name of the currently open file of MARC records (if any). The MARC record object does not clear this property when it reaches the end of the file.

Data type

Character string
Associated error conditions

None. If the file name does not exist, the OpenFile method will raise its own error.

Data type

OpenFile method
OpenFile method

Opens a file of MARC records for reading

Syntax

object.OpenFile file name

The OpenFile method has this parameter:

file name
The name of a file of MARC records, including the drive designation and folder names

Remarks

When the container program invokes the OpenFile method, the MARC record object first closes any open file of records, opens the new file, and sets the EndOfFile property to False. The container program can now read records from the file with the ReadNextRecord method.

Associated error conditions

If the file name does not exist or if there is any problem opening the file, the OpenFile method will raise error number 380, and pass along to the container program the Windows error message. If there is any problem opening the file, the MARC record object sets the EndOfFile property to True.

See also

EndOfFile property, MarcFileName property

ReadNextRecord function

Reads the next record from a file of MARC records.

Syntax

object.ReadNextRecord(record)
The OpenFile method has this parameter:

record
Return value. The next MARC record read from the source file

Remarks

When the container program invokes the ReadNextRecord function, the MARC record object extracts the next MARC record from the input file. If the file actually contains a MARC record, the function returns True and the record parameter contains the record itself. If the file does not contain any more records, the function returns False and the record parameter is the null string.

The function does not perform any tests on the record; such work is the responsibility of the container program, working with the MARC record object.

Example

object.OpenFile sInputFileName$

Do While object.ReadNextRecord(sRecord$)

<handling of each MARC record goes here>

Loop

Return value

Integer (Boolean). True if there was a record to read, False if the last record has already been read.

Associated error conditions

None. If there are no more records in the file, the function returns a null string and the EndOfFile property is True.

RecordIndex property

The position of the current MARC record within the source file. Read-only at run time.

Syntax

object.RecordIndex
Remarks

Every time the container program successfully invokes the ReadNextRecord property, the MARC record object increments a counter, which it makes available to the container program as the RecordIndex property. When the container program has read the last record from the file and the EndOfFile property is True, the RecordIndex property shows the total number of records in the file.

Data type

Long integer

Utf8MarcRecordClass

Source file: Utf8MarcRecord.cls

This class module provides tools for working with individual MARC records. It also provides tools for performing several commonly needed manipulations of MARC text, and includes ‘safe’ functions for handling character strings encoded in either UTF-8 or non-UTF-8.

This module also provides a number of character-level read-only properties whose values change, depending on the value of CharacterSetOut property—i.e., these properties change value to suit the representation of the current MARC record.

The large number of functions and methods in this class may be thought of as belonging to a number of groups. (The functions and methods themselves are described in this document in alphabetical order.)

Record-level functions, properties and methods

Character​Encoding​Scheme property, Characterize​Character​Set function, Character​Set​In property, Character​Set​Out property, ClearFldOrder method, Is​Authority property, Is​Marc function, Marc​Record​Format property, Marc​Record​In property, Marc​Record​Out property, Marc​Record​Translated property, National​Authority​Record function, New​Record method, NormalizationScheme property, Serial​Bibliographic​Record function, SetFldOrder method, Text​Formatted property, Text​Raw property

Field-level functions, properties and methods

FldAdd method, FldAddGeneric method, Fld​Change method, Fld​Delete method, Fld​Deleted property, Fld​Find​First function, Fld​Find​Last function, Fld​Find​Next function, Fld​Find​Prev function, Fld​Ind property, FldInd1 property, FldInd2 property, Fld​Insert​After method, Fld​Insert​Before method, Fld​Is​Control property, Fld​Move​Bottom function, Fld​Move​First function, Fld​Move​Last function, Fld​Move​Next function, Fld​Move​Prev function, Fld​Move​Top function, Fld​Next​Tag property, Fld​Norm property, Fld​Norm​Naco property, Fld​Pointer property, Fld​Prev​Tag property, Fld​Shift​Down method, Fld​Shift​​Up method, Fld​Test​First function, Fld​Test​Last function, Fld​Test​Next function, Fld​Test​Prev function, Fld​Text property, Fld​Tag property Fld​Undelete method, Fld​Was​Found property

Subfield-level functions, properties and methods

SfdAdd method, SfdChange method, Sfd​Code property, Sfd​Delete method, Sfd​Delim function, Sfd​Deleted property, Sfd​Find​First function, Sfd​Find​Last function, Sfd​Find​Next function, Sfd​Find​Prev function Sfd​Insert​After method, Sfd​Insert​Before method, Sfd​Move​Bottom function, Sfd​Move​First function, Sfd​Move​Last function, Sfd​Move​Next function, Sfd​MovePrev function, Sfd​Move​Top function, Sfd​Norm property, Sfd​Norm​Naco property, Sfd​Pointer property, Sfd​Shift​Left method, Sfd​Shift​Right method, Sfd​Test​First function, Sfd​Test​Last function, Sfd​Test​Next function, Sfd​Test​Pref function, Sfd​Text property, Sfd​Undelete method, Sfd​Was​Found property

Fixed field functions, properties and methods

Change​008​Value method, Change​Fixed​Field method, Change​Leader​Value method, Fld​008​Length property, Fld​Is​Control property, Get​008​Value function, Get​FixedFld function, Get​Leader​Value function, Leader property

Character-level properties

MarcAcute property, MarcAcuteDouble property, etc.

Miscellaneous

AddSpacesAroundDelimiters function, Char2​Hex function, Check​ISXN function, CLCL function, Convert​533​Sfd7​To​539 function, Convert​539​To​533​Sfd7 function, Convert​ISBN​10​To​13 function, Convert​ISBN​13​To​10 function, Dump​Array method, Is​The​Full​Stop​At​The​End​Probably​Integral function, Is​True function, LCase​First​Word function, Left​Pad function, Length​In​Characters function, List​Subfields​For​Normalization function, Marc2​Hex​Display function, Normalize​Call​​Number function, Normalize​Standard​Number function, Normalize​Whole​Field function, Norm​String function, NUC property, Rat function, Reduce​Series​Numbering​To​Pattern1 function, Reduce​Series​Numbering​To​Pattern2 function, Remove​Delimiters function, Remove​Nonfiling​Characters function, Remove​Repeated​Characters function, Remove​Spaces function, Remove​Spaces​Around​Delimiters function, Safe​LCase function, Safe​Mid function, Safe​Right function, Safe​Stuff function, Safe​UCase function, Set​Format​Code function, Tag​Compare function, UCase​First​Word function

AddSpacesAroundDelimiters, Remove​Spaces​Around​Delimiters functions

Adjust spacing before and after delimiter/subfield code combinations in variable fields.

Syntax

object.AddSpacesAroundDelimiters field

object.RemoveSpacesAroundDelimiters field

The AddSpacesAroundDelimiters and RemoveSpacesAroundDelimiters methods have this parameter:

field
A MARC field containing one or more delimiters and associated subfields

Remarks

The AddSpacesAroundDelimiters function receives a variable field containing one or more subfield codes; it returns the same field, with a space added before and after each subfield code. This function reverses the action of the RemoveSpacesAroundDelimiters function.

The Remove​Spaces​Around​Delimiters function receives a variable field containing one or more subfield codes; it removes all spaces that precede or follow each delimiter/subfield code pair. This function reverses the action of the AddSpacesAroundDelimiters function.
Return value

Character string
Example

In the following examples, the vertical bar represents the subfield delimiter character.
sString$ = object.AddSpacesAroundDelimiters “|aShakespeare, William,|d1564-1616”
sString$ now contains the string “|a Shakespeare, William, |d 1564-1616”
sString$ = object.RemoveSpacesAroundDelimiters “|a Shakespeare, William, |d 1564-1616”
sString$ now contains the string “|aShakespeare, William,|d1564-1616”
Associated error conditions

None. If the supplied text contains no subfield delimiters, the return value is the same as the supplied string.
AustralianSubdivisionPractice property

Controls the generation of the indirect subdivision form for libraries in Australia.

Syntax

object.AustralianSubdivisionPractice
Remarks

Geographic subdivision practice in the LCSH scheme is described in section H830 of Subject cataloging manual: subject headings. For places in Australia, the indirect subdivision form contains the country name in all cases.

Direct form: New South Wales

Indirect form: |z Australia |z New South Wales

Direct form: Adelaide (S. Aust.)

Indirect form: |z Australia Adelaide (S. Aust.)

Libraries in Australia prefer to subdivide places in Australia through the names of states and territories, in a manner exactly parallel to that used for places in the United States:

Direct form: New South Wales

Indirect form: |z New South Wales

Direct form: Adelaide (S. Aust.)

Indirect form: |z South Australia |z Adelaide

The MARC record object contains IndirectSubdivisionForm function, which attempts to manipulate a` direct geographic heading into its indirect form. The setting of the AustraliuanSubdivisionPractice property controls the manner in which the MARC record object performs this work.

Data type

Boolean (Integer)
Default value

False (not Australian subdivision practice)
BreakLongLinesForPrinter function

Divides a long line into segments that can be sent to a printer without running off the right side of the page.

Syntax

object.BreakLongLinesForPrinter string

The Char2Hex function has this parameter:

string
A character string to be sent to the printer

Remarks

This function receives a character string, and uses the current default printer’s settings to determine its width. The function inserts carriage return/line feed pairs into the string as necessary to divide the string into segments that can be safely sent to the default printer.

Return value

Character string, with carriage return/line feed pairs inserted where needed
Example

sString$ = object.BreakLongLinesForPrinter(sString$)

Associated error conditions

None. If the supplied text will fit on one line, the returned text is the same as the supplied text
Change008Value, ChangeFixedField, ChangeLeaderValue methods

These methods alter codes stored in a MARC record’s ‘fixed fields’ (the leader, 006, 007 and 008 fields).

Syntax

object.Change008Value start, value

object.ChangeFixedField start, value

object.ChangeLeaderValue start, value

These methods have these parameters:

start
Integer. The starting position within the field or leader for the new value. This value is expressed in the zero-based terms used in the MARC documentation

value
Character string. The value to insert into the field or leader at the indicated location.

Remarks

The ChangeLeaderValue method changes one element in the current record’s leader. The container program can invoke this method at any time, without regard to the field currently exposed by the MARC record object. The Change008Value method changes one element in the current record’s 008 field. The container program can invoke this method at any time, without regard to the field currently exposed by the MARC record object. The ChangeFixedField method changes one element in the fixed field currently exposed by the MARC record object. It only makes sense for the container program to invoke the ChangeFixedField method when the current field is an 006, 007 or 008 field. (If the currently exposed field is not 006, 007 or 008, the ChangeFixedField method does nothing.)

If the 006, 007 or 008 field does not yet contain any data, the MARC record object creates a default field containing an appropriate number of blank spaces before attempting to change the value of the field.

The container program can change the value of Leader byte 06 (type of record code) from one value within the ‘bibliographic’ family to another, and from one value within the ‘holdings’ family to another, but it cannot change a record from one ‘family’ to another. The container program cannot for example use the Change​Leader​Value method to change an authority record into a holdings record.

If the container program changes the value of Leader byte 06 or 07, the MARC record object recalculates the value of the MarcRecordFormat property; the container program should adjust the values in the 008 field as appropriate.

Example

The ChangeLeaderValue and Change008Value methods may be invoked at any relevant point in a container program.

object.ChangeLeaderValue 17, 1, “ “ ‘ change the encoding level to blank

object.Change008Value 28, 1, “f” ‘ change the ‘government publication’ code to ‘federal’

The ChangeFixedField method may only successfully be invoked after the container program has exposed a fixed field

object.FldFindFirst “006”
While object.FldWasFound

If object.GetFixedField (6, 1) = “a” Then

object.ChangeFixedField 11, 1, “f” ‘ change the ‘government publication’ code

End If

object.FldFindNext

Wend

Associated error conditions

None. If the container program attempts to change a position that does not exist in the indicated fixed field (for example, if it attempts to change byte 42 in the record leader), nothing happens.
CharacterEncodingScheme property

The value of Leader byte 09 from the current record. Read-only at run time.

Syntax

object.CharacterEncodingScheme
Remarks

Byte 09 of the MARC record leader indicates in broad terms the scheme used to encode the data in the record. The recognized values for this byte (as of mid-2004) are:

· ‘a’ (record uses UTF-8 encoding)

· ‘blank’ (record uses MARC-8 encoding)

If the value of this property is ‘blank’, the CharacterSetIn or CharacterSetOut properties may give additional information. The CharacterEncodingScheme property contains the value found in Leader byte 09 of the incoming record as received, and does not reflect any changes made to the record since receipt. (For example, if the CharacterSetOut property has the value “U”, the value of Leader byte 09 is ‘a’, regardless of the value found in the record as received originally.)

Data type

A single character found in Leader/09: should be either the character ‘a’ or a blank space
CharacterizeCharacterSet function

Determines the scheme used to represent the data in one MARC record.

Syntax

object.CharacterizeCharacterSet record

The CharacterizeCharacterSet function has this parameter:

record
(Optional) Character string. A record in the MARC communication format. If the container program does not supply this property, the MARC record object uses the value of the MarcRecordIn property.

Remarks
This function examines each of the characters in a single MARC record, and returns a code that describes the character set used to represent the records in the file.

Return value

Character string. The function returns one of the following values, described by the private constants whose names begin ‘CHARACTERSET_’.

	Code
	Meaning

	M
	non-UTF-8; none of the records in the file contains any of the exceptional characters that distinguish the various non-UTF-8 character sets

	O
	non-UTF-8; the file contains records encoded in the OCLC character set

	U
	the file contains only records encoded in UTF-8

	V
	non-UTF-8; the file contains records encoded in the Vger character set (once known as the RLIN character set)

	X
	may be either the Voyager character set of the OCLC character set

	Y
	may be either the Voyager character set or the general MARC-8 character set

If the record encoded in any non-UTF-8 character set contains any characters that are not defined by any of the recognized MARC dialects, this single character is followed by the ASCII values of the unrecognized characters. For example, if a record is represented in the Voyager character set and also contains at least one instance of ASCII character 9 (tab), the return value would be “V 9”.

Associated error conditions

None.

CharacterSetIn, CharacterSetOut properties

Codes that describe the convention used to represent the data in the record supplied as the MarcRecordIn property, and the convention to be used to represent the data in the record made available as the MarcReocrdOut property.

Syntax

object.CharacterSetIn [= code]
object.CharacterSetOut [= code]
Remarks

The CharacterSetIn property describes the scheme used to encode data in a MARC record as found in some source (file, or online system). This is the scheme used to encode records supplied as the MarcRecordIn property. In most cases, the container program will set this property once for an entire operation (reading all of the records from a file, reading a set of records from an online system), and then leave it alone.

The CharacterSetOut property describes the scheme to be used to encode records to be read as the MarcRecordOut property. In most cases, the container program will set this property once for an entire operation, and then leave it alone as well.

If the CharacterSetIn and CharacterSetOut properties have different values, the MARC record object automatically translates the record supplied as the MarcRecordIn property into the representation specified by the CharacterSetOut property immediately after the container supplies the MarcRecordIn property.
 If the container program changes the value of the CharacterSetOut property while the MARC record object is holding a MARC record, the MARC record object immediately translates the MARC record into the new character set. In other words, the Character​Set​Out property always describes all parts of the current MARC record available via the object’s properties and methods. Container programs that modify records (such as FldAddNew and SfdText) should always supply data encoded in the scheme described by the CharacterSetOut property.

The CharacterSetOut property also controls the behavior of many of the properties and string-handling functions built into the MARC record object: many of these properties and functions have different values or behaviors depending on whether this property is set to “UTF-8” or some other value.

Data type

Character string. One of the values defined by the internal constants whose names begin CHARACTERSET_. (See the list in the description of the Characterize​Character​Set function.) The two ‘ambiguous’ constants are not valid for use in these properties.
Example

Character string
Associated error conditions

Invalid value for … property. (Numeric value: 380.) The container program has attempted to set one of these properties to the null string, or to an otherwise unacceptable value.
CharIsAlpha, CharIsLower, CharIsNumeric, CharIsUpper functions

Describe the characteristics of a single character

Syntax

object.CharIsAlpha(character)

object.CharIsLower (character)

object.CharIsNumeric(character, value)

object.CharIsUpper(character)

These functions have this parameter:

character
A single character, represented in the scheme described by the CharacterSetOut property

The CharIsNumeric function has this optional parameter:

value
(Optional) Return value. The value of the supplied character.

Remarks

These functions evaluate a single character and return a value indicating whether or not that character has those attributes. The functions perform these tests:

CharIsAlpha: If not UTF-8, the character is a lower- or upper-case ASCII character, or is a lower- or upper-case special character (not including ayn and alif); if UTF-8, the first character of the value returned by the MARC record object’s Utf8CharCategory function is “L”.

CharIsLower: If not UTF-8, the character is a lower-case ASCII character, or is a lower-case special character (not including ayn and alif); if UTF-8, the value returned by the MARC record object’s Utf8CharCategory function is “Ll”.

CharIsNumeric: If not UTF-8, the character is a numeral (including a superscript or subscript numeral); if UTF-8, the first character of the value returned by the MARC record object’s Utf8CharCategory function is “Nd”. If the function determines that the character is numeric, the optional value return parameter contains the value of that character.

CharIsAlpha: If not UTF-8, the character is an upper-case ASCII character, or is an upper-case special character (not including ayn and alif); if UTF-8, the value returned by the MARC record object’s Utf8CharCategory function is either “Lu” or “Lt”.

If the string supplied in the character parameter contains more than one character, these functions operate only on the first character.

Return value

Integer (Boolean). True if the character passes the test, False if it does not pass the test.
Associated error conditions

None
CheckISXN function

Reports on the validity of an ISBN, ISSN or ISMN.

Syntax

object.CheckISXN number

The CheckISXN function has this parameter:

number
Character string. An ISBN, ISSN or ISMN to test.

Remarks

This function receives an ISBN, ISSN or ISMN. The function returns True if the standard number is well-formed and its check digit is correct; it returns False if the number is not acceptable for any reason.

The CheckISXN function ignores hyphens in the supplied standard number.

The function recognizes ISBNs of both 10 and 13 characters. (To convert a 10-character ISBN to the 13-character form, the container program may invoke the ConvertISBN10To13 function.)

Return value

Character string
Example

In the following code sample, the container program is reporting each invalid ISBN, ISSN and ISMN present in a bibliographic record.

object.FldMoveTop
Do While object.FldFindNext(“02”)

If Instr(“020 022”, object.FldTag) > 0 Or _

(object.FldTag = “024” And object.FldInd1 = “2”) Then

If object.SfdFindFirst(“a”) Then

If Not object.CheckISXN(object.SfdText) Then

<error handling for invalid number goes here>

End If

End If

End If

Loop

Associated error conditions

None
See also

ConvertISBN10To13 function
CLCL function

Finds the first point of difference in two character strings.

Syntax

object.CLCL string1, string2

The CLCL function has these parameters:

string1
Character string.

string2
Character string.

Remarks

This function inspects two character strings. If the strings are different at any point, the function returns a pointer to the first different character.

If the value of the CharacterSetOut property is “U” (UTF-8), the function proceeds one character from each string at a time. The function determines the number of octets in the current character of each string. If the characters contain a different number of octets, the function stops at that point. If the characters contain the same number of octets, the function compares the octets as a group; if different, the function stops at that point. If the octets comprising the two characters are identical, the function jumps ahead to the start of the next character. If the string is not in UTF-8encoding, the function proceeds one byte at a time.

Return value

Long integer, identifying the first different character in the two strings. If the two strings are identical, the return value is zero. If the strings are of unequal length and are identical up to the end of the shorter string, the return value is one greater than the length of the shorter string.
Example

lPtr = object.CLCL(sString1$, sString2$)
Associated error conditions

None
ClearFldOrder method, FldOrderFolder property, SetFldOrder method

The ClearFldOrder method erases existing field order definitions. The FldOrderFolder method identifies a folder that contains configuration files that define the order of fields and the subfields within those fields. The SetFldOrder method creates a new field order definition.

Syntax

object.ClearFldOrder format code

object.FldOrderFolder folder name

object.SetFldOrder format code, beginning tag, ending tag, instruction

The ClearFldOrder and SetFldOrder methods have this parameter:

format code
Character string. A single-character code that identifies the major MARC format. One of the following codes:

	Code
	Meaning

	A
	Authority

	B
	Bibliographic

	H
	Holdings

	O
	Other

The FldOrderFolder method has this parameter:

folder name
Character string. The name of a folder that contains configuration files the MARC record object will read when constructing rules for field order. This folder must contain the authsup.cfg, bibsup.cfg and holdsup.cfg files used also by the MARC record validation tool.

