ValidIt

A tool for the validation of

MARC content designation in authority, bibliographic

and holdings records

by

Gary L. Strawn

Authorities Librarian, etc.

Northwestern University Library

Northwestern University Library

Evanston, Illinois

2005

The term “Vger” is used in this document to represent the name of a well-known client-server integrated library system.

The following trademarks, registered trademarks and service marks are used in this document: ActiveX™, Visual Basic®, Windows®: Microsoft Corporation; Unicode™, Unicode, Inc.

This documentation, and the .DLL it describes, are made available at no cost by Northwestern University to all interested parties. This module may be incorporated into other programs developed by other parties, and freely redistributed with such other programs. The documentation may likewise be freely reproduced and redistributed. The following restrictions are placed on this free use and redistribution:

1. There must be no charge of any kind assessed for any program that incorporates this .DLL.

2. There must be no charge assessed for copies of the documentation.

3. The documentation will be distributed as is, without changes of any kind, and especially without removal of marks identifying it as having been produced by Northwestern University.

4. No attempt will be made to remove any identifying marks that may be contained within the .DLL itself.

Those wishing to incorporate the .DLL into programs distributed under other conditions (for example: as part of programs distributed for a fee) should contact the following organization for the terms under which this distribution may be allowed:

Technology Transfer Program

Northwestern University

1801 Maple Avenue

Evanston, IL 60208

847/491-3005

Copyright © 1999-2005 Northwestern University. All rights reserved.

Table of contents

Introduction

Remarks
1
Configuration files
2
Error handling
3
Installation
3
Properties and methods
5
Appendix A: Configuration files

Introduction
77
The validation rules files
79
The obsolete content designation files
130
The supplementary information files
133
The file of codes for coded subfields
140
The file of geographic area codes
143
Sample files
144
Appendix B: Error codes and messages
145

Introduction

ValidIt is an ActiveX™ dynamic link library (DLL) for inspecting the content designation in MARC
 records. ValidIt assesses the overall structure of a record and tests its tags, indicators and subfield codes; it also tests codes carried in the fixed fields
 and certain subfields of variable fields, and can evaluate the relationship between elements in different parts of the record. This tool is intended to be capable of the evaluation of all aspects of a MARC record that are susceptible to evaluation by a program.
 ValidIt can work with records that employ either the MARC-8 or the UTF-8 (Unicode™) encoding scheme.

ValidIt is able to read MARC format definitions contained in tag tables established for various library systems,
 but ValidIt is not otherwise tied to any particular library system. ValidIt deals with MARC records, and knows almost nothing about the internal workings of individual library systems.
 ValidIt should be capable of use in any container program that handles records in the MARC format, regardless of the library system for which those records are intended.

The distinguishing feature of the method ValidIt uses to check records is that the definition of an acceptable record is not an integral part of the tool; the tests are not hard-coded. Some generic tests are indeed built into the tool, but these tests can be modified by information in the tool’s configuration files, and can be turned off and on by the container program through property settings. Most tests are defined solely in ValidIt’s configuration files. Because the DLL’s properties and configuration files are entirely under your control, ValidIt’s behavior is likewise entirely under your control. When your requirements change, you alter a configuration file and/or adjust the tool’s properties, and ValidIt follows your new instructions. You don’t have to wait for a programmer to come up with a new version of the tool when you want to test records in a different way.

Remarks

The name of the executable ValidIt module is ValidItUtf8.DLL. This documentation will generally refer to the ValidIt tool simply as “ValidIt.”
Each time a container program creates an instance of ValidIt, all of the tool’s settings are at their default values.
 In this state, the tool is not able to do any work; the container program must set many properties to suitable values before using the tool. One way to get ValidIt ready to do its work is to write the container program so that it retrieves information from its own initialization file and sets the tool’s properties to corresponding values. But the container program may instead use the tool’s WriteSettings and ReadSettings methods to preserve and restore many of ValidIt’s properties, saving the container program a good deal of work. The container program can modify the tool’s settings when the operator changes options within the container program, and the container program can then invoke the tool’s WriteSettings method to preserve the changes. The next time the container program creates an instance of the tool, it can simply invoke the ReadSettings method to set the tool to the state it had the last time around. To make things even simpler, the container program can instruct each new instance of the tool to invoke the ReadSettings method automatically by assigning the value True to the SettingsAre​Automatic property before the container program invokes the WriteSettings method. When the Settings​Are​Automatic property is True, the container program sets ValidIt’s properties once, and need only reset them when the operator changes something; the tool automatically reads previous settings before doing anything else.

For example, the container program might be written so that whenever the user changes any options that correspond to properties of ValidIt, the container program copies those values to ValidIt’s own properties, sets the SettingsAreAutomatic property to True, and then invokes the WriteSettings method; this causes ValidIt to save its settings (including Settings​Are​Automatic) to a file. When ValidIt next starts up, it will note that Settings​Are​Automatic was most recently saved with the value True, and will restore all of its other settings without any special action on the part of the container program. In effect, ValidIt’s properties have new default values.

When the container program invokes the WriteSettings method, ValidIt saves its settings in the file ValidIt.INI, which Windows® stores in its default location for initialization files. If you have more than one program that uses ValidIt running on the same computer and if these programs need to use different values for ValidIt’s properties, or if any of your programs uses multiple instances of ValidIt (each with a different configuration), you won’t be able to rely on the values that ValidIt restores from its initialization file. Each instance of ValidIt will read the same values from the same initialization file, and will behave in the same manner. Therefore, any time you need to retain more than one set of configuration values for ValidIt on a particular machine, you should write your container program so that it preserves on its own the properties for each instance of ValidIt in its own initialization file, and passes these values to ValidIt each time it starts up. These programs won’t use ValidIt’s SettingsAreAutomatic property, or its WriteSettings method.

Configuration files

ValidIt depends on a set of configuration files to tell it how to go about its work.

· One group of files contains the definition of the tags, indicators, subfields and codes that constitute the MARC authority, bibliographic and holdings formats. In most cases, these files will be those you already maintain for use by the clients of your local library system; ValidIt simply reads these files and extracts the information it needs.

· The other group of files supplies additional information:

· Information to supplement your local system’s MARC definitions

· Information concerning obsolete content designation

· Rules to use when inspecting records

There is a set of files for these three kinds of information for each of the basic MARC formats ValidIt recognizes (authority, bibliographic and holdings), plus a file for codes used in coded subfields (such as the codes used in subfield $f in the 040 field of bibliographic records), and a file of GACs, making a total of eleven configuration files in all. These files are described in Appendix A.

There may be yet other configuration files, depending on the rules you define for ValidIt to follow.

Maintaining these configuration files is an important part of the use of ValidIt. You maintain your system tag table according to the needs of your local system; you maintain ValidIt’s files according to the instructions in this document.

· If you make a change to the system tag tables, or to ValidIt’s “supplementary” or “obsolete” configuration files, you incorporate these changes into ValidIt by simply deleting ValidIt’s “compressed” tag table file. (See the description of the Compressed​TagTablePath property.) The next time ValidIt starts up, it will draw on the system tables and its own “supplementary” and “obsolete” configuration files to generate a fresh copy of the compressed tag table. (See also the description of the ReadTagTables method.)

· If you make a change to any of the files of validation rules, you don’t need to do anything special; ValidIt reads these files anew each time it starts up, so it always uses the most recent version.

Error handling

ValidIt uses the Visual Basic model for handling errors: When ValidIt encounters a severe difficulty, it hands Windows an error code and associated message text, and Windows interrupts the container program. This is called raising an error. The container program is expected to trap the error and handle it gracefully. (In order for this method of error handling to work properly in Visual Basic design mode, choose Tools|Options from the Visual Basic menu, click the “General” tab on the dialog panel, choose the “Break on unhandled errors” option in the “Error trapping” box, and finally click the “OK” button.)

ValidIt raises two kinds of errors:

· It raises the standard Visual Basic error (error number 380) when the container program attempts to set a property to an illegal value.

· It raises its own errors when the container program invokes a method before making available the appropriate information. (For example, if the MarcRecordIn property is empty when the container program invokes the ValidateMarcRecord method, ValidIt raises an error.) These errors are given as offsets of the constant vbObjectError. The errors that may be raised by each method are listed in the description of the method. Appendix B lists in numerical order the error conditions that may be raised by ValidIt.

If ValidIt is made a part of a program under direct operator control (as opposed to a program that performs batch processing), errors raised by ValidIt should generally not be broadcast to the operator, as they indicate a misstep on the part of the container program rather than an error on the part of the operator. Instead, these errors should in most circumstances be handled within the container program.

Installation

You can simply copy the executable module (ValidItUtf8.DLL) directly from Northwestern’s FTP server to the computer on which you’re doing Visual Basic development—without installing it formally, or creating Registry entries for it. When requested, Northwestern University Library will supply an installation program for Validit. (The installation program creates the appropriate Registry entries and moves ValidItUtf8.DLL into the appropriate folder.)

To use ValidIt in a Visual Basic® project, first use Visual Basic’s Project|References dialog to add a reference to the tool to the list of components available to the project.
 (The name of the tool shown in this dialog is “ValidItUtf8.”)

If you want ValidIt to be available to all modules in the project, place this instruction in the Declarations section of a code module (.BAS file):

Global MyValidIt
 As New ValidItClassUtf8
This instruction creates an instance of ValidIt as soon as the program starts up.

Alternatively, you can place the first of the following instructions in the Declarations section of a code module, and the second instruction somewhere in your project before the first use of the tool.

Global MyValidIt As ValidItClassUtf8
Set MyValidIt = New ValidItClassUtf8
This sequence of instructions delays the creation of the instance of the tool until it is needed.
When you create your installation package for the programs you write that incorporate ValidIt, the ValidIt DLL will be picked up automatically, and installed properly on target machines.

Properties and methods

The descriptions of properties and methods are given in the following pages in a single alphabetical sequence. The following list does not include properties and methods retained in the current version of ValidIt solely to maintain compatability with earlier versions. (These properties and methods are so identified in the following descriptions.)

Properties

Adjust​Bibliographic​Punctuation property, Adjust​Bibliographic​Punctuation​Exclusions property, Adjust​Blank​X00​First​Indicator property, Adjustment​For​Obsolete​Data property, Allow​Fill​Character​In​Dates property, AuthCharacters​Not​Wanted property, Auth​Url​Subfields property, BibCharacters​Not​Wanted property, Bib​Dup​All​Owning property, Bib​Url​Subfields property, Change​Message property, Change​Message​Count property, Change​Message​Length property, Change​Message​Offset property, Change​Message​Rule​Number property, Change​​Message​Severity​Code1 property, Change​Message​Severity​Code2 property, Change​Message​Tag property, Change​Message​Text property, CharacterSetIn property, CharacterSetOut property, Communication​Label property, Communication​Label​Active property, CompressedTag​Table​Path property, Configuration​File​Path property, Database​Handle property, Environment​Handle property, ErrorMessage property, Error​Message​Count property, ErrorMessageLength property, ErrorMessage​Offset property, Error​MessageRuleNumber property, ErrorMessage​Severity​Code1 property, ErrorMessage​Severity​Code2 property, Error​MessageTag property, ErrorMessageText property, Force​Undefined​​FixedFieldsToBlank property, Hold​Characters​Not​Wanted property, Hold​Url​Subfields property, Ignore​Empty005Field property, Ignore​NonCritical​Nonfiling​Problems property, Include​Date​Of​​Creation​InObsoleteMessages property, Insert​Codes​Into​041 property, Internet​Transfer​Control property, Internet​​Transfer​​Control​Active property, Make​No​Change property, MarcRecordFormat property, Marc​RecordIn property, Marc​Record​Modified property, MarcRecordNumber property, Marc​Record​Out property, Minimum​SeverityLevel1 property, Minimum​SeverityLevel2 property, NucCode property, PccModelIn property, Pcc​ModelOut property, Remove​Duplicate​Series property, Replace​005​If​Record​Modified property, Report​All​Obsolete property, ReportObsolete property, Settings​​Are​Automatic property, Sorting​Indicator​For​653​Field property, Standard​Numbers​To​Test​For​Duplication property, Subject​Indicators​Of​Interest property, Supplementary​Auth​Config​File property, Supplementary​Bib​Config​File property, Supplementary​Hold​Config​File property, Table​Name​Prefix property, Tag​TableFormat property, Tag​Table​Path property, Test005 property, Test006 property, Test007 property, Test008 property, Test041​Repeatability​Pattern property, Test​AuthorityW​Also​As​Coded​Subfield property, Test​Authority​Punctuation property, TestCodedFields property, TestFieldOrder property, Test​Fixed​Fields property, Test​For​Unmatched​Braces property, Test​For​Unmatched​Brackets property, Test​For​Unmatched​Nonfiling property, Test​For​Unmatched​Parentheses property, TestIndicators property, Test​Initial​Articles property, Test​Leader property, Test​Series​Duplication property, Test​SubfieldH property, Test​Subfield​Order property, TestSubfields property, Test​Subjects​Against​043 property, Test​Variable​Fields property, ValidateAuthAsHoldings property, ValidateBibAs​Holdings property, Validate​Holdings​​AsBib property, Version property, VgerMajorVersion property

Methods

Dump​Rules method, ReadSettings method, ValidateMarcRecord method, WriteSettings method

AddConfiguration method

This method exists to preserve compatibility with earlier versions of ValidIt. This method no longer performs any action.

AdjustBibliographicPunctuation, Adjust​Bibliographic​Punctuation​Exclusions, Test​Bibliographic​Punctuation properties
The TestBibliographicPunctuation property tells ValidIt whether or not you wish it to inspect the terminal punctuation in certain bibliographic fields. The Adjust​Bibliographic​Punctuation property tells ValidIt whether or not you wish it to change punctuation if it finds a problem. The Adjust​Bibliographic​Punctuation​Exclusions property tells ValidIt not to test certain fields for terminal punctuation.
Syntax

object.AdjustBibliographicPunctuation [= True|False]

object.AdjustBibliographicPunctuationExclusions [= list of tags]

object.TestBibliographicPunctuation [= True|False]

Remarks

Certain fields in bibliographic records—principally access fields—are expected to close with certain marks of punctuation. If the TestBibliographicPunctuation property is True, ValidIt will inspect bibliographic fields for proper terminal punctuation. If ValidIt finds any discrepancies it will either adjust the punctuation or report a problem, depending on the condition found in the record and the setting of the MakeNoChange and AdjustBibliographicPunctuation properties. In the descriptions that follow, unless stated otherwise, the terminal subfield—the subfield of interest when considering punctuation—is the last subfield in a field that does not bear code 0-9 or w
· 1XX fields: If the record follows ISBD conventions:

· If the last character in the terminal subfield is a closing bracket, closing parenthesis, closing brace, hyphen, questionmark of exclamation mark, ValidIt does nothing

· If the last character in the terminal subfield is a full stop: If the full stop is preceded by a single or double quotation mark, ValidIt exchanges the positions of the full stop and the quotation mark. If the full stop is preceded by a question mark, closing parenthesis, closing bracket, exclamation mark or hyphen, ValidIt removes the full stop.

· If the last character in the terminal subfield is A-Z, a-z or 0-9, ValidIt adds a terminal full stop to the subfield

· If the last character in the terminal subfield is a single or double quotation mark: If the quotation mark is not preceded by a hyphen, full stop, closing bracket, closing parenthesis, question mark or exclamation mark, ValidIt adds a full stop inside the quotation mark.

· If the last character in the terminal subfield is anything else: If the record follows UTF-8 encoding and the last character is considered in the Unicode scheme to be an alphabetic character or a numeral, ValidIt adds a terminal full stop to the subfield, as if the subfield ended with the letter “a”. In other cases, ValidIt complains about the unknown character.

· 245 and 250 fields: ValidIt treats these as 1XX fields, without regard to ISBD coding.
· 246 and 247 fields: If the field contains subfield $b and if subfield $b ends with a full stop, ValidIt asks the operator if this punctuation is proper. If the field does not contain subfield $b and if subfield $a ends with a full stop, ValidIt asks the operator if this punctuation is proper.

· 4XX fields: If the field contains parentheses, ValidIt asks the operator if the punctuation is correct. If the terminal subfield contains a terminal full stop: If the terminal full stop is preceded by a closing parenthesis, closing bracket, closing brace, hyphen or numeral, ValidIt removes the full stop; if the terminal full stop is preceded by any other character, ValidIt asks the operator if the punctuation is correct.
· 600 to 651 and 655 fields: ValidIt treats these as 1XX fields, without regard to ISBD coding.

· 700 to 740 fields: ValidIt treats these as 1XX fields if the record follows ISBD conventions.

· 800 to 840 fields: ValidIt treats these as 1XX fields if the record follows ISBD conventions.

If the preceding scheme indicates that ValidIt should make a change to a record but either the MakeNoChange or AdjustBibliographicPunctuation has the value False, ValidIt instead prepares a message for the operator.
By default, ValidIt inspects all fields listed above. A program can ask that ValidIt not test certain fields by supplying the proper value for the AdjustBibliographicPunctuationExclusions property.
The values of these properties are preserved in the file ValidIt.INI by the WriteSettings method.
Data type

AdjustBibliographicPunctuation: Boolean (Integer)
AdjustBibliographicPunctuationExclusions: Character string

TestBibliographicPunctuation: Boolean (Integer)

Default value

AdjustBibliographicPunctuation: False

AdjustBibliographicPunctuationExclusions: null

TestBibliographicPunctuation: False
Example

object.AdjustBibliographicPunctuation = True
object.AdjustBibliographicPunctuationExclusions = “650 830”

object.TestBibliographicPunctuation = True

Associated error conditions

None
AdjustBlankX00FirstIndicator property

Tells ValidIt whether or not you wish it to change a blank first indicator in personal names to a likely value.
Syntax

object.AdjustBlankX00FirstIndicator [= True|False]

Remarks

The first indicator in bibliographic personal name fields (tags100, 400, 600, 700 and 800) describes the nature of the name: it contains a surname, or it consists only of a forename. Some records imported from certain sources to not supply a legal value for this indicator, and use a ‘blank’ instead. If the AdjustBlankX00FirstIndicator property is True, ValidIt will look for bibliographic X00 fields with blank first indicators, and will make changes accordingly.
If subfield $a of a personal name field contains an internal comma (i.e., somewhere other than at the end of the subfield), ValidIt assumes that the name contains a surname, and changes the blank first indicator to ‘one’. If subfield $a does not contain an internal comma, ValidIt assumes that the name does not contain a surname, and changes the blank first indicator to ‘zero.’ In certain exotic cases, ValidIt’s logic will not produce the correct value (for example, subfield $a may contain only a surname); but the value will at least be a legal one.
The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.
Data type

Boolean (Integer)

Default value

False

Example

object.AdjustBlankX00FirstIndicator = True

Associated error conditions

None

AdjustmentForObsoleteData property

The number of years that may elapse between the declaration that a piece of MARC content designation is obsolete and the date of the creation of a record, before ValidIt reports the content designation as obsolete.

ValidIt uses the first two bytes in a MARC record’s 008 field as the “date of creation” for a record.
 This date is in many cases not the same as the year in which the record was transferred into the local system, the year in which the cataloging of the item at the local library was declared to be complete, or the year in which the item represented by the record was published.

Syntax

object.AdjustmentForObsoleteData [= number]

Remarks

When ValidIt discovers that a piece of content designation in a record is currently regarded as obsolete,
 it extracts the date of creation from the record’s 008 field. ValidIt adjusts the date of obsolescence of the item of MARC content designation by the value of the AdjustmentFor​ObsoleteData property, and compares this adjusted value to the date on which the record was created. If the adjusted date is earlier than the date of record creation (i.e., if the record was created after an element of content designation became obsolete), ValidIt prepares an error report.

For example, if an element of content designation became obsolete in 1990, and if the value of this property is 2, ValidIt will allow the obsolete element of content designation to pass without remark in records created in 1991, but will report it as improper in records created in 1993.

The value of this property has no effect if the ReportObsolete property has the value False, i.e., if you have told ValidIt not to report any obsolete content designation. The value of this property has no effect if the ReportAllObsolete property has the value True, i.e., if you have told ValidIt to report all obsolete content designation regardless of the record’s date of creation.
The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Non-negative integer. If this property has a positive value, ValidIt allows this number of years to elapse after an element of content designation was declared obsolete, before it prepares an error message. If the property is zero, ValidIt does not make any adjustment for obsolete content designation. ValidIt does not permit this property to be set to a negative number.

Default value

1 (“one”)

Example

object.AdjustmentForObsoleteData = 2

Associated error conditions

Invalid value (…) for AdjustmentForObsoleteData property (may not be a negative number). (Numeric value: 380.) This property must be set to zero, or a positive integer.

See also

ReportAllObsolete property, ReportObsolete property

AllowFillCharacterInDates property

This property tells ValidIt whether or not the fill character is allowed in Date 1 and Date 2 (008/07-10 and 008/11-14) in bibliographic records.

Syntax

object.AllowFillCharacterInDates [= True|False]

Remarks

For most fixed field elements, you specify the valid codes by making appropriate entries in your system tag tables; you can define the fill character as a valid character in all, some or none of the fixed field positions. The codes used in the Date1 and Date2 elements in the bibliographic 008 field are usually not specified in system tag tables, but are instead validated by code contained in the system’s cataloging client. ValidIt performs its own simple test on these two fixed field positions; it expects each character to be either a numeral or the letter ‘u’. If you wish ValidIt also to consider the fill character to be valid in Date1 and Date2, set the Allow​Fill​Character​InDates property to True.

If you wish to perform more elaborate tests on the contents of Date1 and Date2, or wish to compare the values of these two fixed field positions with the Type of Date code (008/06), you must write validation rules to do so.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

False (i.e., the fill character is not valid in Date 1 or Date 2)

Example

object.AllowFillCharacterInDates = True

Associated error conditions

None.

AuthCharactersNotWanted, Bib​Characters​Not​Wanted, Hold​Characters​Not​Wanted properties

A list of characters which may be valid according to the MARC standard, but which are wanted only in certain parts, or are not wanted in certain parts, of records processed by ValidIt. The AuthCharactersNotWanted property identifies characters not wanted in authority records, the Bib​CharactersNotWanted property identifies characters not wanted in bibliographic records, the Hold​Characters​Not​Wanted property identifies characters not wanted in holdings records.

Syntax

object.AuthCharactersNotWanted [= identification of characters]

object.BibCharactersNotWanted [= identification of characters]

object.HoldCharactersNotWanted [= identification of characters]

Remarks

Supply these properties in a manner consistent with the records being examined. If the supplied records use the MARC-8 character set, the values for these properties should define diacritics and special characters with their MARC-8 values; if the supplied records use the UTF-8 character set, the values for these properties should define diacritics and special characters with their UTF-8 values. ValidIt does not attempt to translate MARC-8 characters into Unicode equivalents, or vice versa.

A record may contain characters that, while defined as valid in the MARC standard, are not wanted in records. For example, the local system may not be yet ready to handle the “spacing underscore” character. In addition, certain characters may be wanted only in certain subfields, or may not be wanted in certain subfields. For example, the spacing underscore may be allowed in URLs, but nowhere else; the non-spacing underscore may be allowed in all parts of a record except URLs. The Auth​Characters​Not​Wanted, BibCharactersNotWanted and HoldCharactersNotWanted properties identify those characters that should not appear in records, or may appear only in certain places.

These properties consist of one or more units; each unit identifies a single character not allowed everywhere in finished records. A unit consists of the character itself, and the name of the character. Identify a character with its decimal value (preceded by “D”), its hexadecimal value (preceded by “X”), its UTF-16 (Unicode) hexadecimal value (preceded by “U”)
 or the single-octet literal character.
 Separate these two elements (character and name) with a slash.

X5E/spacing circumflex

The spacing circumflex (the character whose hexadecimal value is ‘5E’) is not allowed anywhere; if it appears in a record, prepare an error message
U03B4/delta

The Unicode Greek delta character (the character whose Unicode UTF-16 headecimal value is ‘03B4’) is not allowed anywhere; if it appears in a record, prepare an error message
If you wish ValidIt to substitute a valid character or series of characters for the invalid character, follow the name of the character with a slash and the replacement string.

X5F/spacing underscore/%5F

The spacing underscore (the character whose MARC-8 hexadecimal value is ‘5F’) is not allowed anywhere; if it appears, replace it with the string “%5F”
If a character is acceptable in certain subfields only, list those subfields within braces immediately after the identification of the character; precede this list with a plus sign. If the braces contain multiple tag/subfield combinations, separate each from its neighbors with a comma.
X5E{+856/u}/spacing circumflex

The spacing circumflex is only allowed in subfield $u of the 856 field; if it appears elsewhere, prepare an error message
X5F{+856/u}/spacing underscore/%5F

The spacing underscore (the character whose MARC-8 hexadecimal value is ‘5F’) is not generally allowed; if it occurs in subfield $u of the 856 field, replace it with the string “%5F”; if it appears anywhere else, prepare an error message
If a character is not wanted in certain subfields, list those subfields immediately after the identification of the character; precede this list with a minus sign.
 If the braces contain multiple tag/subfield combinations, separate each from its neighbors with a comma.
D227{-856/u}/circumflex

The non-spacing circumflex (MARC-8 character 227, MARC-8 hex value E3) is allowed everywhere but in subfield $u of the 856 field; if it appears there, prepare an error message.

D228{-856/u}/tilde/%7E

The non-spacing tilde (MARC-8 character 228, MARC-8 hex value E4) is allowed everywhere but in subfield $u of the 856 field; if it appears there, replace it with the string “%7E”

If any of these properties must identify more than one character, separate each character-definition unit from its neighbors with a double slash.

X5E/spacing circumflex//D95/spacing underscore/%5F

ValidIt tests a record for the presence of characters identified by this property after it has done all other work on the record, including any requested translation of the record from one character set to another. ValidIt only tests the text portion of data fields (tags: 010-999). It does not test the record Leader, any part of control fields (001-009), or the tags and indicators of data fields.

The values of these properties are preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Character strings

Default value

Null

Examples

object.AuthCharactersNotWanted = “X5E/spacing circumflex//D95/spacing underscore/%5F”

Report each occurrence in an authority record of the character whose hexadecimal value is 5E as a problem. If the character whose decimal value is 95 appears at any point in an authority record, replace it with the string “%5F”.

object.BibCharactersNotWanted = “X5E{+583/u,773/u,856/u}/spacing circumflex//D95/” + _

“spacing underscore//D227{-583/u,773/u,856/u}circumflex//D246{-583/u,773/u,856/u}/” + _

“underscore”

Report each occurrence in a bibliographic record of the character whose hexadecimal value is 5E as a problem—unless the character appears in subfield $u of a 583, 773 or 856 field. Report each occurrence in a bibliographic record of the character whose decimal value is 95 as a problem. Report each non-spacing circumflex or underscore appearing in subfield $u of the 583, 773 or 856 field as a problem, but ignore the character if it appears in other subfields.

object.HoldCharactersNotWanted = “X5E{856/u}/spacing circumflex//D95/spacing underscore”

Report each occurrence in a holdings record of the character whose hexadecimal value is 5E as a problem—unless the character appears in subfield $u of an 856 field. Report each occurrence in a holdings record of the character whose decimal value is 95 as a problem.