The SetFldOrder method has three parameters in addition to the format code parameter described above:

beginning tag
Character string. The first MARC tag in a group that sort together and share a common sort order

ending tag
Character string. The last MARC tag in a group that sort together and share a common sort order

instruction
Integer. An instruction that identifies the sort order followed by the tag group defined by the beginning tag and ending tag parameters. One of the following values:

	Value
	Meaning

	1
	Bibliographic 7XX fields only. Sorting for 700, 710 and 711 fields: those with subfield $t come after those without subfield $t

	2
	Generic. Sorting by the first character of the tag

	3
	Subject system; bibliographic 6XX fields only. Sorting by the second indicator (plus subfield $2 where applicable).

	4
	Local subfield $5; authority 64X fields only. Sort first by tag. Fields that contain the local institution’s symbol in subfield $5 come before other fields with the same tag

	5
	Reference; authority 4XX and 5XX fields only. Sort references by the first character of the tag, then by the first character in control subfield $w (default: ‘n’), and finally by the normalized text of the field

	6
	Tag: sort by all three characters of the MARC tag

The values suitable for the instruction argument are defined by constants in the MARC record object’s code whose names begin ‘SORTINSTRUCTION’.

Remarks

The MARC format documentation defines an order for the entries in a record’s directory: fields 001 through 009 come first, in strict tag order, followed by the remaining fields in an order determined by the first character of the tag.
 (This means that in a valid MARC bibliographic record all 3XX fields appear in a cluster that comes before the first 4XX field, all 4XX fields appear in a cluster that comes before the first 5XX field, and so on.) The Vger system itself does not enforce MARC field order—at least for fields with tags 010-999. It is possible, for example, to place the 245 field at any random location within a Vger bibliographic record.

The MARC format does not specify the order within field clusters (3XX, 5XX, etc.) beyond the order provided by the first tag character. An institution may devise an order for the fields in MARC records that both satisfies the MARC definition and achieves some additional goal. For example, a library might wish to sort bibliographic 010-099 fields in strict ascending tag order, or to enforce LCRI 21.29 for the order of bibliographic added entries. Any record whose fields are arranged in an order that exceeds the simple MARC field-order definition while at the same time producing a record that satisfies the MARC guidelines may be said to be a valid MARC record.

For whatever reason, an institution might even decide that fields in records contained within the local system—not communicated to others—should be sorted into some order that does not conform to the MARC field-order definition. For example, an institution might choose to put local fields such as the 910 field at the beginning of the variable data fields in a record (between the 008 field and the 010 field), to make the data in this field more prominent.

The MARC record object can organize the fields in a MARC record into just about any conceivable order—an order either compatible or incompatible with the basic MARC definition. As a program adds and modifies variable fields in a MARC record, the MARC record object evaluates the relation of the new or modified field to the other fields in the record, and adjusts the position of the field as necessary. For example, if the container program changes the second indicator of a bibliographic subject heading, and if (as is the default behavior) the MARC record object is instructed to sort bibliographic 6XX fields by the second indicator, the MARC record object will automatically place the modified field with any other fields bearing the same second indicator value.

The MARC record object allows the container program to add new fields in any location as long as the new field’s position falls with the current field-order definition. For example, if the field-order definition places all LCSH headings together in a block, the MARC record object will for example allow a container program to insert a new LCSH heading between any two existing LCSH headings. However, a container program can not modify a record in a manner that contradicts the field-order definition. For example, if the container program invokes the FldInsertAfter method to add a bibliographic 500 field when the current field is an ISBN and the next field is the 040 field, the MARC record object will insert the new 500 field in the location identified by the definition—probably as the last field in the 5XX block. The container program uses the FldOrderFolder property or the SetFldOrder method to exercise complete control over the definition of the finished MARC record, and the container program has substantial flexibility in establishing this definition; but the container program cannot then override its own definition.

When a program creates an instance of the MARC record object, the instance establishes a default definition for the order of fields. (The programmer is free to modify this default field-order definition; see the code within the MARC record object for the private method named Read​Validation​Configuration.) The container program can modify the definition of the order of fields whenever the MarcRecordIn property of the MARC record object does not contain a record; the container can not modify the field-order definition while the MARC record object holds a record.
 The container program can modify the definition of the order of fields before using the MARC record object for the first time; but once it has started to use the MARC record object, the container program must set the MarcRecordIn property to null before it will be allowed to change the current definition. If the container program is using the MARC record object to build a new record (in which case the MarcRecordIn property is null by definition), the container program must nevertheless explicitly set the MarcRecordIn property to null before changing the field order definition once it has invoked the NewRecord method.

To communicate a definition for the order of fields to the MARC record object, an institution must first determine what that order is to be. The definition will take this form:

· Identify a number of tag groups—with the beginning and ending tag for each group

· Establish the order of those groups in relationship to each other

· Determine the method used to sort the fields that fall in that group.

A given tag can fall into only one group.
 All fields that fit into one group are sorted according to the same method or rule; all fields that fit into one group appear in the finished MARC record before any fields that fit into the next group.

Here is a simple definition for the order of fields in bibliographic records:

	Begin
	End
	Sort method

	001
	299
	Tag

	300
	599
	Generic (by first character of tag only)

	600
	655
	Subject system (second indicator)

	656
	699
	Generic

	700
	700
	7XX: Entries with subfield $t come after those without $t

	710
	711
	7XX

	730
	730
	Tag

	700
	899
	Generic

	900
	999
	Tag

Once the field order is defined, this must be communicated to the container program; and the container program passes this information along to the MARC record object. This can be achieved in three different ways:

1. A programmer can modify the code in the private ReadValidationConfiguration method contained within the MARC record object itself, and the private methods called by that routine (such as SetDefaultFldOrderAuth and SetDefaultFldOrderBib).
 All projects subsequently built with the modified code module will enforce the same default sorting rules; each container program does not need to trouble itself with changing the default rules. This method requires that the programmer incorporate these changes when receiving an updated version of the MARC record object.

2. A programmer or other suitable person can create or modify configuration files that describe the order of fields; these configuration files are stored in some convenient folder. Each container program then sets the MARC record object’s FldOrderFolder property to point to the folder that contains these files. The MARC record object reads the field-order definitions from the configuration files. These configuration files (named authsup.cfg, bibsup.cfg and holdsup.cfg) are the same files used by ‘ValidIt’, the MARC validation DLL available from Northwestern University Library (the MARC record object only looks at the Extended​Field​Order or FieldOrder stanza, and the SubfieldOrder stanza, in these files).
 For information on the structure of these files, consult the documentation for the MARC validation DLL.

3. The container program invokes the ClearFldOrder method for one of the four format groups (authority, bibliographic, holdings, other) whose definition is to be changed, and then invokes the SetFldOrder method repeatedly for each rule that defines the order of the fields in that format type. The container program must supply all of the field-order rules for a given format group; there is no available technique for changing individual rules. This technique requires that the container program provide some method for defining the rules for the order of fields.

Example

object.MarcRecordIn = “”
object.FldOrderFolder = “g:\catalog\validation\”
The MARC record object reads the field order definition present in the configuration files for authority, holdings and bibliographic records. The next MARC record passed to the object via the MarcRecordIn property or created by the NewRecord method will conform to these field-order rules. This sequence of instructions modifies field order rules for authority, bibliographic and holdings records; it does not modify the sequence for ‘other’ records.

object.MarcRecordIn = “”
object.ClearFldOrder “H”
object.SetFldOrder “H”, “001”, “009”, 6 ‘ strict tag order
object.SetFldOrder “H”, “010”, “851”, 2 ‘ generic: by first character of tag only
object.SetFldOrder “H”, “853”, “899”, 6 ‘ strict tag order
object.SetFldOrder “H”, “900”, “999”, 2 ‘ generic
The MARC record object destroys the current field-order definition for holdings records, and accepts the definition of four new holdings field-order groups. The next holdings record passed to the object via the MarcRecordIn property or created by the NewRecord method will conform to these new field-order rules. This sequence does not affect the rules that govern the order of authority, bibliographic or ‘other’ records.

Associated error conditions

None. If the container program errs in some manner, the MARC record object will use the default definition. For example, if the container program invokes the ClearFldOrder method for authority records and then does not invoke the SetFldOrder method to create a new authority field-order definition, the MARC record object will apply the default field order definition for authority records. If the container program supplies only part of the field order definition, the MARC record object will place any fields not explicitly covered by the definition after the last defined group; these fields will be arranged by the first character of the tag.
See also

ClearSfdOrder method
ClearSfdOrder method, SetSfdOrder method

The ClearSfdOrder method erases an existing subfield order definition. The SetSfdOrder method creates a new subfield order definition.

Syntax

object.ClearSfdOrder format code

object.SetSfdOrder format code, tag, instruction

The ClearSfdOrder and SetSfdOrder methods have this parameter:

format code
Character string. A single-character code that identifies the major MARC format. One of the following codes:

	Code
	Meaning

	A
	Authority

	B
	Bibliographic

	H
	Holdings

	O
	Other

The SetSfdOrder method has two parameters in addition to the format code parameter described above:

tag
Character string. The MARC tag the order of whose subfields are being defined

instruction
Character string. A coded instruction for the order of subfields within one variable field.

Remarks

The MARC format documentation does not in most cases explicitly define an order for the subfields contained within a variable field. In some cases, the MARC formats specify that a particular subfield must appear as the first or last subfield within a field, but is otherwise silent on the topic.
 Cataloging conventions, however, often call for a particular order to the subfields within a variable field. For example, in a topical subject heading (bibliographic 650 field), subfield $a is to be followed by subfields $v, $x, $y and $z; but the subfields that come after $a can be in any order; or again, in a personal name heading, subfield $a is followed by subfields $b, $c, $d and $q (not necessarily in that order); this group may be followed by a group that begins with subfield $t and contains other title-related fields; and this group may be followed by a group consisting of subfields $v, $x, $y and/or $z.

The MARC record object can be configured to produce nearly any desirable order for the subfields within a variable field. Each variable field has a separate definition for the order of its subfields. As is the case with the order of variable fields, the MARC record object imposes the defined subfield order on all subfields within each variable field: the container program has substantial freedom in creating the definition of the order of subfields; but having established that definition, the container program cannot override it. For example, if the container program has declared that subfield $x in a personal name subject heading (bibliographic 600 field) must occur in a group also containing subfields $v, $y and $z and that this group must follow all other subfields, the container program cannot then use the SfdInsertAfter method to add a new subfield $x between subfield $a and $t. If the container program attempts to modify a variable field in contradiction to the rules for the order of subfields established by the container program, the MARC record object will do its best to satisfy the request of the container program within the subfield-order definition.

When a program creates an instance of the MARC record object, the instance establishes a default definition for the order of subfields within variable fields. (The programmer is free to modify this default field-order definition; see the code within the MARC record object for the private method named Read​Validation​Configuration.) The container program can modify the definition of the order of subfields whenever the MarcRecordIn property of the MARC record object does not contain a record; the container can not modify the field-order definition while the MARC record object holds a record.
 The container program can modify the definition of the order of subfields before using the MARC record object for the first time; but once it has started to use the MARC record object, the container program must set the MarcRecordIn property to null before it will be allowed to change the current definition. If the container program is using the MARC record object to build a new record (in which case the MarcRecordIn property is null by definition), the container program must nevertheless explicitly set the MarcRecordIn property to null before changing the subfield order definition once it has invoked the NewRecord method.

To communicate a definition for the order of fields to the MARC record object, an institution must first determine what that order is to be. The definition will take this form for each variable field defined for each type of record:

· Identify a number of subfield groups—a list of the subfield codes that participate in some group

· Establish the order of those subfield groups in relationship to each other

· Determine the method—if any—used to sort the fields that fall in that group.

A given subfield code will normally fall into only one group; but some subfield codes may fall into more than one group.
 You should define the subfield groups as you need to; if a subfield code falls into more than one group, the MARC record object will allow that subfield to stand in its current place if that location is consistent with any of the definitions. (This means that you can add subfield $n to a conference heading in either the name portion or the title portion.) If you attempt to place such an ‘ambiguous’ subfield in a location that does not satisfy any of the definitions, the MARC record object will shift that subfield’s location to the closest acceptable spot.

Here is a simple definition for the order of subfields in the bibliographic 600 field:

	Subfield code list
	Sort method

	63a
	If present, must appear in this order

	bcdgq
	May appear in any order

	eu4
	Must appear in this order

	fgklnpt
	Subfield $t must appear first; the others may appear in any order

	vxyz
	May appear in any order

	2
	If present, must be the last subfield

This definition must be converted into a complex character string, with these characteristics:

· Give a group of subfields that must appear in a given order as just a list of subfield codes

· Give a group of subfields that may appear in any order within curly braces (i.e., “{“ and “}”);a ‘pound sign’ (#”) is the first character within the braces

· If one subfield in a group must appear as the first subfield, place that subfield first in the list preceded by an exclamation point (“!”), all within a set of curly braces

Each group of subfields that does not appear within curly braces must appear in the record in the order stated. Each group of subfields that appear within curly braces must be preceded by a character that describes the method used to order them.

The definition for the order of subfields in the bibliographic 6XX field should be translated into an instruction string in this manner:

63a{#bcdgq}eu4{!tfgklnp}{#vxyz)2

Subfield $6 if present is the first subfield, followed by subfield $3 if present and then subfield $a. This group is followed by a group consisting of subfields $b, $c, $d, $b and $q, which may be present in any order. This group is followed by subfields $e, $u and $4 which, if present, must appear in this order. These subfields (which constitute the ‘name’ portion of the heading) are followed by a group beginning with subfield $t and also containing $f, $g, $k, $l, $n and $p. This title group is followed by a group consisting of subfields $v, $x, $y and $z in any order. Subfield $2, if present, is the last subfield in the field.

Once the instruction string is defined for a variable field, it must be communicated to the container program; and the container program passes this information along to the MARC record object. This can be achieved in three different ways:

1. A programmer can modify the code in the private ReadValidationConfiguration method contained within the MARC record object itself, and the private methods called by that routine (such as SetDefaultSfdOrderAuth and SetDefaultSfdOrderBib).
 All projects subsequently built with the modified code module will enforce the same default sorting rules; each container program does not need to trouble itself with changing the default rules. This method requires that the programmer incorporate these changes when receiving an updated version of the MARC record object.

2. A programmer or other suitable person can create or modify configuration files that describe the order of fields; these configuration files are stored in some convenient folder. Each container program then sets the MARC record object’s FldOrderFolder property to point to the folder that contains these files. The MARC record object reads the subfield-order definitions from the configuration files. These configuration files (named authsup.cfg, bibsup.cfg and holdsup.cfg) are the same files used by ‘ValidIt’, the MARC validation DLL available from Northwestern University Library (the MARC record object only looks at the SubfieldOrder stanza in these files).
 For information on the structure of these files, consult the documentation for the MARC validation DLL.

3. The container program invokes the ClearSfdOrder method for one of the four format groups (authority, bibliographic, holdings, other) whose definition is to be changed, and then invokes the SetSfdOrder method repeatedly for each rule that defines the order of the fields in that format type. The container program must supply all of the subfield-order rules for a given format group; there is no available technique for changing individual rules. This technique requires that the container program provide some method for defining the rules for the order of subfields.

Example

object.MarcRecordIn = “”
object.FldOrderFolder = “g:\catalog\validation\”
The MARC record object reads the subfield order definition present in the configuration files for authority, holdings and bibliographic records. The next MARC record passed to the object via the MarcRecordIn property or created by the NewRecord method will conform to these subfield-order rules. This sequence of instructions modifies subfield order rules for authority, bibliographic and holdings records; it does not modify the sequence for ‘other’ records.

object.MarcRecordIn = “”
object.ClearSfdOrder “B”
object.SetSfdOrder “B”, “010”, “abz”
object.SetSfdOrder “B”, “013”, “6a{#bcdef}”
object.SetSfdOrder “B”, “015”, “6a”
object.SetSfdOrder “B”, “016”, “az2”
…

object.SetSfdOrder “B”, “100”, “6a{#bcdgq}eu4{!tfgklnp}”
object.SetSfdOrder “B”, “110”, “6a{#bcdgkn}eu4{!tdfghlkmnoprs}”
object.SetSfdOrder “B”, “111”, “6a{#bcdegnq}u4{!tfhklnps}”

object.SetSfdOrder “B”, “130”, “6a{#dfghklmnoprst}”

…
object.SetSfdOrder “B”, “240”, “6a{#dfghklmnoprs}”

object.SetSfdOrder “B”, “242”, “6a{#bchnpy}”

object.SetSfdOrder “B”, “243”, “6a{#dfghklmnoprs}”

object.SetSfdOrder “B”, “245”, “6a{#bcfghknps}”

…
The MARC record object destroys the current subfield-order definition for bibliographic records, and accepts the definition of new subfield-order groups. (This code sample shows only a few of the definitions needed for bibliographic records.) The next bibliographic record passed to the object via the MarcRecordIn property or created by the NewRecord method will conform to these new field-order rules. This sequence does not affect the rules that govern the order of subfields in authority, bibliographic or ‘other’ records.

Associated error conditions

None. If the container program errs in some manner, the MARC record object will use the default definition. (This default definition allows subfields to appear in any order set by the container program.)
 For example, if the container program invokes the ClearSfdOrder method for authority records and then does not invoke the SetSfdOrder method to create a new authority field-order definition, the MARC record object will apply the default subfield order definition for authority records. If the container program supplies only part of the subfield order definition, the MARC record object will order the subfields in any fields not explicitly covered by the definition according to the default definition; and it will place any subfields not included in a field’s definition in a final group, following the last defined group.
See also

ClearFldOrder method
Convert533Sfd7To539, Convert​539​To​533​Sfd7 functions

The Convert533Sfd7To539 function converts MARC subfield $7 in a 533 field into the OCLC 539 field. The Convert539To533Sfd7 function converts the OCLC 539 field into MARC subfield $7.

Syntax

object.Convert533Sfd7To539 subfield

object.Convert533Sfd7To539 field

The Convert533Sfd7To539 function has this parameter:

subfield
Character string. The entire contents of subfield $7 from a MARC bibliographic 533 field.

The Convert539To533Sfd7 function has this parameter:

field
Character string. The entire contents of an OCLC 539 field, with all subfield codes intact.

Remarks

Subfield $7 of the MARC 533 field contains a number of fixed field elements relating to a reproduction (date of the reproduction, place of the reproduction, and so on). To make editing of this information simpler in the context of the OCLC system, OCLC has divided MARC 533 subfield $7 into a number of subfields, which are carried in OCLC records in the 539 field. Container programs can use these two functions to translate one scheme for encoding fixed field elements relating to a reproduction into the other.

The Convert533 Sfd7To539 function receives control subfield $7 from a 533 field and returns it in the subfield-encoded format used by OCLC in its records. The function Convert​539​To​533​Sfd7 function receives the entire contents of an OCLC 539 field and returns it in the fixed-field format used in ‘pure’ MARC records. The following table gives the conversion scheme.

	MARC 533 subfield $7 position
	OCLC 539

	00 (publication status)
	subfield $a

	01-04 (date 1)
	subfield $b

	05-08 (date 2)
	subfield $c

	09-11 (place of publication)
	subfield $d

	12 (frequency)
	subfield $e

	13 (regularity)
	subfield $f

	14 (form of item)
	subfield $g

The container program may supply the subfield $7 text either with or without the subfield $7 code itself when it invokes the Convert​533​Sfd7​To​539 function. The container program must include all subfield codes when it invokes the Convert​539​To​533​Sfd7 function.

The container program is responsible for issuing the appropriate instructions for deleting subfield $7 from the 533 field when it creates a 539 field, and for deleting the 539 field when it adds subfield $7 to a 533 field.

Return value

Character string. The Convert533​Sfd7To539 function returns the entire contents of the 539 field, ready to be added to a MARC record following the 533 field. The Convert539To533Sfd7 function returns the contents of subfield $7 (minus the subfield code itself), ready to be added to a 533 field.
Example

object.FldMoveFirst

Do While object.FldFindNext “533”

If object.SfdFindFirst “7” Then

sField$ = object.Convert533Sfd7To539(object.SfdText)

object.SfdDelete

If Len(sField$) > 0 Then
object.FldInsertAfter “539”, “ “, sField$

End If

End If

Loop
Associated error conditions

None. The function returns a null string if supplied with a null string; it returns a null string if supplied with a string that contains only blanks.
ConvertISBN10To13, Convert​ISBN​13To10 functions

The ConvertISBN10To13 function converts an ISBN containing 9 or 10 characters into the equivalent 13-character form; the ConvertISBN13To10 function converts an ISBN containing 13 characters into the equivalent 10-character form.

Syntax

object.ConvertISBN10To13 ISBN

object.ConvertISBN13To10 ISBN

The ConvertISBN10To13 function has this parameter:

ISBN
Character string. A 9- or 10-character ISBN to be converted to 13-character format

The ConvertISBN13To10 function has this parameter:

ISBN
Character string. A 13-character ISBN to be converted to 10-character format

Remarks

ISBNs containing 10 characters (originally, 9 characters) were in use from foundation of the number until January 1, 2007. By January 1, 2007, publishers are expected to begin using the new 13-character format.
 The implications of this change for libraries and their systems have not yet been explored in any depth.
 These functions may assist in moving from one format to another. The Convert​ISBN​10To13 function converts a 10-character (or 9-character) ISBN into the 13-character form; the Convert​ISBN​13To10 function converts a 13-character ISBN into the 10-character form.