Associated error conditions

None.

AuthUrlSubfields, BibUrlSubfields, HoldUrlSubfields properties

These properties identify those subfields in authority, bibliographic and holdings records that contain the URLs ValidIt should test for validity.

Syntax

object.AuthUrlSubfields [=identifying string]

object.BibUrlSubfields [=identifying string]

object.HoldUrlSubfields [=identifying string]

Remarks

ValidIt can determine whether the URLs in certain subfields of records are valid (i.e., whether they lead to active pages). Use these properties to tell ValidIt which subfields contain URLs that should be so checked.

Identify each subfield to be tested by its tag and subfield; separate the tag from the subfield with a slash. If a type of record contains more than one URL subfield to be tested, separate ech from its neighbors with a space.

The values of these properties have no effect if the value of the InternetTransferControlActive property is False, i.e. if the container program has not supplied the means for ValidIt to check URLs, or the program has told ValidIt not to check URLs.

The values of these properties are preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Character strings.

Default value

AuthUrlSubfields: null

BibUrlSubfields: null
HoldUrlSubfields: null
Example

object.BibUrlSubfields = “583/u 773/u 856/u”

Associated error conditions

None

See also

InternetTransferControl property

Bib​Characters​Not​Wanted property

See the AuthCharactersNotWanted property.

BibDupAllOwning property

Tells ValidIt, when it is testing bibliographic standard numbers for duplication, whether or not you wish it to consider records from all owning libraries, or only one owning library. The concept of owning library may only be relevant to users of the Vger system.

Syntax

object.BibDupAllOwning [= True|False]

Remarks

If the Standard​Numbers​To​Test​For​Duplication property contains one or more tags (and if the Environment​Handle and DatabaseHandle properties have been supplied), ValidIt will search a bibliographic database for records that share one or more standard numbers with the current record. (The theory being that if two records have the same standard number, they’re possibly duplicates.)

In a Vger database, each bibliographic record has a property called the owning library, which is for all intents and purposes identical with the processing unit concept in the NOTIS system. Depending on the practices followed by the participants in a particular Vger installation, the presence in the database of bibliographic records “owned” by other libraries that share standard numbers with the current record may or may not be of interest. If the BibDupAllOwning property is True, ValidIt will consider all bibliographic records in the database to be matches; if this property is False, ValidIt will only consider bibliographic records from the same owning library as the current record to be matches. (The current record’s owning library is indicated by the VgerBibOwningLibrary property.)
The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.
Data type

Boolean (Integer)

Default value

False (i.e., consider only records owned by the current record’s owning library)

Example

object.BibDupAllOwning = True

Associated error conditions

None

See also

StandardNumbersToTestForDuplication property, VgerBibOwningLibrary property
BibUrlSubfields property

See the AuthUrlSubfields property.

ChangeMessage, ChangeMessageCount, Change​MessageLength, Change​Message​Offset, Change​MessageRuleNumber, ChangeMessage​Severity​​Code1, Change​Message​Severity​Code2, Change​Message​Tag, Change​Message​Text properties

Information pertaining to changes made by ValidIt to the record supplied as the MarcRecordIn property. All of these properties are read-only except the ChangeMessage property.

Syntax

object.ChangeMessage [= number of desired change message]

object.ChangeMessageCount
object.ChangeMessageLength
object.ChangeMessageOffset
object.ChangeMessageRuleNumber
object.ChangeMessageSeverityCode1
object.ChangeMessageSeverityCode2
object.ChangeMessageTag
object.ChangeMessageText
Remarks

When the container program invokes the ValidateMarcRecord method, ValidIt inspects a record and changes it according to instructions in configuration files, as controlled by ValidIt’s properties. Each time ValidIt makes a change to a record, it prepares a message describing the change. Each message consists of several parts: a description of the change, the tag of the field changed,
 the starting position and location of a fixed field element changed,
 a sequential number, and two codes to describe the severity of the change. These pieces of information correspond to the ChangeMessageText, Change​Message​Tag, ChangeMessageOffset, ChangeMessageLength, ChangeMessageRuleNumber, Change​MessageSeverityCode1 and ChangeMessageSeverityCode2 properties, respectively. ValidIt makes a count of the number of change messages prepared for any one record available as the ChangeMessageCount property. (ValidIt generates the change messages in essentially random order; it sorts the messages by the value of the ChangeMessageTag property when presenting them to the container program.)

After invoking the ValidateMarcRecord method, the container program should examine the ChangeMessageCount property. If this property has a value greater than zero, and if the container program is interested in presenting information about changes made to a record by ValidIt to an operator or writing them to a file, the container program should enter a loop in which it sets the value of the ChangeMessage property to values ranging from zero to one less than the ChangeMessageCount property. (The ChangeMessageCount property reports the total number of messages; the ChangeMessage property is zero-based.)

When the container program sets the ChangeMessage property, ValidIt makes available the associated change message properties. The container program may handle these messages in some appropriate manner (such as present them to an operator, or save them to a file), or it may choose to ignore them.

ValidIt takes the severity codes and error message text from a variety of sources.

· For changes defined as “special” changes (their definitions are enclosed in angle brackets), ValidIt uses its own change message, and the severity codes (if any) and rule number found in the force rule in the appropriate configuration file

· For changes controlled by properties rather than validation rules, ValidIt generates its own change message text, and takes the severity codes from the BuiltInChanges stanza of the file bibvalid.cfg.
 ValidIt uses negative numbers for the rule numbers.

 -1
Character set translated (element in BuiltInChanges stanza: MarcRecordTranslated)

-2
Order of variable fields changed (element in BuiltInChanges stanza: FieldOrderAltered)

-3
PCC coding model changed (element in BuiltInChanges stanza: PccModelConverted)

-4
Unwanted character removed or subsituted (element in BuiltInChanges stanza: CharactersNotWanted)

-5
Non-blank but undefined fixed field code changed to blank (element in BuiltInChanges stanza: UndefinedFixedFieldToBlank)

-6
Order of subfields changed (element in BuiltInChanges stanza: SubfieldOrder)

 -7
005 field added or modified
 (element in BuiltInChanges stanza: Changed005)

 -8
Field order changed for internal reasons (reported when fields were changed during final record cleanup; only occurs when the TestFieldOrder property has the value False; element in BuiltInChanges stanza: FieldOrderShiftedDuringCleanup)

Data type

All of these properties are integers except ChangeMessageTag and ChangeMessageText, which are character strings.

Default value

When the container program sets the ChangeMessage property to an appropriate value after the invocation of the ValidateMarcRecord method, these properties have their associated values; these properties do not otherwise have any meaning.

Example

The following code sample illustrates the use of some of these properties.

With object

.MarcRecordIn = sMarcRecord$

.ValidateMarcRecord

If .ChangeMessageCount > 0 Then

For iCtr% = 0 to .ChangeMessageCount -1

.ChangeMessage = iCtr% ‘retrieve next error group

If .ChangeMessageSeverityLevel1 > 5 Then

iRc% = MsgBox (.ChangeMessageText, 0, “Change made to” _ & .ChangeMessageTag & “ field”)

End If

Next

End If

End With

Associated error conditions

Invalid value (…) for ChangeMessage property (max of …). (Numeric value: 380.) Raised when the container program sets the ChangeMessage property to a negative number, or to a value greater than that of the ChangeMessageCount property minus one.

See also

MinimumSeverityLevel1 property, MinimumSeverityLevel2 property

CharacterSetIn, CharacterSetOut properties

The CharacterSetIn property identifies the character set used in the record supplied by the container program as the MarcRecordIn property. The CharacterSetOut property identifies the character set used in the record supplied by ValidIt as the MarcRecordOut property.

Syntax

object.CharacterSetIn = [symbol for the character set of the original record]

object.CharacterSetOut = [symbol for the character set of the modified record]

Remarks

Unfortunately, records in the MARC format from different sources do not all present their data using the same character set. (For example, a record supplied by OCLC represents a superscript “3” in one manner, but Vger represents the same character in another manner.) If a record is received from a source that uses one character set but must be prepared for a destination that uses a different set, the characters in the record must be translated from one character set to the other in order that the transfer may proceed smoothly. A container program can use the CharacterSetIn and CharacterSetOut properties to convert a record from one character set to another at the same time ValidIt performs validation tasks.

If the TestSubjectsAgainst043 property has the value True, you should set the CharacterSetIn property to the correct value, even if you do not wish to convert a record from one character set to another. As it works its way through the subject headings in a record, ValidIt must “normalize” parts of them for comparison; knowing the character set used to represent fields in a record may make this operation more successful.

For the CharacterSetOut values “V,” “M”, “O” and “R”: If the CharacterSetIn is another of these values, ValidIt translates characters appearing in variable data fields 010-999. For field 880, ValidIt only translates those characters marked as being in the “standard” character set; it does not manipulate in any way those portions of the 880 field marked as being in non-roman character sets. If the CharacterSetIn is “U”, ValidIt translates the entire record.
For the CharacterSetOut value “U”: If the CharacterSetIn is “V”, “M,”, “O” or “R”, ValidIt translates the entire record.

The values of these properties are preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Character string. The following values are accepted for either of these two values, in any mixture of upper- and lower-case letters. Only the first character of these symbols is significant.

Symbol:

Use for:

VGER

The character set used by versions 97.2 and later of the Vger system

MARC

The MARC 21 character set

OCLC

The OCLC character set

RLIN

The RLIN character set

UNICODE
The Unicode character set (UTF-8 representation)

These properties can also be set to the null string.

Default value

Null

Associated error conditions

Invalid value for CharacterSetIn property. (Numeric value: 380.) The container program has set the CharacterSetIn property to a value other than one of those defined above.

Invalid value for CharacterSetOut property. (Numeric value: 380.) The container program has set the CharacterSetOut property to a value other than one of those defined above.

CharactersNotWanted property

This property exists to preserve compatibility with earlier versions of ValidIt. This property is exactly equivalent to the BibCharactersNotWanted property. Programs shold be coded to use the Bib​Characters​NotWanted property.

CommunicationLabel, Communication​Label​​Active properties

A control on a form to which ValidIt can send messages; and a flag telling ValidIt whether or not it should send such messages for the current record.

Syntax

object.CommunicationLabel [= text box or label on a form]

object.CommunicationLabelActive [= True|False]

Remarks

Some of the work performed by ValidIt—uch as the testing of URLs—can take quite a bit of time, and without feedback an operator might assume that the container program had died and might even attempt to cancel the container program. If the container program supplies ValidIt with a place (a text box or label control) in which it can display messages, ValidIt can keep the operator aware of its progress.
If the container program supplies the CommunicationLabel property, it can tell ValidIt temporarily to suspend the display of operator messages by setting the CommunicationLabelActive property to False.

Data type

CommunicationLabel: a text box or label control on a form controlled by the container program
CommunicationLabelActive: Boolean (Integer)

Default value

None

Example

Set object.CommunicationLabel = MyMainForm!txtMessageArea
Associated error conditions

Invalid value for CommunicationLabel property. (Numeric value: 380.) The container program has supplied something other than a text box or label.

CompressedTagTablePath property

The directory or folder in which ValidIt may expect to find the compressed version of its MARC tag table, and into which it may write a new version of that table.

Syntax

object.CompressedTagTablePath [= valid path name]

Remarks

The directory identified by this property may be any folder to which ValidIt has read/write access.

ValidIt stores in this directory a compressed version of the system tag tables, combined with information from its “supplementary” and “obsolete” configuration files. (ValidIt stores this MARC information in compressed form because the compressed form takes much less time to read than the original files.) The file name ValidIt uses for this file is “VITagTableC.txt”.

If you change the system tag tables, or any of the “supplementary” or “obsolete” configuration files, you should force ValidIt to generate a new compressed tag table by deleting the file “VITagTableC.txt” from the directory identified by this property. The next time you start up a program that uses ValidIt, ValidIt will automatically generate an updated copy of its compressed tag table. (You can also delete the compressed file and then instruct a container program to invoke the Read​Tag​Tables method.) The time it takes ValidIt to construct this new file will vary, depending on the computer on which the container program is running, the location of the system tag files, the speed of the local network, and other factors; a time of two minutes on a reasonably fast machine should not be considered excessive.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Character string

Default value

Null. If the container program invokes the ReadSettings method, the default value is that of the ConfigurationFilePath property (which is set first).
Example

object.CompressedTagTablePath = “e:\validit\”

Associated error conditions

None. If this property is null when ValidIt performs the ReadTagTables method, it substitutes the value of the ConfigurationFilePath property.

ConfigurationFilePath property

The directory or folder in which ValidIt may expect to find the various special configuration files it needs to do its work.

Syntax

object.ConfigurationfilePath [= valid path name]

Remarks

The directory identified by this property may be any path to which ValidIt has read access. ValidIt expects to find the following files in this folder:

authobs.cfg

authsup.cfg

authvalid.cfg

bibobs.cfg

bibsup.cfg

bibvalid.cfg

codes.cfg

gacs.cfg

holdobs.cfg

holdsup.cfg

holdvalid.cfg

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Character string

Default value

Null
Example

object.ConfigurationfilePath = “d:\tables\validit”

Associated error conditions

None

ConfigurationLast, ConfigurationName, ConfigurationNumber properties

These properties exist to preserve compatibility with earlier versions of ValidIt. These properties have no effect on the behavior of ValidIt.

DatabaseHandle, EnvironmentHandle properties

Information ValidIt can use to connect to an external database.
Syntax

object.DatabaseHandle [= a valid database handle]

object.EnvironmentHandle [= a valid environment handle]

Remarks

To make an ODBC connection to an external database, a program first asks Windows for an environment handle, which is simply a large number. The environment handle identifies a work area that Windows sets aside for the container program. Within this environment, a container program can connect to any number of external databases; Windows assigns each database a separate number, called a database handle. These numbers likewise simply refer to work areas maintained by Windows. When a program asks Windows for a database handle, it supplies the relevant ODBC connection information (connection name, signon and password).
A container program may be built from a number of separate components (DLLs), each of which needs to make an ODBC connection to the same database. It is possible for each component to make its own connection to the database; but this has the effect of consuming unnecessary resources on the target server. The components in a better-organized container program could be written so that they share the same ODBC connection; in this case, the server only allocates resources for one connection even though each component in the container program is able to do its own thing independent of the other components.

The ValidIt DLL is one component that in certain circumstances needs to make an ODBC connection to an external database. If ValidIt is part of a container program whose other modules also need to make ODBC connections to the same database, ValidIt can use a connection created by another component; or, it can loan its connection to some other component.
If ValidIt is always the first component in your project that will make an ODBC connection to an external database, supply ValidIt with the DSN, UID and PWD properties (and, for Vger databases, the TableNamePrefix property), and then pass the EnvironmentHandle and DatabaseHandle properties from ValidIt to the other components that need to share the same ODBC connection.

If some other component in your project is always the first component to make an ODBC connection to an external database, copy that component’s EnvironmentHandle and DatabaseHandle properties (as well as other properties such as the TableNamePrefix property) to these ValidIt properties.
ValidIt does not save the Environmenthandle and DatabaseHandle properties in its ValidIt.INI file, because the numbers are only valid while the container program is running.
 Each time you start up the container program, the various components will have to re-establish the ODBC connection.
Data type

Long integers

Default value

Zero

Example

In the following example, the component called MyVgerReader is the first component in the container program to make the connection to a Vger database; MyVgerReader shares its connection with MyValidIt.

MyVgerReader.DSN = “voyager”

MyVgerReader.UID = “dbread”

MyVgerReader.PWD = “dbread”

MyVgerReader.TableNamePrefix = “MYDB.”
MyValidIt.EnvironmentHandle = MyVgerReader.EnvironmentHandle
MyValidIt.DatabaseHandle = MyVgerReader.DatabaseHandle
MyValidIt.TableNamePrefix = MyVgerReader.TableNamePrefix

In the following example, MyValidIt is the first component in the container program to make the connection to a Vger database; MyValidIt shares its connection with MyVgerReader.

MyValidIt.DSN = “voyager”

MyValidIt.UID = “dbread”

MyValidIt.PWD = “dbread”

MyValidIt.TableNamePrefix = “MYDB.”
MyVgerReader.EnvironmentHandle = MyValidIt.EnvironmentHandle

MyVgerReader.DatabaseHandle = MyValidIt.DatabaseHandle
MyVgerReader.TableNamePrefix = MyValidIt.TableNamePrefix

Associated error conditions

None
See also

DSN property, PWD property, UID property, TableNamePrefix property

DumpRules method

The DumpRules method causes ValidIt to write a compressed version of the validation rules, as it has digested and internalized them, to a file.

Syntax

object.DumpRules

Remarks

This method is largely intended for the use of the author of ValidIt when debugging the tool. It is unlikely that other programmers will have cause to invoke this function; catalogers and other users of programs that incorporate ValidIt have no reason at all to consult such a dump of the validation rules.

ValidIt writes the validation rules to a text file called “rulesdump.txt”; it puts this file into the folder identified by the CompressedTagTablePath property.

Properties to consider before invoking this method

ComopressedTagTablePath property

Associated error conditions

None.

EnvironmentHandle property

See the DatabaseHandle property.

ErrorMessage, ErrorMessageCount, Error​MessageLength, ErrorMessageOffset, Error​MessageRuleNumber, ErrorMessage​Severity​​​Code1, ErrorMessage​Severity​Code2, ErrorMessageTag, Error​Message​Text properties

Information pertaining to errors detected by ValidIt when inspecting the record supplied as the MarcRecordIn property. All of these properties are read-only except the ErrorMessage property.

Syntax

object.ErrorMessage [= number of desired error message]

object.ErrorMessageCount
object.ErrorMessageLength
object.ErrorMessageOffset
object.ErrorMessageRuleNumber
object.ErrorMessageSeverityCode1
object.ErrorMessageSeverityCode2
object.ErrorMessageTag
object.ErrorMessageText
Remarks

When the container program invokes the ValidateMarcRecord method, ValidIt inspects a record and prepares error reports describing any discrepancies it detects. Each report consists of several parts: a description of the problem, the tag of the field being examined,
 the starting position and location of a problem code,
 an error number, and two codes to describe the severity of the error. These pieces of information correspond to the ErrorMessageText, ErrorMessageTag, ErrorMessageOffset, ErrorMessageLength, ErrorMessageRuleNumber, ErrorMessageSeverityCode1 and ErrorMessageSeverityCode2 properties, respectively. ValidIt makes a count of the number of error messages prepared for any one record available as the ErrorMessageCount property. (ValidIt generates the error messages in essentially random order; it sorts the messages by the value of the ErrorMessageTag property when presenting them to the container program.)

After invoking the ValidateMarcRecord method, the container program should examine the ErrorMessageCount property. If this property has a value greater than zero, the container program should enter a loop in which it sets the value of the ErrorMessage property to values ranging from zero to one less than the ErrorMessageCount property. (The ErrorMessageCount property reports the total number of messages; the ErrorMessage property is zero-based.)

When the container program sets the ErrorMessage property, ValidIt makes available the associated error message properties. The container program may handle these messages in some appropriate manner (such as present them to an operator, or save them to a file), or it may choose to ignore them.

Error messages prepared by ValidIt during the handling of a user-defined validation rule are taken directly from the validation rule.

Error messages prepared during MARC tag-table validation and other tests built into ValidIt (i.e., tests controlled by the tool’s properties, rather than defined by rules in a configuration file) are generated within ValidIt itself; the severity codes associated with those messages are set by values in the “BuiltInErrors” stanza of the file bibvalid.cfg.
 As the following table shows, these built-in errors all have a negative value for the ErrorMessageRuleNumber property.

 -1
Fixed-field value is obsolete (element in BuiltInErrors stanza: FfdObsolete)

-2
Fixed-field value is undefined (element in BuiltInErrors stanza: FfdUndefined)

-3
Tag is undefined (element in BuiltInErrors stanza: TagUndefined)

-4
Tag is obsolete (element in BuiltInErrors stanza: TagObsolete)

-5
Indicator value is obsolete (element in BuiltInErrors stanza: IndicatorObsolete)

-6
Subfield code is obsolete (element in BuiltInErrors stanza: SubfieldCodeObsolete)

-7
Indicator value not defined (element in BuiltInErrors stanza: IndicatorUndefined)

-8
Subfield code not defined (element in BuiltInErrors stanza: SubfieldUndefined)

-9
Subfield repeated, not defined as repeatable (element in BuiltInErrors stanza: SubfieldRepeated)

-10
Mandatory subfield missing (element in BuiltInErrors stanza: MandatorySubfield)

-11
Field repeated, not defined as repeatable (element in BuiltInErrors stanza: FieldNotRepeatable)

-13
Mandatory field missing (element in BuiltInErrors stanza: MandatoryField)

-16
Coded subfield has improper length (element in BuiltInErrors stanza: CodedSubfieldHasImproperLength)

-17
Code in coded subfield not defined (element in BuiltInErrors stanza: CodeInCodedFieldNotDefined)

-18
Subfield in 041 has more than 6 codes (element in BuiltInErrors stanza: SubfieldIn041HasOver6Codes)

-19
Code in 041 subfield $b also appears in $a (element in BuiltInErrors stanza: CodeIn041BappearsIn041A)

-21
Code in coded subfield obsolete (element in BuiltInErrors stanza: CodeObsolete)

-22
Codes may need to be added to an 043 field (element in BuiltInErrors stanza: New043Codes)

-29
Possible problem with initial article (element in BuiltInErrors stanza: InitialArticle)

-30
Problem with encoding level or 042 in PCC record (element in BuiltInErrors stanza: PccE1042)

-31
Problem with cataloging source or 042 in PCC record (element in BuiltInErrors stanza: PccSrc042)

-32
Record seems to need 042 for PCC (element in BuiltInErrors stanza: PccElSrc042)

-33
Series subfields $v and $x are out of order (element in BuiltInErrors stanza: SeriesVXOutOfOrder)

-34
Possible problem with initial word that functions either as article or numeral (element in BuiltInErrors stanza: InitialArticleOrNumeral

-35
Unacceptable control subfield (element in BuiltInErrors stanza: ImproperControlSubfield)

-36
Authority control subfield $w/0 has code ‘i’ but associated field does not have subfield $i (element in BuiltInErrors stanza: SfdW0HasIButNoSfdI)

-37
A subfield contains no data, or contains only spaces (element in BuiltInErrors stanza: EmptySubfield)

-38
The subfields in the field are not in the order specified by the SubfieldOrder stanza (this message only appears if the MakeNoChange property has the value True; element in BuiltInErrors stanza: SubfieldsOutOfOrder)

-39
The fields in the record are not in the order specified by the FieldOrder or ExtendedFieldOrder stanza (this message only appears if the MakeNoChange property has the value True and the TestFieldOrder property has the value True; element in BuiltInErrors stanza: FieldsOutOfOrder)

-40
A URL does not appear to represent an active page
 (element in BuiltInErrors stanza: UrlNotFound)

-41
A variable field contains a subfield delimiter that is followed by a blank space
 (element in BuiltInErrors stanza: SubfieldBlank)

-42
A field contains a character defined by the CharactersNotWanted property as not proper (element in BuiltInErrors stanza: CharactersNotWanted)

-43
The 005 field is not properly formatted (element in BuiltInErrors stanza: Improper005)

-44
A variable field contains unmatched parentheses, braces or brackets (element in Built​In​Errors stanza: UnmatchedParentheseEtc)

-45
A variable field contains unmatched nonfiling zone delimiter characters (element in Built​In​Errors stanza: UnmatchedNonfiling)

-46
The text in subfield $h is not recognized (element in BuiltInErrors sanza: SubfieldHUndefined)

-47
Subfield $h is expected but not present (element in BuiltInErrors stanza: SubfieldH​Code​Missing)

-48
Subfield 041 $a does not meet specifications (element in BuiltInErrors stanza: 041​Repeatability​Pattern)

-49
Same series is present in 490 and 8XX fields (element in BuiltInErrors stanza: Series​Duplication)

-50
Bibliographic terminal punctuation not correct (element in BuiltInErrors stanza: Bibliographic​Terminal​Punctuation)

-51
Standard number in a bibliographic record matches a number in another record (element in BuiltInErrors stanza: Bib​Duplicate​Detection)

-52
Error in assignment of diacritics (element in BuiltInErrors stanza: Diacritic​Error)

-53
Inconsistency in use of subfield $6 (element in BuiltInErrors stanza: Subfield6​Error))

-54
Problem with linking fields (element in BuiltInErrors stanza: Linking​Field​Links)

-55
Subfield code is blank (element in BuiltInErrors stanza: Blank​Subfield​Code)

-56
Incorrect first subfield (element in BuiltInErrors stanza: Leading​Subfield)

-57
Problem with internal punctuation in authority record (element in BuiltInErrors stanza: Authority​Punctuation)

Data type

All of these properties are integers except ErrorMessageTag and ErrorMessageText, which are character strings.

Default value

When the container program sets the ErrorMessage property to an appropriate value after the invocation of the ValidateMarcRecord method, these properties have their associated values; these properties do not otherwise have any meaning.

Example

The following code sample illustrates the use of some of these properties.

With object

.MarcRecordIn = sMarcRecord$

.ValidateMarcRecord

If .ErrorMessageCount > 0 Then

For iCtr% = 0 to .ErrorMessageCount -1

.ErrorMessage = iCtr% ‘retrieve next error group

If .ErrorMessageSeverityLevel1 > 5 Then

iRc% = MsgBox (.ErrorMessageText, 0, “Error in ” + _

.ErrorMessageTag + “ field”)

End If

Next

End If

End With

Associated error conditions

Invalid value (…) for ErrorMessage property (max of …). (Numeric value: 380.) Raised when the container program sets the ErrorMessage property to a negative number, or to a value greater than that of the ErrorMessageCount property minus one.

See also

MinimumSeverityLevel1 property, MinimumSeverityLevel2 property

ForceUndefinedFixedFieldsToBlank property

Instructs ValidIt to set the value of undefined areas in the Leader and the 006 and 008 fields to blanks.

Syntax

object.ForceUndefinedFixedFieldsToBlank [=True|False]

Remarks

As it reads your local library system’s tag tables, ValidIt keeps track of the positions in the Leader, 006 and 008 fields for which values are defined. (ValidIt also knows about certain parts of these fields that may not be defined in your library system’s tag tables, but are nonetheless defined in the MARC format documents.) If the value of this property is True, ValidIt changes the value of any undefined portions of the Leader, 006 and 008 fields to blank (if they are not already blank). If the value of this property is False, ValidIt does not inspect or modify undefined parts of the fixed fields.

The value of this property has no effect if the TestFixedFields property has the value False, i.e. if you have indicated that ValidIt should not examine any of the fixed fields.

ValidIt does not set the value of Leader/09 (character set encoding) to blank even if that position is not defined in your library system’s tag tables.

The value of this property has no implication for 007 fields; in no case does ValidIt change any undefined part of an 007 field to blank.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.ForceUndefinedFixedFieldsToBlank = False

Associated error conditions

None

See also

TestFixedFields property

Hold​Characters​Not​Wanted property

See the AuthCharactersNotWanted property.

HoldUrlSubfields property

See the AuthUrlSubfields property.

IgnoreEmpty005Field property

Instructs ValidIt, when testing the 005 field, to ignore a field if it consists entirely of zeroes.

Syntax

object.IgnoreEmpty005Field [=True|False]

Remarks

When ValidIt tests the 005 field in a MARC record, it expects the year, month and day portions to have suitable values. (For example, the month portion must contain a value from 1 through 12.) In certain circumstances, records may exist in a local system bearing a “default” 005 field consisting only of zeroes. (Such a field might indicate, for example, that a record has not been modified since the migration to the present library system from some other system.) ValidIt would normally (and correctly) consider such 005 fields to be in error, and would report them as such. If your records contain empty 005 fields—005 fields consisting solely of zeroes—you may wish to set the value of the IgnoreEmpty005Field property to True, so that you do not receive error messages you don’t need. Unless you know that your records contain such empty fields, you should leave this property at its default value of False, so that any empty 005 fields are reported as problems.

If this property has the value True and the 005 field consists solely of zeroes, ValidIt will report an error if the field is not otherwise correctly formatted.

The value of this property has no effect if the Test005Field property has the value False, i.e., if the container program has indicated that ValidIt should not test the 005 field.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

False (i.e., consider an 005 field consisting only of zeroes to be in error)

Example

object.IgnoreEmpty005Field = True

Associated error conditions

None

See also

Test005Field property

IgnoreNoncriticalNonfilingProblems property

Instructs ValidIt, when testing initial articles in variable fields, to ignore differences between the supplied value for the nonfiling indicator and the calculated value when a change to the indicator would result in no change to the indexing of the field.

Syntax

object.IgnoreNoncriticalNonfilingProblems [=True|False]

Remarks

In most cases, a mis-setting of the nonfiling characters indicator in a variable field causes the field to be improperly indexed.

245 10 $a The continental method of scene painting …

Unless corrected, this field will index as:

THE CONTINENTAL METHOD OF SCENE PAINTING

245 14 $a Words and works …

Unless corrected, this field will index as:

S AND WORKS

In a few cases, a slight mis-setting of the nonfiling characters indicator will still allow the field to be indexed correctly.

245 12 $a Le monde de la politique …

Even though the nonfiling indicator is technically incorrect, this field will index correctly as:

MONDE DE LA POLITIQUE

245 11 $a “Ja es sind die bunten Mohne ... ” …

Even though the nonfiling indicator is technically incorrect, this field will index correctly as:

JA ES SIND DIE BUNTEN MOHNE

Under certain circumstances, the container program may wish not to be informed of problems with nonfiling indicators when a change to the indicator will not result in a change to the indexing of the field. For example, if the container program is loading a file of bibliographic records from a vendor, the IgnoreNoncriticalNonfilingProblems property may be set to True, so that the people handling cleanup after records are loaded can concentrate on changes that make a difference to the user. On the other hand, if the container program is validating single records under direct operator control, this property should probably be set to False, so that every potential problem with nonfiling characters is resolved.

When ValidIt discovers a discrepancy between the stated number of nonfiling characters and its own calculated number of nonfiling characters, ValidIt does not report the discrepancy if all of the following conditions are met:

· the Ignore​Noncritical​Nonfiling​Problems property has the value True

· the difference between the stated number of nonfiling characters and the calculated number of nonfiling characters is 1 (one)

· the terminal character in the stated nonfiling zone is not a diacritical mark

· the character in question normalizes to a space or to nothing

The value of this property has no effect if the TestInitialArticles property has the value False, i.e., if the container program has indicated that ValidIt should not test initial articles.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.IgnoreNoncriticalNonfilingProblems = False

Associated error conditions

None

See also

TestInitialArticles property

IncludeDateOfCreationInObsoleteMessages property

Tells ValidIt whether or not it should include the date (year) in which the record supplied as the MarcRecordIn property was created, when it reports a piece of content designation as obsolete.

Syntax

object.IncludeDateOfCreationInObsoleteMessages [=True|False]

Remarks

When ValidIt discovers that a piece of content designation in the record supplied as the MarcRecordIn property is currently regarded as obsolete, it prepares an error message. If the date at which the content designation became obsolete is available, ValidIt includes this date in the message; if the value of the IncludeDateOfCreationInObsoleteMessages property is True, ValidIt also includes the date the MARC record was created.

For example, if the value of this property is True, and if the date on which a tag became obsolete is available, the report of an obsolete tag would take this form (with varying tag and years supplied, of course):

Field 211 obsolete for records created after 1993 (this record created 1995)

The value of this property has no effect if the ReportObsolete property has the value False, i.e. if the container program has told ValidIt not to prepare error messages for obsolete content designation.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.IncludeDateOfCreationInObsoleteMessages = False

Associated error conditions

None

See also

AdjustmentForObsoleteData property, ReportObsolete property

InsertCodesInto041 property

Tells ValidIt whether or not it should insert subfield codes into an 041 field formatted according to an earlier standard.

Syntax

object.InsertCodesInto041 [=True|False]

Remarks

As originally defined, the subfields in the 041 field were not repeatable. If more than one code were applicable to a subfield, all codes were given in a single subfield. In about 2004, this practice was changed: subfields $a through $h in the 041 became repeatable, and each subfield was expected to contain only a single three-character language code.

If the InsertCodesInto041 property is True, ValidIt will, insert additional subfield codes into an 041 field with multiple language codes in sungle subfield.

If this property is True, ValidIt will change this 041 field:
$a dutfreger $b engrus $h lat

to this:

$a dut $a fre $a ger $b eng $b rus $h lat
The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

False
Example

object.InsertCodesInto041 = True
Associated error conditions

None

InternetTransferControl, Internet​Transfer​Control​Active properties

The InternetTransferControl is an instance of the Microsoft Internet transfer control for ValidIt to use when checking URLs. The InternetTransferControlActive property tells ValidIt that it should temporarily stop using the Internet transfer control to check URLs.

Syntax

object.InternetTransferControl [=instance of the Microsoft Internet transfer control]

object.InternetTransferControlActive [=False]

Remarks

A container program may wish ValidIt to check the URLs in bibliographic, holdings and/or authority records for validity.
 To request this work, the container program creates an instance of the Microsoft Internet transfer control, and passes that instance to ValidIt as the Internet​Transfer​Control property.
 When the container program does this, ValidIt automatically sets the Internet​Transfer​ControlActive property to True; ValidIt is ready to test URLs.

If the container program has supplied an Internet transfer control, each time ValidIt encounters one of the subfields defined as containing a URL, ValidIt will use the Internet transfer control to determine whether or not the URL represents an active page.
 If it appears that the URL does not represent an active page, ValidIt prepares an error message.

If at any time after supplying the InternetTransferControl property the container program wishes ValidIt to discontinue checking URLs, it should set the InternetTransferControlActive property to False. If the container program later wishes ValidIt to resume checking URLs, it must again supply the InternetTransferControl property.

Data type

InternetTransferControl property: instance of the Microsoft Internet transfer control
InternetTransferControlActive property: Boolean (set to True only by ValidIt; a container program may only set this property to False)

Default value

InternetTransferControl property: Nothing

InternetTransferControlActive property: False

Example

object.InternetTransferControl = MyForm!Inet1

Associated error conditions

None

See also

AuthUrlSubfields property, BibUrlSubfields property, HoldUrlSubfields property

IsFieldRepeatable function

The IsFieldRepeatable function allows container programs to find out whether or not a particular field can be repeated in a record, without having to read a library system’s tag tables to collect the information. Read-only at run time.

Syntax

object.IsFieldRepeatable (record type, field tag)
Remarks

A container program may need to know whether a particular variable field may be repeated in a record of a particular type. ValidIt’s IsFieldRepeatable function allows the container program to make this determination, without requiring that the container program read, or understand, a library system’s tag tables.

To invoke this function, the container program supplies a code for the record type and the field’s tag; ValidIt replies with a Boolean that indicates whether or not the field may be repeated.

Use these values for record type:

A authority
B text material; also works for all bibliographic formats

D electronic resource

F visual materals

H holdings
M music

P map

S continuing resource

U archival materials

Return value type

Boolean (Integer)

Example

object.IsFieldRepeatable (“B”, “246”)

Associated error conditions

None. If the container program supplies an unrecognized code for the record type or an undefined tag, ValidIt returns False.

MakeNoChange property

An indication of whether or not ValidIt should perform any of the work described by force rules in a configuration file, or otherwise make changes to a record.

Syntax

object.MakeNoChange
Remarks

ValidIt may make changes to the record supplied as the MarcRecordIn property when ValidIt executes rules defined in the ForceRules stanza of a configuration file, when ValidIt applies information in the FieldOrder (or ExtendedFieldOrder) and SubfieldOrder stanzas of a configuration file, and when the CharacterSetIn and CharcaterSetOut properties have different values. (For more information, see the description of the MarcRecordOut property.) All this work takes place only if the MakeNoChange property has the value False; if this property has the value True, ValidIt makes no change to the record.

Specifically, ValidIt performs certain tasks when MakeNoChange has the value True:

· ValidIt performs those force rules which have error-reporting information included in them, but as test rules

· ValidIt produces an error message if fields or subfields
 are out of order

· ValidIt performs tests defined in the TestRules stanzas, and all of its built-in tests that are not otherwise blocked with a property setting

ValidIt does not perform certain tasks when MakeNoChange has the value True:

· ValidIt skips those force rules that do not contain error-reporting information

· ValidIt does not translate characters from one character set to another

· ValidIt does not convert the record from one PCC model to another

· ValidIt does not change the order of fields, or of subfields within fields

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

False (which means that it is OK for ValidIt to change the record)

Example

object.MakeNoChange = True

Associated error conditions

None

MarcRecordFormat property

A one-letter code identifying the “format” of the record supplied as the MarcRecordIn property. Read-only at run time.

Syntax

object.MarcRecordFormat

Remarks

When the container program supplies a record as the MarcRecordIn property, ValidIt examines the codes in Leader/06 and Leader/07 (the type of record and bibliographic level codes). ValidIt derives from these two bytes a single-character “format” code. ValidIt uses this code for several purposes; for example, it uses the code to determine whether or not it can apply a validation rule to a record.

Here are the one-letter codes ValidIt assigns to each “format,” and the Leader/06 (and, occasionally, Leader/07) values that correspond to each.

	Format code:
	Used for:

	A
	Authority record (Leader/06=z)

	B
	Book (Leader/06=a and Leader/07=a,c,d or m; or Leader/06=t)

	D
	Computer file (Leader/06=m)

	F
	Visual materials (Leader/06=g,k,o or r)

	H
	Holdings record (Leader/06=x or y)

	M
	Music (sound recordings and scores) (Leader /06=c,d,i or j)

	P
	Maps (Leader/06=e or f)

	S
	Serials (Leader/06=a and Leader/07=b or s)

	U
	Mixed materials (archival materials) (Leader/06=b
 or p)

Data type

Character string

Default value

None

Example

object.MarcRecordFormat
Associated error conditions

None

MarcRecordIn property

A record in MARC format the container program wishes ValidIt to evaluate.

Syntax

object.MarcRecordIn [= MARC record]

Remarks

This is the MARC record to be inspected by ValidIt. To validate a record, the container program supplies a MARC record as this property, then invokes the ValidateMarcRecord method. Immediately after the container program supplies the MarcRecordIn property, ValidIt makes available the MarcRecordFormat and MarcRecordNumber properties.

Data type

Character string (constructed according to the appropriate MARC format)

Default value

None

Example

object.MarcRecordIn = sMarcRecord$

Associated error conditions

When the container program sets this property to any value other than the null string, ValidIt performs a series of low-level MARC format tests. If the supplied record fails any of these tests, the record cannot possibly be considered a MARC record; ValidIt raises an error indicating the specific problem it has encountered. The container program may handle these severe problems in any way it chooses; but it may not use ValidIt to work with the record.

In contrast to ValidIt’s behavior when the container program sets other properties to inappropriate values, ValidIt responds to an unrecognizable value for this property with an individual error number, and an error message that specifically describes the problem.

Invalid value for MarcRecordIn property: directory contains characters other than numerals. (Numeric value: vbObjectError + 22.) The record Directory may only contain numerals.

Invalid value for MarcRecordIn property: directory not a multiple of 12 in length. (Numeric value: vbObjectError + 7.) The record Directory should consist of one or more repeated units, each of which must be 12 characters long.

Invalid value for MarcRecordIn property: does not end with MARC end-of-record character. (Numeric value: vbObjectError + 8.) The last character in the supplied record is not the MARC end-of-record character (hex ‘1D’).

Invalid value for MarcRecordIn property: does not have a recognizable directory. (Numeric value: vbObjectError + 9.) ValidIt cannot find the end-of-field character that should be present at the end of the record’s Directory.

Invalid value for MarcRecordIn property: field … contains delimiter. (Numeric value: vbObjectError + 10.) This message is only generated for fields in the 001-009 range. The indicated fixed field contains the MARC subfield delimiter character (hex ‘1F’); fields 001-009 do not have subfields, and so may not contain this character.

Invalid value for MarcRecordIn property: field … does not contain delimiter at correct location. (Numeric value: vbObjectError + 11.) This message can only be generated for fields in the 010-999 range. The indicated field either does not contain a subfield delimiter at all, or its first subfield delimiter does not occur at the proper location (between the two indicators and the first piece of text).

Invalid value for MarcRecordIn property: field … does not end with end-of-field marker. (Numeric value: vbObjectError + 12.) The indicated field ends with some character other than the MARC end-of-field character (hex ‘1E’).

Invalid value for MarcRecordIn property: leader does not have proper ‘base address of data’ (12-16). (Numeric value: vbObjectError + 13.) Bytes 12 through 16 of the Leader (the 13th through the 17th characters) are not all numerals.

Invalid value for MarcRecordIn property: leader does not have proper indicator and subfield code counts (10-11). (Numeric value: vbObjectError + 14.) Bytes 10 and 11 in the Leader (the 11th and 12th characters) contain some value other than “22”.

Invalid value for MarcRecordIn property: leader does not have proper length information (20-21). (Numeric value: vbObjectError + 15.) Bytes 20 and 21 in the Leader (the 21st and 22nd characters) contain some value other than “45”.

Invalid value for MarcRecordIn property: leader does not have proper record length. (Numeric value: vbObjectError + 16.) The first five characters in the supplied record are not all numerals.

Invalid value for MarcRecordIn property: leader’s base address of data incorrect. (Numeric value: vbObjectError + 21.) The numerals in Leader/12-16 do not correspond to the proper value. (The proper value for the base address of data is indicated by the location of the first end-of-field character in the record.)

Invalid value for MarcRecordIn property: record’s stated length (…) does not match actual length (…) (Numeric value: vbObjectError + 20.) The record length specified in the first 5 bytes of the Leader is different from the length of the received record.

Invalid value for MarcRecordIn property: unrecognized record type (…) (Numeric value: vbObjectError + 19.) The record type code in Leader/06 does not identify the record as one of the record types ValidIt can handle. At present, ValidIt supports only authority, bibliographic and holdings records. See the description of the MarcRecordFormat property for a list of recognized record types.

See also

MarcRecordNumber property, MarcRecordOut property, ValidateMarcRecord method

MarcRecordModified property

An indication of whether or not ValidIt modified a record during the course of its work. Read-only at run time.

Syntax

object.MarcRecordModified
Remarks

ValidIt may make changes to the record supplied as the MarcRecordIn property for many different reasons (when, for example, ValidIt executes rules defined in the ForceRules stanza of a configuration file, or when ValidIt applies information in the FieldOrder (or ExtendedFieldOrder) and SubfieldOrder stanzas of a configuration file). ValidIt will only change a record if the value of the MakeNoChange property is False.

After invoking the ValidateRecord method, the container program should inspect the value of the MarcRecordModified property. If this property has the value True, the container program should use the record presented by ValidIt in the MarcRecordOut property as a new version of the record. If this property has the value False, the record in the MarcRecordOut property is identical with the record originally supplied as the MarcRecordIn property.

If the MarcRecordModified property has the value True, the container program may inspect the ChangeMessage… properties for a description of the changes made by ValidIt.

Data type

Boolean (True or False)

Default value

False

Example

With object

.MarcRecordIn = sMarcRecord$

.ValidateMarcRecord

If .MarcRecordModified = True Then

sMarcRecord$ =.MarcRecordOut

End If

End With

Associated error conditions

None

See also

ChangeMessage … properties

MarcRecordNumber property

The record identifier from the 001 field of the record supplied as the MarcRecordIn property. Read-only at run time.

Syntax

object.MarcRecordNumber
Remarks

When the container program supplies a MARC record as the MarcRecordIn property, ValidIt extracts the record number from the 001 field and immediately makes it available as the MarcRecordNumber property. The property is available until the container program supplies a different MARC record. If the MARC record does not contain an 001 field, this property is a null string.

Data type

Character string

Default value

Null

Example

sMarcRecordNumber$ = object.MarcRecordNumber
Associated error conditions

None

MarcRecordOut property

The finished record, in MARC format. Read-only at run time.

Syntax

object.MarcRecordOut
Remarks

If during the course of its work ValidIt has modified a record, the MarcRecordModified property has the value True and the MarcRecordOut property contains the MARC record as modified by all of the rules defined in the configuration files (and translated into a new character set as appropriate). If ValidIt has not modified the record, the MarcRecordModified property has the value False, and this property has the same value as the MarcRecordIn property.

Data type

Character string (constructed according to the appropriate MARC format)

Default value

None

Example

sMarcRecord$ = object.MarcRecordOut
Associated error conditions

None

See also

MarcRecordIn property, MarcRecordModified property, ValidateMarcRecord method

MinimumSeverityLevel1 property, Minimum​SeverityLevel2 property

The lowest values for the ChangeMessage​Severity​Code1, Change​Message​Severity​Code2, Error​Message​SeverityCode1 and Error​Message​Severity​Code2 properties that are of interest to the container program.

Syntax

object.MinimumSeverityLevel1 [= severity level]

Remarks

Each problem that ValidIt may detect in a record is associated with two severity level codes (integers), which indicate the degree to which an error impairs the functioning of a record. ValidIt includes these codes as part of its error reports.
 Similarly, each change that ValidIt may make to a record is associated with two codes that indicate the severity of the change; ValidIt includes these as part of its change reports.
 Lower values for codes represent less severe errors or changes, and higher values represent more severe errors or changes. The proper generation of error and change messages in various contexts is a matter of coordinating the values assigned to errors or changes in the configuration files with the values of the Minimum​Severity​Level1 and Minimum​Severity​Level2 properties.

These two properties allow you to specify the lowest level of severity of error or change to be reported, and thereby limit the errors and changes reported to those in which you are likely to be interested in a given context. ValidIt will not present an error or change message to the container program unless the first severity level associated with that error is greater than or equal to the Minimum​Severity​Level1 property, or the second severity level associated with that error is greater than or equal to the Minimum​Severity​Level2 property.

For example, if a container program is being written to batch-load files of records, the person constructing the program may choose to set these two severity-level properties to some value other than zero, so that ValidIt only reports errors that either must be corrected after the record has been loaded (such as problems with indicators for nonfiling characters), or that prevent the record from being loaded at all. Other messages, indicating less severe problems, would not be prepared by ValidIt.

In a similar vein, operators performing copy cataloging may need to know about undefined tags, indicators and subfield codes, or potentially mis-set indicators for nonfiling characters (all of which may prevent the proper functioning of a record), but may not need to know about less severe problems, such as obsolete content designation and sets of fixed-field codes that are not in alphabetical order. For such operations, these two codes will be set to some intermediate value. Persons performing original bibliographic records to be contributed to a national program will need to know everything about their records; for them, these two properties will probably be set to zero.

The values of these properties are preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Non-negative integer

Default value

0 (zero)

Example

object.MinimumSeverityLevel2 = 5

Associated error conditions

Invalid value (…) for … property (may not be a negative number). (Numeric value: 380.) Raised when the container program sets either of these properties to a negative number.

See also

ChangeMessageSeverityCode1 property, ChangeMessageSeverityCode2 property, Error​Message​SeverityCode1 property, ErrorMessageSeverityCode2 property, ReportObsolete property

NucCode property

A code (either drawn from USMARC code list for organizations or some other source) that identifies the institution using ValidIt to inspect records.

Syntax

object.NucCode [= identifying code]

Remarks

ValidIt uses the character string supplied as this property when a validation rule defined as an “exception” contains the label “%%NUC”; ValidIt substitutes the value of the NucCode property for the label before handing the rule to the routine that handles exceptional tests. (The rules for handling exceptional conditions are described in Appendix A.)

The value of this property has no effect unless a rule defined in one of ValidIt’s configuration files contains the label “%%NUC.”

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Character string

Default value

Null
Example

object.NucCode = “IEN”

Associated error conditions

Invalid value (%%NUC) for NucCode property. (Numeric value: 380.) This property cannot be set to the value “%%NUC”, or to any value containing the string “%%NUC”.

PccModelIn property, PccModelOut property

These properties serve only to preserve compatibility with existing programs. These properties now always take on the value “P”. ValidIt no longer translates one PCC coding model into another.

ReadSettings method, WriteSettings method

The ReadSettings method causes ValidIt to restore user settings from its initialization file. The WriteSettings method causes ValidIt to save user settings to its initialization file. Used together, these methods allow a container program to preserve user settings from one session to the next, obviating the need for the program to transmit all user settings each time ValidIt is used.

Syntax

object.ReadSettings

object.WriteSettings

Remarks

ValidIt implements the ReadSettings and WriteSettings methods to make it possible for the container program to preserve user options from one session to the next. If the container sets the SettingsAreAutomatic property to True and then invokes the WriteSettings method, ValidIt will automatically restore user settings when the container program next starts up, without an explicit invocation of the ReadSettings method on the part of the container program. The settings restored with the ReadSettings method are those in effect when the container program last invoked the WriteSettings method.
ValidIt writes its settings to a file called “ValidIt.INI,” stored in the default Windows directory for .INI files. Each value stored in this file corresponds directly to one of ValidIt’s properties.

Here is a typical example of this file. (This example does not show all of the properties ValidIt preserves.) The properties that have the default value of True or False, and the properties that are integers, are stored in groups.

[Paths]

ConfigurationFile=e:\validit\

TagTable=z:\ntapps\voynucat\catalog\tagtable\local\

[Codes]

TagTableFormat=V

[General]

BooleansDefaultTrue=TTTTTTTTTTTTTTTTTTTTTTTTTTTTT

BooleansDefaultFalse=TFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Integers=1 5 0

Version=3.1

Properties to consider before invoking either of these methods

None

Associated error conditions

None. If the file ValidIt.INI doesn’t exist when it performs the ReadSettings method, ValidIt simply doesn’t restore any settings.

See also

SettingsAreAutomatic property

ReadTagTables method

Causes ValidIt to read the tag tables and associated configuration files it will use in its work.

Syntax

object.ReadTagTables
Remarks

Before it can perform any record validation, ValidIt must have access either to a “compressed” tag table it has prepared earlier, or to a set of tag tables used by the clients of the local library system. In the normal course of operations, ValidIt will automatically read the tag tables (by internally invoking this method) the first time the container program invokes the ValidateMarcRecord method; in the normal course of operations, then, the container does not need to invoke this method. The container program may nonetheless invoke this method at any time to request that ValidIt refresh its internal tag table either from the system tag table or from ValidIt’s own compressed tag table.

When ValidIt executes this method (either on its own initiative, or when prompted by a container program), ValidIt first looks for its compressed tag table in the directory identified by the Compressed​TagTablePath property.

· If ValidIt finds the compressed tag table there, ValidIt reads the compressed tag table.

· If ValidIt doesn’t find the compressed tag table, it reads the system tag tables in the location identified by the TagTablePath property, and prepares a new copy of its compressed tag table.

ValidIt writes this new compressed tag table into the directory identified by the Compressed​Tag​Table​Path property.

Therefore, to force ValidIt to generate a new “compressed” tag table while a container program that uses ValidIt is running,
 delete the existing version of the compressed tag table, set the CompressedTagTablePath and TagTablePath properties to appropriate values, and then invoke the ReadTagTables method.
 ValidIt needs a considerable amount of time (probably more than a minute) to prepare a new version of the compressed tag table.

Properties to consider before invoking this method

CompressedTagTablePath property, ConfigurationFilePath property, TagTableFormat property, TagTablePath property

Associated error conditions

Could not open your compressed tag table file … (Numeric value: vbObjectError + 1.) For some reason, Windows will not allow ValidIt to open the file into which ValidIt will save a new version of its compressed tag table.

No CompressedTagTablePath property. (Numeric value: vbObjectError + 17.) The CompressedTagTablePath property is empty.

No TagTableFormat property. (Numeric value: vbObjectError + 2.) The TagTableFormat property is empty.

No TagTablePath property. (Numeric value: vbObjectError + 3.) The TagTablePath property does not contain a recognized value.

TagTablePath doesn’t point to recognized files. (Numeric value: vbObjectError + 4.) The location indicated by the TagTablePath property doesn’t appear to contain a recognizable set of system tag table files.

If the TagTableFormat property contains the value “V”, ValidIt expects to find these files in the folder named by the TagTablePath property:

amarcfix.cfg

amarc0xx.cfg

bmarcfix.cfg

bmarc0xx.cfg

hmarcfix.cfg

hmarc0xx.cfg

In addition, ValidIt expects to find these files in the folder immediately above the folder named by the TagTablePath property in the directory hierarchy:

country.cfg

master.cfg

lang.cfg

See also

CompressedTagTablePath property, TagTableFormat property, TagTablePath property

RemoveDuplicateSeries, Test​Series​Duplication property

The TestSeriesDuplication property tells ValidIt to inspect a record for matching 490 and 830 fields. The RemoveDuplicateSeries property tells ValidIt to consolidate duplicate 490/830 fields when found.
Syntax

object.RemoveDuplicateSeries [=True|False]

object.TestSeriesDuplication [=True|False]

Remarks

In at least one instance, a well-known library system does not properly index 440 fields together with other “uniform title” fields, but rather with other “title” fields such as the 246; users of this library system have formed the habit of placing title series for which access is desired in 490 fields in all cases, with exactly the same text in an 830 field. Users of other library systems may consider, such duplication between 490 and 830 fields a frank error.
If the TestSeriesDuplication property is True, ValidIt compares each 490 field in the bibliographic record against each 830 field. If ValidIt finds an 830 field that matches a 490 field exactly (with proper allowance for expected variation such as initial articles), and if the RemoveDuplicateSeries property is True, ValidIt removes the 830 field and converts the 490 field into a 440 field; if the RemoveDuplicateSeries property is False, ValidIt presents the operator with an error message.
The values of these properties are preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

False

Example

object. RemoveDuplicateSeries = True

object. TestSeriesDuplication = True

Associated error conditions

None

Replace005IfRecordModified property

If ValidIt has made any change to the record supplied as the MarcRecordIn property, this property causes ValidIt to replace any 005 field in the record with a field representing the current date and time; or to add such an 005 field to the record if none is present.

Syntax

object.Replace005IfRecordModified [=True|False]

Remarks

The 005 field in a record represents the date and time the record was last modified by a responsible agency. Some local library systems use this field for internal purposes and modify this field automatically, and others ignore the field altogether. If the value of this property is True, and if ValidIt has made some change to the record, ValidIt will add to the record supplied as the MarcRecordOut property an 005 field representing the time at which it handled the record, deleting in the process any 005 field that may already be present in the record.