To make the transformation from 10 to 13 characters, the Convert​ISBN​10To13 function removes the existing check digit, adds the new ‘978’ prefix,
 and recalculates the value of the check digit. To make the transformation from 13 to 10 characters, the Convert​ISBN​13To10 function removes the “978” prefix
 and the existing check digit, and recalculates the value of the check digit. (The 13- and 10-character ISBNs use different algorithms for calculating the check digit.) This conversion leaves untouched any suffix (such as “(pbk.)” that follows the supplied ISBN.

Return value

Convert​ISBN​10To13 function: Character string (a 13-character ISBN)
Convert​ISBN​13To10 function: Character string (a 10-character ISBN)
Example

In the following code sample, the container program is converting ISBNs from 10 to 13 characters. Whether this is necessary or advisable is not known at the time of writing.

object.FldMoveFirst
Do While object.FldFindNext “020”

If object.SfdFindFirst “a” Then

object.SfdText = object.ConvertISBN10To13 (object.SfdText)

End If

Loop
Associated error conditions

None. If the container program does not supply a recognizable ISBN, the function returns the value supplied by the container program in the function’s parameter. (If supplied with a null string, the function returns a null string.)
DumpArray method

Writes a copy of the array holding the current MARC record to Debug.Print.

Syntax

object.DumpArray tag list

The DumpArray method has this parameter:

tag list
(Optional) Character string. A list of MARC tags of interest, separated by spaces. If the container program does not supply this parameter, the MARC record object considers all tags in the current record to be of interest.

Remarks

The MARC record object decomposes the record supplied as the MarcRecordIn property into an array. There is one element in the array for each variable field in the original record. Each element in the array is assigned a sequential number. The array element for each field in the record contains the array number of the previous and the following fields in the record. The element for each variable field likewise contains an array, for the subfields within the field. The subfield elements are also assigned numbers, and each subfield identifies the previous and following subfields in the variable field.

This array structure, with double pointers, makes it possible for the MARC record object to offer such methods as FldMovePrev and SfdMoveNext as standard parts of its interface. To find the next field, for example, the object simply resets its ‘current field’ pointer to the value of the ‘next field’ pointer of the current field. This structure also makes it easy to shift fields and subfields around—moving a field or subfield is a matter of adjusting its pointers, and the pointers of its neighbors, not a matter of actually moving text around.

For various reasons, a container program may wish to see the MARC record object’s version of the current MARC record, including all of its pointers. The DumpArray method provides such a display, written via a series of Visual Basic Debug.Print statements.

If the container program is interested in seeing the array elements for only certain fields, it may supply a space-delimited list of the tags of interest as the parameter to this method. The method will then build a display only for the fields that bear those tags.

Example

object.DumpArray “600 610 611 630 650 651”
Associated error conditions

None
ExpandPlace method

Converts an abbreviated place name as found in parentheses at the end of a geographic name into the form used in subfield $z of the corresponding indirect subdivision form.

Syntax

object.ExpandPlace abbreviation, name, secondz

The ExpandPlace method has these parameters:

abbreviation
Return value. Character string. The contents of the parentheses at the end of a geographic name heading, or as much of the contents of the parentheses as appears to be a second place name. The returned value is the version of that name to use as first subfield $z in an indirect subdivision string.

name
Character string. A complete geographic name, including the abbreviation or other information supplied as the abbreviation parameter.

secondz
Return value. Character string. The calling program should supply its best guess for the second subfield $z in an indirect subdivision string. In some circumstances, the method will modify this text.

Remarks

This method is called by the MARC record object when the container program invokes the IndirectSubdivisionForm function. This routine attempts to supply modified versions of the supplied parameters that the IndirectSubdivisionForm function can use to build the complete indirect subdivision form for a geographic heading.

In most cases, a container program will not need to invoke this method directly.

The behavior of this method is sensitive to the setting of the AustralianSubdivisionPractice property.

A computer routine will never be able perfectly to determine the indirect form for a geographic name (given the lack of consistency with which headings are constructed) especially when, as is the case here, the work must be done without reference to authority records.

Example

sString$ = ‘Chicago”

sAbbrev$ = “Ill.”

object.ExpandPlaceAbbreviation sAbbrev$, “Chicago (Ill.)”, sString$
Associated error conditions

None
ExractSubfield function

Isolate a subfield from the text of a complete variable field.

Syntax

object.ExtractSubfield (field, code, subfield, start)

This method has these parameters:

field
Character string. The text of a complete MARC variable field

code
Character string. The code assigned to the subfield of interest

subfield
Return value. Character string. The text of a subfield extracted from the variable field. If the subfield is not present, this parameter is null.

start
(Optional.) Long integer. The point in the MARC field at which the function should begin its search for the subfield. (Default value: 1; the function will begin at the start of the MARC field and return the first occurrence of the subfield.)

Remarks

The function allows a container program to extract a subfield from within an entire MARC field. This function is included in the MARC record object mainly to provide compatibility with existing programs; the same functionality is available through the SfdFindFirst and SfdFindNext functions.

Return value

Long integer: if a subfield is present in the field, the value that should be supplied as the start parameter to find the next occurrence of the subfield.
Example

lNext = 1

Do

lNext = object.ExtractSubfield(sString$, “z”, sSfd$, lNext)

If lNext = 0 Then

Exit Do

End If

<processing of sSfd$ goes here>

Loop

Associated error conditions

None. If the subfield is not present, sSfd$ is the null string and the function’s return value is zero.
Fld008Length property

The length of the 008 field in the current record. Read-only at run time.

Syntax

object.Fld008Length
Remarks

Unfortunately, the 008 fields in the various ‘families’ of MARC records do not all have the same length. The Fld008Length property provides the length of the current record’s 008 field.

	Record type
	008 field length

	Authority
	40 characters

	Bibliographic
	40 characters

	Classification
	15 characters

	Community information
	15 characters

	Holdings
	32 characters

Data type

Integer
Associated error conditions

None
FldAdd, FldAddGeneric, Fld​Insert​After, FldInsertBefore methods

Add a variable field to a MARC record.

Syntax

object.FldAdd tag, indicators, field text, force

object.FldAddGeneric tag, indicators, field text, tag lentgh

object.FldInsertAfter tag, indicators, field text

object.FldInsertBefore tag, indicators, field text

These methods have these parameters:

tag
Character string. The MARC tag for the new field

indicators
Character string. The indicators for the new field. If the new field is a control field (fields 001-009), the container program should supply a null string

field text
Character string. The text of the MARC field, with all subfield codes included.

tag length
(Optional; FldAddGeneric method only) Integer. The number of characters in the tag to use in the ‘generic’ comparison. Default for fields with tags greater than 009: 1. (This value is not applied to fields with tags 001 through 009.)

force
(Optional; FldAdd method only) Boolean. An indication that the field should become the first of its ‘type’ in the record

Remarks

These methods add a new variable field to the current MARC record. The various methods add the new field at different points in the record.

· The FldAdd method adds the new field at the end of the record, regardless of its tag

· The FldAddGeneric method adds the new field at the point indicated by its tag. If the tag begins “00”, the MARC record object adds the new field at the position indicated by all three characters of the tag; otherwise, the MARC record object adds the new field at the position indicated by the number of characters in the tag length parameter, or (if tag length is not supplied) the first character of the tag. If the MARC record already contains a field with this same tag or tag fragment, the MARC record object adds the new field as the last field of that type.

· The FldInsertAfter method adds the new field immediately following the current field, regardless of its tag

· The FldInsertBefore method adds the new field immediately before the current field, regardless of its tag

Example

object.FldInsertAfter “250”, “ “, object.SfdDelim(“a”) + “1st ed.”
object.FldInsertAfter “504”, “ “, MarcDelim + “aIncludes bibliographical references.”

Because this instruction does not include the tag length parameter, the MARC record object will add the new 504 field after the last 5XX field, but before any field with tag 600 or higher.

object.FldInsertAfter “035”, “ “, object.SfdDelim(“a”) + “(OCoLC)” & sOclcNumber$, 3

The MARC record object will add the new 035 field as the last 035 field, before any field with tag 036 or higher.

Associated error conditions

None
FldChange method

Modifies any or all parts of the current variable field.

Syntax

object.FldChange tag, indicators, field

The FldChange method has these parameters:

tag
Character string. The MARC tag for the new field

indicators
Character string. The indicators for the new field. If the new field is a control field (fields 001-009), the container program should supply a null string

field text
Character string. The text of the MARC field, with all subfield codes included.

Remarks

Use this method to change any part of the current variable field. Normally, the container program will use this method when it needs to change all parts of a field at one time. The container program can change just the value of the FldTag, FldInd or FldText properties to change just one part of a field; or it can change just one subfield by changing the SfdCode or SfdText properties when a subfield is exposed. The container program will normally use the Change008Value, ChangeFixedField and ChangeLeaderValue methods to change the ‘fixed fields’.

This method does not change the location of the variable field with the MARC record.

Example

object.FldChange “630”, “00”, object.SfdDelim(“a”) + Mid(sField$, 3)
Associated error conditions

None
See also

Change008Value method, ChangeFixedField method, ChangeLeaderValue method, FldInd property, FldTag property, FldText property, SfdCode property, SfdText property
FldDelete method, FldDeleted property, FldUndelete method

The FldDelete method marks the current variable field for deletion; FldUndelete reverses the action of the FldDelete method. The FldDeleted property indicates whether the current field has been marked for deletion. The FldDeleted property is run-only at run time.

Syntax

object.FldDelete

object.FldDeleted

object.FldUndelete

Remarks

The FldDelete method marks a variable field for deletion, but does not remove it from the internal array of data elements that represents the current MARC record. The ‘deleted’ field remains in the array, and may be examined (and even altered) by the container program. The field can be restored to the record via the FldUndelete method.

If a field is marked for deletion, the MARC record object skips over it when the container program invokes the FldFindFirst, FldFindLast, FldFindNext and FldFindPrev methods. However, the MARC record object includes fields marked for deletion when the container program invokes the FldMoveFirst, FldMoveLast, FldMoveNext and FldMovePrev methods.

The MARC record object does not include deleted fields when the container program asks for the MarcRecordOut property.

Example

In this example, the container program is deleting all 020 fields that do not begin with subfield $a. This is not necessarily a reasonable thing for a program to do.

object.FldMoveFirst
Do While object.FldFindNext “020”

If object.SfdCode <> “a” Then

object.FldDelete

End If

Loop

Associated error conditions

None. If the current field is already marked for deletion when the container program invokes the FldDelete method, or if it is not marked for deletion when the container program invokes the FldUndelete method, the field’s status does not change.
FldDirectory property

The MARC record directory entry for the current variable field. Read-only at run time.

Syntax

object.FldDirectory
Remarks

A MARC record contains a 12-character descriptor for each variable field, containing the field’s tag, its starting position within the record and its length. When the container program supplies the MarcRecordIn property, the MARC record object preserves the original directory entry for each field. The object does not update this information as the container program works with the record, and it does not create this information for fields added by the container program.

It is very likely that the container program will find no use for this information.

Data type

String
Associated error conditions

None
FldFindFirst, FldFindLast, FldFindNext, FldFindPrev functions

Search for a field within the current MARC record.

Syntax

object.FldFindFirst tag

object.FldFindLast tag

object.FldFindNext tag

object.FldFindPrev tag

These methods have this parameter:

tag
(Optional for the FldFindNext and FldFindPrev methods) Character string. The MARC tag for the field of interest. May consist of one, two of three characters. ‘Wildcard’ characters may be indicated by ‘X’. May also contain a list of multiple tag units.

Remarks

These four methods constitute the tools available to container programs for finding fields with particular tags in MARC records. Each method performs its work in a slightly different manner.

	FldFindFirst
	Begins its search with the first field in the record, and searches forward from that point to the end of the record

	FldFindLast
	Begins its search with the last field in the record, and searches backward from that point to the beginning of the record

	FldFindNext
	Begins with the field following the current field, and searches forward from that point to the end of the record

	FldFindPrev
	Begins with the field preceding the current field, and searches backward from that point to the beginning of the record

The container program supplies the tag or tags for which the search is to be conducted. If the container program does not supply a parameter for either the FldFindNext or FldFindPrev method, the MARC record object uses the parameter that was supplied in the most recent invocation of either the FldFindFirst or FldFindLast method. The tag may be a full three-character MARC tag, may consist instead of only two or one digits. Use the character ‘X’ to indicate that any value in a given position is acceptable.

If the record contains the specified tag, the function returns True and the MARC record object sets the FldWasFound property to True. If the record does not contain the specified tag, the function returns False and the MARC record object sets the FldWasFound property to False. If the field is present, it becomes the current field and is available as the FldTag, FldInd and FldText properties.

Return value

Integer (Boolean)
Example

object.FldFindFirst “020”

object.FldFindLast “X10”
object.FldFindFirst “010 020 022 024”
object.FldFindLast “X00 X10”
In this code sample, the container program is inspecting every subject heading in the record.

object.FldMoveTop
While object.FldFindNext (“6”)

<handling of the subject heading goes here>

Wend

In this code sample, the container program is deleting all 006 and 007 fields.

Do While object.FldFindFirst (“006 007”)

object.FldDelete

Wend

Associated error conditions

None. If the record does not contain the indicated field, the function returns False and sets the FldWasFound property to False. The MARC record object does not inspect the contents of the supplied tag parameter for validity.
FldInd, FldInd1, FldInd2, FldText, FldTag properties

The tag, indicators and text of one variable field.

Syntax

object.FldInd [=indicators]
object.FldInd1 [=indicator]
object.FldInd2 [=indicator]
object.FldTag [=tag]

object.FldText [=field text]
Remarks

The FldInd property contains both indicators of the current variable field. (If the current field is a control field, the indicators are the null string.) If the container sets this property, the module resets the current field, using the existing tag and field text.

The FldInd1and FldInd2 properties contain respectively the first and second indicators of the current variable field. (If the current field is a control field, the indicators are the null string.) If the container sets one of these properties, the module resets the current field, using the existing tag, field text, and the current value for the other indicator.

The FldInd property allows a container program to query and./or change both indicators at once. The FldInd1and FldInd2 properties allow a container program to query and/or change one indicator in isolation.

The FldTag property contains the MARC tag of the current variable field. If the container sets this property, the module resets the current field, using the existing indicators and field text. If the container program changes the value of the FldTag property, the MARC record object does not alter the position of the field within the MARC record.

The FldText property contains the text of the current variable field. If the container sets this property, the module resets the current field, using the existing tag and indicators.

Data type

Character strings
Example

object.FldTag = “022”

object.FldInd = “ 0”

object.FldInd2 = “7”

object.FldText = object.SfdMake(“a”, “Shakespeare, William,”) & object.SfdMake(“d”, “1564-1616.”)
Associated error conditions

None
FldInsertAfter, FldInsertBefore methods

See the description of the FldAdd method.

FldIsControl property

An indication that the current variable field is a control field. Read-only at run time.

Syntax

object.FldIsControl
Remarks

In the MARC formats, a field whose tag begins “00” is called a control field. A control field has no indicators, and its field text contains no subfield codes. This property tells the container program whether the current field is a control field.

Data type

Integer (Boolean)
Example

object.FldMoveFirst
Do While object.FldWasFound

If Not object.FldIsControl Then

<handling of the variable field goes here>

End If

object.FldMoveNext

Loop
FldLoadInfo method

Places the current field’s tag, indicators and field into string variables.

Syntax

object.FldLoadInfo tag, ind, field
The FldLoadInfo method has these parameters:

tag
Return value. Character string. The current variable field’s FldTag property.

ind
Return value. Character string. The current variable field’s FldInd property.

field
Return value. Character string. The current variable field’s FldText property.

Remarks

A container may under certain circumstances find it more expedient to work directly on the contents of a variable field. This method copies information about the current field into string variables. If the container program modifies any of this information, it can modify the field with the ResetCurrentField method.
Example

object.FldMoveTop
Do While object.FldFindNext (“650”)
object.FldLoadInfo sTag$, sIndicators$, sField$

<handling of the 650 field goes here>
Loop
Associated error conditions

None
Fld​Move​Bottom, FldMoveFirst, Fld​Move​Last, Fld​Move​Next, FldMovePrev, Fld​Move​Top functions

Exposes one variable field in the current MARC record.

Syntax

object.FldMoveBottom
object.FldMoveFirst
object.FldMoveLast
object.FldMoveNext
object.FldMovePrev
object.FldMoveTop
Remarks

These functions move the pointer in the current MARC record from one field to the next.

	FldMoveBottom
	Moves beyond the last subfield in the record. The next invocation of FldMovePrev points to the last field in the record

	FldMoveFirst
	Moves to the first variable field in the record

	FldMoveLast
	Moves to the last variable field in the record

	FldMoveNext
	Moves to the variable field immediately following the current field

	FldMovePrev
	Moves to the variable field immediately following the current field

	FldMoveTop
	Moves before the first subfield in the record. The next invocation of FldMoveNext points to the first field in the record

If moving the field pointer in the indicated manner does not move beyond either end of the record, the function returns True and the MARC record object sets the FldWasFound property to True. If the function moves the field pointer beyond either end of the record, the function returns False and the MARC record object sets the FldWasFound property False.

Example

object.FldMoveTop
Do While object.FldMoveNext

<handling of the variable field goes here>

Loop
Associated error conditions

Character string
FldNextTag, FldPrevTag properties

The tags of the fields that follow and precede the current field in the MARC record. Read-only at run time.

Syntax

object.FldNextTag

object.FldPrevTag

Remarks

The FldNextTag is the MARC tag of the field following the current field. If there is no field following the current field, the FldNextTag property is the null string.

The FldPrevTag is the field of the field preceding the current field. If there is no field preceding the current field, the FldPrevTag property is the null string.

Data type

Character string
Example

If object.FldFindLast “533” Then

If object.FldPrevTag = “539” And object.FldNextTag <> “539” Then

object.FldShiftUp

End If

End If

FldNorm, FldNormNACO properties

The normalized form of the current variable field. Read-only at run time.

Syntax

object.FldNorm

object.FldNormNACO

Remarks

The FldNorm property contains the text of the current variable field, normalized according to Vger conventions. The FldNormNACO property contains the text of the current variable field, normalized according to PCC/NACO conventions.

The NACO-normalized form of the field retains the subfield delimiters and codes.
 If subfield $a of the field contains an internal comma, that comma is retained in the normalized form. The Vger-normalized form of the field contains blanks instead of subfield codes, and all punctuation is treated in the same manner.

The normalized form of the field contains only those subfields listed by the List​Subfields​For​Normalization function. The container program can use the SfdNorm and SfdNormNaco properties to find the normalized forms of subfields that are not included in the normalized form of the whole field.

Associated error conditions

None
See also

SfdNorm property, SfdNormNaco property
FldPointer property

The internal number assigned to each variable field in a record by the MARC record object.

Syntax

object.FldPointer [=number]

Remarks

The MARC record object converts the record supplied as the MarcRecordIn property into an array. Each variable field in the record becomes one element in this array. The MARC record object assigns each element in this array a sequential number; the numbering starts with the first variable field added to the record and runs consecutively to the last variable field added. (The numbering has nothing to do with the order of the fields in the finished record.) A field’s number remains the same regardless of the addition and deletion of fields, and the shifting of the position of fields.

When the container program invokes functions such as FldFindFirst and FldMoveNext, the MARC record object finds the element in the array that matches the specification, and makes that array the ‘current’ array member. The MARC record object makes the number assigned to the element in its internal array for that field available as the FldPointer property.

Many container programs will make no use of this property. However, it will be necessary on occasion for the container program to locate a variable field with certain characteristics, locate a second field with certain characteristics, perhaps perform some work on that field, and then return to the original field. In such a case, the container program can save the first field’s FldPointer property in a variable and then move to the second field. When the container program is ready to return to the original field, it sets the MARC record object’s FldPointer to the number for the first variable field.

Data type

Integer

Example

In this example, the container program is converting the OCLC 539 field into the equivalent subfield $7, and attaching it to the 533 field.

object.FldFindFirst “533”

If object.FldWasFound Then

i533Pointer% = object.FldPointer

object.FldMoveNext
If object.FldWasFound And object.FldTag = “539” Then

sString$ = object.Convert539To533Sfd7 (object.FldText)

object.FldDelete

object.FldPointer = i533Pointer% ‘ return to the 533 field

object.SfdAdd “7”, sString$

End If

End If

Associated error conditions

None
FldShiftDown, FldShiftUp methods

These methods change the location of the current variable field relative to its neighbors.

Syntax

object.FldShiftDown

object.FldShiftUp

Remarks

The FldShiftDown method exchanges the position of the current variable field with that of the following variable field. The FldShiftUp method exchanges the position of the current variable field with that of the preceding variable field. The shifted field remains the current field.

Example

If object.FldFindFirst “539” Then

If object.FldNextTag = “533” Then

object.FldShiftUp

End If

End If

Associated error conditions

None
FldTag property

See the description of the FldInd property

FldTestFirst, FldTestLast, FldTestNext, Fld​Test​Prev functions

These functions test for the presence of a variable field in the MARC record.