ValidIt only makes changes to a record when so instructed in the ForceRules stanza of the appropriate configuration file, or as directed by a container program through property settings.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

False

Example

object. Replace005IfRecordModified = True

Associated error conditions

None

ReportAllObsolete, ReportObsolete properties
The ReportObsolete property tells ValidIt whether or not it should prepare error messages describing obsolete elements of MARC content designation. The ReportAllObsolete propert tells ValidIt that it should report obsolete content designation, even if it falls within the exception permitted by the value of the AdjustmentForObsoleteData property.
Syntax

object.ReportAllObsolete [=True|False]

object.ReportObsolete [=True|False]

Remarks

If ValidIt determines (by inspecing information in its configuration files) that a piece of content designation in the record supplied as the MarcRecordIn property is valid but obsolete, and if the ReportObsolete property has the value True, ValidIt generall prepares an error message describing the obsolete content designation.
 If the ReportObsolete property has the value False, ValidIt does not prepare such error reports.

If ValidIt deems generation of an error message regarding obsolete content designation likely, it considers also the value of the ReportAllObsolete and AdjustmentForObsoleteData properties. If the ReportAllObsolete property is True, ValidIt prepares an error message in all cases; if the ReportAllObsolete property is False, ValidIt prepares an error message only if the difference between the record’s date of creation and the date on which the item of content designation became obsolete is greater than the range allowed by the AdjustmentForObsoleteData property.

The values of these properties are preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

ReportAllObsolete: True

ReportObsolete: False
Example

object.ReportObsolete = False

object.ReportAllObsolete = True
Associated error conditions

None

See also

AdjustmentForObsoleteData property, ErrorMessage and associated properties, IncludeDateOf​CreationInObsoleteMessages property

ReportObsolete property

See the ReportObsolete property.
SettingsAreAutomatic property

Specifies whether ValidIt should restore user settings when the container program starts up.

Syntax

object.SettingsAreAutomatic [= True | False]

Remarks

ValidIt implements the ReadSettings and WriteSettings methods to make it possible for the container program to preserve user options from one session to the next. If the container program sets the SettingsAreAutomatic property to True and then invokes the WriteSettings method, ValidIt will automatically restore user settings each time the container program starts up.

The value of this property does not affect the saving of ValidIt’s properties. If the container program changes any of ValidIt’s properties and wishes to preserve those changed properties, the container program must specifically invoke the WriteSettings method.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.SettingsAreAutomatic = True

Associated error conditions

None

See also

ReadSettings method, WriteSettings method

SortingIndicatorFor653Field property

Instructs ValidIt how to arrange 653 fields in a bibliographic record.
Syntax

object.SortingIndicatorFor653Field [=indicator value]

Remarks

ValidIt can arrange the fields in a record into some order determined by information in configuration files. One of the sorting methods available applies to 6XX fields: ValidIt can arrange these fields by the value of the second indicator; this method has the virtue of placing all LCSH headings in a group, all MeSH headings in a separate group, and so on.
There is a difficulty in sorting the 653 field, as its second indicator value is ‘blank.’ If the 653 field were treated by the same scheme used for the 600-655 fields, the 653 field (when present at all) would always be the first 6XX field in a bibliographic record. It is not likely that this is the desired sorting order.
The SortingIndicatorFor653Field property allows the container program to specify where among the 6XX fields the 653 field should be placed. By default, this property has the value “9”, which means that the 653 field will always be the last of the fields in the 600-655 block. Container programs can change this property as desired to include the 653 field with headings from a particular subject system.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Character string (must be a numeral)

Default value

“9”

Example

object.SortingIndicatorFor653Field = “0”

The 653 field will be among the record’s LCSH headings.
Associated error conditions

None

StandardNumbersToTestForDuplication property

A list of tag/subfield combinations to instruct ValidIt how to search for potential duplicate records.
Syntax

object.StandardNumbersToTestForDuplication [=list of tags and subfield codes]

Remarks

As part of its work, ValidIt can inspect the contents of many standard number fields, and report on any that do not meet specified tests. (For example, ValidIt can inspect a 10- or 13-digit ISBN and report those with improper check digits.) This work occurs in isolation, in the context of a single record.
An institution may wish to know whether a bibliographic record exists in the local database that shares one or more standard numbers with the record being examined. In this case, the container program should supply in the StandardNumbersToTestForDuplication property a list of paired tags and subfield codes to tell ValidIt how to do its work; the container program should also supply the Database​Handle, Environment​Handle and Table​Name​Prefix properties. If
Testing standard numbers for duplication means that ValidIt must know quite a lot about the structure of a particular library system. At present, ValidIt only knows how to search Vger systems for duplication; but it can be taught about other systems as the need arises.

ValidIt makes certain adjustments to the fields it tests.
· 019 fields: ValidIt treats each subfield as an OCLC control number (see separate description), even though it does not contain the “(OCoLC)” identifier

· 020 fields: ValidIt tests $a both as a 10-digit ISBN (in field 020), and also as a 13-digit ISBN (in field 024)

· 024 fields: If the field begins “978, ValidIt tests $a both as a 10-digit ISBN (in field 020) and also as a 13-digit ISBN (in field 024)

· 035 fields: If the identifier is (“OCoLC)” the number is an OCLC control number: ValidIt removes the identifier, any alphabetic prefix, and any leading zeroes. ValidIt tests OCLC numbers up to 4 times: as the basic number, as the basic number with leading zeroes, as the basic number with the prefix ‘ocm’ and as the basic number with leading zeroes and the prefix ‘ocm’. In each case, a potential matching 035 field must contain the identifier “(OCoLC)”.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Character string (MARC tags separated by spaces or commas)

Default value

Null

Example

object.StandardNumbersToTestForDuplication = “010/a 019/a 020/a 035/a”

ValidIt will test each 010 $a, 020 $a and 035$a in the current record against records in the local database.
Associated error conditions

None

See also

DatabaseHandle property, EnvironmentHandle property, TableNamePrefix property

SubjectIndicatorsOfInterest property

A string that identifies the types of bibliographic subject headings that should be considered when the TestSubjectsAgainst043 property has the value True.

Syntax

object.SubjectIndicatorsOfInterest [= string]

Remarks

As part of its work, ValidIt can compare geographic information in bibliographic subject headings against codes in the 043 field. Headings from many different subject heading systems may appear in a bibliographic record; this property identifies the subject heading systems you wish to use in the comparison of subject headings and 043 codes.

The value of this property is immaterial if value of the TestSubjectsAgainst043 property is False, i.e., if you have indicated that ValidIt should not compare subject headings and 043 codes at all.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Character string. Represent the subject heading systems in which you are interested by the values defined for the second indicator in bibliographic 600-651 fields. (Use ‘0’ for LCSH, ‘2’ for MeSH, etc.) If this code is “7”, follow it with the appropriate value from subfield $2. If you list more than one code, separate neighboring codes with two slashes.

Example

object.SubjectIndicatorsOfInterest = “0//2//7tlsh”

When testing geographic information in subject headings against 043 codes, ValidIt will consider LCSH headings (code ‘0’), MeSH headings (code ‘2’) and TLSH headings (code ‘7’ with “tlsh” in subfield $2).

Default value

Null

Associated error conditions

Improper value (…) for SubjectIndicatorsOfInterest property. (Numeric value: 380.) The supplied value includes a code other than 0-9; or code 7 is not accompanied by a subfield $2 code.

See also

TestSubjectsAgainst043 property

Supplementary​Auth​Config​File, Supplementary​Bib​Config​File, Supplementary​Hold​Config​File properties

These properties identify files that contain validation rules beyond those contained in the standard configuration files.

Syntax

object.SupplementaryAuthConfigFile [=full file name]

object.SupplementaryBibConfigFile [=full file name]

object.SupplementaryHoldConfigFile [=full file name]

Remarks

ValidIt uses validation rules in the files contained in the folder identified by the Configuration​File​Path property to modify and inspect the records supplied by the container program. You may wish from time to time that a container program employ additional validation rules to achieve some special purpose. For example, if a container program is processing records received from a vendor, you may wish ValidIt to modify the records using force rules appropriate to known characteristics of that vendor’s records—characteristics this vendor’s records do not share with records from other sources.

One way to achieve this special validation would be to create a complete set of configuration files for each special purpose, and then supply the name of the folder that contains the appropriate set of files (as the ConfigurationFilePath property) when ValidIt should use a special set of rules. Another way to achieve this special validation—a way that does not require a complete set of validation files for each purpose—is to construct one to three files of validation rules for each special purpose (one file for each for the kinds of records to be handled: authority, bibliographic and/or holdings). These supplementary validation files (which can have any name that’s appropriate) contain the ForceRules and TestRules stanzas (or perhaps only one of those stanzas) defined for the authvalid.cfg, bibvalid.cfg and holdvalid.cfg files, and are constructed exactly as described in Appendix A.

Immediately after ValidIt reads the standard configuration files, it reads any files identified by the Supplementary​Auth​Config​File, Supplementary​Bib​Config​File and Supplementary​Hold​Config​File properties, and adds to its internal list of rules pulled from the standard configuration files those rules pulled from the supplementary file(s).
 ValidIt will bring the entire set of rules—those from the standard configuration files and those from the supplementary file(s)—to bear on each record it inspects.

The values of these properties are preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Character strings.

Default value

Null

Example

object. Supplementary​Bib​Config​File = “d:\temp\PromptCat\pcatvalid.txt”

Associated error conditions

None

TableNamePrefix property

A prefix common to all tables in a Vger installation.

Syntax
object.TableNamePrefix [= string]

Remarks

A Vger installation may consist of more than one database: there is always at least a production database and a training database, and there may be yet other databases defined for local purposes. The tables within each database have the same names. To avoid confusion, each of the tables within a given Vger database is known to Oracle by a name that consists of an arbitrary label plus the name of the table itself. This label common to all of the tables in a Vger database is the table name prefix for that database. Most of the time, this prefix consists of a string of letters, ending ‘DB’. Examples are: “BIGDB”, “NWUDB” and “TRAINDB”.

If a container program wishes ValidIt to check the standard numbers in a bibliographic record for duplication, it set the TableNamePrefix property to the correct value. (The container program must also set the EnvironmentHandle and DatabaseHandle properties.) Only after ValidIt knows the table name prefix (i.e., only after it knows which Vger database to inspect) can it reliably query the tables maintained for Vger by Oracle.

ValidIt will supply a terminal full stop if it is lacking.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type
Character string

Default value
Null

Example
object.TableNamePrefix = “MYDB.”

Associated error conditions
None
TagTableFormat property

Identifies the format of the tag tables ValidIt will encounter when it executes the ReadTagTables method.

Syntax

object.TagTableFormat [= 1-character code]

Remarks

ValidIt digests a set of system tag tables (typically, those also used by clients of a local library system) into a compressed format for speedy access to MARC definitions.
 The TagTableFormat identifies for ValidIt the format in which it may expect to find those files.

The value of this property is only important when ValidIt executes the ReadTagTables method, and when there is no compressed tag table for ValidIt to read instead of the raw tag tables.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Character string. ValidIt only recognizes the following codes (which may be given in either upper-case or lower-case).
 If the supplied code contains more than one character, ValidIt only recognizes the first character.

V
Tag tables are in the format used by the Vger system

Default value

“V”
Example

object.TagTableFormat = ‘v’

Associated error conditions

Improper value for TagTableFormat property. (Numeric value: 380.) The supplied value is not one of the defined values.

See also

ReadTagTables method

TagTablePath property

Identifies the folder or directory in which ValidIt will find a set of system tag tables when it executes the ReadTagTables method.

Syntax

object.TagTablePath [= valid path name]

Remarks

ValidIt digests a set of system tag tables (typically, those also used by clients of a local library system) into its compressed format for speedy access to MARC definitions. The TagTablePath property identifies for ValidIt the folder in which it may expect to find those files.

ValidIt only uses this property when the container program executes the ReadTagTables method, or when the container program first executes the ValidateMarcRecord method and the folder named by the CompressedTagTablePath does not contain the compressed tag table.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Character string

Default value

Null. If the container program invokes the ReadSettings method, the default value is the value of the ConfigurationFilePath property (which is determined first).
Example

object.TagTablePath = sDefaultPathName$

Associated error conditions

None. If the indicated path does not contain the appropriate files, ValidIt will raise an error when it executes the ReadTagTables method.

See also

ReadTagTables method

Test005 property

Instructs ValidIt to inspect or ignore 005 fields.

Syntax

object.Test005 [=True|False]

Remarks

If the value of this property is True, ValidIt tests the format of each 005 field and reports any discrepancies it finds. If the value of this property is False, ValidIt does not test any part of the 005 field other than its tag.

Here are the tests ValidIt performs on the 005 field:

· the field must be 16 characters long

· characters 1-14 and 16 must be numerals; character 15 must be a decimal point (or full stop)

· characters 1-4 (year) must have a value greater than 1964

· characters 5-6 (month) must have a value from 1 to 12

· characters 7-8 (day) must have a value from 1 to the maximum number of days allowed for the month indicated in characters 5-6

· characters 9-10 (hour) must have a value from 0 to 23

· characters 11-12 (minute) and 13-14 (second) must have a value from 0 to 59

Examples of acceptable 005 fields:
19990324000000.0

20000407071503.5

Example of an unacceptable 005 field:
19940601

The value of this property has no effect if the TestFixedFields property has the value False, i.e. if you have indicated that ValidIt should not examine any of the fixed fields. If the Replace005If​Record​Modified and MarcRecordModified properties have the value True and the MakeNoChange property has the value False, ValidIt will not report any errors in the original 005 field, as the original 005 field will be discarded.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.Test005 = False

Associated error conditions

None

See also

IgnoreEmpty005Fields property, TestFixedFields property

Test006 property

Instructs ValidIt to inspect or ignore 006 fields. (ValidIt recognizes 006 fields only in bibliographic records.)

Syntax

object.Test006 [=True|False]

Remarks

If the value of this property is True, ValidIt tests each element in an 006 field against the appropriate MARC definition, and reports any discrepancies it finds. If the value of this property is False, ValidIt does not test any part of the 006 field other than its tag.

The value of this property has no effect if the TestFixedFields property has the value False, i.e. if you have indicated that ValidIt should not examine any of the fixed fields.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.Test006 = False

Associated error conditions

None

See also

TestFixedFields property

Test007 property

Instructs ValidIt to inspect or ignore 007 fields. (ValidIt recognizes 007 fields only in bibliographic and holdings records.)

Syntax

object.Test007 [=True|False]

Remarks

If the value of this property is True, ValidIt tests each element in an 007 field against the appropriate MARC definition, and reports any discrepancies it finds. If the value of this property is False, ValidIt does not test any part of the 007 field other than its tag.

The value of this property has no effect if the TestFixedFields property has the value False, i.e. if you have indicated that ValidIt should not examine any of the fixed fields.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.Test007 = False

Associated error conditions

None

See also

TestFixedFields property

Test008 property

Instructs ValidIt to inspect or ignore 008 fields. (008 fields appear in authority, bibliographic and holdings records.)

Syntax

object.Test008 [=True|False]

Remarks

If the value of this property is True, ValidIt tests each element in an 008 field against the appropriate MARC definition, and reports any discrepancies it finds. If the value of this property is False, ValidIt does not test any part of the 008 field other than its tag.

The value of this property has no effect if the TestFixedFields property has the value False, i.e. if you have indicated that ValidIt should not examine any of the fixed fields.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.Test008 = False

Associated error conditions

None

See also

TestFixedFields property

Test041RepeatabilityPattern property

Instructs ValidIt to determine whether or not any 041 fields in the record conform to accepted practice for repeatability.

Syntax

object.Test041RepeatabilityPattern [=True|False]

Remarks

If the value of this property is True, ValidIt makes a list of each 041 field in a bibliographic record. After collecting all of the 041 fields in a record, ValidIt submits them to additional tests. These tests are based on a change to the coding practice for language information. Before 2002, the 041 field was not repeatable; each subfield in the 041 field could contain multiple codes. In 2002 the 041 field was made repeatable, and no subfield was allowed to contain more than one code.

· If there is only one 041 field in the record and if the biblioraphic record was created on or after the date indicated by the 041RepeatabilitySwitch stanza in the configuration file bib.obs, no subfield in the 041 field may contain more than 3 characters (i.e., no 041 subfield may contain more than one language code). (If the record was created before the switch, a subfield in the 041 field may contain any number of codes, up to the maximum of 6.)

· If there are multiple 041 fields in the record, no subfield in any 041 field may contain more than 3 characters (i.e., no 041 subfield may contain more than one language code). The date on which a record was created plays no part in this test, as an earlier record may have been converted to employ the current pattern for 041 fields.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.Test041RepeatabilityPattern = False

Associated error conditions

None

TestAuthorityPunctuation property

The TestAuthorityPunctuation property tells ValidIt whether or not you wish it to inspect the internal punctuation in certain authority fields.

Syntax

object.TestAuthorityPunctuation [= True|False]

Remarks

The access fields in authority records (1XX, 4XX, 5XX) are expected to contain certain marks of punctuation between certain pairs of subfields, or before certain subfields. If the Test​Authority​Punctuation property is True, ValidIt will inspect authority access fields for proper internal punctuation. If ValidIt finds any discrepancies it will report a problem.

· X10 fields: subfield $b should be preceded by a full stop

· X11 fields: subfield $e should be preceded by a full stop

· X00 fields: subfield $d should not contain two hyphens; the text of subfield $q should be enclosed within parentheses; subfields $c and $d should be preceded by a comma

· All fields: subfields $t, $k and $l should be preceded by a full stop

Data type

Boolean (Integer)

Default value

True

Example

object.TestBibliographicPunctuation = True

Associated error conditions

None

TestAuthorityWAlsoAsCodedSubfield property

Instructs ValidIt to test control subfield $w in 4XX-5XX fields in an authority record both as a collection of individual elements and also as a unified set of values.

Syntax

object.TestAuthorityWAlsoAsCodedSubfield [=True|False]

Remarks

ValidIt tests each character position in control subfield $w of reference tracings in authority records; the stanza Authority4xxW in the file codes.cfg tells ValidIt which values are valid in each position. It is possible that a subfield will pass these tests, and yet contain an invalid combination of characters. If you wish to restrict control subfield $w in authority 4XX-5XX fields not only to valid codes, but also to certain combinations of codes, take these steps:

1. Set the TestAuthorityWAlsoAsCodedSubfield property to True

2. In the CodedSubfields stanza of the file codes.cfg, list authority control subfield $w among the subfields to be tested. (You will need to list subfield $w for each of the 4XX and 5XX fields.)

3. In the CodesForCodedSubfields stanza of the file codes.cfg, list each valid code, and link it to the authority tag and subfield in which it may appear.

If this property has the value True and the combined set of codes is not defined for that subfield in codes.cfg, ValidIt will prepare its standard message for any incorrect coded subfield (“Code (…) in subfield $w of … field not valid”). If any position in the subfield contains an undefined code, ValidIt will also prepare its standard message for an incorrect value in a control subfield.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

False

Example

object. TestAuthorityWAlsoAsCodedSubfield = True

Associated error conditions

None

TestBibliographicPunctuation property

See the AdjustBibliographicPunctuation property
TestCodedFields property

Instructs ValidIt to inspect or ignore subfields that contain codes drawn from a list of valid codes.

Syntax

object.TestCodedFields [=True|False]

Remarks

Some subfields of variable fields contain a code drawn from a list given somewhere in the MARC documentation.
 Sometimes this list of codes is given with the definition of the subfield; sometimes this list is given in a separate document. Examples of such subfields and the authoritative source for valid codes are:

· Subfield $4 (relator code) in bibliographic 100, 110, etc. fields

· Subfields $a, $b, $d, $e, $f and $g (various aspects of languages) in the bibliographic 041 field

· Subfield $a (type of date code) in the bibliographic 046 field

· Subfield $w (control subfield) in authority 4XX-5XX fields

· Subfield $7 (control subfield) in bibliographic 76X-78X fields

If you wish ValidIt to test the contents of such code-bearing subfields, give the value True for the TestCodedFields property. You must also identify the particular subfields ValidIt should check and the codes that they may contain by adjusting the contents of the configuration file “codes.cfg.” This file is described in Appendix A.

Some subfields may carry codes also defined for use elsewhere in a record. For example, subfield $b in the authority and bibliographic 040 field (language of cataloging) contains one of the language codes defined for use in 008/35-37 of bibliographic records. For these subfields, in the file “codes.cfg” you indicate that you wish to test such subfields, but you do not include in that file the codes those subfields may contain. The ValidIt DLL has an internal list of these subfields, and will validate their contents by consulting the appropriate set of codes. All of these subfields happen to be carried in fields in the 040-048 range; not all fields and subfields in this range, however, fall under this exception. The following table describes the manner in which ValidIt handles the fields in the 04X group. ValidIt only validates those subfields in this group that are defined in the file codes.cfg as needing validation.

· 040 field (authority and bibliographic records): ValidIt handles subfield $b (if the subfield is tested at all) by consulting the list of language codes defined for 008/35-37 in bibliographic records. ValidIt handles other 040 subfields in the same manner as normal coded subfields: if tested, each subfield $a,
 $c, $d, $e
 or $f must contain one of the codes defined for it in the file codes.cfg.

· 041 field (bibliographic records): Each subfield (if tested) must contain a multiple of 3 characters; each subfield may contain no more than 18 characters. Codes in subfield $b may not appear in subfield $a. Each language code in each tested subfield must be defined for use in 008/35-37 in bibliographic records.

· 042 field (bibliographic records):
 If tested, each subfield $a must contain one of the codes defined for it in the file codes.cfg.

· 043 field (bibliographic and authority records): If tested, each subfield $a must contain one of the codes defined in the file gacs.cfg.
 If tested, ValidIt handles other 043 subfields in the same manner as normal coded subfields: each subfield $b
 or $2 must contain one of the codes defined for it in the file codes.cfg.

· 044 field (bibliographic records): If tested, subfield $a must contain one of the country-of-publication codes defined for use in 008/15-17 in bibliographic records. Each subfield $b, $c or $2 (if tested) must contain one of the codes defined for it in the file codes.cfg.

· 045 field (bibliographic records): Use Exception 10 to test subfield $a, $b and/or $c (see Appendix A).
· 046 field (bibliographic records): Subfield $a, if tested, must contain one of the codes defined for it in the file codes.cfg. Use Exception 10 to test subfields $b and $c (see Appendix A).
· 047 field (bibliographic records): Each subfield $a, if tested, must contain one of the codes defined for 008/18-19 in “Music” records

· 048 field (bibliographic records): Each subfield $a or $b, if tested, must contain a 2-character or 4-character code. The first 2 characters must be one of the codes defined for this subfield in the file codes.cfg. The remaining 2 characters (if present) must be numerals.

ValidIt handles a few other subfields in a special manner:

· Subfield $w (control subfield) in authority 4XX-5XX fields. You define in the Authority4xxW stanza of the file codes.cfg the values that may appear in each byte of the subfield. ValidIt also performs certain validity checks on the contents of this subfield:

· Byte 0 can have the following values in 4XX fields: ‘d’, ‘i’, ‘n’; Byte 0 can have the following values in 5XX fields: ‘a’, ‘b’, ‘f’, ‘g’, ‘h’, ‘i’, ‘n’, ‘t’. If this Byte contains ‘i’, the field must also contain subfield $i.

· Byte 2 can have the following values in 4XX fields: ‘a’, ‘b’
 or ‘n’; if Byte 2 contains code ‘a’ or ‘b’, 008/10 cannot contain the same code. Byte 2 in 5XX fields can only contain code ‘n’.

· Byte 3 can have the following values in 4XX fields: ‘a’ and ‘n’. Byte 3 can have the following values in 5XX fields: ‘a’, ‘b’, ‘c’, ‘d’, ‘n’; if Byte 3 contains ‘d’, the record must contain a 665 field; if this byte contains ‘c’, then the record must contain a 663 field.

· Subfield $w (control subfield) in authority 7XX fields. You define in the Authority7xxW stanza of the file codes.cfg the values that may appear in Byte 0. ValidIt also performs certain validity checks on the contents of this subfield:

· If Byte 0 contains code ‘b’, the record must contain a 788 field. (ValidIt does not make the translation between code ‘a’ and n/fill described in the MARC documentation, as there is no way for ValidIt to determine where a record resides.)

· Subfield $7 (fixed-length data elements of reproduction) in bibliographic 533 fields.
 ValidIt validates these elements using the same rules it uses to validate the corresponding elements in an 008 field:

· Byte 00 (OCLC 539 subfield $a): 008/06 (all bibliographic formats)

· Bytes 01-04 (OCLC 539 subfield $b): 008/07-10 (all bibliographic formats)

· Bytes 05-08 (OCLC 539 subfield $c): 008/11-14 (all bibliographic formats)

· Bytes 09-11 (OCLC 539 subfield $d): 008/15-17 (all bibliographic formats)

· Byte 12 (OCLC 539 subfield $e): 008/18 (serials format)

· Byte 13 (OCLC 539 subfield $f): 008/19 (serials format)

· Byte 14 (OCLC 539 subfield $g): 008/23 (books format)

· Subfield $7 (control subfield) in bibliographic 76X-78X fields. You define in the Bibliographic7xx7 stanza of the file codes.cfg the values that may appear in the first two bytes (Byte 0 and Byte 1) of the subfield. (ValidIt tests Byte 2 against the codes defined for Leader/06; ValidIt tests Byte 3 against codes defined for Leader/07.) ValidIt also performs certain validity checks on the contents of this subfield:

· If Byte 0 contains code ‘p’, Byte 1 may contain ‘0’, ‘1’ or ‘3’

· If Byte 0 contains code ‘c’ or ‘m’, Byte 1 may contain ‘0’, ‘1’ or ‘2’

· If Byte 0 has any other value, Byte 1 (if present) must contain ‘n’

The value of this property has no effect if either the TestVariableFields or TestSubfields properties has the value False, i.e., if you have asked that ValidIt not inspect variable fields, or the subfields within them.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object. TestCodedFields = False

Associated error conditions

None

See also

TestAuthorityWAlsoAsCodedSubfield property, TestVariableFields property

TestFieldOrder property

Instructs ValidIt to test the order of fields in a record (using specifications found in a configuration file), and either to rearrange the fields or report any problems it finds.

Syntax

object.TestFieldOrder [=True|False]

Remarks

In most cases, you will want ValidIt to inspect the order of the variable fields in a record (following instructions in the FieldOrder or FieldOrderExtended stanza of a configuration file), and the TestFieldOrder property will have the value True. If the fields are not in proper order and the MakeNoChange property has the value False, ValidIt will rearrange the fields; if the MakeNo​Change property has the value True, ValidIt will prepare an error message. (The ErrorMessage​RuleNumber property for this message has the value –39.)

If for some reason you wish ValidIt not to test the order of fields and report problems, set the value of the TestFieldOrder property to False.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.TestFieldOrder = True

Associated error conditions

None

TestFixedFields property

Instructs ValidIt to inspect or ignore the Leader and the 006, 007 and 008 fields.

Syntax

object.TestFixedFields [=True|False]

Remarks

If the value of this property is True, ValidIt tests each element in the record Leader and any 006, 007 and 008 fields against the appropriate MARC definition, and reports any discrepancies it finds. If the value of this property is False, ValidIt does not test any part of the fixed fields (other than the tags of the 006, 007 and 008 fields).

The behavior of ValidIt when testing fixed fields is further controlled by the Test005, Test006, Test007, Test008 and TestLeader properties. If the value of one of these properties is False, ValidIt does not test individual elements in the corresponding field.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.TestFixedFields = False

Associated error conditions

None

See also

ForceUndefinedFixedFieldsToBlank property, Test005 property, Test006 property, Test007 property, Test008 property, TestLeader property

TestFor​UnmatchedBraces, Test​For​Unmatched​Brackets, Test​For​Unmatched Nonfiling, Test​For​Unmatched​Parentheses properties

Instructs ValidIt to scan a variable field for characters that normally occur in pairs.

Syntax

object.TestForUnmatchedBraces [=True|False]

object.TestForUnmatchedBrackets [=True|False]

object.TestForUnmatchedNonfiling [=True|False]

object.TestForUnmatchedParentheses [=True|False]

Remarks

A variable field may contain information enclosed by parentheses (a.k.a. ‘curves’: ‘(‘ and ‘)’), braces (a.k.a. ‘curly brackets’: ‘{‘ and ‘}’), brackets (a.k.a. ‘square brackets’: ‘[‘ and ‘]’). Under normal circumstances, these characters occur in pairs. A variable field may also contain nonfiling characters enclosed by special delimiter characters; these characters must always occur in pairs. This set of properties instructs ValidIt to scan a variable field for one or another set of pairs of characters, and to generate a report if it finds any unmatched characters.

ValidIt performs its scan for pairs charcaters by considering each variable field in isolation; characters in other fields do not influence its report. Under some circumstances, variable fields in a correctly-constructed record will contain unmatched parentheses. Operators need to be trained to ignore error reports generated from such records.

245 10 $a What happened here? $c [Edited by Mr. Smith.

260 $a Chicago, $b Smith] $c 1972.

Note that ValidIt will also consider a field to be in error if it finds a ‘closing’ charcter that does not correspond to the matching ‘opening’ character. Even though the following field contains matched left and right parentheses and brackets, it will generate an error report because the closing bracket is paired with an opening parenthesis.

245 10 $a Wht [i.e., (What] is going on) here?

The value of the TestForUnmatchedNonfiling property will have no real effect until the recently-defined charcaters that delimit a ‘nonfiling zone’ within variable fields
 are implemented. The date for this implementation has not yet been set.

The values of these properties have no effect if the TestVariableFields property has the value False, i.e. if you have indicated that you do not want ValidIt to test the variable fields at all.

The values of these properties are preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.TestForUnmatchedBraces = False
object.TestForUnmatchedBrackets = False
object.TestForUnmatchedNonfiling = False
object.TestForUnmatchedParentheses = False
Associated error conditions

None

See also

TestVariableFields property

TestIndicators property

Instructs ValidIt to inspect or ignore the indicators in variable fields.

Syntax

object.TestIndicators [=True|False]

Remarks

If the value of this property is True, ValidIt tests each of the indicators in a variable field (tag 010-999) against the appropriate MARC definition, and reports any discrepancies it finds. If the value of this property is False, ValidIt does not test the indicators.

The value of this property has no effect if the TestVariableFields property has the value False, i.e. if you have indicated that you do not want ValidIt to test the variable fields at all.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.TestIndicators = False

Associated error conditions

None

See also

TestVariableFields property

TestInitialArticles property

Tells ValidIt whether or not it should inspect title fields in bibliographic records
 for possible problems with initial articles.

Syntax

object. TestInitialArticles [= True|False]

Remarks

If the value of this property is True, ValidIt examines the first word or words appearing in bibliographic title fields (including the title portion of name/title headings)
 against initial articles used in the language identified in bytes 35-37 of the record’s 008 field, and any languages identified in subfields $a, $d, $e, $g and $h of the 041 field. If ValidIt finds any discrepancy between any initial articles it finds and the nonfiling characters indicator of the field in question (if any), ValidIt prepares an error message. If the value of this property is False, ValidIt does not test initial articles.

The logic that ValidIt uses to test initial articles is quite elaborate, and has been found in testing to be very slightly more accurate than catalogers at a well-known national library.
 But ValidIt’s logic is not perfect, and cannot ever be perfect; this is chiefly because a title is not necessarily presented in the language represented by a code in the 008 or 041 field for the language of the text. The identification of initial articles is also made uncertain because the status of certain words in some languages is not absolute: some words function as both articles and numerals. For these reasons, not all of the potential problems ValidIt identifies represent changes that should be made. The error messages ValidIt prepares should be taken only as an indication that something in the record may be incorrect. Although ValidIt reports a problem with nonfiling characters, the actual error in the record may be elsewhere; always check the record’s language code before deciding that ValidIt has incorrectly reported an error.

The following error reports concerning possible problems with initial articles were generated (together with many others) from a sample file of bibliographic records. Most (but not all) of these reports identify changes that must to be made to the records.

Check nonfiling for 630 (use 0?)

The 630 field of a German-language item begins “United Nations Convention …” and the 630 field’s nonfiling indicator is set to 3. ValidIt is correctly suggesting that the value of the nonfiling indicator needs to be reconsidered.

Check nonfiling for 740 (use 3?)

The 740 field of a Spanish-language item begins “La mujer …” and the 740 field’s nonfiling indicator is set to 0. ValidIt is correctly suggesting that the value of the nonfiling indicator needs to be reconsidered.

Check nonfiling for 245 (use 0?)

The 245 field in a record with the language code “eng” begins “Los Trabajadores …”, and has ‘4’ for its nonfiling indicator. The nonfiling indicator is correct, but the remainder of the record indicates clearly that the text of item is in Spanish, not English. The nonfiling indicator should stay at its current value of ‘4’, but the language code should be changed.

Check nonfiling for 246 (cut 2?)

The 246 field of an Italian-language item begins “I remember …” Because the item’s language code is “ita” and “I” is defined as an initial article in Italian, ValidIt is suggesting that the first two characters of the 246 field might need to be removed; but the field is actually correct as given.

Check nonfiling for 245 (numeral?; use 3?)

The 245 field of a French-language item begins “Un avenir …” and the 245 field’s nonfiling indicator is set to 0. ValidIt is suggesting that the value of the nonfiling indicator may need to be reconsidered. (The first word in this title may be a numeral or an initial article. Depending on one’s interpretation of the entire title, this report may or may not result in a change to the record.)

Check nonfiling for 246 (cut 4?)

The 246 field of an English-language item begins “The Arab invasion …”; the 246 field does not have a nonfiling indicator. ValidIt is correctly suggesting that the first 4 characters in the 246 field needs to be removed.

Article in $t of 700? (cut 4?)

Subfield $t in the 700 field of an English-language item begins “The principles and practice …”; there is no way to indicate nonfiling characters in subfield $t. ValidIt is correctly suggesting that the first 4 characters in subfield $t needs to be removed.

The InitialArticlesToTest stanza in the configuration file bibvalid.cfg tells ValidIt which subfields in a bibliographic record to test for initial articles. See Appendix A.

The value of this property has no effect if the TestVariableFields property has the value False, i.e. if you have indicated that ValidIt should not examine the variable fields in a record.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.TestInitialArticles = False

Associated error conditions

None

See also

IgnoreNoncriticalNonfilingProblems property

TestLeader property

Instructs ValidIt to inspect or ignore the Leader in the record supplied as the MarcRecordIn property.

Syntax

object.TestLeader [=True|False]

Remarks

If the value of this property is True, ValidIt tests each element in the Leader against the appropriate MARC definition, and reports any discrepancies it finds. If the value of this property is False, ValidIt does not test any part of the Leader.

The value of this property has no effect if the TestFixedFields property has the value False, i.e. if you have indicated that ValidIt should not examine any of the fixed fields.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.TestLeader = False

Associated error conditions

None

See also

TestFixedFields property

TestSeriesDuplication property

See the RemoveDuplicateSeries property.
TestSubfieldH property

Tells ValidIt to inspect, or ignore, subfield $h, or text that might belong in subfield $h, in variable fields.
Syntax

object.TestSubfieldH [=True|False]

Remarks

If the value of this property is True, ValidIt performs one or the other of two tests on variable fields defined to contain subfield $h. If a variable field contains $h, ValidIt extracts it and compares it to a list of texts valid in that subfield.
 If the subfield $h text is defined as one that should be replaced by another, ValidIt inserts the preferred text and removes the non-preferred text. (If the MakeNoChange property has the value True, ValidIt instead reports an error.) If a variable field defined to contain $h does not in fact contain any $h code, ValidIt scans the field for texts that appear to call for the addition of the $h code.

If the value of this property is False, ValidIt does not consider the appropriateness of subfield $h texts.

The value of this property has no effect if the TestVariableFields property has the value False, i.e. if you have indicated that you do not want ValidIt to inspect variable fields.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.TestSubfieldH = False

Associated error conditions

None

See also

MakeNoChange property, TestVariableFields property

TestSubfieldOrder property

Tells ValidIt to inspect, or ignore, the order of subfields appearing in variable fields.
Syntax

object.TestSubfieldOrder [=True|False]

Remarks

If the value of this property is True, ValidIt compares the order of subfields appearing in each variable field against the order for subfields defined in a separate configuration file.
 If the subfields in a field are not in the prescribed order, ValidIt rearranges the subfields, and prepares a change message. (If the MakeNoChange property has the value True but the subfields are not in the defined order, ValidIt reports an error.) If the value of this property is False, ValidIt does not inspect the order of subfields in variable fields.

The value of this property has no effect if the TestVariableFields property has the value False, i.e. if you have indicated that you do not want ValidIt to inspect variable fields.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.TestSubfieldOrder = False

Associated error conditions

None

See also

MakeNoChange property, TestVariableFields property

TestSubfields property

Tells ValidIt to inspect, or ignore, the subfields appearing in variable fields.
Syntax

object.TestSubfields [=True|False]

Remarks

If the value of this property is True, ValidIt compares each of the subfield codes in a variable field against those defined for that field. ValidIt reports as errors those subfields that are not defined, those that are repeated but are not defined as repeatable, those that are obsolete, and those that are not present but are required. If the value of this property is False, ValidIt does not inspect the subfields in variable fields.
The value of this property has no effect if the TestVariableFields property has the value False, i.e. if you have indicated that you do not want ValidIt to test the variable fields at all.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.TestSubfields = False

Associated error conditions

None

See also

TestVariableFields property

TestSubjectsAgainst043 property

This property tells ValidIt whether or not it should compare information appearing in bibliographic subject headings against the 043 field

Syntax

object.TestSubjectsAgainst043 [=True|False]

Remarks

When the value of this property is True, ValidIt inspects the 600-651 fields appearing in a bibliographic record; it only examines the fields whose second indicators (and perhaps subfield $2) are identified by the SubjectIndicatorsOfInterest property. The program extracts the following information related to geographic entities:

· From the 600, 610, 611, 630 and 650 fields, ValidIt extracts the place name found in the first subfield $z, if any.

· From 610 and 611 fields, if the first indicator is “1”, ValidIt extracts the place name found in subfield $a.

· From 651 fields, ValidIt extracts the place name found in subfield $a

ValidIt manipulates this information as appropriate to extract any “larger” entity that may be contained within it. ValidIt searches for a normalized version of this entity in a list of recognized geographic entities, to see if there is a corresponding GAC for use in an 043 field.
 Finally, ValidIt compares all of the GACs derived from geographic information in subject headings against any 043 field in the record. If ValidIt derives any GACs from the subject headings that it doesn’t find in the 043, it produces an error message. The message contains the GACs that aren’t present in the 043 field. Here is a sample message:

Add to 043 field? |an-us-il|an-us-ia

ValidIt does not do any of this work if the bibliographic record contains an 043 field that already contains at least 3 instances of subfield $a. (The 043 field may contain at most 3 occurrences of subfield $a.)

The value of this property has no effect if the TestVariableFields property has the value False, i.e., if you have asked ValidIt not to inspect variable fields.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.TestSubjectsAgainst043 = False
Associated error conditions

None

See also

CharacterSetIn property, SubjectIndicatorsOfInterest property

TestVariableFields property

Instructs ValidIt to inspect or ignore the variable fields appearing in the record supplied as the MarcRecordIn property.

Syntax

object.TestVariableFields [=True|False]

Remarks

If the value of this property is True, ValidIt tests each variable field (tag, indicators, and subfield codes) in the record against the appropriate MARC definition,
 and reports any discrepancies it finds. If the value of this property is False, ValidIt does not test any part of the variable fields.

The behavior of ValidIt when testing variable fields is further controlled by the TestCodedFields, TestIndicators and TestSubfields properties. If the value of one of these properties is False, ValidIt does not test individual elements in the corresponding field.

The value of this property is preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Boolean (True or False)

Default value

True

Example

object.TestVariableFields = False

Associated error conditions

None

See also

TestCodedFields property, TestIndicators property, TestSubfields property, TestSubjectsAgainst043 property, Test​For​Unmatched​Braces property, Test​For​Unmatched​Brackets property, Test​For​Unmatched​Nonfiling property, Test​For​Unmatched​Parentheses property

TranslateAllValidatedRecords property

This property is present in ValidIt solely to maintain compatability with earlier versions. If the container program does not wish ValidIt to translate the supplied MARC record from one character set to another, it should supply identical values for the CharcaterSetIn and CharcaterSetOut propeties.

ValidateAuthAsHoldings, Validate​Bib​As​Holdings, Validate​Holdings​As​Bib properties

The ValidateAuthAsHoldings property is a list of fields defined for use in authority records (and also in holdings records) whose tags, indicators and subfield codes shold be validated against the definition of holdings fields, rather than that of authority fields. The ValidateBibAsHoldings property is a list of fields defined for use in bibliographic records (and also in holdings records) whose tags, indicators and subfield codes should be validated against the definition of holdings fields, rather than that of bibliographic fields. The ValidateHoldingsAsBib property is a list of fields defined for use in holdings records (and also in bibliographic records) whose tags, indicators and subfield codes should be validated against the definition of bibliographic fields, rather than that of holdings fields.

Syntax

object.ValidateAuthAsHoldings [= list of tags]

object.ValidateBibAsHoldings [= list of tags]

object.ValidateHoldingsAsBib [= list of tags]

Remarks

Some fields defined for use in holdings records may also be embedded in bibliographic records; some fields defined for use in bibliographic records may also appear in holdings records; some fields defined for use in holdings records may also appear in authority records. Your local library system’s tag table may require you to prepare complete, redundant definitions of each field for each format for which it is valid; or your local system may silently validate certain fields appearing in a record of one type against the definition of another type.
 The ValidateAuthAsHoldings, ValidateBibAsHoldings and Validate​​HoldingsAsBib properties permit you to instruct ValidIt to behave in the same manner as your local library system.

If you want ValidIt to validate certain fields in authority records against definitions for holdings fields, list the tags in the ValidateAuthAsHoldings property. If you want ValidIt to validate certain fields in bibliographic records against definitions for holdings fields, list the tags in the Validate​Bib​As​Holdings property. If you want ValidIt to validate certain fields in holdings records against definitions for bibliographic fields, list the tags in the ValidateHoldingsAsBib property. If you want ValidIt to validate each field according to separate definitions for each form used by your library system, each of these properties should be the null string.

The format-specific tests that ValidIt performs under the direction of these properties are the following:

· Does this field bear a defined MARC tag? Is this tag obsolete? Is the tag repeated only if it’s defined as repeatable?

· Are the indicator values defined? Are they obsolete?

· Are the subfield codes defined? Are they obsolete? Are subfield codes repeated only if they’re defined as repeatable? Are mandatory subfields present? Are the subfields in order?

These properties do not affect the performance of tests defined in the configuration files. Those defined in the file “bibvalid.cfg” are applied only against bibliographic records; those defined in the file “holdvalid.cfg” are applied only against holdings records; those defined in “authvalid.cfg” only against authority records. To establish a test for a field that may appear in more than one category of record, define the test in all appropriate files.

The values of these properties are preserved in the file ValidIt.INI by the WriteSettings method.

Data type

Character strings. Separate each tag from its neighbors with spaces or other non-numeric characters.

Default values

ValidateAuthAsHoldings: “856”. If the container program invokes the ReadSettings method, the default value is Null.
ValidateBibAsHoldings: “841 842 843 844 845 852 853 854 855 863 864 865 866 867 868 876 877 878”. If the container program invokes the ReadSettings method, the default value is Null.
ValidateHoldingsAsBib: “007 010 020 022 023 024 027 030 583”. If the container program invokes the ReadSettings method, the default value is Null.
Example

object. ValidateHoldingsAsBib = “007 010 022 030”

Associated error conditions

None.

ValidateMarcRecord method

Instructs ValidIt to perform a battery of tests on the record supplied as the MarcRecordIn property, and to present a fresh copy of the record as the MarcRecordOut property.

Syntax

object.ValidateMarcRecord [MARC record]
The ValidateMarcRecord has this optional argument:

MARC record
An authority, bibliographic or holdings record in MARC communications format.

If the container progam supplies this property, ValidIt transfers it to the MarcRecordIn property. If the container program does not supply this property, ValidIt assumes that it should validate the record currently held by the MarcRecordIn property.

Remarks

When the container program invokes this method, ValidIt makes sure it has all of the information it needs,
 and then proceeds to inspect the record. ValidIt does its work in several distinct steps, many of which are controlled by its properties.

· If the PccModelIn and PccModelOut properties have different, non-null values, ValidIt checks the consistency of any PCC-specific information in the records, and perhaps translates it from one model to another.

· ValidIt makes a pass through the record, applying the force rules identified in a configuration file.

· If the TestSubjectsAgainst​043 property is True, ValidIt makes a pass through the record, identifying geographic information in subject headings and comparing this information against the 043 field.

· ValidIt cleans up the record, sorting fields and subfields into order.

· ValidIt makes a pass through the finished record, applying the test rules identified in a configuration file.

· If the CharacterSetIn and CharacterSetOut properties have different, non-null values ValidIt translates the record from one character set to another.

· ValidIt tests the record for characters identified in the Auth​Characters​Not​Wanted, Bib​Characters​Not​Wanted or Hold​Characters​Not​Wanted property.

· ValidIt makes the finished record available as the MarcRecordOut property. If ValidIt has modified the record in any way, the MarcRecordModified property has the value True.

Associated error conditions

Could not open your compressed tag table file: … (Numeric value: vbObjectError + 1). Windows raised an error when ValidIt tried to open the indicated file.

No ConfigurationFilePath supplied. (Numeric value: vbObjectError + 18.) The ConfigurationFile​Path property is empty.

No MarcRecordIn supplied. (Numeric value: vbObjectError + 5.) There is no record to validate.

No NucCode supplied. (Numeric value: vbObjectError + 6.) The NucCode property is empty, and a rule definition contains the string “%%NUC”.

See also the error messages listed for the ReadTagTables method.
Properties to consider before invoking this method

All of ValidIt’s properties should be considered before invoking this method.

Version property

A statement of the version number of ValidIt DLL. This property is read-only at run time.
Syntax

object.Version
Remarks

ValidIt returns in this property its own major version number, minor version number and revision number, as well as the major version number, minor version number and revision number of a secondary module it employs to do some of its work.

Data type

Character string. The returned string contains the version numbers for ValidIt (main version, minor version, revision), each part separated from its neighbors by full stops:

1.2.23

Default value

Null

Example

object.Version
Associated error conditions

None.

VgerBibOwningLibrary property

The identifier associated with the institution that “owns” a bibliographic record. This property may only be of interest to users of the Vger system.
Syntax

object.VgerBibOwningLibrary [= Vger owning library number]

Remarks

A library system’s database may contain bibliographic records from many institutions. The Vger​Bib​Owning​Library property identifies the library that “owns” the current bibliographic record. When ValidIt is looking for bibliographic records that share standard numbers with the current record, consideration may or may not be given to bibliographic records “owned” by other libraries, depending on the value of the BibDupAllOwning property. If the BibDupAllOwning property is False, ValidIt will only consider as duplicates those records owned by the library that owns the current bibliographic record.
Data type

Character string

Default value

Null

Example

object.VgerBibOwningLibrary = “5”

Associated error conditions

None

See also

BibDupAllOwning property, StandardNumbersToTestForDuplication property

VgerMainVersion property

This property is present in ValidIt solely to maintain compatability with earlier versions. Container programs should now use the VgerMajorVersion property.

VgerMajorVersion property

The “major” portion of the version number associated with the current Vger installation.

Syntax

object.VgerMajorVersion [= integer]

Remarks

Each version of Vger is identified by a version number which typically consists of two parts: the “major” version number (a year, or portion of a year) and the “minor” version number (a sequential number).

The behavior of the Vger system changes in significant ways from one version to the next. The VgerMajorVersion property allows ValidIt to adapt its behavior to suit the version of Vger with which it is working.

Supply the major version number as a four-digit year, regardless of the manner in which it is presented.

In the Vger version number “99.1”, 99 is the major version number, and 1 is the minor version number. For this version, the VgerMajorVersion property should have the value 1999.

In the Vger version number “2000.1.3,” 2000 is the major version number, and 1 is the minor version number. For this version, the VgerMajorVersion property should have the value 2000.

ValidIt uses the value of this property when it reads the Vger tag files, and its own configuration files. The contents of these files change from one version to the next. In many cases, an element of MARC content designation will be defined first in ValidIt’s configuration files, and later migrate to the Vger files. (For examples, see Section 4 of Appendix A.)

Data type

Non-negative integer

Default value

2001

Example

object. VgerMajorVersion = 1999

Associated error conditions

None

WriteSettings method

See ReadSettings method.

Appendix A: Configuration files

Outline

1.
Introduction

2.
The validation rule files

2.1

General remarks

2.2

The ForceRules and TestRules stanzas

2.2.1

General remarks

2.2.2

Rule segments

2.2.3

Kinds of tests

2.2.4

Negation of tests

2.2.5

Test results

2.2.6

Combining tests

2.2.7

Reflexive rules

2.2.8

Rules designed for efficiency

2.2.9

Triggering a rule

2.2.10

Rules with only one test

2.2.11

Exceptional conditions

2.3

The BuiltInErrors stanza

2.4

The BuiltInChanges stanza

2.5

The InitialArticlesToTest stanza

2.6

The OperatorCorrections and OperatorCorrectionsForBuiltInErrors stanzas

3.
The obsolete content designation files

4.
The supplementary information files

4.1

General remarks

4.2

Files used with the Vger system

4.2.1

The file bibsup.cfg

4.2.2

The file holdsup.cfg

4.2.3

The file authsup.cfg

5.
The file of codes for coded subfields

6.
The file of geographic area codes

7.
Sample files

1. Introduction

When the container program invokes the ValidateMarcRecord method, ValidIt performs a set of straightforward tests to determine how the content designation in a record measures up against the appropriate MARC definition. These tests are built into ValidIt, but can be turned off with the appropriate property settings.

· ValidIt tests tags of fields in the 001-009 range and the contents of all the “fixed-field” elements they contain.

· ValidIt tests each variable field tag in the range 010-999, and each field’s indicators and subfield codes.

In these tests, ValidIt ultimately decides that each item of MARC content designation in the record is valid (i.e., part of the MARC definition when the record was created), obsolete (defined at one time, but not valid when the record was created) or invalid (never defined). ValidIt prepares error messages for invalid and obsolete content designation.
 ValidIt also prepares messages describing valid content designation used in invalid ways (e.g., tags that appear more than once in a record but aren’t defined as repeatable).

ValidIt may perform more elaborate tests if the TestVariableFields property has the value True:

· ValidIt compares geographic information contained in subject headings against codes in the record’s 043 field

· ValidIt compares codes in certain subfields against a list of valid codes

· ValidIt looks for discrepancies between the contents of title fields and any nonfiling characters indicators for those fields

In addition to finding and evaluating parts of a record, ValidIt is able to find and change parts of a record. ValidIt only does this work if the MakeNoChange property has the value False (i.e., if you have told ValidIt that it is OK for it to modify the record).

· ValidIt sorts the variable fields in a record into order

· ValidIt sorts the subfields in variable fields into order

· ValidIt translates the record from one character set to another

· ValidIt examines the record for PCC data elements, and converts them as appropriate

These are the only tests and changes that are built into ValidIt. ValidIt can do a lot more, but only if you tell it exactly what it should do. To get ValidIt to perform anything other than the basic actions described above, you have to formulate the proper instructions, and feed those instructions to ValidIt. Some of these instructions take the form of lists of values, some as highly-structured rules; all of these instructions are contained in ValidIt’s configuration files. When ValidIt starts up, it reads these configuration files to find out how it should go about its work.

There are three configuration files for each of the three basic formats that ValidIt recognizes (authority, bibliographic and holdings), making a total of nine format-based configuration files. One file for each format contains validation rules for modifying and inspecting records (the “valid” file, described in Section 2 of this Appendix), one file describing obsolete content designation (the “obs” file; Section 3), and one file supplementing information in the system tag tables (the “supp” file; Section 4). There are two other configuration files: one for codes that may appear in coded subfields (codes.cfg; Section 5), and one for geographic area codes (gacs.cfg; Section 6). All eleven of these configuration files must reside in the same directory; this is the directory identified by ValidIt’s ConfigurationFilePath property.

The configuration files are text files,
 and have the general appearance of Windows initialization files.
 Information is arranged into stanzas whose captions are enclosed within brackets. The caption is followed by one or more lines of text; each text line begins with some kind of label, followed by an equals sign and a value associated with the label.

Here is part of a typical stanza from a configuration file.

[GACsByCountry]

ABU_DHABY_UNITED_ARAB_EMIRATES_EMIRATE=a-ts---

ABU_ZABY_UNITED_ARAB_EMIRATES_EMIRATE=a-ts---

ABYSSINIA=f-et---

ACORES=lnaz---

ADAMAWA_EMIRATE=f-cm---|af-nr---

ADEN=a-ye---

ADEN_GULF_OF=mr-----

The following sections of this Appendix describe each of ValidIt’s configuration files. Follow these instructions to make ValidIt check your records in the manner you prefer.

2. The validation rule files

2.1. General remarks

Three files contain the rules you define for the validation and modification of authority, bibliographic and holdings records. All validation tests to be made on records—other than the built-in tests described in Section 1 of this Appendix—must be defined in these files. These files (named authvalid.cfg, bibvalid.cfg and holdvalid.cfg, respectively) all have essentially the same form. Each file contains several stanzas,
 each of which is (at least, technically) optional.

· Statements in the ForceRules stanza are highly-structured rules that describe modifications or transformations that ValidIt should make to a record, and the conditions under which it should make them. These statements are called force rules in this Appendix.

· Statements in the TestRules stanza are highly-structured rules that describe tests or validity checks that ValidIt should make against the data in a record. These statements are called test rules in this Appendix.

· Statements in the BuiltInErrors stanza assign severity levels to the validity tests built into ValidIt. This stanza only appears in the file bibvalid.cfg.