Syntax

object.FldTestFirst tag

object.FldTestLast tag

object.FldTestNext tag

object.FldTestPrev tag

These functions have this parameter:

tag
Character string. The MARC tag for the field of interest. May consist of one, two of three characters.

Remarks

These functions perform the same work as the FldFindFirst, FldFindLast, FldFindNext and FldFindPrev functions. These functions return True if the record contains a field that matches the search specification, and return False if the record does not contain such a field. The differences between this set of Test functions and the Find functions are:

· The Test functions do not change the value of the FldWasFound property

· The Test functions do not change the pointer to the current variable field

Return value

Integer (Boolean)
Example

object.FldFindFirst “600”

If object.FldWasFound Then

If Not object.FldTestNext “650” Then

object.FldInsertAfter “650”, “ 0”, object.SfdMake(“a”, “Potters”) & object.SfdMake(“z”, “United States) & object.SfdMake (“v”, “Biography.”)

End If

End If
Associated error conditions

None
See also

FldFindFirst function, FldFindLast function, FldFindNext function, FldFindPrev function
FldText property

See the description of the FldInd property.

FldUndelete method

See the description of the FldDelete method.

FldWasFound property

An indication that the last Find or Move operation identified a variable field in the MARC record. Read-only at run time.

Syntax

object.FldWasFound

Remarks

The container program uses the FldFind and FldMove functions (FldFindFirst, FldMoveNext, etc.) to move to a new variable field in the MARC record. If the search finds a matching field, or if the move lands on a valid field, the MARC record object sets the FldWasFound property to True. If the search or move does not find a corresponding field, the MARC record object sets the FldWasFound property to False. The container program can use the value of the FldWasFound property to direct its actions. (The value of the FldWasFound property after the invocation of a search or move function is the same as the return value of the function itself.)

Data type

Boolean
Example

object.FldFindFirst “6XX”

Do While object.FldWasFound
<processing of the subject field goes here>

object.FldFindNext

Loop
Get008Value, GetFixedField, Get​Leader​Value functions

Returns a value from a specified location and of a specified length within the current record’s 008 field, 006, 007 or 008 field, or the record leader.
Syntax

object.Get008Value start, length

object.GetFixedField start, length

object.GetLeaderValue start, length

These methods have these parameters:

start
Integer. The starting position of the desired code within the Leader, 006, 007 or 008 field. This is the zero-based value found in MARC documentation

length
Integer. The length of the desired code within the Leader, 006, 007 or 008 field.

Remarks

The GetLeaderValue function returns the value of one element in the current record’s leader. The container program can invoke this method at any time, without regard to the field currently exposed by the MARC record object.

The Get008Value function returns the value of one element in the current record’s 008 field. The container program can invoke this method at any time, without regard to the field currently exposed by the MARC record object.

The GetFixedField function returns the value of one element in the control field currently exposed by the MARC record object. It only makes sense for the container program to invoke the GetFixedField method when the current field is an 006, 007 or 008 field.

Return value

Character string
Example

object.FldFindFirst “007”

Do While object.FldWasFound

If object.GetFixedField(0, 1) = “h” then

<handling of the 007 for microform goes here>

End If

object.FldFindNext

Loop
Associated error conditions

None. If the container program invokes the GetFixedField function but the current field is not a control field, or if the container program asks for a position in a control field that does not exist, the function simply returns a null string.
Hex2CharString function

Converts a character string representing the hexadecimal values of characters into the characters represented by those values.
Syntax

object.Hex2CharString string

The IsMarc function has this parameter:

string
Character string. A character string containing characters that represent the hexadecimal values of characters. The string should contain only the numerals ‘0’ through ‘9’ and the characters ‘A’ through ‘F’.

Remarks

A program may be confronted with a character string that represents the hexadecimal values of characters for a number of reasons. For example, a program may pull information from an Oracle database with the RAWTOHEX function, and need to convert the string back to its original characters.
 This function provides this conversion service.

This function does its work by calling the Hex2Char function of the MARC character object for each pair of characters in the supplied string.

Return value

String
Example

sString$ = object.Hex2CharString (“4D7920636174”)

sString$ now contains the value “My cat”

Associated error conditions

None
HexDisplay2Marc, Marc2HexDisplay functions

The HexDisplay2Marc function converts bytes in a string with values in the range 128-255 into special equivalent sequences. The Marc2HexDisplay function converts a string containing those special equivalent sequences into the corresponding characters.
Syntax

object.HexDisplay2Marc string

object.Marc2HexDisplay string

These functions have these parameters:

string
Character string

Remarks

A program may need to work with a character string containing characters in the range 128-255 (hex values 80-FF; “high-end” characters) in a context that does not reliably provide for such characters. For example, a program may need to save such a string to a whose format doesn’t recognize high-end characters, or display a string on a device that can’t accommodate such characters. These functions allow a program to translate strings into a “safe” format and back to their original forms, without loss of information. (Some other translation schemes may provide for a more pleasing display in some contexts, but are one-way translations.)

Example

sString$ = object.Marc2HexDisplay(“gegen” & Chr(232) & “uber”)

sString$ now contains “gegen\&HE8uber” (the hexadecimal value for the umlaut—character number 232 in the MARC-8 character set—is E8).

Return value

Strings
Associated error conditions

None
IndirectSubdivisionForm function

Converts a geographic heading in direct order into its indirect subdivision form.
Syntax

object.IndirectSubdivisionForm heading

The IndirectSubdivisionForm function has this parameter:

heading
Character string. A geographic heading in direct order.

Remarks

A program may need to construct the “indirect” form for a geographic subdivision for use in a topical subject heading when the heading’s authority record contains no 781 field showing the proper form. The IndirectSubdivisionForm function manipulates the supplied heading into its best guess of what the indirect subdivision form should be. This function—indeed, any function of similar purpose that must do its work without reference to authority records—cannot do this work with perfect reliability. This function will handle “Chicago (Ill.)” perfectly, but will produce unacceptable results for “Ebla (Extinct city).

The behavior of this function is affected by the setting of the AustralianSubdivisionPractice proprerty.

Return value

String
Example

sString$ = object.IndirectSubdivisionForm (“Medicine Hat (Alta.)”

sString$ now contains the value “|zAlberta|zMedicine Hat”

Associated error conditions

None
IsAuthority property

Indicates whether or not the current MARC record is an authority record. Read-only at run time.
Syntax

object.IsAuthority
Remarks

When the container program supplies the MarcRecordIn property, the MARC record object inspects the value of Leader byte 06. If this byte contains ‘z’, it sets the value of the IsAuthority property to True; if this byte contains any other code, it sets the value of this property to False.

If the value of this property is True, the MarcRecordFormat property has the value ‘A’.

Data type

Integer (Boolean)
IsMarc function

Inspects a supplied character string, and determines whether the string is an acceptable MARC record or not.
Syntax

object.IsMarc record

The IsMarc function has this parameter:

record
Character string. Possibly a MARC record.

Remarks

The container program may invoke this function if it is not certain that something it has discovered (in a file of vendor records, for instance) adheres to fundamental MARC format standards. This function returns True if the supplied character string passes all tests; it returns False if the supplied character string fails any test. If a MARC record fails this test, the container program should either attempt to correct the record, or should discard it.

The MARC record object performs the following tests on the string supplied as a parameter to this function. It performs the tests in the order given.

· The string must contain at least 50 characters

· The first 5 characters in the string must be numerals

· The string must be of at least the length indicated by the first 5 characters in the string

· The base address of data (Leader bytes 12-16) must contain numerals, and must contain a value no greater than the length of the string

· The directory must end with the MARC end-of-field character

· The next-to-last character in the record must be the MARC end-of-field character

· The last character in the record must be the MARC end-of-record character

A putative MARC record that passes these simple tests is still not necessarily a valid MARC record, and may not necessarily be acceptable to a particular system. For example, a record that passes these simple tests cannot necessarily be loaded into Vger via the BatchCat interface.

It is not necessary that records received from sources of known repute be subject to even these simple tests. For example, container programs that process records received from OCLC or the Library of Congress may well skip this test. But a container program processing the first set of records received from a new materials vendor might well want to subject the records to this test.

Return value

Integer (Boolean)
Example

sRecord$ = MyMarcFile.ReadNextRecord

If Len(sRecord$) > 0 Then

If object.IsMarc(sRecord$) Then

<do something with the MARC record>

Else

<complain>

End If

End If
Associated error conditions

None. If the supplied string does not appear to be a MARC record, the function simply returns the value False.
IsTheFullStopAtTheEndProbablyIntegral function

Indicates whether the full stop at the end of a heading is likely to be an integral part of the heading.

Syntax

object.IsTheFullStopAtTheEndProbablyIntegral string

The IsTheFullStopAtTheEndProbablyIntegral function has these properties:

string
Character string. A string whose terminal full stop must be inspected

Remarks

At one time, many headings were recorded in authority 1XX fields with a terminal full stop; this was the case even when the terminal full stop was not inseparably joined to, or integral with, the heading.
 Headings in bibliographic records sometimes require terminal punctuation, sometimes not; and in some cases various marks of punctuation are used at the end of a heading, depending on the subfield that follows the heading.

When assembling composite headings from established pieces, when performing the batch correction of headings, and no doubt in other tasks, the status of any terminal full stop in an established heading becomes critical. The container program must know reliably whether the full stop can be removed or must be retained.

The IsTheFullStopAtTheEndProbablyIntegral function evaluates a character string that ends with a full stop. The function is able reliably to detect cases in which the full stop may be regarded as integral and must be retained; it is likewise able reliably to detect cases in which the full stop is not integral and may be removed. There is unfortunately a large number of cases in which the function is not able to decide whether a full stop may be removed or not. If the function reports that it cannot decide about the handling of a terminal full stop, the container program should present the heading to an operator, and ask whether the full stop can safely be removed.

Return value

Integer. One of the following values (set by the internal constants whose names begin FULLSTOP_).

	Value
	Meaning

	1
	The full stop at the end of the heading is an integral part of the heading. Or, there is no full stop at the end of the heading. In either case, the container program should make no change to the heading

	2
	The full stop at the end of the heading is not an integral part of the heading, and may be removed

	3
	The status of the full stop at the end of the heading is unknown

Example

Select Case object.IsTheFullStopAtTheEndProbablyIntegral(object.FieldText)

Case FULLSTOP_Integral

sText$ = object.FldText
Case FULLSTOP_Remove

sText$ = Mid(object.FldText, 1, Len(object.FldText) – 1)

Case Else

If MsgBox(“Remove the full stop from this heading?” & vbLf & object.FldText, vbYesNo) = vbYes Then

sText$ = Mid(object.FldText, 1, Len(object.FldText) – 1)

Else

sText$ = object.FldText
End If

End Select
Associated error conditions

None
IsTrue function

Indicates whether a piece of text appears to mean ‘True’ or ‘Yes.’

Syntax

object.IsTrue string

The IsTrue function has this parameter:

string
Character string. A string to be evaluated for content that might mean ‘True’

Remarks

This function inspects the supplied character string. If the character string appears to represent anything that might be interpreted as ‘Yes’ or ‘True’, the function returns True; otherwise, it returns False.

Return value

Integer (Boolean)
Example

bAuthorized = object.IsTrue(ReadIniFile(sIniFile$, sSection$, “Authorized”, “False”, 15))

Associated error conditions

None
LastNondiacriticCharacter function

Finds the last character in a string that is not a diacritic.

Syntax

object.LastNondiacriticCharacter string

The LastNondiacriticCharacter has this parameter:

string
Character string

Remarks

This function searches the supplied string from right to left, searching for the first character that is of any type other than “combining diacritic.”

The behavior of this function is affected by the setting of the CharacterSetOut property. If this property has the value “U” (Unicode), the function carefully searches for the last non-diacritic character in the string;
 if this property has any other value, the function simply returns the last character in the string.

Return value

String
Example

Select Case object.LastNondiacriticCharacter (string)

Associated error conditions

None
LCaseFirstWord, UCaseFirstWord functions

Changes the case of the first word in the supplied string.

Syntax

object.LCaseFirstWord string

object.UCaseFirstWord string

These functions have this parameter:

string
Character string. A string whose first word is to be converted from uppercase to lowercase, or from lowercase to uppercase. The string may include an initial subfield code
Remarks

The LCaseFirstWord function lowercases the first alphabetic character in the first ‘word’ in a supplied character string. The UCaseFirstWord function uppercases the first alphabetic character in the first ‘word’ in a supplied character string. Each function examines the characters in the supplied string from right to left.

· If the character is an alphabetic character of the case to be reversed (including a special character that has both lowercase and uppercase forms), the function reverses the case of the character, and ceases examination of the string

· If the character is an alphabetic character of the target case, or a numeral, or a currency symbol, or a mathematical operator, the function ceases examination of the string

The value of the CharacterSetOut property determines the manner in which these functions go about their work.

When the container program invokes the RemoveNonfilingCharacters function, the MARC record object automatically invokes the UCaseFirstWord to adjust the appearance of the modified field.

Return value

Character string
Example

sString$ = object.UCaseFirstWord(“abcdefg”)
sString$ now contains the string “Abcdefg”.

Associated error conditions

None
Leader property

The leader from the current record.

Syntax

object.Leader [=string]
Remarks

The Leader property contains all 24 characters of the current record’s leader, as it may have been modified via the ChangeLeaderValue method.

In most cases, a container program will use the GetLeaderValue function to extract a single element from the leader, and will use the ChangeLeaderValue method to change a single element in the leader. A container program can use the Leader property to obtain the entire record leader, and replace it, at one stroke. If the container program uses this property to change the entire leader at one stroke, the MARC record object will only change bytes 5-8 and 17-19.

Data type

Character string
LeftPad function

Right-justify a character string to a fixed length.

Syntax

object.LeftPad string, length, character

The LeftPad function has these parameters:

string
Character string. The string to be set to a fixed length

length
Integer. The length of the finished string in octets.

character
(Optional) Character string. The character to be added to the left side of string until it is of the length indicated by length. May be any number of octets. Default value: “0” (the character zero).

Remarks

Right-justifies a supplied character string to some length, using a supplied character. This function will most often be used to right-justify a string of numerals with leading zeroes or blanks.

Return value

Character string
Example

Print #iOut%, object.LeftPad(Trim(Str(lRecordsRead)), 8, “ “) & “records read”

Associated error conditions

None
LengthInCharacters function

The number of characters in a given string.

Syntax

object.LengthInCharacters string

The LengthInCharacters function has this parameter:

string
Character string. A string whose length in characters is to be determined

Remarks

This function counts the number of characters in a supplied string.

The value returned by this function depends on the setting of the CharacterSetOut property. If the CharacterSetOut property has the value “U”, the function determines the number of characters in the string by determining the number of octets in the first character, skipping that many octets to the first octet of the next character and so on; counting 1 character for every skip. If the CharacterSetOut property does not have the value “U”, the function simply uses the built-in Visual Basic Len function to count the number of octets in the string.

Return value

Long integer
Associated error conditions

None
ListSubfieldsForNormalization function

Lists those subfields in a variable field that should be included in the normalized version of that field.

Syntax

object.ListSubfieldsForNormalization format, tag

The ListSubfieldsForNormalization function has these parameters:

format
Character string. A single-character code for a MARC format. One of the following: A (authority), B (bibliographic; book), D (computer file), F (motion pictures), M (music/sound recording), P (cartographic material), S (serial), U (mixed materials)

tag
Character string. A three-character MARC tag

Remarks

The normalized form of a field does not necessarily contain all of the subfields in the field. For example, subfield $4 in personal name headings contains a code describing a person’s function in relation to the item being described; but this code is not retained in the normalized form of the heading. The value returned by the ListSubfieldsForNormalization function allows the container program to know whether a subfield should be included in the normalized form of a heading.

The MARC record object considers the values returned by this function when it prepares the FldNorm and FldNormNaco properties. The MARC record object also uses the values returned by this function when the container program invokes the NormalizeWholeField function. The container program will not need to invoke this function unless it is preparing its own normalized form for a heading.

Return value

Character string; a list of MARC subfield codes
Example

object.SfdMoveFirst

Do While object.SfdWasFound
If Instr(object.ListSubfieldsForNormalization(object.MarcRecordFormat, object.MarcTag), object.SfdCode) >0 Then

<do something with the subfield text>

End If

object.SfdMoveNext

Loop
Associated error conditions

None
Marc2HexDisplay function

See the description of the HexDisplayToMarc function.

Marc2MsoftAscii, MsoftAscii2Marc functions

Convert a character string into a form that can be displayed in Windows contexts with most fonts, and from that form back into the MARC character set.

Syntax

object.Marc2MsoftAscii string

object.MsoftAscii2Marc string

These functions have this parameter:

string
Character string

Remarks

A program may need to display a string containing characters other than those in the range 0-127 (hex values 00-7F)
 in a context that does not reliably provide for all such characters. For example, a program may need to present such a string in a text box with a font that does not understand the MARC character set. This function allows a program to translate strings into a “safe” displayable non-Unicode format.

The action of the Marc2MsoftAscii function is not perfectly reversible: the string returned by this function cannot be converted back into its original form. The MsoftAscii2Marc function is supplied with the understanding that a string translated to MsoftAscii and back again will not necessarily be the same at the end as at the beginning.

The behavior of this function is affected by the setting of the CharacterSetOut property.

The Marc2MsoftAscii function does this work for characters other than those with UTF-16 values in the range 0001 to 00FF:

· It replaces commonly-encountered combinations of diacritics and base characters with a single pre-composed character

· It removes other diacritics

· It replaces special characters with displayable equivalents (for example, it replaces MARC-8 character A5—the Æ digraph—with character C6; it replace MARC-8 character C4—the sharp sign—with “#”; it replaces MARC-8 character AC—U with a hook—with “U”)

· It replaces superscripts and subscripts with their on-the-line equivalents

Example

sString$ = object.Marc2MsoftAscii(“gegenu” & object.MarcUmlaut & “ber”)

sString$ now contains “gegenüber” (the function translates “u” plus the umlaut into “ü”).

Return value

String
Associated error conditions

None
MarcAcute, MarcAcuteDouble, MarcAELower, MarcAEUpper [etc., etc.] properties

Properties that contain MARC special characters and diacritics Read-only at run time.

Syntax

object.MarcAcute
Remarks

This large group of properties makes available to the container program those non-ASCII characters used in MARC records except for characters in non-Roman scripts. In other words, these properties make available the following characters:

· special characters (digraph Æ, slash-O, flat sign, superscript 8, etc.)

· diacritics (acute, circumflex, tilde, etc.)

· control characters (escape, end-of-field, end-of-record, delimiter)

· the three Greek characters found in the “regular” MARC character set (alpha, beta, gamma)

These properties are affected by the setting of the CharacterSetOut property; they return different values, depending on the context of the current record. For example, the MarcLScript property can have one of 4 different values:

· if “U”: the UTF-8 equivalent of UTF-16 character 2113

· if “V”: character 175

· if “O”: character 190

· all others: character 193

These properties obtain their values by simply returning the values of the equivalent Marc… or Utf8… properties of the MARC character object, as determined by the setting of the Character​Set​Out property.

These properties are too numerous to list in the header to this description. Here is a complete list of them:

MarcAcute, MarcAcuteDouble, MarcAELower, MarcAEUpper, MarcAlif, MarcAlpha, MarcAngstrom, MarcAyn, MarcBeta, MarcBreve, MarcBritishPound, MarcCandrabindu, MarcCedilla, MarcCedillaRight, MarcCircleBelow, MarcCircumflex, MarcCommaHighCentered, MarcCommaHighOffCenter, MarcCopyright, MarcDegree, MarcDelimiter, MarcDotAbove, MarcDotBelow, MarcDotBelowDouble, MarcDotMiddle, MarcDSlashLower, MarcDSlashUpper, MarcEndOfField, MarcEndOfRecord, MarcEscape, MarcEth, MarcExclamationInverted, MarcFill, MarcFlat, MarcGamma, MarcGrave, MarcHacek, MarcHookLeft, MarcHookRight, MarcIDotless, MarcJoinerZeroWidth, MarcLigatureLeft, MarcLigatureRight, MarcLScript, MarcLSlashLower, MarcLSlashUpper, MarcMacron, MarcMiagkiiZnak, MarcNonJoinerZeroWidth, MarcNonSortBegin, MarcNonSortEnd, MarcOELower, MarcOEUpper, MarcOHookLower, MarcOHookUpper, MarcOSlashLower, MarcOSlashUpper, MarcPlusMinus, MarcPressing, MarcQuestionInverted, MarcQuestionPseudo, MarcRegistered, MarcSharp, MarcSubscript0, MarcSubscript1, MarcSubscript2, MarcSubscript3, MarcSubscript4, MarcSubscript5, MarcSubscript6, MarcSubscript7, MarcSubscript8, MarcSubscript9, MarcSubscriptMinus, MarcSubscriptParensLeft, MarcSubscriptParensRight, MarcSubscriptPlus, MarcSuperscript0, MarcSuperscript1, MarcSuperscript2, MarcSuperscript3, MarcSuperscript4, MarcSuperscript5, MarcSuperscript6, MarcSuperscript7, MarcSuperscript8, MarcSuperscript9, MarcSuperscriptMinus, MarcSuperscriptParensLeft, MarcSuperscriptParensRight, MarcSuperscriptPlus, MarcThornLower, MarcThornUpper, MarcTilde, MarcTildeDoubleLeft, MarcTildeDoubleRight, MarcTverdiiZnak, MarcUHookLower, MarcUHookUpper, MarcUmlaut, MarcUnderscore, MarcUnderscoreDouble, MarcUpadhmaniya

Example

sString$ = object.Marc2MsoftAscii(“gegen” & object.MarcUmlaut & “uber”)

sString$ = object.Marc2MsoftAscii(“gegenu” & object.MarcUmlaut & “ber”)

Return value

Character string

MarcRecordFormat property

A code for the ‘format’ of the current MARC record. Read only at run time.