· Statements in the BuiltInChanges stanza assign severity levels to the modification methods built into ValidIt. This stanza only appears in the file bibvalid.cfg.

· Statements in the InitialArticlesToTest stanza identify subfields that ValidIt should test for initial articles. This stanza only appears in the file bibvalid.cfg.

· Statements in the OperatorCorrections supply information to be handed back to the container program when ValidIt encounters one of its built-in errors. If something in a record violates a validation rule, ValidIt returns this information to the container program in the ErrorMessage​Operator​Correction property. ValidIt does nothing with the information other than return it to the container program.

· Statements in the OperatorCorrectionsForBuiltInErrors stanza supply information to be handed back to the container program when ValidIt encounters one of its built-in errors. If something in a record violates a validation rule, ValidIt returns this information to the container program in the Error​Message​Operator​Correction property. ValidIt does nothing with the information other than return it to the container program.

Here are examples of things ValidIt can do, if you define the appropriate test rules:

· Judge whether the “date type” fixed-field code in a bibliographic record corresponds to the fixed-field dates. ValidIt can find the date type code and the two dates in the 008 field of a bibliographic record, and it can determine that they all contain legal values; this is part of its set of built-in tests. But if you want ValidIt to compare the values in the date type code against the dates—i.e., if you want to find out if the date type code and the dates when taken together appear to be right—you’ll have to define one or more rules that tell ValidIt how to go about the task.

· Determine whether the “reference tracing evaluation” fixed-field code in an authority record is assigned correctly. ValidIt can find the reference tracing evaluation code in the 008 field of an authority record, and can determine that the code is a valid one. ValidIt can also find any 4XX or 5XX fields in the record. If you want ValidIt to judge the correctness of the reference tracing evaluation code in relation to any 4XX or 5XX fields, you will have to define one or more rules to tell ValidIt how to do this.

Here are examples of things ValidIt can do, given the appropriate force rules:

· Set the language code in the bibliographic fixed fields to match the first language code in subfield $a of any 041 field

· Change the first indicator in the bibliographic 245 field to ‘0’ if it is set to ‘1’ and if the record contains no 1XX field

· Set both indicators of the bibliographic 260 field to blanks

· Set the reference evaluation code in an authority record’s fixed fields to ‘b’ if the code is ‘n’ and the authority record contains a 4XX or 5XX field

ValidIt performs its work in several steps. (For more detail, see the description of the ValidateMarc​Record method.) ValidIt makes one pass through the record , using rules defined in the ForceRules stanza; ValidIt changes the record as instructed. ValidIt makes a second pass through the record, testing the record as modified against the MARC format definition.
 ValidIt makes a third pass through the record, using the rules defined in the appropriate TestRules stanza.

Although the ForceRules stanza is designed to contain force rules, you can do things a bit differently, if you want; you can put both force and test rules into the ForceRules Stanza.
 If you do this, in its pass through the ForceRules stanza ValidIt will make some changes to a record and will perform some tests on the record. By way of contrast, you can only put test rules into the TestRules stanza; in its pass through the TestRules stanza, ValidIt will only test the record. ValidIt prepares the finished version of the record after it handles rules in the ForceRules stanza but before it handles rules in the TestRules stanza, so a force rule in the TestRules stanza would have no effect.

2.2. The ForceRules and TestRules stanzas

2.2.1. General remarks

The ForceRules and TestRules stanzas contain the locally-defined rules ValidIt should follow when modifying or inspecting authority, bibliographic and holdings records. The rules in these two stanzas (in each of the three format-specific configuration files) are stated in essentially the same manner. These rules are expressed in a rigid and artificial “grammar.”

Most of the test rules you will want to define can be expressed as if-then statements.
 The “if” portion is a condition that may or may not apply to a record; the “then” portion is a test that must succeed if the condition applies. If the test does not succeed, ValidIt prepares an error message. Here are examples of test rules:

· If the 245 field in a bibliographic record contains subfield $h with “microform”, then the record should also contain an 007 field whose first character is ‘h’.

· If an authority record contains at least one 4XX or 5XX field, then its reference tracing evaluation code cannot be ‘n’.

Most rules that call for changes to a record can also be expressed as if-then statements. The “then” portion of the rule describes a change to be made when the condition in the “if” portion applies to a record:

· If the indicators of a bibliographic 260 field are not blank, then change them to blanks.

· If a bibliographic 510 field contains subfield $c, then change the first indicator to ‘4’.

Some rules are limited in application to one or more of the bibliographic formats:

· If, in a Map record, the type of record code is ‘e’, then neither position in the special format characteristics fixed-field element (008/33-34) can be ‘e’.

· If, in a Books record, the form of contents codes do not contain ‘b’ or ‘q’, then the record should not contain a 504 field.

· If, in a Map record, either position of the special format characteristics fixed-field element (008/33-34) contains ‘e’, then change the type of record code to ‘f’.

The if and then statements, and the formats to which a rule applies, are presented in separate parts, or segments, of each validation rule in the validation rule files. In fact, the rules contain up to six segments. (The segments are described in more detail in Section 2.2.2 of this Appendix.) These six segments identify:

· the format or formats to which the rule applies

· the condition under which the rule should be applied; the “if” portion of a rule. ValidIt only applies the remainder of a rule if a record satisfies this condition.

· an indication of whether the rule identifies a test or a change to be made

· the actual test to make (or the change to make); the “then” portion of a rule

· information to use in error reporting (this portion is essential for test rules, and may be used for certain force rules), presented in two segments: severity codes, and the error message text.

The first four of these segments are required in all cases; the fifth and sixth segments are optional, although they’re nonetheless critical in test rules if the rules are to be useful. Each segment is separated from its neighbors by one or more spaces. Except when explicitly so stated, segments (except the last) never contain internal spaces.

Here is a fragment of a TestRules stanza from a typical bibvalid.cfg file. (Exactly what this all means should become clear eventually; don’t worry if you don’t understand the codes yet.) This example shows only the first four segments of each rule.

[TestRules]

3=P 000/6=e T 008/33!e AND 008/34!e

168=M 000/06={ij} T 245/h

16=DP 000/07={abd} T 773

15=FMD 000/07={ad} T 773

4=DP 000/07={acdm} T 008/06={bceikmnpqrst|}

20=P 000/17-18=_a T 255

Here’s the same fragment, with extra spaces between segments to create the appearance of columns.
 You may find that including extra spaces in this manner makes reading and maintaining validation rules easier.

[TestRules]

3=P 000/6=e T 008/33!e AND 008/34!e

168=M 000/06={ij} T 245/h

16=DP 000/07={abd} T 773

15=FMD 000/07={ad} T 773

4=DP 000/07={acdm} T 008/06={bceikmnpqrst|}

20=P 000/17-18=_a T 255

Each rule is assigned an arbitrary number, ranging from 1 to 32767.
 The rule number is the first piece of information in each rule definition, and is followed by an equals sign. It is not necessary that the sequence of rule numbers be continuous; there may be gaps. The rules need not be presented in any particular order. These “rule numbers” do not mean anything to ValidIt; they are included as part of the error message ValidIt prepares if a record does not match a rule, and the change message ValidIt prepares if it modifies a record. Perhaps they will mean something to the container program, perhaps not.

When ValidIt starts up, it reads the TestRules and ForceRules stanzas from top to bottom. (In other words, it reads the rules in the order you present them in each stanza, regardless of the rule number.) ValidIt skips over any lines in these stanzas (such as comments) that don’t appear to be rules.
 As ValidIt reads your definitions, it places together in its work area all those whose initial test involves the same tag; it further groups together those rules whose initial test operates on the same indicator, subfield code or fixed-field position (even if these rules appear at different places in the stanza), so that the work it performs later will be as efficient as possible. If more than one rule operates on the same piece of information, ValidIt performs the rules in the order the rules appear in the configuration file.

Here is a complete rule from a TestRules segment, showing all six segments. Because of the length of this rule, it is presented on more than one line; in the configuration file, this rule must appear on a single line.

303=M 000/06=j T 008/30-31=__ 0:5 ‘Literary text’ must be blank for ‘musical’ sound recordings

If, in a Music record, Leader/06 contains code ‘j’, then 008/30-31 must contain blanks. If in such a record 008/30-31 do not contain blanks, ValidIt prepares an error message with severity codes of 0 and 5, and the message text “’Literary text’ must be blank for ‘musical’sound recordings”.

2.2.2. Rule segments

The first segment in a rule identifies the format of record to which the rule applies. (ValidIt actually uses this information only when inspecting a bibliographic record; it is included as part of the rule definitions for authority and holdings records solely for consistency.) Use one or more of the single upper-case alphabetic letters defined to appear in the MarcRecordFormat property.

Examples

7=P …

The rule applies only to Map records

Note that here and elsewhere in this Appendix, three closely-spaced dots (…) indicate that the rule definition may condition additional information; these three closely-spaced dots are not part of the rule definition itself.

93=F …

The rule applies only to Visual material records

83=A …

The rule applies only to Authority records

If the rule applies to more than one bibliographic format, include all the applicable codes in a single string, with no intervening spaces. The order of these codes is immaterial.

Examples

16=DP …

The rule applies only to Computer file and Map records

57=BDFMPU …

The rule applies to Book, Computer file, Visual material, Music, Map and Mixed material records (i.e., to all types of bibliographic records except Serials)

The second segment in a rule identifies the condition that must be met in order for ValidIt to apply the test to the record. The result of a comparison of a condition against a record will be Found, Not Found or No Answer. (For information about the results returned by tests, see Section 2.2.4 of this Appendix.) If the result is Found, ValidIt applies the remainder of the rule to the record; otherwise, ValidIt ignores the rule.

For variable fields (all fields other than the Leader, and the 006, 007 and 008 fields), you supply a tag, optional indicator(s) and optional subfield code(s). (Section 2.2.3 of this Appendix describes the forms that tests may take.)

Examples

102=BDFMPSU 020 …

The rule will be applied when a record contains an 020 field.

94=BDFMPSU 010/a …

The rule will be applied when a record contains an 010 field that contains subfield $a.

159=BDFMPSU 411:2=1 …

The rule will be applied when a record contains a 411 field whose second indicator has the value of “1”

Note that the literal value (the indicator value) appears without quotation marks.

117=BDFMPU 040! …

The rule will be applied when a record does not contain an 040 field.

127=BDFMPU 040/c! …

The rule will be applied when a record contains an 040 field that does not contain subfield $c.

360=BDFMPSU 400/b AND 000/18=a …

The rule will be applied when a record contains a 400 field that contains subfield $b and when Leader/18 contains code ‘a’

Note that the literal value (the fixed-field value) appears without quotation marks.

49=DP 008 …

The rule will be applied when a record contains an 008 field.

57=BDFMPU 008/06=e …

The rule will be applied when 008/06 contains code ‘e’.

17=P 000/17={17} …

The rule will be applied when Leader/17 contains either code ‘1’ or code ‘7’.

Note the use of braces to enclose a list of alternative fixed-field values.
173=P 000/17-18=_a …

The rule will be applied when Leader/17 contains a blank and Leader/18 contains code ‘a’.

Note that in this case, the literal value is more than one character long, and that the underscore represents a blank space.

89=M 008/24-29!______ …

The rule will be applied when 008/24-27 does not contain blanks.

6=P 000/07={acdm}

The rule will be applied when Leader/07 contains code ‘a,’ ‘c’, ‘d’ or ‘m’.

53=BDFMPU 008/07-10=|||| …

The rule will be applied when 008 positions 07 through 10 contain four fill characters.

Note that the vertical bar represents the “fill” character.

63=BDFMPU 008/15-17!||| …

The rule will be applied when 008/15-17 does not contain fill characters

342=BDFMPSU 041/d AND 008/35-37!|||…

The rule will be applied when the record contains an 041 field that contains subfield $d and when 008/35-37 does not contain fill characters

A single uppercase alphabetic code in the third segment in a rule identifies the rule as a test (code ‘T’) or a force (code ‘F’). A test rule defines a condition to which a record must conform; if the record does not conform to the test, ValidIt prepares an error report. A force rule defines a change ValidIt will make to a record.

Examples

14=P 000/07=a T …

The rule identifies a test that applied to a Map record whenever Leader/07 contains code ‘a’.

87=U 008/06={bp} F …

The rule identifies a change made to a Mixed material record whenever its 008/06 contains code ‘b’ or code ‘p’.

127=BDFMPU 040/c! F …

The rule identifies a change made to a non-Serial record whenever its 040 field does not contain subfield $c.

The fourth segment (the condition segment) identifies an action that ValidIt should take if the tests in the second segment (the test segment) evaluate to Found.

For test rules, the fourth segment of the rule identifies the final test or tests to be made. The result of the test in every case will be Found, Not Found or No Answer. (For an explanation of the results of tests, see Section 2.2.4.) If the answer is Found the record satisfies the rule, and ValidIt produces no error report; if the answer is Not Found or No Answer the record does not satisfy the rule, and ValidIt produces an error report.

The definition of the test in the test segment of a rule is similar to the definition of the test in the condition segment. (See Section 2.2.3 for descriptions of the tests you can define.)

Examples

24=P 000/17={17} T 034 …

If a Map record has value ‘1’ or ‘7’ in Leader/17, then the record must also contain an 034 field.

160=M 000/06={ij} T 245/h …

If a Music record has value ‘i’ or ‘j’ in Leader/06, then the 245 field must contain subfield $h.

19=P 000/17-18!_a T 042! …

If a Map record does not have the value “blank-a” in Leader/17-18, then the record may not contain an 042 field.

200=B 411/b T 000/18!a …

If a Book record contains a 411 field which contains subfield $b, Leader/18 may not contain value ‘a’.

43=BDFMPU 008/06=b T 008/07-14=________ …

If a non-Serial record has value ‘b’ in 008/06, then positions 07 through 14 of the 008 field must contain all blanks.

44=BDFMPU 008/06=n T 008/07-14=uuuuuuuu OR 008/07-14=________ …

If a non-Serial record has value ‘n’ in 008/06, then 008/17-14 must contain either eight ‘u’s or eight blanks

130=M 047 T 008/18-19=mu …

If a Music record contains an 047 field, then 008/18-19 must contain the code “mu”.

131=M 008/18-19=mu T 047 …

If 008/18-19 in a Music record contain the code “mu”, then the record must contain an 047 field.

23=P 000/17=1 T 010/a=um* …

If a Map record has value ‘1’ in Leader/17, then the record must contain an 010 field with subfield $a, and that subfield $a must begin with the characters “um”.

Note the use of the asterisk to indicate the presence of zero or more additional characters to the right of the text in the subfield; the asterisk at the right makes this a left-anchored comparison. You can also use an asterisk at the left end of the text to define a right-anchored comparison, and asterisks at both ends of the text to define a “floating” comparison.

98=U 010/a T 010/a!ms* …

If a Mixed material record contains an 010 field with subfield $a, then that subfield $a must not begin with the characters “ms”.

Note that the tag and subfield code must be explicitly identified in the test segment, even if they are identical with the tag and/or subfield code in the condition segment. If the tag in the test segment is the same as the tag in the condition segment, ValidIt will use the same field that satisfied the condition, even if the field is repeated elsewhere in the record.

104=B 022 T 022/a OR 022/y OR 022/z …

If a Book record contains an 022 field, then that field must contain subfield $a, subfield $y or subfield $z.

Use tests in this form to perform “required subfield” tests that cannot be performed correctly through a tag-table definition. (If subfield $a only were always required, you would indicate that in the tag table; but if any one of two or more subfields is required, you must use a rule in the form shown here.)

154=BDFMPSU 240 T <14:1XX,=,1> …

If any record contains a 240 field, then the record must contain a 1XX field.

For force rules, the fourth segment of the rule identifies the change ValidIt should make to the record.
 The definition of the change is similar to the definition of the fourth segment in a test rule.

Examples

87=U 008/06={bp} F 008/18-22=_____

If a Mixed material record contains code ‘b’ or ‘p’ in 008/06, then set 008/18-22 to blanks.

410=BDFMPSU 100:2=0 F 100:2=_

If the second indicator in a bibliographic 100 field is ‘0’, change it to blank.

For test rules, the fifth segment in the rule definition consists of a code that assigns a level of severity to the rule; the sixth segment contains an error message. (If a test rule does not contain a severity code, ValidIt uses “0:0” for the severity code; if it does not contain an error message, ValidIt uses “No error message” for the error message.) Separate the severity-level code and the message with one or more spaces. If a record does not satisfy the condition in the rule (i.e., if the result of the test is Not Found or No Answer), ValidIt prepares an error report; part of the report is the level-of-severity code from this segment, and part is the error message text.

The severity-level code actually consists of two separate codes, separated by a colon. These two numbers must be integers in the range 1-32767. (If the severity-level code is present but does not contain two numerals separated by a colon, ValidIt uses the single number given for both codes.) These numbers have no meaning at all to ValidIt; ValidIt simply passes them along to the container program as the Error​Message​Severity​Level1 and Error​Message​Severity​Level2 properties when it encounters a problem.
 You should treat them as representing hierarchical information: consider code 0 to represent the most innocuous type of condition, and progressively higher numbers to represent progressively more serious problems. To make matters as simple as they can be, you may prefer to limit severity levels to some small number, such as five; but the final choice is yours.

The two numbers represent the level of severity of a problem detected by ValidIt, as defined in a rule. There are two codes, so that different levels of severity can be assigned to different contexts, and those different levels of severity applied by container programs working in those contexts. For example, if you use ValidIt to perform both online validation in which an operator is present to review reports, and offline validation (perhaps as part of the batch loading of records), you may want to use the two level-of-severity codes to represent the level of severity of a condition in these two contexts: online and batch processing. This could allow one set of rule definitions to serve for both online and batch work. A batch program could inspect the severity code and ignore certain reports, write other reports to a file, and reject records that produce yet other reports; and a program operating under direct operator control could behave in a different manner.

The two severity-level codes are followed by an error message that describes the condition.

Examples

The following rule is presented here on two lines because of its length; in the configuration file, this rule must appear as a single line.

168=M 000/06={ij} T 245/h 0:1 Subfield $h in 245 required for sound recordings

If the 245 field in a bibliographic record for a sound recording does not contain subfield $h (i.e., if the answer to the test in the condition segment is Found and the answer to the test in the test segment is Not Found), ValidIt reports an error, with 0 as the ErrorMessageSeverityLevel1 property, 1 as the ErrorMessageSeverityLevel2 property, and “Subfield $h in 245 required for sound recordings” as the ErrorMessageText property.

The following rule is presented here on two lines because of its length; in the configuration file, this rule must appear as a single line.

71=B <6:008/18-21,|> T 008/18-21!|||| 0:5 Illus. fixed field may not contain mixture of fill character and valid codes

If any position in 008/18-21 in a “Book” record contains a fill character and if 008/18-21 contains anything but all fill characters, ValidIt reports an error, with 0 as the Error​Message​Severity​Level1 property, 5 as the Error​Message​Severity​Level2 property and “Illus. fixed field may not contain mixture of fill character and valid codes” as the ErrorMessageText property.

Force rules may optionally contain severity-level codes and error message texts. If the value of the MakeNoChange property is True, ValidIt performs those force rules that contain error-reporting information as if they were defined as test rules; it ignores altogether those force rules that do not contain error-reporting information. (If the value of the MakeNoChange property is False, ValidIt performs force rules as force rules, and ignores any error-reporting information included in them.)

Examples

The following rule is presented here on two lines because of its length; in the configuration file, this rule must appear as a single line.

208=BDFMPSU 510/c F 510:1=4 3:5 510 subfield $c means 1st indicator should be 4

If the value of the MakeNoChange property is False and if a bibliograhpic 510 field contains subfield $c, ValidIt changes the first indiator to ‘4’ if it does not already contain that value. If the value of the MakeNoChange property is True and if the value of the first indicator in a 510 field that contains subfield $c is not already ‘4’, ValidIt prepares the error message “510 subfield $c means 1st indicator should be 4”, with severity levels of 3 and 5.

412=BDFMPSU 130:2=0 F 130:2=_

If the value of the MakeNoChange property is False and if the second indicator in a bibliographic 130 field is ‘0’, ValidIt changes the value of the indicator to ‘blank’. If the value of the MakeNoChange property is True ValidIt ignores this rule, because it contains no error-reporting information.

In addition to the levels of severity that may be associated with force rules performed as if they were test rules, force rule definitions may also contain two severity codes to indicate the seriousness of the change made to the record. If ValidIt uses information in the force rule to change a record, it supplies these two codes as the ChangeMessageLevel1 and ChangeMessageLevel2 properties.
 Enclose severity level codes for force rules performed as force rules within braces; these codes may either precede or follow any error codes and message text for force rules performed as tests. There is no message associated with severity levels for changes; ValidIt prepares its own messages for changes in every case.

Example

The following rule is presented here on two lines because of its length; in the configuration file, this rule must appear as a single line.

70=B 008/18-21!____ F <5:008/18-21> 1:2 Check order of Illustration codes {3:5}
If the Illustration codes are not all blanks, send them through special routine number 5. If this rule is performed as a force rule, and if the special routine has changed the order of the Illustration codes, it will prepare a change report, with the severity codes of 3 and 5; the routine will prepare its own change message text. If this rule is performed as a test rule and if the special routine determines that the Illustration codes are not in the proper order, it will prepare an error report, with severity codes of 1 and 2, and the message text “Check order of Illustration codes”.

This rule could also be presented with the change severity codes in before the error severity codes:

70=B 008/18-21!____ F <5:008/18-21> {3:5} 1:2 Check order of Illustration codes
For error messages associated with locally-defined routines, see Section 2.2.11. For tests built into ValidIt, see the Section 2.6.

2.2.3. Kinds of tests

The definitions of the tests to be performed and the conditions which the records that pass those tests must meet in the second and fourth segments of a validation rule take a limited number of forms. These forms are described in the following paragraphs.

In all cases, the definition begins with the tag that identifies the field of interest. Use the tag “000” to represent the Leader.

Test for the presence of a field

To test for the presence of a field, give the three-digit tag by itself, accompanied by no other information.

Example

… 041 …

If the record contains an 041 field …

Test a fixed-field code
To test the value in a particular fixed-field code (Leader, 006, 007 or 008 field), follow the field’s tag with a slash and the starting position of the data element. (Use the zero-based starting positions found in the MARC documentation.) If the data element is more than one character long, follow the starting position with a hyphen and the ending position. Complete the fixed-field element definition with an equals sign and a single value, or a string of alternative values within braces. Use the vertical bar (“|”) to represent the fill character.

Examples

… 000/06=e …

If byte 06 in the Leader contains code ‘e’ …

… 008/07-14=uuuuuuuu …

If 008 bytes 07-14 all contain the letter ‘u’ …

… 008/18-21=____ …

If bytes 18-21 in the 008 field are all blanks …

Note that the underscore character (_) represents the “blank” or “space” character. Except as noted, rules may not contain spaces; use the underscore character instead.

… 000/06={ij} …

If byte 06 in the Leader contains either code ‘i’ or code ‘j’ …

… 008/06=| …

If byte 06 in the 008 field contains the fill character …

… 008/07-10=|||| …

If bytes 7-10 in the 008 field all contain fill characters …

… 008/35-37={eng*fre*spa*ita} …

If bytes 35-37 in the 008 field contain ‘eng’ or ‘fre’ or ‘spa’ or ‘ita’ …

To test for any of a set of multi-character fixed-field codes, separate each with an asterisk or other character that will not occur within the codes themselves.

Test an indicator

To test an indicator value in a variable field, follow the field’s tag with a colon, a numeral to represent the indicator position (1 or 2), an equals sign and the indicator value of interest (or a list of indicator values of interest within braces).

Examples

… 082:1=_ …

If the first indicator in an 082 field is a blank …

… 700:2={_2} …

If the second indicator in a 700 field is a blank or ‘2’ …

Test for the presence of a subfield code
To test for the presence of a subfield code within a variable field, follow the field’s tag with a slash and the subfield code of interest.

Example

… 086/a …

If the record contains an 086 field that contains subfield $a …

Test for a piece of text in a subfield

The tag/subfield combination by itself tests for the simple presence of the subfield code within the field. To test for a particular value in a subfield, follow a tag/subfield identifier with an equals sign and the text of interest.

Use the asterisk (*) as a “wildcard” character to indicate zero or more additional characters of any kind. If you are looking for a subfield that begins with a particular piece of text, and if that text may be followed by any additional information, follow the text with an asterisk. If you are looking for a subfield that ends with a particular piece of text, and if that text may be preceded by any other text, precede the text with an asterisk. If you are looking for a subfield that contains a particular piece of text, and if that text may be preceded or followed by other text, place an asterisk both before and after the text.

Examples

… 082/2=21 …

If the record contains an 082 field whose subfield $2 contains exactly the value “21” …

… 010/a=ms* …

If the record contains an 010 field whose subfield $a begins “ms” …

… 600/x=*ograp* …

If the record contains an 600 field whose subfield $x contains “ograp” anywhere …

If you wish ValidIt to normalize text before making the comparison, place the search text within braces. ValidIt will compare a normalized version of the supplied text against a normalized version of the variable field text.

Examples

… 245/h={microform} …

If the record contains a 245 field whose subfield $h contains exactly the text “MICROFORM” (after normalization) …

… 245/h={microform}* …

If the record contains a 245 field whose subfield $h begins “MICROFORM” (after normalization) …

All kinds of tests may be reversed to check for the absence of a condition. (For example, to test for the absence of a tag, or the absence of a subfield code.) See Section 2.2.5.

2.2.4. Test results
ValidIt recognizes three different outcomes for a test: Found, Not found and No Answer.
 A test produces the result Found if all of the test’s conditions are met; a test produces the result Not Found when it is possible for ValidIt to test all of the conditions, but not all of the conditions are met; a test produces the result No Answer if it is not possible to evaluate all of the conditions in the test.

Examples

If the test asks for the value of “blank” as the second indicator in a 246 field, the result of the test is:

· Found if the record contains a 246 field whose second indicator is “blank”

· Not Found if the record contains a 246 field whose second indicator is anything other than “blank”

· No Answer if the record contains no 246 field, because it is impossible to judge the value of the 246 second indicator

If the test asks for the value “21” in subfield $2 of an 082 field, the result of the test is:

· Found if the record contains an 082 field whose subfield $2 has the value “21”

· Not Found if the record contains an 082 field whose subfield $2 has some value other than “21”

· No Answer if the record contains no 082 field, or if no 082 field in the record contains subfield $2, because it is not possible to examine the contents of 082 subfield $2

If the test asks for the presence of the 047 field,
 the result of the test is:

· Found if the record contains an 047 field

· Not Found if the record contains no 047 field

In a test rule, if the tests in the second segment (the if part of the rule) produce the value Found, ValidIt applies the tests in the fourth segment (the then part of the rule). If the tests in the fourth segment do not produce the value Found, ValidIt prepares an error message.

130=M 047 T 008/18-19=mu …

ValidIt will test the record for the presence of an 047 field. If the result of this test is Not Found (the result of a test for a tag alone can never be No Answer), ValidIt ignores the rest of the rule. If the result of the test for the 047 is Found, ValidIt will test bytes 18-19 of the 008 field for the code ‘mu’. If the result of the test on the 008 is Found, ValidIt does nothing; if the result of the test is Not Found or No Answer (the result can only be No Answer if the record does not contain an 008 field), ValidIt prepares an error message.

In a force rule, if the tests in the second segment produce the value Found, ValidIt will make the change to the record described in the fourth segment.

410=BDFMPSU 100:2=0 F 100:2=_

ValidIt will test the record for the presence of a 100 field, and will see if the second indicator in that field is zero. If the record does not contain a 100 field (result: No Answer) or if the second indicator is not zero (result: Not Found), ValidIt does nothing. If the result of the test is Found (record contains a 100 field with second indicator zero), ValidIt changes the second indicator to blank.

2.2.5. Negation of tests

Sometimes, you will want to test for the absence of a condition instead of the presence of a condition. Examples of such tests are:

· If the record does not contain a 504 field …

· If the second indicator of the bibliographic 100 field is not blank …

To reverse or negate any of the test types described in Section 2.2.3, include an exclamation mark with the test. If the test normally contains an equals sign, replace the equals sign with an exclamation mark. If the test doesn’t contain an equals sign, follow the test with an exclamation mark.

Examples

… 260:1!_ …

If the first indicator in the 260 field is not ‘blank’ …

Note: To find a blank first indicator, the test would be stated as “260:1=_”; substituting the exclamation mark for the equals sign reverses the test result.
… 041! …

If the record does not contain an 041 field …

Note: To test for the presence of the 041 field, the test would be stated as “041”; following the test (which does not contain an equals sign) with an exclamation mark reverses the test result.

… 000/18!{ia} …

If position 18 of the Leader does not contain ‘a’ or ‘i’ …

… 000/17-18!_a …

If positions 17-18 of the Leader do not contain ‘blank-a’ …

… 020/b! …

If the record contains an 020 field and if that field does not contain subfield $b …

… 010/a!ms* …

If the record contains an 010 field and if that field contains subfield $a and if that subfield $a does not begin “ms” …

ValidIt performs a test containing the exclamation mark as if it did not contain the exclamation mark, and reverses the result of the test afterwards. If a test containing an exclamation mark produces the Found answer, the answer becomes Not Found; if such a test produces the Not Found answer, it becomes Found. If a test containing an exclamation mark produces the result No Answer, ValidIt does not adjust the result; it remains No Answer. (For an important exception to this rule, see below.)

Examples

This test:

… 041! …

is performed as if were written like this:

… 041 …

The record is tested for the presence of an 041 field.

· If the record contains an 041 field, the test returns Found, which is then reversed to Not Found.

· If the record does not contain an 041 field, the test returns Not Found, which is then reversed to Found.

In this manner, only records of interest—those records that do not contain 041 fields—will pass the test.

This test:

… 010/a!um* …

is performed as if were written like this:

… 010/a=um* …

If a record being examined contains an 010 field, then the field is scanned for subfield $a. If the field contains subfield $a, then its contents are examined for the indicated characters.

· If an 010 field is present and contains subfield $a and if that subfield $a begins with the indicated characters, this test returns Found, which is then reversed to Not Found.

· If an 010 field is present and contains subfield $a but that subfield does not begin with the indicated characters, this test returns Not Found, which is then reversed to Found.

· If the record does not contain an 010 field or if its 010 field does not contain subfield $a, this test returns No Answer; this response is not affected by the exclamation mark.

In this manner, only records of interest—those records that contain 010 fields whose subfield $a does not begin with the indicated characters—will pass the test.

Important exception: The result No Answer (see Section 2.2.4) is usually not affected by the exclamation mark. However, if a test in the fourth (test) segment of a test rule is negated with the exclamation mark and produces the result No Answer, ValidIt changes the result to Found.

An example may help clarify the need for this behavior. Here is a validation rule to be enforced:

338=BDFMPSU 008/39=d T 040/a!DLC* …

Interpretation of the rule: If the cataloging rules code is ‘d’, subfield $a of the 040 field may not begin with the letters “DLC”.
ValidIt will only consider the fourth segment of this rule if position 39 in the 008 field of a bibliographic record contains code ‘d’. ValidIt scans the record for an 040 field with subfield $a, and examines the contents of that subfield.

· If an 040 field is present and contains subfield $a and if that subfield $a begins ‘DLC’ the test returns Found, which is then reversed to Not Found, and ValidIt prepares an error message.

· If an 040 field is present and contains subfield $a and if that subfield $a does not begin ‘DLC’ the test returns Not Found, which is then reversed to Found. Since the record satisfies the rule, ValidIt does nothing.

· If the record does not contain an 040 field or if the record’s 040 field does not contain subfield $a the test returns No Answer. The No Answer response is not the same as Found, so this test would normally cause ValidIt to prepare an error message whenever a record contained no 040 $a at all. Since this is not the desired behavior (the presence of subfield $a in the 040 field may be required by a different rule, or a definition in a system tag table, but this requirement has no part in this rule), ValidIt converts the No Answer response for a negated test in the fourth segment of a test rule to Found (in the same way that it converts the Not Found response to Found), thereby avoiding the unnecessary error message.

Here are additional examples of rules that include exclamation marks.

861=BDFMPSU 008/39!_ T 040/a!DLC …

If the cataloging source code in a bibliographic record is not blank, subfield $a of the 040 field cannot be “DLC”.

9=A 008/09=f T 664!

If the kind-of-record code in an authority record is ‘f’, the record cannot contain a 664 field.

30=A 008/32=b T 100:1!3

If the unique personal name code in an authority record is ‘b’, the first indicator in the record’s 100 field cannot be ‘3’.

2.2.6. Combining tests

You can create complex statements in the second (condition) and fourth (test) segments of a rule by combining simple tests. To do this, join the tests with a logical operator. Use “OR” when any one of a number of conditions is sufficient; use “AND” when all of a set of conditions must be satisfied. A rule segment containing tests joined by “AND” produces the aggregate response of Found only if all of the individual tests in the segment produce the result Found. A rule segment containing tests joined by “OR” produces the aggregate response of Found if any of the individual tests in the segment produces the result Found.

Any compound expression in the second (condition) segment of a rule may contain either “AND” or “OR” operators, but it may not contain both. A compound expression in the test (fourth) segment of a rule may contain only the “OR” operator. (You can achieve the effect of the “AND” operator in the fourth segment by defining two or more rules, each identical up to the fourth segment.)

Examples of combined tests:

… 247 OR 550 …

If the record contains either a 247 or a 550 field …

… 008/33=e OR 008/34=e …

If either byte 33 or 34 of the 008 field contains code ‘e’ …

… 000/17=_ AND 000/18!a …

If Leader/17 contains “blank” and Leader 18 contains any code but ‘a’ …

… 008/07-14=uuuuuuuu OR 008/07-14=________ …

If 008/07-14 contains either eight ‘u’s or eight blanks …

… 246/i AND 246:2!_

If a bibliographic 246 field contains subfield $i and the second indicator is not blank …

Note: In any rule, multiple references to any tag are all applied against the field matching the first test in the rule. In this example, each 246 in a record will be inspected in turn for the presence of subfield $i; if a 246 field contains subfield $i, ValidIt will test the second indicator of the very same field. The value of the second indicator in any other 246 fields that may be present in the record does not affect the outcome of this test on this field.
… 045/b! AND 045/c! …

If a bibliographic 045 field contains neither subfield $b nor subfield $c …

… 100! AND 110! AND 111! AND 130! …

If the record contains no 1XX field …

Examples of complete rules containing combined tests:

852=S 007/00=h T 008/22={abc} OR 008/23={abc} …

If a serial record contains an 007 field whose first character is ‘h’, then either byte 22 or 23 of the 008 field must contain code ‘a’, ‘b’ or ‘c’

420=BDFMPU 008/06=e T <1:008/13-14,0123456789u> OR 008/13-14=__ …

If byte 06 of a non-serial 008 field contains code ‘e’, then bytes 13-14 of the 008 field must either contain a numeral or the letter ‘u’, or they must contain two blanks.

146=BDFMPSU 082/2! AND 000/17={_458} AND 000/18=a F <37:082,|221>

If a bibliographic record contains an 082 field that does not contain subfield $2 and if byte 17 of the Leader contains blank, ‘4’, ‘5’ or ‘8’ and if byte 18 of the leader contains code ‘a’, then add subfield $2 to the 082 field.

20=P 000/06=e AND 000/17-18=_a T 255 …

If byte 06 of the Leader in a Map record contains code ‘e’ and if bytes 17-18 of the Leader contain ‘blank-a’ then the record must contain a 255 field.

2.2.7. Reflexive rules

Some rules you will wish to enforce are reflexive: the test and condition in one rule switch places and become the condition and test in another rule. Performing only one of these two rules is not adequate; both of the rules must be performed to ensure that the record is coded correctly.

Example of a rule that is reflexive.

Basic rule: Bibliographic 600 second indicator value ‘7’ and subfield $2 are a unit; if one appears in a field, both must appear.

This two-part rule can be stated more simply as two separate rules, which attack the problem from both ends. Note in this restatement that the “if” and “then” portions of the first rule reverse their positions in the second rule.

1. If the second indicator in a bibliographic 600 field contains code ‘7’, then the field must also contain subfield $2.

2. If a bibliographic 600 field contains subfield $2, then its second indicator must be ‘7’.

There is no technique available in ValidIt’s rule definition grammar for indicating that a given rule is reflexive. You must include two separate definitions for reflexive rules.

Examples

216=BDFMPSU 600/2 T 600:2=7 …

In a bibliographic record, if a 600 field contains subfield $2, then the second indicator of the field must be ‘7’.

215=BDFMPSU 600:2=7 T 600/2 …

If a bibliographic record contains a 600 field whose second indicator is ‘7’, then the 600 field must contain subfield $2.

If only the first of these tests were performed it would be possible to have a 600 field with second indicator ‘7’ which did not contain subfield $2. If only the second of these tests were performed it would be possible to have a 600 field with subfield $2 whose second indicator was not ‘7’.

88=M 008/18-19=mu T 047

130=M 047 T 008/18-19=mu

In a “Music” record, if positions 18-19 of the 008 field contain “mu”, then the record must also contain an 047 field. Similarly, if a “Music” record contains an 047 field, then positions 18-19 of the 008 field must contain “mu”.

If only the first of these tests were performed it would be possible to have an 047 field in a “Music” record whose 008/18-19 contained some value other than “mu”. If only the second of these tests were performed it would be possible to have the value “mu” in 08/18-19 without a corresponding 047 field.

Of course, most rules are not reflexive, and care must be taken to construct them so that the desired result is achieved.

Example

159=BDFMPSU 411:2=1 T 111

In a bibliographic record, if the second indicator of a 411 field is ‘1’, the record must contain a 111 field.

There is no reflexive rule definition, because the reflex rule is not true: in a bibliographic record, the presence of a 111 field does not mean that the second indicator of any 411 field must be ‘1’.

2.2.8. Rules defined for efficiency

Many rules can be stated in more than one way. The question of which of the possible versions to define should be made by considering the efficiency with which each test can be made, and the corresponding amount of time each test will take. In general, when presented with alternative ways to state a given rule, you should structure the validation rule so that situations that occur less frequently appear as far to the left in the rule as possible.

Example

The rule to be enforced may be stated as follows:

In a bibliographic record, if subfield $b is present in a 611 field, then Leader/18 cannot be ‘a’.

This rule could be expressed in two different ways, either of which by itself would enforce the proper coding:

121=BDFMPSU 000/18=a T 611/b!

122=BDFMPSU 611/b T 000/18!a

The first version means: In a bibliographic record, if Leader/18 is ‘a’, then no 611 field may contain subfield $b. The second version means: In a bibliographic record, if a 611 field contains subfield $b, then Leader/18 may not be ‘a’.

Only one of these two rules need be defined in order to ensure that records are correct; the decision of which rule to use should be based on the perceived efficiency of the two rules.

If the first rule were defined, then every AACR2 record would have to be scanned for 611 fields; every 611 field in every AACR2 record would have to be scanned for subfield $b. If the second rule were defined, then only records that contain 611 fields (a very small number of records in any typical file will contain a 611) will pass under the rule, and among those only records whose 611 field contains subfield $b would have their Leader code checked. In other words, the fourth segment of the first rule would be applied against almost every record in a typical file, the fourth segment of the second rule against very few records. Since both rules eventually produce the same result, the second rule is the one that should be defined.

2.2.9. Triggering a rule

ValidIt uses the first tag referred to in the second segment of a rule (the condition or if segment) as the rule’s principal tag. ValidIt compares the tag of each variable field in the record being examined against this tag. ValidIt only attempts to apply the rule if these tags match; a rule may be said to be “triggered” by the appearance of its principal tag in the record being examined.

860=BDFMPSU 040/a=DLC T 008/39=_ …

Rule: If a bibliographic record contains an 040 field whose subfield $a contains the code ‘DLC’, byte 39 of the record’s 008 field most contain a blank

 This rule is triggered only if a bibliographic record contains an 040 field.

353=BDFMPSU 305 T 000/18!a …

Rule: If a bibliographic record contains a 305 field, then byte 18 of its Leader cannot contain code ‘a’.

This rule is triggered only if a bibliographic record contains a 305 field.

Although you may construct elaborate condition segments with the “AND” and “OR” operators, you should keep in mind that condition segments that refer to multiple fields, or multiple subfields within the same field, may not properly cause the rule to be triggered. In such cases, you must either construct separate rules, or recast the rule altogether.

Rule to be enforced:

If a bibliographic record contains a 400, 410 or 411 field, then Leader/18 may not be ‘a’.

Incorrect formulation of this rule:

492=BDFMPSU 400 OR 410 OR 411 T 000/18!a …

This rule will properly be triggered, and will work correctly, if a bibliographic record contains a 400 field; but it will not be triggered if the record contains only a 410 or a 411 field. To enforce a rule such as this, you must construct a series of rules:

492=BDFMPSU 400 T 000/18!a …

493=BDFMPSU 410 T 000/18!a …

494=BDFMPSU 411 T 000/18!a …

Rule to be enforced:

If a bibliographic record does not contain a 1XX field, then the first indicator in the 245 field must be ‘0’.

Incorrect formulation of this rule:
5=BDFMPSU 100! AND 110! AND 111! AND 130! T 245:1=0

This rule will be properly triggered, and will work correctly, when the record does not contain a 100 field, as the test for the absence of the 100 field activates the rule. This rule will not be activated if the record does not contain any other 1XX field. This rule could be reformulated as a series of rules:

5=BDFMPSU 100! AND 110! AND 111! AND 130! T 245:1=0

6=BDFMPSU 110! AND 100! AND 111! AND 130! T 245:1=0

7=BDFMPSU 111! AND 100! AND 110! AND 130! T 245:1=0

8=BDFMPSU 130! AND 100! AND 110! AND 111! T 245:1=0

However, the rule would be more efficient if completely recast:

5=BDFMPSU 245:1=1 T 100 OR 110 OR 111 OR 130 …

Similarly, tests that involve tag specifications containing “X” should not appear as the first element in any rule.

Rule to be enforced:

If the second indicator in a bibliographic 1XX field is not blank, then change the indicator to blank.

Incorrect formulation of this rule:
341=BDFMPSU 1XX:2!_ F 1XX:2=_

This rule will not examine the second indicator in any 1XX field. Use a series of tests to achieve the same work:
341=BDFMPSU 100:2!_ F 100:2=_

342=BDFMPSU 110:2!_ F 110:2=_

343=BDFMPSU 111:2!_ F 111:2=_

344=BDFMPSU 130:2!_ F 130:2=_

2.2.10. Rules with only one test

A few rules can be stated as a single test, which makes it appear difficult to express them as “if-then” statements, and consequently to have something useful in both the second and fourth segments of a rule.
 For such rules, give a statement of the test in the second segment, and give the negation of the very same test in the fourth segment. Records that satisfy the first version of the test will be trapped by the second version of the test. As shown in the following example, some rules of this type are best expressed by giving the negation of the test in the second segment, and the positive version in the fourth.

72=P 300! T 300 …

A map record must contain a 300 field. (Literal translation: If a map record does not contain a 300 field, then that record must contain a 300 field.)

2.2.11. Exceptional conditions

Outline

2.2.11.1
General remarks

2.2.11.2
Severity levels and associated messages

2.2.11.3
Exception 1: Test multiple single-character positions

2.2.11.4
Exception 2: Compare fixed field and variable field texts, and perhaps change

2.2.11.5
Exception 4: Test the length of a variable field

2.2.11.6
Exception 5: Test the order of codes in a fixed-field element, and perhaps change

2.2.11.7
Exception 6: Test a series of single-character fixed-field positions

2.2.11.8
Exception 7: Compare 008 “illustration” codes to the 300 field

2.2.11.9
Exception 9: Test fixed-field codes for redundancy, and perhaps change

2.2.11.10
Exception 10: Test the format of certain subfields, and perhaps change

2.2.11.11
Exception 11: Test the date a record was created

2.2.11.12
Exception 12: Scan for the occurrence of any of a group of variable fields

2.2.11.13
Exception 13: Inspect a field or subfield for the presence of wrapper characters

2.2.11.14
Exception 14: Test the number of occurrences of a condition

2.2.11.15
Exception 15: Test the correspondence of the number of appearances of two tags

2.2.11.16
Exception 16: Create a missing 034 field from a 255 field

2.2.11.17
Exception 17: Compare language code to first language name in a uniform title

2.2.11.18
Exception 18: Change tag, one or both indicators, tag and one or both indicators, or subfield code

2.2.11.19
Exception 21: Inspect the wrapper characters in a field or subfield, and perhaps remove them

2.2.11.20
Exception 22: Supply wrapper characters if not present

2.2.11.21
Exception 23: Test for the presence of leading character(s), and perhaps remove them

2.2.11.22
Exception 24: Force the first character in a subfield to upper-case

2.2.11.23
Exception 25: Remove wrapper characters from all subfields except the first

2.2.11.24
Exception 27: Remove a field or subfield

2.2.11.25
Exception 32: Validate the initial part of bibliographic 4XX fields

2.2.11.26
Exception 33: Convert “--” to “ -- ”

2.2.11.27
Exception 37: Add a new field to the record, or add a subfield to an existing field

2.2.11.28
Exception 38: Compare values of two fixed-field positions

2.2.11.29
Exception 39: Compare the value of a fixed-field position to a constant

2.2.11.30
Exception 40: Substitute one subfield for another

2.2.11.31
Exception 41: Scan the record for some text

2.2.11.32
Exception 42: Compare the dates in 008 and 260/c

2.2.11.33
Exception 43: Replace one piece of text with another

2.2.11.34
Exception 44: See which of two subfield codes comes first in a bibliographic record
2.2.11.35
Exception 45: Test date format

2.2.11.36
Exception 46: Compare two formatted dates

2.2.11.37
Exception 47: Test subfield against list

2.2.11.1 General remarks

Elaborate though it may be, the syntax for validation rules described elsewhere in this Appendix does not cover every possible situation. This syntax does not provide for every kind of inspection you might wish to make to a record, and it does not provide for every kind of modification you might wish to make to a record. However, ValidIt does provide a mechanism that allows you to define tests and modifications beyond those that are part of ValidIt’s standard set of features, and to use those special tests and modifications as part of ValidIt’s normal handling of bibliographic and authority records.

To gain an understanding of how the exception mechanism works, it may be easiest to consider a typical situation in which the capabilities built into ValidIt are not adequate. Assume that you wish ValidIt to perform the following work:

If the second indicator in a bibliographic 1XX field is ‘1’, compare the 1XX field against the record’s 6XX fields. If it does not appear that the 1XX is represented among the record’s 6XX fields, copy the 1XX into a 6XX field. In any case, set the 1XX field’s second indicator to “blank”.

The first and last parts of this activity are simple, and could be covered by a rule drawing on standard features of ValidIt:

341=BDFMPSU 100:2=1 F 100:2=_

If the second indicator in a bibliographic 100 field is ‘1’, change the indicator to blank.

However, this rule wouldn’t perform the difficult work of comparing the 100 to the 600 fields, and of copying the 1XX to 6XX when necessary; in fact, nothing in ValidIt allows for this kind of work. You need have an exception defined in the tool if you wish to do this work.

In the past, it was the task of individual ValidIt users to write their own special routines. (Source code for part of the ValidIt tool was provided, to make this possible.) However, that arrangement proved unworkable in the long run. The author of ValidIt is now responsible for creating new exceptional routines. As the need for new routines becomes evident
 they get added to the tool, and then they’re available to everyone who uses the tool. It remains for individual ValidIt users only to refer to the exceptional routines in their validation rules.

Each of the exceptional test and change routines is assigned an exception number, which is just an arbitrary integer. You include this integer as part of your rule definition. All references in validation rules to exceptional routines are enclosed within angle brackets.

72=B 008/18-21=____ F <7>

If bytes 18 through 21 of a ‘books’ 008 field contain blanks, then perform special routine number 7.

In many cases (as described below), the reference to an exceptional routine must include additional information, such as the tag/subfield of interest.

94 BDFMPSU 010/a F <10:010/a,010/z>

If a bibliographic record contains an 010 field that contains subfield $a, perform special routine number 10. Pass to that routine the following information: “010/a,010/z”.

In general, if the call to the exception routine in a validation rule identifies fixed or variable fields, then some portion of the validation rule that precedes the reference to an exception routine should refer to these same fields. In the preceding rule , the call to special routine 10 (within the angle brackets) in the fourth segment of the rule includes a mention of the 010 field; this field is also referred to in the second segment of the rule.

The following pages describe the exceptions that have already been added to ValidIt, and show the syntax to use when invoking them. Note that although these exceptions all occupy the same general range of numbers, not all numbers in the range are used.

2.2.11.2 Severity levels and associated messages

NEED A PARAGRAPH ON THE SUBJECT OF SEVERITY CODES AND MESSAGES FOR SPECIALS. As part of this, you’ll also mention the “%%” technique in exception 10 for inserting the offending number into the message.

2.2.11.3. Exception 1: Test multiple single-character positions for any one of a set of single-character values

This exception routine tests a series of fixed-field positions for any one of a number of possible values. If all of the defined fixed-field positions contains any of the indicated values, the routine returns Found; if any one of the defined positions does not contain one of the indicated values, the routine returns Not Found. This exception should not be included in the fourth segment of a force rule.

The exception definition consists of the exception number, a colon, a definition of the relevant fixed-field position, a comma, and a list of the values that must appear in each position of that fixed-field area.

Examples

50=BDFMPU 008/06={eqs} T <1:008/07-10,0123456789u> …

If a non-“Serial” record contains code ‘e’, ‘q’ or ‘s’ in 008/06, then 008 positions 07 through 10 must each contain a numeral or the letter ‘u’.

The following rule is presented here on two lines because of its length; in the configuration file, this rule must appear as a single line.

45=BDFMPU 008/06={mr} T <1:008/07-10,0123456789u> OR

<1:008/11-14,0123456789u> …

If a non-“Serial” record contains code ‘m’ or ‘r’ in 008/06, then either 008 positions 07 through 10 must each contain a numeral or the letter ‘u’; or 008 positions 11 through 14 must each contain a numeral or the letter ‘u’.

Unicode note: fixed fields can only contain single-byte characters.

2.2.11.4. Exception 2: Compare fixed field and variable field texts, and perhaps change the fixed field value

This exception routine compares a code appearing in a variable field with a code appearing in the 008 field. If the exception is part of a test rule, the routine returns Not Found if the codes are not the same, Found if they are the same. If the exception is part of a force rule, the routine changes the code in the fixed field to match the code in the variable field. (ValidIt only makes a change if the fixed field does not already contain the code from the variable field.)

The exception definition consists of the exception number, a colon, an identification of the fixed-field code, a comma, and an identification of the variable field against which the 008 code should be compared.

Examples

63=BDFMPU 044/a AND 008/15-17!||| T <2:008/15-17,044/a> …

If a non-“Serial” record contains an 044 field with subfield $a and also contains any code other than fill characters in 008 positions 15-17, perform test 2; in this test, compare 008/15-17 with the first three characters of subfield $a of the 044 field.

64=BDFMPU 041/a AND 008/35-37!||| T <2:008/35-37,041/a> …

If a non-“Serial” record contains an 041 field with subfield $a and also contains any code other than fill characters in 008 positions 35-37, perform test 2; in this test, compare 008/35-37 with the first three characters of subfield $a of the 041 field.

65=BDFMPU 041/a AND 008 F <2:008/35-37,041/a> …

If a non-“Serial” record contains an 041 with subfield $a and an 008 field, ValidIt will copy the first three characters in 041 subfield $a to positions 35-37 of the 008 field.

2.2.11.5. Exception 4: Test the length of a variable field
This exception routine tests the data portion of a variable field or subfield in some specified manner against some specified length. The routine returns Found if the comparison succeeds, Not Found if the comparison fails. This exception routine should not appear in the fourth segment of a force rule.

The exception definition consists of the exception number, a colon, the tag of the field to test (or a tag/subfield combination), a comma, a comparison operator, another comma, and a number representing the length of interest. When determining the length of a field, the routine does not consider the first subfield code, or the MARC end-of-field character. (The routine does consider any subfield codes internal to the field.)

Use the following codes for the comparison operators:

=
The length of the field should match the specified length

<
The length of the field should be less than the specified length

>
The length of the field should be greater than the specified length

<=
The length of the field should be less than or equal to the specified length

>=
The length of the field should be greater than or equal to the specified length

<>
The length of the field should be something other than the specified length

Example

66=BDFMPSU <4:041,<,4> F <27:041>

If a bibliographic 041 field has fewer than 4 data characters, delete the field.

2.2.11.6. Exception 5: Test the order of codes in a fixed-field element; and perhaps change the element
This exception routine determines whether or not the codes in a multi-character fixed-field element (in an 006 or 008 field) are in alphabetical order. If the codes are not in order, the routine either returns the value Not Found (for test rules) or rearranges the codes (for force rules).

The exception definition consists of the exception number, a colon, and an identification of the fixed-field codes to inspect. (In most cases, the codes to inspect will be the same as those that are defined in the condition segment of the rule.)

Examples

75=B 008/18-21!____ T <5:008/18-21> 1:3 Check illustration codes

If a Book record contains an 008 field whose positions 18-21 are not all blanks, ValidIt will test the order of codes. Because this is a test rule, if the codes are not already in the proper order, ValidIt will prepare an error message.

70=B 008/18-21!____ F <5:008/18-21>

If a Book record contains an 008 field whose positions 18-21 are not all blanks, ValidIt will arrange the codes into ascending alphabetic order

71=BDFMPSU 006/00=a AND 006/01-04!____ F <5:006/01-04>

Perform the operation described just above on the corresponding positions of an 006 field. As noted elsewhere in this document, ValidIt does not automatically map tests of elements in bibliographic 008 fields to the corresponding elements of 006 field. If you want to test elements in 006 fields, you must define such tests explicitly.

74=B 008/24-27!____ F <5:008/24-27>

If a Book record contains an 008 field whose positions 24-27 are not all blanks, ValidIt will arrange the codes into ascending alphabetic order

2.2.11.7. Exception 6: Test a series of single-character fixed-field positions for a given value
This exception routine tests a series of fixed-field positions for a given code or codes. If the indicated code or codes appears in any of the indicated positions, the routine returns Found; if none of the indicated codes appears in any of the indicated positions, the routine returns Not Found.