Syntax

object.MarcRecordFormat
Remarks

A one-character code that describes the ‘format’ of the current record (i.e., the layout of the record’s 008 field). The values returned are set by the private constants whose names begin ‘RECORDFORMAT_’ The value of this property is the same as the value returned by the SetFormat​Code function.

This property has no value until the container program supplies the MarcRecordIn property.

Return value

Character string. One of the values returned by the SetFormatCode function; see the table of codes in the description of that function.

MarcRecordIn, MarcRecordOut properties

A record in MARC format. The MarcRecordOut property is read-only at run time.

Syntax

object.MarcRecordIn [= sRecord$]

object.MarcRecordOut

Remarks

The MarcRecordIn property receives a record in MARC communications format. When the container program supplies this property, the record becomes the current record, its first field becomes the current field and that field’s first subfield becomes the current subfield.

The value the container program will find when it reads the MarcRecordIn property is always the record as originally supplied; the value of the MarcRecordIn property never reflects any modifications made to the record after it was received by the MARC record object.

The MarcRecordOut property yields a record in MARC communications format. This is either the record supplied as the MarcRecordIn property or a record created with the NewRecord method. This version of the record reflects all modifications made to the record.

Data type

Character strings
Example

object.CharacterSetIn = “O”

object.CharacterSetOut = “U”

object.MarcRecordIn = sRecord$

If object.FldFindFirst(“049”) Then

object.FldDelete

End If

sRecord$ = object.MarcRecordOut
At this point, sRecord$ contains the original MARC record, translated from the OCLC character set into UTF-8 encoding, and with any 049 field removed. The MarcRecordIn property contains the record as originally supplied, in the OCLC character set and with any 049 field intact.

Associated error conditions

None
MarcRecordTranslated property

Indicates whether or not the current record has been translated from one character set to another. Read-only at run time.

Syntax

object.MarcRecordTranslated
Remarks

The CharacterSetIn property describes the scheme used to encode data in the record supplied by the container program as the MarcRecordIn property. The CharacterSetOut property describes the scheme used to encode data in the record provided by the MARC record object as the MarcRecordOut property. If the CharacterSetIn and CharacterSetOut properties have different values when the container program supplies the MarcRecordIn property, the MARC record object, as part of its work of accepting the MARC record, sends the record to a translation routine. This routine sets the value of the MarcRecordTranslated property to False, examines each character in the record, and changes the character as necessary. If this translation routine actually makes a change to the record, it sets the value of the MarcRecordTranslated property to True.

If the container program changes the value of the CharacterSetOut property while the MARC record object is holding a MARC record, the MARC record object again passes the record to its translation routine; and again, this routine sets the value of the MarcRecordTranslated property to False and then examines the record for characters to change. The value of the MarcRecordTranslated property represents only the most recent examination of MARC record by the translation routine.

Data type

Integer (Boolean)
See also

CharacterSetIn property, CharacterSetOut property
MarcRegistered, MarcSharp, etc. properties

See the description of the MarcAcute property.

MsoftAscii2Marc function

See the description of the Marc2MsoftAscii function.

NationalAuthorityRecord function

Indicates whether or not the current record represents a ‘national’ authority record.

Syntax

object.NationalAuthorityRecord string

The NationalAuthorityRecord function has this parameter:

string
Return value. Character string. The control number (001 or 010 field) from an authority record

Remarks

A ‘national’ authority record
 is a record that resides in the collectively maintained authority files for subjects and names available via both the OCLC and RLIN utilities. The concept may be extended to authority records produced by the National Library of Medicine, although these records are not as widely available. In some situations, a container program may wish to know that an authority record is a copy of a record that originated in such a file, or may wish to know that an authority record is not a copy of such a record (i.e., is a ‘locally created’ record).

The NationalAuthorityRecord function submits the current authority record to a series of tests. If these tests indicate that an authority record is likely to be a copy of a record extracted from a shared authority file, the function returns True; otherwise, it returns False. If the function returns True, it also returns in the string parameter the control number from the authority record.

If an authority record contains an 010 field, the function returns True and the string parameter contains “010: “ plus the entire contents of the 010 field. If an authority record contains an 035 field with the NUC code “DNLM” the function returns True and the string parameter contains “035: “ plus the entire contents of the 035 field.

If an authority record contains no “DNLM” 035 field but contains an 040 field whose subfield $a consists of the text “DNLM”, the function returns True and the string parameter is null.

Return value

Integer (Boolean). If the return value is True, the string parameter contains the authority record’s control number. (For a name or LCSH authority record, this is the entire text 010 field; for a NLM MeSH authority record, this is usually the NLM control number.)
Associated error conditions

None
NewRecord method

Create a new MARC record in a specified format.

Syntax

object.NewRecord type, level

The NewRecord method has these parameters:

type
Character string. A MARC record type code (i.e., the code to be used in Leader 06 of the new record)

level
(Optional) Character string. A MARC bibliographic level code (i.e., the code to be used in Leader 07 of the new record). Default value for bibliographic records: ‘m’; default value for authority, holdings and other types of records: blank. The container program need supply this parameter only for items in the ‘bibliographic’ formats that require a bibliographic level other than ‘m’.

Remarks

The container program invokes this method to create a new record, supplying as first parameter the new record’s record type code (Leader/06). For bibliographic records, the container program must supply the level parameter if the record is not for a monograph. (The container program can change byte 07 of the leader to a different value at any convenient time.)

When the container program invokes the NewRecord method, the MARC record object obliterates all trace of any existing current MARC record. It creates a skeletal new MARC record as shown in the accompanying table.

	Position
	Action

	Leader 06 (type of record)
	Set from the type parameter

	Leader 07 (bibliographic level)
	For bibliographic records, set from the level parameter (default is ‘m’); for other types of records, set to blank

	Leader 09 (character encoding)
	Set to ‘a’ if CharacterSetOut is ‘U’; set to blank for other values

	005 field
	Contains the current date and time

	008 field
	Initially set to the default value for this type of record. See the following table.

The following table shows the default values for the 008 field set by the MARC record object. In this table, ‘XXXXXX’ represents the current date in the form yymmdd; ‘#’ represents a blank space; “|” represents the fill character. Default values for 008 fields are set in the MARC record object’s initialization routine.

	Record type
	Default 008 field

	A (authority)
	XXXXXXn|#aaannaabn##########|n#ana#####d

	B (book)
	XXXXXXn######################000#0#####d

	D (computer file)
	XXXXXXn###################|###000#0####d

	F (visual)
	XXXXXXn###########|||############|#####d

	H (holdings)
	XXXXXXuu####8###1001uu###XXXXXX

	M (music)
	XXXXXXn###########|||##################d

	P (cartographic)
	XXXXXXn##################|#####0#######d

	Q (community)
	XXXXXaaaaaaaa

	S (serial)
	XXXXXXn############|#########0#########d

	U (mixed)
	XXXXXXu####0###1001aa###0000000

	W (classification)
	XXXXXXuuuuuuuuk

This skeletal MARC record does not contain a record number in the 001 field or an NUC code in the 003 field. It does not contain an 040 field. These, and all other matters of record content, are left to the container program.

Associated error conditions

None
NormalizationScheme property

Controls the behavior of the routine’s normalization functions.

Syntax

object.NormalizationScheme [= code]

Remarks

The MARC record object holds within it an instance of the MARC character object (described elsewhere in this document). The MARC character object contains routines that prepare the normalized form of a character string; the MARC record object relies on these routines to carry out normalization tasks. These routines can produce two different normalized versions of a piece of text: one version matches the scheme used internally by the Vger system, the other matches the requirements of the Program for Cooperative Cataloging. The MARC record object simply passes the value of the Normalization​Scheme property to its internal instance of the MARC character object; no part of the MARC record object’s behavior depends directly on the value of this property.

The MARC record object prepares two different normalization forms of each variable field in each authority and bibliographic record and presents them as the FldNorm and FldNormNaco properties: the form used internally by the Vger system, and the form suggested by PCC documentation. In most circumstances, the container program will not need to juggle the value of the MARC record object’s NormalizationScheme property. (The container program may for its own purposes contain an instance of the MARC character object, and may adjust the value of that instance’s NormalizationScheme property as necessary.)

Data type

Character string. One of the values defined by constants whose names begin ‘NORMALIZATIONSCHEME_’. See the description of the Normalization​Scheme property within the description of the MARC/UTF-8 character object elsewhere in this document.
Default value

‘V’ (Vger normalization scheme)
Associated error conditions

Invalid value for NormalizationScheme property. (Numeric value: 380.) Raised when the container program sets this property to any value other than those defined by the constants whose names begin ‘NORMALIZATIONSCHEME_’.
NormalizeCallNumber function

Prepares the normalized version of a call number.

Syntax

object.NormalizeCallNumber number, type

The NormalizeCallNumber function has these parameters:

number
Character string. A call number

type
Character string. A code for the type of call number. One of the codes defined for the CallNumberType property

Remarks

Vger extracts call numbers from holdings records and stores them in a table in two forms: the ‘native’ form found in the 852 field, and a ‘normalized’ form. The search for a call number in a holdings record is generally made against the normalized form, rather than the native form; the normalized form allows a program to ignore variations in spacing and punctuation.

The VgerReader DLL contains a SearchCallNumber method that the container program can use to search Vger for holdings records that contain a given call number. The VgerReader Search​Call​Number method automatically normalizes the call number supplied by the container program. If the container program uses the VgerReader SearchCallNumber method, it does not need to use the MARC record object’s Normalize​Call​Number function.

There may be times at which the container program needs to prepare the normalized form of a call number for its own purposes. A container program might need to find the normalized form of a call number because it’s constructing an elaborate SQL statement that must include all or part of the normalized form of a call number; or it might need the normalized form because it’s sorting a group of records by call number. In such circumstances, the container program will call the Normalize​Call​Number function.

To obtain the normalized form of a call number, the container program invokes the Normalize​Call​Number function, supplying as parameters the call number to be normalized and a code for the type of call number. The function returns the normalized form of the call number, ready for use in an SQL statement, for use in sorting, or for other purposes.

The NormalizeCallNumber function contains separate handling for different types of call numbers:

· Library of Congress (including NLM)

· Dewey

· Superintendent of Documents

· Other

The normalization routines for Library of Congress, Dewey and ‘other’ numbers have been tested extensively, and appear to produce exactly the form used internally by Vger. The routine for Superintendent of Documents numbers is correct most of the time, but is known to be less than perfect.

Return value

Character string
Associated error conditions

None. If the container program supplies an unrecognized value for the type parameter, the function simply returns the value of the number parameter, unchanged.
NormalizeStandardNumber function

Prepares the normalized form of a standard number.

Syntax

object.NormalizeStandardNumber tag, number

The NormalizeStandardNumber function has these parameters:

tag
Character string. The MARC tag of the standard number field

number
Character string. A standard number

Remarks

Vger extracts standard numbers from authority and bibliographic records and stores them in a table in two forms: the ‘native’ form found in the source field, and a ‘normalized’ form. The search for a standard number in a bibliographic or authority record is generally made against the normalized form rather than the native form; the normalized form allows a program to ignore variations in spacing and punctuation.

The VgerReader DLL contains a SearchStandardNumber method that the container program can use to search Vger for bibliographic or authority records that contain a given standard number. The VgerReader SearchStandard​Number method automatically normalizes the standard number supplied by the container program. If the container program uses VgerReader’s SearchStandardNumber method, it does not need to use the MARC record object’s NormalizeStandard​Number function.

There may be times at which the container program needs to prepare the normalized form of a standard number for its own purposes. A container program might need to find the normalized form of a standard number because it’s constructing an elaborate SQL statement that must include all or part of the normalized form of a number; or it might need the normalized form because it’s sorting a group of records by standard number. In such circumstances, the container program will call the Normalize​Standard​Number function.

To obtain the normalized form of a standard number, the container program invokes the Normalize​Standard​Number function, supplying as parameters the tag of the standard number field and one subfield from the standard number field. The function returns the normalized form of the standard number, ready for use in an SQL statement, for use in sorting, or for other purposes.

The NormalizeStandardNumber function contains separate handling for different types of standard numbers:

· Library of Congress numbers (010)

· ISBN (020)

· ISSN (022)

· System number (035)

The MARC record object exposes the FldNorm, FldNormNaco, SfdNorm and SfdNormNaco properties for fields and subfields. These properties contain the normalized form standard number fields and subfields according to the standard Vger and PCC rules for all kinds of text. The normalized form available from these properties does not necessarily match the form needed for use when searching Vger tables for a standard number.

Return value

Character string
Example

object.FldMoveTop
Do While object.FldFindNext (“020”) ‘ assuming that the first 020 is also not the very first field …

If object.SfdCode = “a” Then

s020$ = object.NormalizeStandardNumber(“020”, object.SfdText)

<do something with the normalized 020 text>

End If

Loop

Associated error conditions

None. If the container program requests the normalized form for a type of standard number other than those mentioned in this section, the function returns the number supplied by the container program, unchanged.
NormalizeWholeField function

Prepares the normalized form of an entire variable field.

Syntax

object.NormalizeWholeField scheme, format, tag, indicators, field

The NormalizeWholeField function has these parameters:

scheme
Character string. A code for the normalization scheme to use

format
Character string. A code for the MARC format from which the field was extracted, or for which it is destined. One of the codes provided by the Marc​Record​Format property

tag
Character string. The field’s MARC tag

indicators
Character string. The field’s indicators

field
Character string. The text of the MARC field, including subfield codes

Remarks

When the container program supplies the MarcRecordIn property, the MARC record object prepares normalized forms of each variable field, and makes them available as the FldNorm and FldNormNaco properties. If the container program invokes VgerReader’s SearchHeading or SearchSubdivision method, VgerReader prepares the normalized form of the heading or subdivision to use in the search. If the container program is limited to the use of properties and methods built into the MARC record object and VgerReader’s search methods, it will not need to call on the NormalizeWholeField function; but the container program may need to derive the normalized form of a field to satisfy other needs.

To obtain the normalized form of a heading, the container program invokes the NormalizeWhole​Field function, supplying appropriate values for the function’s many parameters. The MARC record object returns the normalized form of the heading prepared according to the indicated scheme, ready for use in an SQL statement, for use in sorting or for other purposes.

The MARC record object proceeds through the field one subfield at a time. It discards subfields not needed in the finished heading. (Subfields to be retained are identified by the List​Subfields​For​Normalization function). If the field has a nonfiling characters indicator, or if it begins with characters that mark a ‘nonfiling zone’, the function discards characters from the beginning of subfield $a.
Return value

Character string
Associated error conditions

None
NormString function

Prepares the normalized form of a character string.

Syntax

object.NormString string

The NormString function has this parameter:

string
Character string. A string of characters to be normalized

Remarks

This function prepares the normalization scheme for a piece of text. To obtain the normalized form of some text, the container program sets the CharacterSetOut and NormalizationScheme properties to appropriate values, then invokes this function.

The behavior of this function is controlled by the value of the CharcterSetOut property. If the supplied string uses UTF-8 encoding, the CharacterSetOut property must be set to “U”.

Properties to consider before invoking this function

CharacterSetOut property, NormalizationScheme property
Return value

Character string
Associated error conditions

None
NUC property

A code that identifies an institution.

Syntax

object.NUC [= code]

Remarks

The document MARC code list for organizations
 lists codes that can be used to identify institutions. The NUC property contains the code from this list for the institution for which records are being prepared or modified.

At present, the MARC record object makes no use of this property. At some point in the future, the field-sorting capabilities of the object will be enhanced, and the NUC property will play an important part in that work. Container programs should be written to supply the NUC code now, so they will be ready for the revised version of the MARC record object when it becomes available.

Data type

Character string
Associated error conditions

None
Rat function

Finds the rightmost occurrence of one string within another.

Syntax

object.Rat source, to find

The Rat function has these parameters:

source
Character string. The string to be searched for a sequence of characters

to find
Character string. The string to be matched against source
Remarks

This function scans the source string from right to left, looking for a sequence that matches the to find string. (The function’s name means “right at”—“at” being the equivalent in a now-forgotten language for “Instr”. A better name might be “Rinstr”.) If the function locates an occurrence of the to find text within source, it returns a pointer to the first character within source that matches the to find string. If the function does not locate an occurrence of the to find string within the source string, the function returns zero.

This function is the opposite of the Visual Basic function Instr, which finds the leftmost occurrence of one string within another.

Return value

Long integer
Example

lPtr = object.Rat(sString1$, sString2$)
Associated error conditions

None. If either of the supplied strings is the null string, the function returns zero.
ReduceSeriesNumberingToPattern1, Reduce​Series​Numbering​To​Pattern2 functions

These functions prepare a normalized form of a series numbering pattern.

Syntax

object.ReduceSeriesNumberingToPattern1 string

object.ReduceSeriesNumberingToPattern2 string

These functions have this parameter:

string
Character string. Series number; the contents of subfield $v of a bibliographic series field, or the contents of subfield $a from an authority 642 field

Remarks

Subfield $a of the 642 field in authority records contains an example of the numbering to be used with occurrences in bibliographic records of a series heading. Subfield $v in bibliographic series headings contains the numbering for one instance of the series. A comparison of information in authority 642 subfield $a and bibliographic series subfield $v should in most cases allow a container program to determine whether or not the numbering in the bibliographic series heading follows the practice indicated by the authority record.

A report prepared by a work group of the PCC Standing Committee on Automation available as http://www.loc.gov/catdir/pcc/tgsernum02_rpt.pdf contains an extended consideration of the validation of series numbering in bibliographic series subfield $v. This report suggests a technique by which (in most cases) a container program can determine that bibliographic series subfield $v conforms to the pattern given in authority 642 subfield $a. This technique involves the normalization of series numbering information according to two different patterns, and the comparison of the patterns produced by the authority and bibliographic information. If one of the pairs of normalized numberings match, the bibliographic numbering conforms to the authority pattern; if neither pair matches, there may be a problem with the numbering in either the authority or the bibliographic record.

The ReduceSeriesNumberingToPattern1 function converts an instance of series numbering into the first pattern described in the report. The ReduceSeriesNumberingToPattern2 function converts an instance of series numbering into the second pattern described in the report.

Return value

Character string
Example

On entry into this code sample, the variable s642a$ contains subfield $a of an authority 642 field. The instance of the MARC record object here called ‘object’ contains a bibliographic record.

object.FldMoveFirst
Do While object.FldWasFound

If Instr(“48”, Substr(object.FldTag, 1, 1) > 0 Then

If object.SfdFindFirst(“v”) Then

If object.ReduceSeriesNumberingToPattern1(s642a$) <> object.ReduceSeriesNumberingToPattern1(object.SfdText) Then

If object.ReduceSeriesNumberingToPattern2(s642a$) <> object.ReduceSeriesNumberingToPattern2(object.SfdText) Then

<present the discrepancy in some manner>

End If

End If

End If

End If

object.FldMoveNext

Loop

Associated error conditions

None
RemoveDelimiters function

Removes or replaces subfield codes in a piece of text.

Syntax

object.RemoveDelimiters string, replacement

The RemoveDelimiters function has these parameters:

string
Character string. A string containing one or more subfield codes

replacement
(Optional). Character string. A character to be used to replace the delimiter character. Default value: space
Remarks

This function receives a MARC variable field, and returns that field with a space instead of each delimiter/subfield code pair; or with the delimiter character replaced with some other character.

If the container program does not supply the optional replacement parameter, this function replaces the delimiter/subfield code pairs in the supplied string with a space; if the container program supplies the replacement parameter, this function replaces the delimiters in the supplied string with that character.

Return value

Character string
Example

sString$ = object.RemoveDelimters(object.FldText)

At this point, sString$ contains the text of the field, with subfield codes replaced by spaces. For example, if object.FldText contained “|aShakespeare, William,|d1564-1616.”, sString$ now contains “Shakespeare, William, 1564-1616.”

sString$ = object.RemoveDelimters(object.FldText, “$”)

At this point, sString$ contains the text of the field, with subfield delimiters replaced by dollar signs. For example, if object.FldText contained “|aShakespeare, William,|d1564-1616.”, sString$ now contains “$aShakespeare, William,$d1564-1616.”

sString$ = object.RemoveDelimters(object.AddSpacesAroundDelimiters(object.FldText), “$”)

At this point, sString$ contains the text of the field, with spaces before and after subfield codes and delimiters replaced by dollar signs. For example, if object.FldText contained “|aShakespeare, William,|d1564-1616.”, sString$ now contains “$a Shakespeare, William, $d 1564-1616.”

Associated error conditions

None
RemoveNonfilingCharacters function

Removes nonfiling characters from the beginning of a field.

Syntax

object.RemoveNonfilingCharacters format, tag, indicators, field

The RemoveNonfilingCharacters function has these parameters:

format
Character string. A code for the type of MARC record from which the field was extracted, or for which it is destined

tag
Character string. The MARC tag for the field

indicators
Return value. Character string. The MARC indicators for the field

field
Character string. A MARC variable field

Remarks

Many variable fields in MARC records contain an indicator that specifies how many characters should be removed from the start of the field’s subfield $a to arrive at the first significant character. Programs use this information to discard characters at the beginning of fields when preparing the normalized forms of those fields for sorting and other purposes. At some time in the future, the ‘indicator’ technique for identifying nonfiling characters in certain fields will be replaced by a ‘nonfiling zone’ that can be used at the start of subfield $a of any variable field.

The RemoveNonfilingCharacters function removes characters from the beginning of subfield $a that are not wanted in the normalized form of a heading. The function first looks for the (as yet unused) nonfiling zone at the beginning of the field; if the nonfiling zone is present, the function removes the characters in the nonfiling zone. If the nonfiling zone is not present, the function uses the record format code, tag and indicators to determine whether or not the field has a nonfiling indicator—and which indicator is the nonfiling indicator—and then removes the number of characters (if any) specified by that indicator.

If the function removes any characters from the beginning of a field, the MARC record object then invokes its own UCase​First​Word function to set the first alphabetic character in the remaining string to uppercase.

This function relies on the setting of the CharacterSetOut property: the MARC-8 and UTF-8 schemes use different characters to mark the beginning and end of the nonfiling zone; and of course the two schemes use different numbers of bytes to represent characters. (The nonfiling indicator specifies the number of characters to ignore, not the number of bytes.)

Return value

Character string. The returned string contains all subfield codes present in the original string.
Example

sString$ = object.RemoveNonrilingCharacters(“B”, “245”, “14”, object.SfdMake(“a”, “The hamlet.”)

At this point, sString$ contains “|aHamlet.”
Associated error conditions

None
RemoveRepeatedCharacters function

Removes consecutive occurrences of a character from a string.

Syntax

object.RemoveRepeatedCharacters string, character

The RemoveRepeatedCharacters function has these parameters:

string
Character string. A string to be examined for repeated characters

character
(Optional) Character. The character to be removed from the string when it occurs adjacent to itself. (May in fact be more than one character—or a multi-octet Unicode character.) Default value: blank

Remarks

This function scans the string supplied as the string parameter for consecutive occurrences of the character (or string) supplied as the character parameter. If it finds consecutive occurrences of the character parameter, it removes one of them. This function will perhaps most often be used to remove consecutive blank spaces from a string on which other work is also being done.

Return value

Character string
Example

sString$ = object.RemoveRepeatedCharacters(sString$)
Associated error conditions

None
RemoveSpaces function

Removes all spaces from a character string.

Syntax

object.RemoveSpaces string

The RemoveSpaces function has this parameter:

string
Character string. A string from which all blank spaces are to be removed

Remarks

This function scans the supplied character string for blank spaces, and removes them all.

Return value

Character string
Example

sString$ = object.RemoveSpaces(sString$)

Associated error conditions

None
RemoveSpacesAroundDelmiters function

See the description of the AddSpacesAroundDelimiters function.

ReplaceCharacters function

Replaces all occurrences of one character with another.

Syntax

object.ReplaceCharacters string, remove, replace

The ReplaceCharacters function has these parameters:

string
Character string. A string in which characters are to be substituted

remove
Character string. The character or characters to be replaced if found

replace
(Optional.) Character string. The character or characters that replace remove in string. Default value: null

Remarks

This function replaces each occurrence of remove in string with replace. The results produced by this function overlap in some circumstances with special-purpose functions such as RemoveDelimiters.

Return value

Character string
Example

sString$ = object.ReplaceCharacters(sString$, “|”, object.MarcDelimiter)

Associated error conditions

None
SafeLCase, SafeUCase functions

Translate the alphabetic characters in a string from uppercase to lowercase, or from lowercase to uppercase.

Syntax

object.SafeLCase string

object.SafeUCase string

These functions have this parameter:

string
Character string. A string whose alphabetic characters are to be converted to lowercase or uppercase

Remarks

The SafeLCase function translates all of the uppercase alphabetic characters in string to their lowercase equivalents. The SafeUCase function translates all of the lowercase alphabetic characters in a string to their uppercase equivalents.

These functions are equivalent to the Visual Basic LCase and UCase functions, except that they can be called for strings represented in either the MARC-8 or UTF-8 schemes. These functions rely on the setting of the CharacterSetIn property to regulate their behavior.

Return value

Character string
Example

sString$ = object.SafeLCase(sString$)

sString$ = object.SafeUCase(sString$)

Associated error conditions

None
SafeMid function

Extracts one character string from another.

Syntax

object.SafeMid string, start, length, characters

The SafeMid function has these parameters:

string
Character string. A string from which a piece is to be extracted

start
Long integer. The starting point of the portion to be extracted. May be expressed in either characters or octets; if expressed in characters, the characters parameter must have the value True

length
(Optional) Long integer. The length of the desired portion expressed in characters. If the container program does not supply this program, the MARC record object uses the length of the string beginning at the position indicated by start
characters
(Optional) Boolean. Whether the start parameter is expressed in characters (True) or octets (False). Default value: False (start is expressed in terms of octets, not characters)

Remarks

The SafeMid function is equivalent to the Visual Basic Mid function. The difference is that the SafeMid function accepts a definition of the starting position either as the number of characters or the number of octets, which means that it can successfully perform a number of special operations on strings encoded according to the UTF-8 scheme (such as removing nonfiling characters from a title). This function relies on the setting of the Character​Set​Out property to control its work; if this property does not hold the value “U”, the SafeMid function simply calls the Visual Basic Mid function.

Return value

Character string
Example

sString2$ = object.SafeMid(sString1$, 3, 5)
Associated error conditions

None
SafeRight function

Extracts a number of characters from the right end of a character string.

Syntax

object.SafeRight string, length

The SafeRight function has these parameters:

string
Character string. A string from which a portion is to be extracted

length
Long integer. The number of characters to be extracted from the right end of string. Expressed in terms of characters, not octets

Remarks

This function is equivalent to the Visual Basic Right function, except that this can also safely handle strings encoded in UTF-8. The length parameter is always specified in terms of the number of characters, not the number of octets.

Return value

Character string
Example

sTest$ = object.SafeRight(sString$, 1)
Associated error conditions

None
SafeStuff function

Replaces part of one character string, inserts text into a character string, and removes text from a character string.

Syntax

object.SafeStuff string, start, length, replacement

The SafeStuff function has these parameters:

string
Character string. A string to be changed

start
Long integer. The starting position of the affected portion of the string. Expressed as a number of octets, not characters

length
Long integer. The number of octets (not characters) to remove from the original string. May be zero.

replacement
Character string. Text to be inserted at the position indicated by start

Remarks

This function performs a number of useful operations on the string parameter. The task performed depends on the parameters supplied.
· If the length parameter is not zero and the replacement parameter is not a null string, the function removes the indicated number of octets from the string and inserts the replacement at the same point

· If the length parameter is not zero and the replacement parameter is a null string, the function removes the indicated number of octets from the string

· If the length parameter is zero and the replacement parameter is not a null string, the function inserts the ‘replacement’ at the indicated point

· If the length parameter is zero and the replacement parameter is a null string, the function does nothing

Return value

Character string
Example

Do

iRc% = Instr(sString$, “@”)

If iRc% = 0 Then

Exit Do

End If

sString$ = object.SafeStuff(sString$, iRc%, 1, “ at ”)

Loop

Associated error conditions

None
SafeUCase function

See the description of the SafeLCase function.

SerialBibliographicRecord function

Indicates whether a bibliographic record represents a ‘serial.’

Syntax

object.SerialBibliographicRecord leader

The SerialBibliographicRecord function has this parameter:

leader
(Optional) Character string. A MARC record leader, or bytes 06 and 07 from a record leader. If the container program does not supply this parameter, the MARC record object uses the current record’s leader

Remarks

This function examines either the current record’s leader or the supplied record leader, and determines whether the type of record and bibliographic level codes (Leader bytes 06 and 07) indicate that the record represents a ‘serial.’ (If a record is a ‘serial’, its 008 field has a special format.)

A return value of True from this function is equivalent to the return value “S” from the SetFormatCode function. This routine uses the same logic employed by the SetFormatCode function to identify serials.

Return value

Integer (Boolean)
Example

If object.SerialBibliographicRecord Then

object.Change008Value 23, “a”

End If
Associated error conditions

None. If the container program doesn’t supply anything that appears to resemble a leader or at least leader bytes 06 and 07, the function returns False.
Return value

SetFormatCode function
SetFldOrder method

See the description of the ClearFldOrder method.

SetFormatCode function

Returns a code that indicates a record’s ‘format’ (i.e., the appearance of its 008 field).

Syntax

object.SetFormatCode leader

The SetFormatCode function has this parameter:

string
(Optional) Character string. A MARC record leader, or byte 06 and 07 from a record leader. If the container program does not supply this parameter, the MARC record object uses the current record’s leader.

Remarks

The various MARC formats employ 008 fields with different layouts. The container program should be very careful to modify the 008 field in a manner consistent with the layout that field. The value returned by the SetFormatCode function allows the container program to modify the 008 field in a reliable manner.

Return value

Character string. The value is based on the codes in bytes 06 (and sometimes 07) of the record leader, as shown in the following table. The layout of a record’s 008 field is tied directly to the record’s ‘format’ as determined by this table.

	Value
	Leader 06
	Leader 07
	Description

	A
	z
	
	Authority records

	B
	a, t
	not b, i, s
	‘Books’

	D
	m
	
	Electronic resources

	F
	g, k, o, r
	
	Visual materials

	H
	u, v, x, y
	
	Holdings

	M
	c, d, i, j
	
	Music/Sound recording

	P
	e, f
	
	Cartographic material

	Q
	q
	
	Community information

	S
	a, t
	b, i, s
	Serials

	U
	b, p
	
	Mixed materials

	W
	w
	
	Classification

	?
	all other
	
	Unknown

Associated error conditions

None
SetSfdOrder method

See the description of the ClearSfdOrder method.

SfdAdd, SfdInsertAfter, SfdInsertBefore methods

Add a subfield to the current variable field.

Syntax

object.SfdAdd code, text

object.SfdInsertAfter code, text

object.SfdInsertBefore code, text

These methods have these parameters:

code
Character string. The MARC code for the subfield

text
Character string. The text of the subfield

Remarks

These methods add a new subfield to the current MARC field. The various methods add the new subfield at different points in the record.

	SfdAdd
	Adds the new subfield at the end of the record, regardless of its code

	SfdInsertAfter
	Adds the new subfield immediately following the current subfield, regardless of its code

	SfdInsertBefore
	Adds the new subfield immediately before the current subfield, regardless of its code

Example

object.FldFindFirst “856”

Do While object.FldWasFound
If Not object.SfdFindFirst(“3”) And Not object.SfdFindFirst(“z”) Then

object.SfdAdd “z”, “Online version” ‘ added at end of the field

End If

object.FldFindNext

Loop

Associated error conditions

None
SfdChange method

Resets the value of the current subfield.

Syntax

object.SfdChange code, text

The SfdChange method has these parameters:

code
Character string. The new MARC code for the subfield

text
Character string. The new contents for the subfield

Remarks

Use this method to change both the subfield code and the text of the current subfield at the same time. The container program can change the value of the subfield code or subfield text independently of the other by changing the value of the SfdCode or SfdText properties.

This method does not change the location of the subfield with the variable field.

Example

object.FldMoveTop
Do While object.FldFindNext (“6”)

If object.SfdFindFirst (“x”) Then

If object.SfdNorm = “ILLINOIS”

object.SfdChange “z”, “Illinois”

End If

End If

Loop

Associated error conditions

None
SfdCode, SfdText properties

The MARC code for a subfield, and the contents of that subfield.

Syntax

object.SfdCode [= code]
object.SfdCode [= text]
Remarks

The SfdCode property contains the single-character code for a subfield defined in the MARC format. The SfdText property contains the text of a subfield. Changing the value of either property causes the MARC record object to reset the value for the entire field.

Data type

Character strings
Example

object.FldMoveTop
Do While object.FldFindNext (“6”)

If object.SfdFindFirst (“x”) Then

If object.SfdNorm = “ILLINOIS”

object.SfdCode = “z”

End If

End If

Loop

Associated error conditions

None
SfdDelete method, SfdDeleted property, Sfd​Undelete method

Marks the current subfield for deletion, and indicates whether or not the current subfield has been marked for deletion. The SfdDeleted property is read-only at run time.

Syntax

object.SfdDelete
object.SfdDeleted

object.SfdUndelete
Remarks

The SfdDelete method marks a subfield in the current variable field for deletion, but does not remove it from the internal array of data elements that represents the field. The ‘deleted’ subfield remains in the array, and may be examined (and even altered) by the container program. The subfield can be restored to the field via the SfdUndelete method.

If a subfield is marked for deletion, the MARC record object skips over it when the container program invokes the SfdFindFirst, SfdFindLast, SfdFindNext and SfdFindPrev methods. However, the MARC record object includes fields marked for deletion when the container program invokes the SfdMoveFirst, SfdMoveLast, SfdMoveNext and SfdMovePrev methods.

If a subfield is marked for deletion, the MARC record object does not include it when the container program asks for the MarcRecordOut property.

Data type

SfdDeleted property: Integer (Boolean)
Example

object.FldMoveTop
Do While object.FldFindNext (“020”)

Do While object.SfdFindFirst (“z”)

object.SfdDelete

Loop

Loop

Associated error conditions

None. If the current subfield is already marked for deletion when the container program invokes the SfdDelete method, the MARC record object does nothing. If the current subfield is not marked for deletion when the container program invokes the SfdUndelete method, the MARC record object does nothing.
SfdDelim function

Provides a delimiter-plus-subfield code combination.

Syntax

object.SfdDelim(code)

The SfdDelim function has this parameter:

code
Character string. A MARC subfield code

Remarks

A container will from time to time need to include a subfield code in a piece of text. (For example, if the container program is building the contents of an entire field to add via the FldAdd method, it will need to insert the proper subfield codes.) The SfdDelim function provides one way to do this: the container program supplies the subfield code, the function returns that code preceded by a delimiter.

Return value

Character string
Example

s035Field$ = object.SfdDelim(“a”) & “(“ & s003Field$ & “)” & s001Field$
Associated error conditions

None
See also

SfdMake function
SfdFindFirst, SfdFindLast, SfdFindNext, SfdFindPrev functions

Search for a subfield with a given code within the current variable field.

Syntax

object.SfdFindFirst code

object.SfdFindLast code

object.SfdFindNext code

object.SfdFindPrev code

These methods have this parameter:

code
Character string. A MARC subfield code, or a string of such codes. This parameter is optional for the SfdFindNext and SfdFindPrev methods

Remarks

These four methods constitute the tools available to container programs for finding subfields with particular codes within the current variable field. Each method performs its work in a slightly different manner.

	SfdFindFirst
	Begins its search with the first subfield in the field, and searches from that point to the end of the field

	SfdFindLast
	Begins its search with the last subfield in the field, and searches from that point to the beginning of the field

	SfdFindNext
	Begins with the subfield following the current subfield, and searches from that point to the end of the field

	SfdFindPrev
	Begins with the subfield preceding the current subfield, and searches from that point to the beginning of the field

The container program supplies the subfield code for which the search is to be conducted. If the container program does not supply a parameter for either the SfdFindNext or SfdFindPrev method, the MARC record object uses the subfield code that was supplied in the most recent invocation of either the SfdFindFirst or SfdFindLast method.

If the field contains the specified subfield, the function returns True and the MARC record object sets the SfdWasFound property to True. If the field does not contain the specified code, the function returns False and the MARC record object sets the SfdWasFound property to False.

Example

object.FldFindFirst “020”

Do While object.FldWasFound

If object.SfdFindFirst (“a”) Then

If Not object.CheckISXN(MyMarcRecord.SfdText) Then

<error handling for invalid ISBN goes here>

End If

End If

Loop

object.FldFindFirst “6”

Do While object.FldWasFound

If object.SfdFindFirst (“vx”) Then

If object.SfdNorm = “BIBLIOIGRAPHY” Then

<processing for records containing this condition goes here>

End If

End If

Loop

Associated error conditions

None
SfdInsertAfter, SfdInsertBefore methods

See the description of the SfdAdd method.

SfdMake function

Assembles a subfield delimiter, the subfield code, and the text of the subfield.

Syntax

object.SfdMake code, text

The SfdMake function has these parameters:

code
Character string. A MARC subfield code

text
Character string. The text of a MARC subfield

Remarks

This function packages a subfield code and its text together with the MARC delimiter character. A container program could use this function when creating and modifying variable fields.

Example

object.FldAdd “600”, “10”, object.SfdMake(“a”, “Shakespeare, William,”) & object.SfdMake(“d”, “1564-1616”) & object.SfdMake(“v”, “Bibliography.”)

Associated error conditions

None
See also

SfdDelim function
Sfd​Move​Bottom, SfdMoveFirst, Sfd​Move​Last, Sfd​Move​Next, SfdMovePrev, Sfd​Move​Top functions

Move from the current subfield to some other subfield in the current field.

Syntax

object.SfdMoveBottom
object.SfdMoveFirst
object.SfdMoveLast
object.SfdMoveNext
object.SfdMovePrev
object.SfdMoveTop
Remarks

These functions move the pointer within the current variable field from one subfield to another.

	SfdMoveBottom
	Moves beyond the last subfield in the field. The next invocation of SfdMovePrev moves to the last subfield in the field

	SfdMoveFirst
	Moves to the first subfield in the field

	SfdMoveNext
	Moves to the subfield immediately following the current subfield

	SfdMoveLast
	Moves to the last subfield in the field

	SfdMovePrev
	Moves to the subfield immediately preceding the current subfield

	SfdMoveTop
	Moves above the first subfield in the field. The next invocation of SfdMoveNext moves to the first subfield in the field

If moving the subfield pointer in the indicated manner does not move beyond either end of the field, the function returns True and the MARC record object sets the SfdWasFound property to True. If the method moves the subfield pointer beyond either end of the field, the function returns False and the MARC record object sets the SfdWasFound property False.

Example

object.FldMoveTop
Do While object.FldMoveNext

object.SfdMoveTop

Do While object.SfdMoveNext
If Instr(object.SfdNorm, “ILNOIS”) > 0 Then

<error handling for invalid text goes here>

End If

Loop

Loop

Associated error conditions

None
SfdNorm, SfdNormNaco properties

Normalized forms of the current subfield. Read-only at run time.

Syntax

object.SfdNorm

object.SfdNormNaco
Remarks

The SfdNorm property contains the text of the current subfield, normalized according to Vger conventions. The SfdNormNaco property contains the text of the current subfield, normalized according to PCC/NACO conventions.

The MARC record object prepares the normalized form for all subfields, even subfields that are not included in the normalized form of the complete field.

Data type

Character strings
See also

FldNorm property, FldNormNaco property
SfdPointer property

The internal number assigned to each subfield within a field by the MARC record object.

Syntax

object.SfdPointer [=number]

Remarks

The MARC record object converts the record supplied as the MarcRecordIn property into an array. Each variable field in the record becomes one element in this array. The element for each field actually consists of another array, which contains one element for each subfield within the field. The MARC record object assigns each element in this subfield array a sequential number; the numbering starts with the first subfield added to the field and runs consecutively to the last subfield added. (The numbering has no necessary relationship to the order of the subfields in the finished field.)

When the container program invokes functions such as SfdFindFirst and SfdMoveNext, the MARC record object simply finds the subfield element in the array that matches the specification, and makes that element the ‘current’ array member. The MARC record object makes the number assigned to the element in its internal array for that subfield available as the SfdPointer property.

Many container programs will make no use of this property. However, it will be necessary on occasion for the container program to locate a subfield with certain characteristics, locate a second subfield within the same field with certain characteristics, perhaps perform some work on that subfield, and then return to the first subfield. In such a case, the container program can save the first subfield’s SfdPointer property in a variable and then move to the second subfield. When the container program is ready to return to the original subfield, it sets the MARC record object’s SfdPointer to the number for the first subfield.

Example

In this example, the container program is reversing the order of two occurrences of subfield $z in a subject heading. This example was constructed to show the use of the SfdPointer property, and does not necessarily show the most efficient way to perform this task.

object.FldMoveTop
Do While object.FldFindNext “6”

If object.SfdFindFirst “z” Then

If object.SfdNorm = “CHICAGO” then

iZPointer% = object.SfdPointer

If object.SfdMoveNext Then

If object.SfdCode = “z” And object.SfdNorm = “ILLINOIS” Then

object.SfdDelete
object.SfdPointer = iZPointer% ‘ return to the Chicago $z

object.SfdInsertBefore “z”, “Illinois” ‘ now have |zIllinois|zChicago

End If

End If

End If

End If

Loop

Associated error conditions

None
SfdShiftLeft, SfdShiftRight methods

Adjusts the location of the current subfield within a variable field.

Syntax

object.SfdShiftLeft
object.SfdShiftRight

Remarks

The SfdShiftLeft method exchanges the position of the current subfield with the previous subfield in the variable field. The SfdShiftRight method exchanges the position of the current subfield with the following subfield in the variable field. The current subfield remains the current subfield.

Example

object.FldFindFirst “650”

Do While object.FldWasFound
If object.SfdFindFirst(“z”) Then

If object.SfdNorm = “CHICAGO” Then

If object.SfdMoveNext Then

If object.SfdCode = “z” And object.SfdNorm = “ILLINOIS” Then

object.SfdShiftLeft

End If

End If

End If

End If

object.FldFindNext

Loop
Associated error conditions

None. If the container program invokes the SfdShiftLeft method for the first subfield in a field, or the SfdShiftRight method for the last subfield in a field, the MARC record object does nothing.
SfdTestFirst, SfdTestLast, SfdTestNext, SfdTestPrev functions

These functions test for the presence of a subfield within the current variable field.

Syntax

object.SfdTestFirst code

object.SfdTestLast code

object.SfdTestNext code

object.SfdTestPrev code

These functions have this parameter:

code
Character string. A MARC subfield code

Remarks

These functions perform the same work as the corresponding SfdFind functions. These functions return True if the field contains a subfield that matches the search specification, and return False if the field does not contain such a subfield. The differences between the SfdTest and SfdFind functions are:

· The SfdTest functions do not change the value of the SfdWasFound property

· The SfdTest functions do not change the pointer to the current subfield

Return value

Integer (Boolean)
Example

object.FldFindFirst “650”

Do While object.FldWasFound
If object.SfdFindFirst(“z”) Then

If object.SfdNorm = “CHICAGO” Then

If object.SfdTestNext(“z”) Then

object.SfdMoveNext

If object.SfdCode = “z” And object.SfdNorm = “ILLINOIS” Then

object.SfdShiftLeft

End If

End If

End If

End If

object.FldFindNext

Loop
Associated error conditions

Character string
SfdText property

See the description of the SfdCode property.

SfdUndelete property

See the description of the SfdDelete method.

SfdWasFound property

Reports the success of the last invocation of one of the SfdFind or SfdMove functions. Read-only at run time.

Syntax

object.SfdWasFound
Remarks

Indicates whether the most recent invocation of one of the SfdFind or SfdMove functions found a matching subfield.

Return value

Integer (Boolean)
StringIsNumeric function

Scans a string for non-numeric characters.

Syntax

object.StringIsNumeric string

The StringIsNumeric function has this parameter:

string
Character string

Remarks

This function scans a character string. If the string contains only numerals, the function returns True; if the string is null or contains any non-numeric characters,the function returns False.

This function is regulated by the value of the CharacterSetOut property.

Return value

Integer (Boolean)
Example

If object.StringIsNumeric(sField$) Then
Associated error conditions

None
TagCompare function

Compares two tags for equivalence.

Syntax

object.TagCompare tag1, tag2, length

The TagCompare function has these parameters:

tag1
Character string. A MARC field tag. May include ‘X’; may contain fewer than 3 characters

tag2
Character string. A MARC field tag.

length
(Optional) Integer. The number of characters to compare. If the container program does not supply this parameter, the MARC record object uses the length of tag1 as the comparison length.
Remarks

This function compares two MARC tags to see if they are equivalent. Testing for equivalence is not the same as testing for identity. For example, the container program may supply a single character as the first parameter, meaning that it will accept any tag that begins with that character; or the container program may supply as the first parameter a tag that contains the character ‘X’ in one or more positions, meaning that the container program will accept any character in that position of the tag. The TagCompare function compares the characters in tag1 against the corresponding characters in tag2. If the characters in tag1 are equivalent to the corresponding characters in tag2, the TagCompare function returns True; if there is any discrepancy between the two tags, the function returns False.

Return value

Integer (Boolean)
Example

If object.TagCompare(“6XX”, sTag$) Then
Associated error conditions

None
TestForCallNumber function

Determines whether of not an 852 field contains a valid call number.

Syntax

object.TestForCallNumber indicators, field, institution

The TestForCallNumber function has these parameters:

indicators
Character string. The indicators from an 852 field

field
Character string. The complete text of an 852 field

institution
(Optional) Character string. A code representing an institution
Remarks

This function inspects an 852 field to see if it contains a valid call number. This is not simply a matter of inspecting the field for subfield $h, as subfield $h may contain text such as “In process” that does not count as a finished call number. This function returns True if the 852 field appears to contain a cal number; it returns False if it does not.

The behavior of this function is regulated at some points by the institution parameter; the function behaves differently for programs run at Northwestern University Library. Other institutions may wish to add code to this routine to suit their own purposes.

Return value

Integer (Boolean)
Example

If object.TestForCallNumber object.FldInd, object.FldText) Then
Associated error conditions

None
TextFormatted, TextRaw properties

‘Text’ versions of the current record. Read-only at run time.

Syntax

object.TextFormatted
object.TextRaw
Remarks

The current record, ‘flattened out’ for display, or for saving to a text file.

· The TextFormatted property shows values from the leader and 008 field with labels; dollar signs are substituted for subfield delimiter characters, and spaces are added around each delimiter/subfield code pair. Special characters are replaced with characters representing their hexadecimal value.

· The TextRaw property shows the leader as one string with the tag ‘000’. Other fields are given on the following lines. There is no translation of delimiter characters, or of special characters.

Data type

Character string
Example

Print #iOut%, object.TextFormatted
Associated error conditions

None
UCaseFirstWord function

See the description of the LCaseFirstWord function.

Utf8CharClass

Source file: Utf8Char.cls

This class module provides tools for working with individual characters, chiefly those encoded according to the UTF-8 scheme. Many of these tools assume that the container program has supplied an individual character, through either the Utf8Char or UcsChar properties, or through one of their proxies.

Char2Hex function

Translates a single octet into characters that represent its hexadecimal value.

Syntax

object.Char2Hex character

The Char2Hex function has this parameter:

character
One byte (a single ASCII character, or one octet from a UTF-8 or other multi-byte character)

Remarks

This function receives a single octet (not a UTF-8 multi-octet character), and returns two characters that represent the character’s value in hexadecimal.

Return value

Character string
Example

sString$ = object.Char2Hex(“a”)

sString$ now contains the character string “81”

sString$ = object.Char2Hex(“N”)

sString$ now contains the character string “4E”

Associated error conditions

None
Hex2Char function

Translates two characters representing a hexadecimal value into the corresponding octet.

Syntax

object.Hex2Char string

The Hex2Char function has this parameter:

string
Two characters representing a hexadecimal value. The function ignores any characters after the second

Remarks

This function receives a pair of characters representing the hexadecimal value of a single octet, and returns that octet.

Return value

Character string
Example

sString$ = object.Hex2Char(“81”)

sString$ now contains the character string “a”

sString$ = object.HexToChar(“4E”)

sString$ now contains the character string “N”

Associated error conditions

None
Marc82Utf8 function

Transforms a string in the MARC-8 character set into a string in the UTF-8 character set.

Syntax

object.Marc82Utf8 string, character set

The Marc82Utf8 function has these parameters:

string
Character string. A string encoded in the MARC-8 character set

character set
Character string. A string for the ‘dialect’ of MARC-8 used to encode string. Default value: “O” (OCLC character set)

Remarks

This function translates the characters in a string encoded according to MARC-8 conventions into the UTF-8 equivalents. The function also moves diacritical marks so that they follow instead of precede their associated character.

Return value

Character string encoded in the UTF-8 scheme
Example

sString$ = object.Marc82Utf8(“Herm`es”, “V”)
Associated error conditions

None
Marc8Acute, Marc8AcuteDouble [etc., etc.] properties

Diacritics and special characters defined for use in MARC records encoded in the MARC-8 scheme. Read-only at run time.

Syntax

object.Marc8Acute
Remarks

This large group of properties makes available to the container program the MARC-8 representation of those characters used in MARC records except for characters in non-Roman scripts. In other words, these properties make available the following characters:

· special characters (digraph Æ, slash-O, flat sign, superscript 8, etc.)

· diacritics (acute, circumflex, tilde, etc.)

· control characters (escape, end-of-field, end-of-record, delimiter)

· the three Greek characters found in the “regular” MARC character set (alpha, beta, gamma)

These properties are too numerous to list in the header to this description. Here is a complete list of them:

Marc8Acute, Marc8AcuteDouble, Marc8AELower, Marc8AEUpper, Marc8Alif, Marc8Alpha, Marc8Angstrom, Marc8Ayn, Marc8Beta, Marc8Breve, Marc8BritishPound, Marc8Candrabindu, Marc8Cedilla, Marc8CedillaRight, Marc8CircleBelow, Marc8Circumflex, Marc8CommaHighCentered, Marc8CommaHighOffCenter, Marc8Copyright, Marc8Degree, Marc8Delimiter, Marc8DotAbove, Marc8DotBelow, Marc8DotBelowDouble, Marc8DotMiddle, Marc8DSlashLower, Marc8DSlashUpper, Marc8EndOfField, Marc8EndOfRecord, Marc8Escape, Marc8Eth, Marc8ExclamationInverted, Marc8Fill, Marc8Flat, Marc8Gamma, Marc8Grave, Marc8Hacek, Marc8HookLeft, Marc8HookRight, Marc8IDotless, Marc8JoinerZeroWidth, Marc8LigatureLeft, Marc8LigatureRight, Marc8LScript, Marc8LSlashLower, Marc8LSlashUpper, Marc8Macron, Marc8MiagkiiZnak, Marc8NonJoinerZeroWidth, Marc8NonSortBegin, Marc8NonSortEnd, Marc8OELower, Marc8OEUpper, Marc8OHookLower, Marc8OHookUpper, Marc8OSlashLower, Marc8OSlashUpper, Marc8PlusMinus, Marc8Pressing, Marc8QuestionInverted, Marc8QuestionPseudo, Marc8Registered, Marc8Sharp, Marc8Subscript0, Marc8Subscript1, Marc8Subscript2, Marc8Subscript3, Marc8Subscript4, Marc8Subscript5, Marc8Subscript6, Marc8Subscript7, Marc8Subscript8, Marc8Subscript9, Marc8SubscriptMinus, Marc8SubscriptParensLeft, Marc8SubscriptParensRight, Marc8SubscriptPlus, Marc8Superscript0, Marc8Superscript1, Marc8Superscript2, Marc8Superscript3, Marc8Superscript4, Marc8Superscript5, Marc8Superscript6, Marc8Superscript7, Marc8Superscript8, Marc8Superscript9, Marc8SuperscriptMinus, Marc8SuperscriptParensLeft, Marc8SuperscriptParensRight, Marc8SuperscriptPlus, Marc8ThornLower, Marc8ThornUpper, Marc8Tilde, Marc8TildeDoubleLeft, Marc8TildeDoubleRight, Marc8TverdiiZnak, Marc8UHookLower, Marc8UHookUpper, Marc8Umlaut, Marc8Underscore, Marc8UnderscoreDouble, Marc8Upadhmaniya

MarcDelimiter, MarcEnd​Of​Field, Marc​End​Of​Record, Marc​Escape, Marc​Fill, Marc​Non​Sort​Begin, Marc​Non​Sort​End properties

Control characters defined for use in MARC records encoded in the MARC-8 scheme. Read-only at run time.

Syntax

object.MarcDelimiter
object.MarcEndOfField
object.MarcEndOfRecord
object.MarcEscape
object.MarcFill
object.MarcNonSortBegin
object.MarcNonSortEnd
Remarks

These properties make the MARC delimiter character, MARC end of field character, MARC end of record character, MARC ‘escape’ character, the MARC ‘fill’ character, the MARC ‘begin non-sort zone’ character and the MARC ‘end non-sort zone’ character available to container programs. With the exception of the two non-sort zone characters, these properties have identical values in MARC-8 and UTF-8. The escape character will probably not be found in records encoded as UTF-8, as the function performed by the escape in MARC-8 records is achieved in UTF-8 records in a different manner.

Data type

Character strings
Example

sA$ = object.MarcDelimiter & “a”
See also

Utf8Delimiter and associated properties
NormalizationScheme property

A code for the scheme to be used when normalizing text.

Syntax

object.NormalizationScheme [= code]

Remarks

The Program for Cooperative Cataloging has established a scheme for normalizing text when fields are to be compared. (The Web page that describes this scheme is cited elsewhere in this document.) The Vger system uses a different scheme for normalizing text. The MARC character object can normalize text according to either scheme. The NormalizationScheme property allows the container program to specify whether the MARC record object should follow the PCC/NACO normalization scheme or the Vger normalization scheme.

Data type

Character string. One of the values defined by constants whose names begin ‘NORMALIZATIONSCHEME_’. One of the following codes.
	Code
	Scheme

	P
	PCC/NACO

	V
	Vger

Associated error conditions

None. If the container program supplies an unacceptable value, the MARC character object uses the value of the constant NORMALIZATIONSCHEME_Vger.
TranslateMarc2Utf8OneCharacter function

Translates one character encoded in the MARC-8 scheme into its UTF-8 equivalent.

Syntax

object.TranslateMarc2Utf8OneCharacter(set, table, marc, utf8, changed, error)
The TranslateMarc2Utf8OneCharacter function has these parameters:

set
Character string. A single-character code for the flavor of MARC-8 used to encode the character.

table
Character string. A code for the MARC-8 “table” from which the character is drawn

marc
Character string. A single character in MARC-8encoding

utf8
Return value. Character string. A single character in UTF-8 encoding

changed
Return value. Boolean. True if the input and output characters are the same

error
Return value. Boolean. True if the MARC-8 character is not a defined character, or of any other problem was encountered

Remarks

This function receives a single character encoded according to the MARC-8 scheme, and translates it into the equivalent UTF-8 character.

The table parameter contains one of the following codes. More than one code is available for many character sets. The codes are the table numbers given in MARC21 specifications for record structure, character sets, and exchange media, and also the equivalent codes used with the escape character in variable fields of MARC-8 records.

	Code
	Meaning

	1, s or (B
	Standard MARC characters

	2 or g
	Three Greek characters (‘a’=alpha, etc.)

	3 or b
	Subscript characters (‘1’=subscript 1)

	4 or p
	Superscript characters (‘1’=superscript 1)

	5 or (2
	Hebrew (‘a’=bet)

	6 or (N
	Cyrillic (‘a’=’A’)

	7 or (3
	Arabic (‘a’=feh)

	8 or (S
	Greek (‘a’=alpha)

	9 or $1
	CJK

Return value

Character string. One character encoded according to the UTF-8 scheme
Associated error conditions

None
TranslateUtf82MarcOneCharacter function

Translates one character encoded in the UTF-8 scheme into its MARC-8 equivalent.

Syntax

object.TranslateUtf82MarcOneCharacter(set, table, utf8, marc, changed, error)
The TranslateMarc2Utf8OneCharacter function has these parameters:

set
Character string. A single-character code for the flavor of MARC-8 used to encode the returned character.

table
Return value. Character string. A code for the MARC-8 “table” from which the character is drawn

utf8
Character string. A single character in UTF-8 encoding

marc
Return value. Character string. A single character in MARC-8encoding

changed
Return value. Boolean. True if the input and output characters are the same

error
Return value. Boolean. True if the MARC-8 character is not a defined character, or of any other problem was encountered

Remarks

This function receives a single character encoded according to the UTF-8 scheme, and translates it into the equivalent UTF-8 character.

The returned table parameter contains one of the following codes. More than one code is available for many character sets. The codes are the table numbers given in MARC21 specifications for record structure, character sets, and exchange media.

	Code
	Meaning

	1
	Standard MARC characters

	2
	Three Greek characters (‘a’=alpha, etc.)

	3
	Subscript characters (‘1’=subscript 1)

	4
	Superscript characters (‘1’=superscript 1)

	5
	Hebrew (‘a’=bet)

	6
	Cyrillic (‘a’=’A’)

	7
	Arabic (‘a’=feh)

	8
	Greek (‘a’=alpha)

	9
	CJK

Return value

Character string. One character encoded according to the MARC-8 scheme
Associated error conditions

None
Ucs2Utf8 function

Translate one character encoded as UCS into the UTF-8 equivalent.

Syntax

object.Ucs2Utf8(character)
The Ucs2Utf8 function has this parameter:

character
Character string. One character encoded according to the UCS scheme

Remarks

This function receives a character encoded according to the UCS scheme, and translates it into the equivalent UTF-8 character.

Return value

Character string. One character encoded according to the UTF-8 scheme
Associated error conditions

None
UcsChar property

One character encoded according to the UCS scheme.

Syntax

object.UcsChar [= character]
Remarks

The container program supplies one UCS character as the UcsChar property. The MARC character object automatically translates this character into the UTF-8 scheme, and sets a number of corresponding properties.

Data type

Character string
UcsHex property

Characters that reflect the hexadecimal representation of a UCS character. Write-only at run time.

Syntax

object.UcsHex = “value”

Remarks

This property receives the hexadecimal version (in characters) of one UCS character. When the container program sets this property, the MARC character object translates it into the corresponding UCS character, and uses this value to set the UcsChar property.

Data type

Character string
Example

sString$ = object.UcsHex(“03B1”)
See also

UcsChar property
UcsHex2Utf8 function

Translate the hexadecimal version of one UCS character into the UTF-8 equivalent.

Syntax

object.UcsHex2Utf8(hex string)
The UcsHex2Utf8 function has this parameter:

hex string
Character string. Four characters that represent the hexadecimal value of one UCS character

Remarks

This function translates one UCS character (in hexadecimal characters) into corresponding UTF-8 character.

Return value

Character string. One character encoded according to the UTF-8 scheme.
Example

sOut$ = sOut$ & object.UcsHex2Utf8(“00B2”)
Utf82Ucs function

Translate one UTF-8 character into its UCS equivalent.

Syntax

object.Utf82Ucs(character)
The Utf82Ucs function has this parameter:

character
Character string. One character encoded according to the UTF-8 scheme

Remarks

This function translates one UTF-8 character into its equivalent UCS character.

Return value

Character string. One character encoded according to the UCS scheme
Utf8Acute, Utf8AcuteDouble [etc., etc.] properties

Diacritics and special characters defined for use in MARC records encoded in the UTF-8 scheme. Read-only at run time.

Syntax

object.Utf8Acute
Remarks

This large group of properties makes available to the container program the UTF-8 representation of those characters used in MARC records except for characters in non-Roman scripts. In other words, these properties make available the following characters:

· special characters (digraph Æ, slash-O, flat sign, superscript 8, etc.)

· diacritics (acute, circumflex, tilde, etc.)

· control characters (escape, end-of-field, end-of-record, delimiter)

· the three Greek characters found in the “regular” MARC character set (alpha, beta, gamma)

These properties are too numerous to list in the header to this description. Here is a complete list of them:

Utf8Acute, Utf8AcuteDouble, Utf8AELower, Utf8AEUpper, Utf8Alif, Utf8Alpha, Utf8Angstrom, Utf8Ayn, Utf8Beta, Utf8Breve, Utf8BritishPound, Utf8Candrabindu, Utf8Cedilla, Utf8CedillaRight, Utf8CircleBelow, Utf8Circumflex, Utf8CommaHighCentered, Utf8CommaHighOffCenter, Utf8Copyright, Utf8Degree, Utf8Delimiter, Utf8DotAbove, Utf8DotBelow, Utf8DotBelowDouble, Utf8DotMiddle, Utf8DSlashLower, Utf8DSlashUpper, Utf8EndOfField, Utf8EndOfRecord, Utf8Escape, Utf8Eth, Utf8ExclamationInverted, Utf8Fill, Utf8Flat, Utf8Gamma, Utf8Grave, Utf8Hacek, Utf8HookLeft, Utf8HookRight, Utf8IDotless, Utf8JoinerZeroWidth, Utf8LigatureLeft, Utf8LigatureRight, Utf8LScript, Utf8LSlashLower, Utf8LSlashUpper, Utf8Macron, Utf8MiagkiiZnak, Utf8NonJoinerZeroWidth, Utf8NonSortBegin, Utf8NonSortEnd, Utf8OELower, Utf8OEUpper, Utf8OHookLower, Utf8OHookUpper, Utf8OSlashLower, Utf8OSlashUpper, Utf8PlusMinus, Utf8Pressing, Utf8QuestionInverted, Utf8QuestionPseudo, Utf8Registered, Utf8Sharp, Utf8Subscript0, Utf8Subscript1, Utf8Subscript2, Utf8Subscript3, Utf8Subscript4, Utf8Subscript5, Utf8Subscript6, Utf8Subscript7, Utf8Subscript8, Utf8Subscript9, Utf8SubscriptMinus, Utf8SubscriptParensLeft, Utf8SubscriptParensRight, Utf8SubscriptPlus, Utf8Superscript0, Utf8Superscript1, Utf8Superscript2, Utf8Superscript3, Utf8Superscript4, Utf8Superscript5, Utf8Superscript6, Utf8Superscript7, Utf8Superscript8, Utf8Superscript9, Utf8SuperscriptMinus, Utf8SuperscriptParensLeft, Utf8SuperscriptParensRight, Utf8SuperscriptPlus, Utf8ThornLower, Utf8ThornUpper, Utf8Tilde, Utf8TildeDoubleLeft, Utf8TildeDoubleRight, Utf8TverdiiZnak, Utf8UHookLower, Utf8UHookUpper, Utf8Umlaut, Utf8Underscore, Utf8UnderscoreDouble, Utf8Upadhmaniya

Utf8Asc function

The ‘ASCII value’ of one UTF-8 character.

Syntax

object.Utf8Asc (character)
The Utf8Asc function has this parameter:

character
Character string. One character encoded according to the UTF-8 scheme

Remarks

This character assembles a composite value for the octets that constitute a single UTF-8 character. This value has some utility within the MARC character object. It is not clear that this function will find much use in container programs. The container program can read the Utf8CharAsc property to find the ‘ASCII’ value for the current character.

Return value

Currency (very long integer)
Utf8Char property

One character encoded according to the UTF-8 scheme.

Syntax

object.Utf8Char [= character]

Remarks

This property contains one character encoded according to the UTF-8 scheme. Setting this property automatically sets the UcsChar property, and many other properties.

Data type

Character string
Utf8CharAsc property

The ‘ASCII’ value for the current character.

Syntax

object.Utf8CharAsc [=value]

Remarks

This property contains the ‘ASCII’ value of one UTF-8 character. If the container program sets this property, it automatically resets the Utf8Char property. This property is used throughout the MARC character object for internal purposes. It is likely that this property will not find any use in container programs.
Data type

Currency (very long integer)
Utf8CharCategory property

A code for the category into which the current character falls. Read-only at run time.

Syntax

object.Utf8CharCategory
Remarks

This property contains a 2-character code that represents the category into which the current character falls. The values are those defined by the private constants whose names begin ‘Utf8_’.

Data type

Character string. One of the following codes, drawn originally from the CD-ROM that accompanies The UNICODE standard, version 3.0. These codes are defined by the private constants whose names begin ‘Utf8_’.

	Code
	Meaning

	Cc
	Control character

	Cf
	Formatting control character

	Co
	Other control character

	Cs
	Surrogate control character

	Ll
	Lowercase alphabetic character

	Lm
	Letter modifier

	Lo
	Other letter

	Lu
	Uppercase alphabetic character

	Lt
	Titlecase alphabetic character

	Mc
	Combining non-spacing mark

	Me
	Enclosing mark

	Mn
	Non-spacing mark

	Nd
	Decimal number

	Nl
	Number letter

	No
	Other number

	Pc
	Connector punctuation

	Pd
	Dash

	Pe
	Closing punctuation

	Pf
	Final quote

	Pi
	Initial quote

	Po
	Other punctuation

	Ps
	Open punctuation

	Sc
	Currency symbol

	Sk
	Modifier symbol

	Sm
	Math symbol

	So
	Other symbol

	Zl
	Line

	Zp
	Paragraph

	Zs
	Space

Utf8CharFindFirstOctet function

Finds the first character in a group of UTF-8 octets.

Syntax

object.Utf8CharFindFirstOctet(string, start)

The Utf8CharFindFirstOctet function has these parameters:

string
Character string. A character string encoded according to the UTF-8 scheme

start
Long integer. The position in string at which to begin searching for the start of a character

Remarks

This function finds the octet that is the first octet in a UTF-8 character. The function begins with the octet at the position indicated by the start parameter and moves successively one character to the left. The function stops if any of these octets, beginning with the octet identified by the start parameter, is the first octet in a UTF-8 character.

The container program can use this function if it needs to back up one character at a time in a UTF-8 string for some reason.

Do not use this function on strings encoded in the MARC-8 scheme.

Return value

Long integer. The location within string of the first octet of a character.
Example

In this code sample, the container program is for some reason working its way one character at a time from the right end of the string to the left.

lPtr = Len(sString) - 1

Do

lPtr = object.Utf8CharFindFirstOctet(sString$, lPtr)

object.Utf8Char = Mid(sString, lPtr)

<do something with this character>

lPtr = lPtr – 1

If lPtr < 1 Then

Exit Do

End If

Loop
Associated error conditions

None. If the supplied string does not contain any octets that can be recognized as the first octet in a character, the function points to the first octet in the string.
Utf8CharLCase, Utf8CharUCase properties

The lowercase and uppercase forms of the current character. Read-only at run time.

Syntax

object.Utf8CharLCase
object.Utf8CharUCase
Remarks

These characters contain the lowercase and uppercase forms of the current character. If the current character is not an alphabetic character, these properties are identical with the Utf8Char property.

Return value

Character string
Utf8CharNorm property

The normalized form of the current character. Read-only at run time.

Syntax

object.Utf8CharNorm
Remarks

This property contains the normalized form of the character contained in the Utf8Char property.

The value of this property depends on the value of the NormalizationScheme property.

Data type

Character string
Utf8CharOctets function

The number of octets in a UTF-8 character.

Syntax

object.Utf8CharOctets(character)
The Utf8CharOctets function has this parameter:

character
(Optional) Character string. One character encoded according to the UTF-8 scheme. The container program may supply any number of octets or characters as this parameter; only the first octet is significant. If the container program does not supply this parameter, the MARC character object uses the value of the Utf8Char property.

Remarks

This function returns the number of octets in either the current character or the character supplied as the optional parameter. The container program can use the value of this function to walk through a UTF-8 string one character at a time.

Data type

Integer
Utf8CharUCase function

See the description of the Utf8CharLCase function.

Utf8Delimiter, Utf8End​Of​Field, Utf8​End​Of​Record, Utf8​Escape, Utf8​Fill, Utf8​Non​Sort​Begin, Utf8​Non​Sort​End properties

Control characters defined for use in MARC records encoded in the UTF-8 scheme. Read-only at run time.

Syntax

object.Utf8Delimiter
object.Utf8EndOfField
object.Utf8EndOfRecord
object.Utf8Escape
object.Utf8Fill
object.Utf8NonSortBegin
object.Utf8NonSortEnd
Remarks

These properties make the MARC delimiter character, MARC end of field character, MARC end of record character, MARC ‘escape’ character, the MARC ‘fill’ character, the MARC ‘begin non-sort zone’ character and the MARC ‘end non-sort zone’ character defined for records encoded in the UTF-8 scheme available to container programs. With the exception of the two non-sort zone characters, these properties have identical values in MARC-8 and UTF-8. The escape character will probably not be found in records encoded as UTF-8, as the function performed by the escape in MARC-8 records is achieved in UTF-8 records in a different manner.

Data type

Character strings
Example

sA$ = object.Utf8Delimiter & “a”
See also

MarcDelimiter and associated properties

UtilMiscNonUtf8 collection

Source file: UtilMiscNonUtf8.bas

This code module provides miscellaneous tools useful in the Vger/MARC environment. None of these functions is sensitive to the scheme used to encode the character data supplied as parameters.

AddCommas function

Adds commas to a string of numerals.

Syntax

object.AddCommas(string)

The AddCommas function has this parameter:

string
Character string. A set of numerals into which commas should be inserted

Remarks

This function inserts commas into a string of numerals according to U.S. conventions.

Return value

Character string
Example

sString$ = object.AddCommas(“1234567”)

At this point, sString$ contains “1,234,567”
BatchCatErrors function

Supplies a text equivalent for a BatchCat return code

Syntax

object.BatchCatErrors(return code)

The BatchCatErrors function has this parameter:

return code
Long integer. The return code from one of the BatchCat functions

Remarks

This function translates the return code provided by one of the functions of the BatchCat interface into a text message. Container programs can use the string provided by this function to make more informative error messages and log files.

Return value

Character string
Example

lPtr = BatchCatObject.UpdateBibRecord(lBibID, sRecord$, dDate, lOwning, lHappening, bSuppress)

If lPtr <> 0 Then

Msgbox “Problem updating bib record “ & Str(lBibID) & vbLf & BatchCatErrors(lPtr)

End If
GetNextCommaDelimitedPiece method

Extract the next element from a string of comma-delimited data.

Syntax

object.GetNextCommaDelimitedPiece data, piece

The GetNextCommaDelimitedPiece method has these parameters:

data
Return value. Character string. The string of comma-delimited data from which the next piece is to be extracted

piece
Return value. Character string. The next piece of data in the comma-delimited string

Remarks

This method removes the next piece from a string of comma-delimited data. It returns the piece in the piece parameter, and it returns the original string, minus the extracted piece, in the data parameter.

Return value

Character string
Example

Do While Len(sOriginal$) > 0

GetNextCommaDelimitedPiece sOriginal$, sPiece$

<processing of sPiece$ goes here>
Loop

See also

GetNextPiece method
GetNextLine function

Reads a line from a text file.

Syntax

object.GetNextLine (handle, line)

The GetNextLine function has these parameters:

handle
Integer. The Visual Basic ‘handle’ to a file assigned by the FreeFile function

line
Return value. String. The line read from the file

Remarks

This function reads one line from a text file. The function returns True if it returns a line in the line parameter; it returns False if it has reached the end of the input file.

The GetNextLine function reads the input file one character at a time, starting at the current location in the file. If the character is any kind of ‘control’ character (any character whose value is less than the ‘space’ character) and if the function has read some data from the file, it returns the accumulated data from the file. In this manner, the function skips over blank lines, and returns only lines that contain data. The function returns True as long as the returned line parameter is not null; the function returns False when there is no data in the file to read.

Return value

Integer (Boolean)
Example

iIn% = FreeFile

Open sFile For Input As #iIn%

Do While GetNextLine(iIn%, sLine$)

<handling of the line from the file goes here>

Loop

Close #iIn%

GetNextPiece method

Extract the next element from a string of data.

Syntax

object.GetNextPiece data, piece, separator

The GetNextCommaDelimitedPiece method has these parameters:

data
Return value. Character string. The string of data from which the next piece is to be extracted

piece
Return value. Character string. The next piece of data in the string

separator
Character string. The delimiter character that divides the elements of data in the string

Remarks

This method removes the next piece from a string of data whose elements are demarcated by characters that do not exist within the data itself. The function returns the next piece in the piece parameter, and it returns the original string, minus the extracted piece, in the data parameter.

Return value

Character string
Example

Do While Len(sOriginal$) > 0

GetNextPiece sOriginal$, sPiece$, “ “

<processing of sPiece$ goes here>
Loop

See also

GetNextCommaDelimitedPiece method
HexToChar function

Converts a string of characters representing hexadecimal values into the equivalent octets.

Syntax

object.HextToChar(string)

The HexToChar function has this parameter:

string
Character string. A string of characters representing hexadecimal values. (The string should contain only the numerals “0” through “9” and the letters “A” through “F”.)

Remarks

This function reads the input string two octets at a time. It determines the value that a character pair represents, and adds the character that represents that value to the output string. This function is the reverse of the SQL RAWTOHEX function. This function works on strings encoded in both the UTF-8 and MARC-8 schemes. A container program can pair the RAWTOHEX function in SQL submitted to the server with the HexToChar function at the workstation to transfer data that may contain diacritics and special characters without loss.

Return value

Character string
Example

With MyVgerReader

.ExecuteSQL “SELECT RAWTOHEX(DISPLAY_HEADING) FROM “ & .TableNamePrefix & “BIB_INDEX WHERE BIB_ID = “ & sBibId$, iResultSet1%

Do While .GetNextRow(iResultSet1%)

sString$ = HexToChar(.CurrentRow(1))

<do something with the information from the BIB_INDEX table>

Loop

End With

IsThisLeapYear function

Decides whether or not a year is a leap year.

Syntax

object.IsThisLeapYear (year)

The IsThisLeapYear function has this parameter:

year
Variant (integer or character string, probably). An representation of a year in some form.

Remarks

This function examines the value supplied by the container program. The function returns True if the value represents a leap year; the function returns False if the value does not represent a leap year. (Determination of leap years is not a simple matter of dividing the year modulo 4 and examining the result.)

Return value

Integer (Boolean)
SelectWholeText method

Sets the selection in a text box to the entire contents of the box

Syntax

object.SelectWholeText control

The SelectWholeText method has this parameter:

control
A Visual Basic control (this method only operates successfully on text boxes).

Remarks

This function extends the selection in a text box to include all of the text in the box.

A good place for a container program to invoke this method is in the GotFocus even of a text box. This automatically selects the entire contents of a text box whenever the operator moves the cursor into it.

Example

Private Sub txtDSN_GotFocus()

SelectWholeText Me

End Sub

� The MARC21 community will employ the UTF-8 encoding of the Unicode character repertoire. This document will use the term UTF-8 for this representation of the Unicode repertoire; it will reserve the use of the term Unicode for the character set itself—chiefly to distinguish this repertoire from the MARC21 encoding scheme used from the late l960s through at least the early 2000s. The repertory of Unicode characters available in the MARC UTF-8 repertory is substantially smaller than the full Unicode repertory.

� Such programs may, however, need to be recompiled for other reasons. For example, a program may need to be recompiled to include a reference to the proper version of the Vger BatchCat interface.

� MARC21 specifications for record structure, character sets, and exchange media, 2000, p. 65-66. Although this section is headed ‘Tape Record Segmentation’, the segmented format is also used by the Library of Congress for files distributed via FTP and on CD. The Library of Congress has announced the discontinuation of the use of segmented record structure in its distributed files, but the change has not yet been put into effect.

� The MARC record object automatically performs many small adjustments when translating a record into or out of UTF-8. For example, it changes the order of certain diacritics in both case, and adjusts the value of nonfiling indicators when translating a record from MARC-8 into UTF-8.

� Community information, classification, and any additional formats that may be defined. The MARC record object may be modified to allow specific rules for these additional formats if need arises.

� This is the order used by the Library of Congress for LCSH authority records; libraries will find that this order works well also for other kinds of authority records. One effect of this order is that reference tracings in each category are in alphabetical order, which makes it much easier to find reference tracings, and ensure that there are no duplicates.

� In this document, the order of entries in the directory will be spoken of as if were the same as the order of the variable fields in a record. The order of entries in a directory may be the same as the display order of a record’s variable fields, but is not necessarily the same as the order in which the texts of the variable fields are stored within a record. (The texts of the fields may appear in an order quite different from the order of the entries in the directory.) Because the MARC record object produces records whose variable fields are in the same order as the entries in the directory, the distinction may be ignored for the purposes of this document. This document will speak of the order of fields when, most strictly, it is actually speaking of the order of entries in a record directory; for all records produced by this object, this is a distinction without a difference.

� The MARC record object will simply ignore any attempt to change the field-order definition while it is holding a MARC record.

� Setting the MarcRecordIn property to null has the side-effect of clearing work areas maintained by the MARC record object; it is actually the state of these secondary storage areas—areas not available to the container program—that determine whether the MARC record object will allow the field order definition to change. This action on the part of the container program also destroys any new record currently in progress.

� In case of overlap among groups, the MARC record object will place a field into the first applicable group. For example, an institution might define the following groups in the bibliographic format:

Begin�
End�
Sort instruction�
�
700�
700�
1 (fields with $t follow fields without $t)�
�
710�
711�
1�
�
700�
799�
6�
�
The last rule is intended to catch all 7XX fields not otherwise provided for, and to arrange them in ascending tag order. The last group includes the 700 field, but no 700 field will ever fall into that group.

� The ReadValidationConfiguration method also calls private methods that create a default definition for the order of subfields within variable fields. See the description of the ClearSfdOrder method.

� For the order of subfields, see the separate definition of the ClearSfdOrder method.

� The configuration files define the order of fields in authority, bibliographic and holdings records. There is at present no configuration file for “other” kinds of MARC records.

� Community information, classification, and any additional formats that may be defined. The MARC record object may be modified to allow specific rules for these additional formats if need arises.

� In the description of the X00, X10, X11 and X30 fields that precedes the description of 1XX fields, the full MARC format document describes several ‘groups’ into which subfields fall.

� The MARC record object will simply ignore any attempt to change the subfield-order definition while it is holding a MARC record.

� Setting the MarcRecordIn property t null has the side-effect of clearing work areas maintained by the MARC record object; it is actually the state of these secondary storage areas—areas not available to the container program—that determine whether the MARC record object will allow the subfield order definition to change. This action on the part of the container program also destroys any new record currently in progress.

� Common cases are subfield $g in personal name headings and subfields $d, $g and $n in corporate/conference name headings; these subfields may appear in either the name or the title portion of the heading.

� The code on which the MARC record object is based defined additional lead characters for use within the curly braces. These additional lead characters appear never to have been used, and their purpose now cannot be teased from the existing code. Should the need for additional elaboration in the order of subfields make itself evident, additional lead characters for groups of subfields may be defined.

� The ReadValidationConfiguration method also calls private methods that create a default definition for the order of fields in a MARC record. See the description of the ClearFldOrder method.

� For the order of fields, see the separate definition of the ClearFldOrder method.

� The configuration files define the order of subfields in authority, bibliographic and holdings records. There is at present no configuration file for “other” kinds of MARC records.

� In terms of the definition strings given here, the default definition for subfield order is “{#abcdefghijklmnopqrstuvwxyz0123456789}”: subfields may appear in any order.

� Note that the container program deletes the subfield $7 before adding the 539 field. This is because the FldInsertAfter method—as is the case with other methods that add fields—makes the new field the current field, and the first subfield in that new field the current subfield. Invoking the SfdDelete method after invoking the FldInsertAfter method would have the effect of deleting the first subfield from the 539 field.

� At the time of writing, a summary description of the strategy for moving from 10- to 13-character ISBNs could be found at: http://www.isbn.org/standards/home/isbn/transition.asp

� The ‘skeleton loader’ program supplied by Northwestern University Library performs a ‘dual’ search for 10-digit ISBNs, once as given, and once in its 13-digit form; it does a ‘dual’ search for 13-digit ISBNs that can be reduced to 10-digit form.

� The function uses the prefix ‘9780’ if the ISBN supplied by the container program contains only 9 digits.

� The conversion from 13 to 10 characters is only possible if the 13-character prefix is “978.”

� The tag length parameters is included primarily to overcome some of the field-order problems that can occur in the current version of the MARC record object. This parameter will become irrelevant in a later version of the MARC record object, which will provide for elaborate customizable specifications for the order of fields.

� The FldAdd method does not currently make use of this parameter. This parameter will come into play when extended field-ordering capabilities are added to the MARC record object.

� This behavior may change when the MARC record object incorporates enhanced field-ordering capabilities.

� Strictly speaking, the NACO-normalized form should contain the subfield delimiters but not the subfield codes themselves.

� It is highly unlikely that a MARC record will contain more than 32,767 variable fields.

� A program might need to follow such a practice to ensure that bytes with values in the range 128-255 are transferred correctly.

� In the heading ‘Congressional Information Service.’ the terminal full stop is not an integral part of the heading. In the heading ‘Centri di ricerca scientifica I.B.M.’ the terminal full stop is an integral part of the heading.

� For example, a comma generally appears before subfield $e in personal name headings, unless the heading already contains terminal punctuation such as a hyphen; if the subfield following a personal name heading is |z, there should be no punctuation at the end of the heading that is not integral to the heading.

� That is, the first character whose type is not “Mn”.

� MARC-8 diacritics and special characters have values above FF, as of course do all Unicode characters with UTF-16 values above 00FF.

� A few of these have displayable equivalents, but the function ignores these for the sake of consistency.

� Assuming CharacterSetOut has the value “U”.

� Assuming CharacterSetOut does not have the value “U”.

� Assuming CharacterSetOut has the value “U”.

� Because the CharacterSetIn and CharacterSetOut properties have different values, the MARC record object immediately translates the received record from the OCLC character set to UTF-8.

� This misleading term is a holdover from the days in which the shared authority file was in fact limited to records created in the United States. (Even earlier, the file was known as the ‘LC authority file’, a term which is also still in use.) Although the scope of the file has been greatly expanded, there is as yet no accepted brief designation for the file or the records it contains. (Terns such as ‘PCC authority file’, ‘NACO authority file’ and ‘Anglo-American authority file’ have been suggested.)

� The values are set here, instead of being defined as constants, because some of them contain the MARC fill character; this value is obtained via the Chr() function, which cannot be used in the definition of constants.

� At the time of writing, this document could be found at: � HYPERLINK "http://www.loc.gov/marc/organizations/" ��http://www.loc.gov/marc/organizations/� These codes were once known as ‘NUC codes’ because they were most commonly seen in issues of the National union catalog. Although the scope of the codes is now expanded, the former name has yet to be replaced in everyday usage.

� For a discussion of the layouts of 008 fields in bibliographic records, see the discussion of Leader byte 06 in the MARC documentation.

� The behavior of the SfdAdd method may change when the MARC record object acquires enhanced field- and subfield-ordering capabilities.

� When the MARC record object contains code for fixing the order of subfields, this means that the position of the subfield within the variable field might change when the container program changes the subfield code.

� Another way to achieve the same end is to combine the subfield code with the value of the MarcDelimiter property.