This test differs from Exception 1. In Exception 6, the presence of any of the specified code or codes in any position produces the result of Found; in Exception 1, all positions must contain one of the specified codes to produce the result of Found.

The exception definition consists of the exception number, a colon, the fixed-field element to test, and the desired code(s).

Examples

71=B <6:008/18-21,|> T 008/18-21=|||| …

If any position in 008/18-21 of a Book record contains a fill character, then all of those positions must contain a fill character.

375=B <6:008/24-27,bq>! T 504! …

If no position in 008/24-27 of a Book record contains a ‘b’ or ‘q’, then the record should not contain a 504 field.

Unicode note: fixed-field positions may only contain single-octet values.

2.2.11.8. Exception 7: Compare 008 “illustration” codes to information in the 300 field, and perhaps change the 008 codes

This exception routine derives codes for illustrations, using words that appear in a bibliographic 300 field, and compares these codes to the illustration codes in the record’s fixed field. If this exception appears in either the second or fourth segment of a test rule or the second segment of a force rule and the two sets of codes are the same, the routine returns Found; if the two sets of codes are not the same, the routine returns Not Found. If this exception appears in the fourth segment of a force rule, ValidIt changes the illustration codes to match the codes derived from the 300 field.

Exception routine 7 should only be applied against bibliographic records for “books.” The exception should not be applied to records that already have cataloger-assigned codes in 008/18-21.

The exception definition consists solely of the exception number.

Example

72=B 008/18-21=____ OR 008/18-21=|||| F <7>

If a Book record contains blanks or fill characters in 008/18-21, supply codes based on the 300 field.

73=B 008/18-21!____ AND 008/18-21!|||| T <7> …

If a Book record does not contain blanks or fill characters in 008/18-21, compare the codes in 008/18-21 against information in the 300 field.

The following table shows the 008/18-21 codes that ValidIt supplies when the indicated words or abbreviations appear in the 300 field.

	Code
	Corresponding words in 300 field

	a
	ill, ill., illus, illus., diagr, diagr., diagrs, diagrs., photo, photo., photos, photos., tab, tab., tables, tables.

	b
	map maps

	c
	port, port., ports, ports., group port, group port., group ports, group ports.

	d
	chart, charts

	e
	plan, plans

	f
	plate, plates, pl., pls.

	g
	music

	h
	facsim, facsim., facsims, facsims., facsimile, facsimiles

	i
	coat of arms, coats of arms

	j
	geneal. table, geneal. tables

	k
	form, forms

	l
	sample, samples

	m
	cassette, cassettes, phonodisc, phonodiscs, phonotape, sound

ValidIt will select up to 4 codes, and will place them in alphabetic order, with blank fill on the right.

2.2.11.9. Exception 9: Test fixed-field codes for redundancy, and perhaps change the codes

This exception routine examines a multi-character fixed field element, removing codes that appear more than once. If the exception is included in either the second or fourth segment of a test rule or the second segment of a force rule, and if the original and modified codes are the same, the routine returns Found; if the original and modified codes are not the same, the routine returns Not Found. If this exception is included in the fourth segment of a force rule and the original and modified codes are not the same, the routine changes the fixed field codes.

The exception definition consists of the exception number, a colon, and an identification of the fixed-field element on which the exception should operate.

Examples

76=B 008/18-21!____ AND 008/18-21!|||| F <9:008/18-21>

If a “Book” record does not contains blanks or fill in 008/18-21, remove any redundant codes in this fixed-field element.

89=M 008/24-29!______ AND 008/24-29!|||||| F <9:008/24-29>

If a “Music” record does not contains blanks or fill in 008/24-29, remove any redundant codes in this fixed-field element.

2.2.11.10. Exception 10: Test the format of certain subfields, and perhaps change their format

This exception routine inspects the contents of subfields whose correct construction can be determined by reference to a rule.
 This exception can be defined as a test; under certain circumstances it can be defined as a force.
If this exception routine is included in either the second or fourth segment of a test rule, or the second segment of a force rule, the exception definition consists of the exception number, a colon, and an identification of the subfield on which the routine should operate. The routine will indicate Found if the contents of the subfield are satisfactory, and will indicate Not Found if the contents are not satisfactory.

Examples

94=BDFMPSU 010/a T <10:010/a> …

Inspect 010 subfield $a.

96=BDFMPSU 440/x T <10:440/x> …

Inspect 440 subfield $x.

This exception routine may be included in the fourth segment of a force rule under certain conditions.

· For a few subfields (identified below), if the contents of the subfield are not satisfactory but ValidIt can adjust the subfield to make the contents satisfactory, it will do so.

95=BDFMPSU 010/a F <10:010/a>

Inspect and adjust the layout of 010 subfield $a. If the subfield is not properly formatted and the routine can adjust the subfield to make it proper, it will do so.

· If the contents of the subfield are not satisfactory and ValidIt cannot make them satisfactory, and if the subfield code is $a (and then only for certain fields), ValidIt can move the contents of the subfield to another subfield in the same field. To tell ValidIt that it can move the contents of one subfield to another if the subfield is not acceptable, include in the exception definition an identification of the new subfield into which unsatisfactory subfield should be moved.

95=BDFMPSU 010/a F <10:010/a,010/z>

Inspect and adjust the layout of 010 subfield $a; if the subfield cannot be rendered satisfactory, move the contents of 010 $a to 010 $z.
· If the contents of the subfield are not satisfactory and cannot be rendered satisfactory or moved to another subfield, the routine will prepare an error message.

The version of this routine supplied with ValidIt is designed to handle only certain subfields; these subfields are listed in the following sections. In some cases, information in a field not listed below needs to be tested in the same manner as one of the listed subfields. For example, you may copy the bibliographic 010 field to the 019 field and modify the copy for some purpose; and you may wish to validate the 019 field according to the rules used for 010 fields. If this is the case, follow all other elements within the angle brackets with a semicolon and the tag of the field whose rules should be used to validate the contents of the otherwise-unrecognized field.

22=BDFMPSU 019/a T <10:019/a,010/z;LC;010> …

Inspect the layout of 019 subfield $a, using the rules defined for validating subfield $a of 010 fields; apply the “LC” validation model defined for 010 fields.
010 subfields $a and $z

The exception routine can process subfields $a and $z of the 010 field. If the contents of 010 $a cannot be rendered satisfactory during performance of a force rule, the routine can move the contents of $a to $z.
Examples

96=BDFMPSU 010/a T <10:010/a>

Inspect 010 subfield $a. If the subfield is not satisfactory, prepare an error message.

97=BDFMPSU 010/a F <10:010/a>

Inspect and adjust 010 subfield $a. If the subfield is not satisfactory and cannot be made so, prepare an error message.

95=BDFMPSU 010/a F <10:010/a,010/z>

Inspect and adjust 010 subfield $a; if the subfield is not satisfactory and cannot be made so, move the contents of $a to $z.

In its migration to Vger from its previous system, the Library of Congress stripped suffixes of all kinds from its 010 fields. The Library of Congress now considers the appearance of suffixes in 010 fields to be an error. However, bibliographic records in non-LC databases (including your local database) will probably continue to bear 010 fields with suffixes for some time to come.
 If the records to be validated may contain suffixes in bibliographic LCCNs, you need take no special action; ValidIt will not complain about text formatted as an LCCN suffix. If you wish to enforce LC’s rule for the format of bibliographic 010 fields (i.e., the rule stating that suffixes are not allowed), place the flag “;LC” at the end of the text within angle brackets in the reference to exception routine number 10.

94=BDFMPSU 010/a T <10:010/a;LC> …

95=BDFMPSU 010/a F <10:010/a,010/z;LC>

Regardless of your practice for bibliographic records, you should probably include this flag in rules that inspect authority 010 fields, as suffixes were never defined for use in authority 010 fields.

83=A 010/a T <10:010/a;LC>

The routine recognizes two different formats for 010 subfields $a and $z. The routine does not attempt to determine whether the “right” format has been used for a given number, only that the number is formatted properly.

If a number otherwise corresponds to one of the two recognized schemes but lacks the leading or trailing spaces and if the reference to exception 10 is contained in a force rule, the routine will add the spaces. Likewise, if a number contains a hyphen between the second and third (or fourth and fifth) digits, the routine will remove the hyphen; if the numeric portion following the hyphen contains fewer than six digits, the routine will add leading zeroes.

For both formats, ValidIt validates any prefix contained in the LCCN against the list of valid prefixes defined in the file codes.cfg. If the prefix is not defined, ValidIt produces an error message.

Format 1: valid for numbers assigned before January 2, 2001

The LC control number consists of three alphabetic characters (or blanks), 8 digits, and a space. These 12 characters may be followed by additional information, which is not inspected or tested in any way.

Examples of valid 010 fields (“#” represents a space)

###95156543#

###94014580#/AC/r95

###79310919#//r86

gm#71005810#

Examples of 010 fields that can be converted into valid form (“#” represents a space)

95156543 becomes ###95156543#

94-14580/AC/r95 becomes ###94014580#/AC/r95

gm71005810 becomes gm#71005810#

Examples of 010 fields that cannot be converted into valid form

956543

agr71-1258123

Format 2: Valid for numbers assigned after January 1, 2001

The LC control number consists of two alphabetic characters (or blanks) and 10 digits. The use of suffixes and other trailing information in the 010 is discontinued; if suffixes appear, they will not be inspected or tested in any way.

Examples of valid 010 fields (“#” represents a space)

##2005256543

gm2005005810

Error messages

The routine for the validation of 010 subfields behaves differently from many other routines. This routine does not stop when it encounters the first problem with an 010 field, but continues its inspection of the field, and reports all problems it finds. Here are the messages that may be produced by this routine. In all of these messages, the string “###” represents the LCCN being tested, or a relevant portion of it.

010 (###) length incorrect; must be 12 characters (including spaces)

The routine only produces this message if the validation rule contains the “;LC” flag. LCCN subfields prepared according to LC’s current practice must always contain exactly 12 characters.
010 (###) contains suffix; all suffixes now invalid

The routine only produces this message if the validation rule contains the “;LC” flag. LCCN subfields prepared according to LC’s current practice may not contain suffixes.
010 (###) should not have any suffix

Suffixes are not used in format-2 010s.
010 prefix (###) begins with space(s)

The LCCN prefix begins with a space (and it does not consist solely of spaces).
010 prefix (###) not defined

The LCCN prefix is not defined in the file codes.cfg.

Bad prefix length in 010 (###); should be 3, including spaces

Bad prefix length in 010 (###); should be 2, including spaces

The length of the LCCN prefix is incorrect (the correct length depends on the format of the numeric portion).
Improper suffix in 010 (###); slash needed

The suffix contains more than a single blank, the validation rule does not contain the “;LC” flag, and the first character after the blank is not a slash.
Prefix required in 010 (###)

All 010s in authority records must have prefixes.
Serial portion of 010 (###) contains invalid character(s)

The numeric portion of the LCCN contains characters other than numerals.
Serial portion of 010 (###) contains invalid hyphen

The routine only produces this message if the validation rule contains the “;LC” flag. The numeric portion of the LCCN contains a hyphen.
Serial portion of 010 (###) has invalid length

The numeric portion of the LCCN contains either too many or too few characters.
Suffix in 010 (###) missing; should be space

All format-1 010s should contain a suffix consisting at least of a blank space.
Suffix in 010 (###) should be single space

If the validation rule contains the “;LC” flag, the suffix in a format-1 010 may be only a single blank space.
Suffix in 010 (###) should start with a space

The suffix in all format-1 010s (if the validation rule does not contain the “;LC” flag) should begin with a blank space.
016 subfields $a and $z

The routine can inspect subfields $a and $z of the 016 field; the routine should only be asked to do this if the first indicator of the 016 field is blank (indicating that the field contains the National Library of Canada control number). If the contents of $a cannot be rendered satisfactory during performance of a force rule, ValidIt can move the contents of $a to $z.

Examples

196=BDFMPSU 016:1=_ AND 016/a T <10:016/a>

Inspect 016 subfield $a.

197=BDFMPSU 016:1=_ AND 016/a F <10:016/a>

Inspect and adjust 016 subfield $a; if the subfield is not satisfactory and cannot be made so, prepare an error message.

195=BDFMPSU 016:1=_ AND 016/a F <10:016/a,016/z>

Inspect and adjust 016 subfield $a; if the subfield is not satisfactory and cannot be made so, move the contents of $a to $z.

The routine recognizes two different formats for 016 subfields $a and $z. The routine does not attempt to determine whether the “right” format has been used for a given number, only that the number is formatted properly.

Format 1: valid for numbers assigned until 2001

The NLC control number consists of a prefix character (which may be absent), 8 digits and a check digit.
 This information may be followed by a language code and/or revision information.

Examples of valid 016 fields (“#” represents a space)

#721234569##

#721234569E#

Format 2: valid for numbers assigned after 2000

The NLC control number consists of 10 digits and a check digit. (The first four digits represent the year, and must have a value higher than 2000.) This information may be followed by a language code and/or revision information.

Examples of valid 016 fields (“#” represents a space)

#20011234569##

#20011234569E#

020 subfields $a and $z

The routine can inspect subfields $a and $z of the 020 field. If the contents of $a cannot be rendered satisfactory during performance of a force rule, ValidIt can move the contents of $a to $z.

The routine attempts to distinguish between the “numeric” portion of the subfield and any information (such as “(pbk.)”) included with the number. The routine discards any “ISBN” string and associated punctuation at the start of the subfield, removes any spaces or hyphens that may appear in the number, and upper-cases the check digit if it is ‘x’. If the ISBN contains only 9 digits, the routine adds a zero to the left end of the number. Using the standard modulus 11 algorithm, the routine compares the distinctive part of the number against its check digit.

101=BDFMPSU 020/a T <10:020/a>

Inspect 020 subfield $a.

97=BDFMPSU 020/a F <10:020/a>

Inspect and adjust 020 subfield $a; if the subfield is not satisfactory and cannot be made so, prepare an error message.

100=BDFMPSU 020/a F <10:020/a,020/z>

Inspect and adjust 020 subfield $a; if the subfield is not satisfactory and cannot be rendered so, move the contents of $a to $z.

ValidIt can test an ISBN in subfield $z of certain bibliographic fields in the same manner.

105=BDFMPSU 785/z T <10:785/z>

Inspect 785 subfield $z.

022 subfields $a, $y and $z

The routine can inspect subfields $a, $y and $z of the 022 field. If the contents of $a cannot be rendered satisfactory during performance of a force rule, the routine can move the contents of $a to $y.

A valid ISSN consists of 9 characters. The first four characters must be numerals, the fifth must be a hyphen, the sixth through eight characters must be numerals, and the check digit must be a numeral or “X”. Using the standard modulus 11 algorithm, the routine compares the distinctive part of the number against its check digit.

104=BDFMPSU 022/a T <10:022/a>

Inspect 022 subfield $a.

104=BDFMPSU 022/a F <10:022/a>

Inspect and adjust 022 subfield $a; if the subfield is not satisfactory and cannot be rendered so, prepare an error message.

103=BDFMPSU 022/a F <10:022/a,022/y>

Inspect and adjust 022 subfield $a; if the subfield is not satisfactory and cannot be rendered so, move the contents of $a to $y.

ValidIt can test an ISSN appearing in subfield $x of certain bibliographic fields in the same manner.

318=BDFMPSU 490/x T <10:490/x>

Inspect 785 subfield $x.

105=BDFMPSU 785/x T <10:785/x>

Inspect 785 subfield $x.

045 subfields $a, $b and $c
ValidIt cannot move one subfield of this field to another; a test of the 045 field has no place in the fourth segment of a force rule.

Subfield $a must contain 4 characters. The first and third characters must be lower-case letters, and the second and fourth must be a numeral or a hyphen. (Only zero or hyphen are used after “a”; “z” is not used at all.)

Subfield $b must begin ‘b’ or ‘c’ and contain a string of numerals in the form yyyymmddhh.
 Subfield $c must contain only numerals.

124=BDFMPSU 045/b T <10:045/b>

Inspect 045 subfield $b.

125=BDFMPSU 045/c T <10:045/c>

Inspect 045 subfield $c.

046 subfields $b, $c, $d and $e

Each of these subfields may contain any mixture of numerals, the letter ‘u’, and hyphens. Examination of the 046 field has no place in the fourth segment of a force rule.

125=BDFMPSU 046/d T <10:046/d>

Inspect 046 subfield $d.

126=BDFMPSU 046/e T <10:046/e>

Inspect 046 subfield $e.

263 subfield $a

There are two possible formats for the contents of the 263 field. ValidIt does not attempt to determine whether the “right” format has been used in a 263 field.

141=BDFMPSU 263/a T <10:263/a>

Inspect 263 subfield $a.

Format 1: in use at least into the year 2000

The field must either contain four digits, the first two of which must be in the range 00-99, and the last two in the range 01-12; or the field must contain two digits in the range 00-99, and two hyphens.

Format 2: in use no earlier than the year 2000

The field must either contain six digits, the first four of which must be equal to or greater than 1999, and the last two in the range 01-12; or the field must contain four digits equal to or greater than 1999, and two hyphens.

Unicode note: special routine 10 does not recognize multi-byte characters; the routine will report as invalid any standard number that contains multi-byte characters in the number part of the subfield. (The routine does not, for example, inspect characters in a 020/a subfield following the ISBN; this extra text may contain multi-byte characters.)

2.2.11.11. Exception 11: Test the date a record was created

This test exception compares the date (year) in which a record was created against some target year. The exception routine extracts the two-digit year of record creation from bytes 00-01 of the 008 field, and converts it into four digits. (See the description of the AdjustmentFor​ObsoleteData property for the conversion strategy.) The routine then compares this date with the date supplied in the exception definition, using the comparison type also supplied in the exception definition. If the dates satisfy the comparison conditions, the routine returns Found; if dates do not satisfy the conditions, the comparison returns Not Found. This exception does not belong in the fourth segment of a force rule.

The exception definition consists of the exception number, a colon, a 4-digit year, a comma, and the comparison type. Use the following symbols for the comparison type:

=
The date of record creation must match the supplied value

>
The date of record creation must be greater than the supplied value

>=
The date of record creation must be greater than or equal to the supplied value

<
The date of record creation must be less than the supplied value

<=
The date of record creation must be less than or equal to the supplied value

<>
The date of record creation must not be the same as the supplied value

Example

375=B 041:1=1 AND <11:1989,>> T 041/h …

If the first indicator in the 041 field in a books record is ‘1’ and the record was created after 1989, then the 041 field must contain subfield $h.

The exception definition may contain an optional comma plus “005” at the end. If this flag is present, ValidIt uses the date in the 005 field instead of the date in the 008 field for the comparison.
376=B 041:1=1 AND <11:1989,>,005> T 041/h …

If the first indicator in the 041 field in a books record is ‘1’ and the record was modified after 1989, then the 041 field must contain subfield $h.

2.2.11.12. Exception 12: Scan for the occurrence of any of a group of variable fields
This test exception scans the entire record to see if it contains any one of several variable fields. The routine returns Found if the record contains any of the indicated fields, and returns Not Found if the record contains none of the fields. This routine does not return the value No Answer. This exception does not belong in the fourth segment of a force rule.

The exception definition consists of the exception number, a colon, and a specification of the fields to be tested. The fields to be tested may be given in any of these forms:

· A list of individual tags, separated by commas. The routine returns Found if the record contains any of these fields.

Examples

7=A 008/09=a T <12:260,664,666>! …

An authority record with type of record code ‘a’ may not contain a 260, 664 or 666 field.

· A “tag mask” with the upper-case letter “X” indicating the acceptance of any numeral in that position. Recognized formats are “NXX”, “NNX” and “XNN”, where “X” is the letter “X” and “N” is any numeral in the range 0-9. The use of the form “XNN” entails a substantial increase in the amount of time needed to perform the test.

Examples

5=A 008 T <12:1XX>
 …

An authority record must contain a 1XX field.

5=A 008/09=a T <12:18X>! …

An authority record with type of record code ‘a’ may not contain a 18X field.

· A range of fields. The routine returns Found if the record contains a field with a tag falling within the specified range. Unless the supplied range of tags is narrow, this test will take a lot of time to perform; this form of test should not be used unless the test cannot be expressed in any other manner.

Example

5=A <6:008/29,ab> T <12:400-599>
 …

If authority 008/29 contains ‘a’ or ‘b’, the record must contain a 4XX or 5XX field.

2.2.11.13. Exception 13: Inspect a field or subfield for the presence of wrapper characters
This test exception inspects a field or subfield to see if it begins and ends with a given set of “wrapper” characters, i.e., if it is enclosed by a given pair of characters. This routine returns Found if the indicated field or subfield is surrounded by the supplied characters; the routine returns Not Found if the indicated field or subfield exists but does not contain the wrapper characters; it returns No Answer if the indicated field or subfield does not exist. This exception does not belong in the fourth segment of a force rule.

The exception definition consists of the exception number, a colon, an identification of the field or subfield of interest, a comma, and the characters that may appear at the beginning or ending of the field or subfield.

Example

47=BDFMPSU 245/h T <13:245/h,[]>
 …

Subfield $h in the 245 field of a bibliographic record must be enclosed within square brackets.

This routine can also be used to scan an entire record for the occurrence of any field or subfield that contains the wrapper characters. To instruct the routine to behave in this manner, place a comma and the upper-case letter “A” after the definition. In this case, the routine returns only Found or Not Found. This form of the exception should never be the first test in any rule.

Example

47=A 008/29=b T <13:670,[],A> …

An authority record for a non-unique personal name must contain at least one 670 field enclosed within square brackets.

Unicode note: the wrapper characters must all be single-octet characters.

2.2.11.14. Exception 14: Test the number of occurrences of a condition

This test exception counts the number of occurrences of a given condition in the variable fields of a record and compares this number to a supplied constant. The routine returns Not Found (which can trigger the preparation of an error message) if the number of occurrences of the condition does not agree with the specified number.

The available tests are:

· How often does a given field appear in the record?

· How often does a given field/indicator combination appear in the record?

· How often does a given subfield or set of subfields appear in a field?

Some of these tests (field and subfield repeatability) are already available in some form as standard MARC validation tests. This exceptional test may be used to enforce different patterns of field or subfield repeatability in different formats, or to ensure that a field with a given indicator appears only once in a record. A test for a field or indicator causes the routine to scan the entire record. A test for a subfield causes the record to inspect a single variable field.

The exception definition consists of the exception number, a colon, an identification of the tag, indicator or subfield of interest, a comma, a comparison operator, another comma, and the number to use in the comparison. Use the following for comparison operators:

=
The number of occurrences of the condition must match the supplied value

>
The number of occurrences of the condition must be greater than the supplied value

>=
The number of occurrences of the condition must be greater than or equal to the supplied value

<
The number of occurrences of the condition must be less than the supplied value

<=
The number of occurrences of the condition must be less than or equal to the supplied value

<>
The number of occurrences of the condition must not be the same as the supplied value

Examples

354=BDFMPSU 100 T <14:1XX,<=,1>
 …

A bibliographic record may contain at most one 1XX field.

355=BDFMPSU 041/a T <14:041/a,<=,3> …

The 041 field in a bibliographic record may contain no more than three repeats of subfield $a.

356=A 151/a AND <14:151/vxyz,=,0> T …

If the 151 field in an authority record contains only subfield $a …

357=BDFMPSU 362:1=0 T <14:362:1=0,<=,1> …

A bibliographic record may contain no more than one 362 field whose first indicator is ‘0’.

358=BDFMPSU 045:1=1 OR 045:1=2 T <14:045/b,>,1> OR <14:045/c,>,1> …

If the first indicator in a bibliographic 045 field is ‘1’ or ‘2’, the field must contain more than one subfield $b or more than one subfield $c.

2.2.11.15. Exception 15: Test the correspondence of the number of appearances of two tags

This test exception counts the number of occurrences of two different fields in a record, and reports a problem if the numbers do not match. Note that since such a test is called for if either of the tags is present, in most cases the condition should be represented by two rule definitions. This exception does not belong in the fourth segment of a force rule.

The exception definition consists of the exception number, a colon, and the two tags of interest separated by a comma.

Examples

113=P 034 T <15:034,255> …

If a Map record contains an 034 field, then there must be an equal number of 034 and 255 fields.

114=P 255 T <15:034,255> …

If a Map record contains a 255 field, then there must be an equal number of 034 and 255 fields.

2.2.11.16. Exception 16: Create a missing 034 field from a 255 field

This exception number is reserved for future use in the manner described here. This exception is not part of ValidIt as distributed. This exception should only appear in the fourth segment of a force rule.

This force exception creates an 034 field that corresponds to a given 255 field, if such a field appears to be lacking.

The exception definition consists of the exception number, a colon, and an identification of the 255 field to be transformed into an 034 field.

Example

112=P 255 F <16:255>

If a “Map” record contains a 255 field, perform special force routine 16: if there is not an equal number of 255 and 034 fields, and if there does not appear to be an 034 field that corresponds to this 255 field, then create an 034 field from the 255 field.

ValidIt creates the 034 field in this manner:

· 034 $a is created from 255 $c and/or $d

· 034 $b is created from 255 $a after deleting the word “scale”, brackets, “c.”, “1:”, and commas

· 034 $d, $e, $f, $g are created from 255 $c after deleting parentheses, hyphens, slashes, and symbols for degree, minute and second. Each of these subfields has the structure “adddmmss”, where ‘a’ is N, E, S or W, ddd=degrees, mm=minutes and ss=seconds

· 034 $j, $k, $m, $n are created from 255 $d. Each of these subfields has the structure “ahhmmss”, where a=hemisphere, hh=hours, mm=minutes and ss=seconds

· 034 $p is created from 255 $e

· In the new 034 field, indicator 1 is set to the number of subfields $b in the field (0=none, 1=one, 3=two or more); and indicator 2 is set to mark the presence of subfield $f (value 0) or $g (value 1); the default for this indicator is blank..

2.2.11.17. Exception 17: Compare a language code to first language name appearing in a uniform title field

This test exception compares the first language code in an 041 field (or, lacking an 041 field, the 008 field) with the first language named in subfield $l of a given uniform title field.
 This exception should not appear in the fourth segment of a test rule.

The exception definition consists of the exception number and the tag of the uniform title field of interest. ValidIt will scan the record for an 041 field, and use the first language code in that field; finding none, it will scan the record for the 008 field and use its language code.

Example

435=BDFMPSU 130/l T <17:130> …

Compare the language named in subfield $l of the 130 field against coded language information

2.2.11.18. Exception 18: Change tag, one or both indicators, tag and one or both indicators, or subfield code

This exception causes ValidIt to change the tag, the indicators, or the tag and indicators of a variable field, or the subfield code of a subfield within a variable field. This exception should only be used in the fourth segment of a force rule, and only in force rules that do not include error-reporting information.

The exception definition consists of the exception number, a colon, a definition of the tag or tag/subfield to be changed, a comma, and a definition of the desired tag, tag/indicators or subfield code.

Examples

438=BDFMPSU 504 F <18:504,500>

If the record contains a 504 field, change the tag to 500.

437=BDFMPSU 069 F <18:069,060:_4>

If the record contains an 069 field, change the tag to 060 and change the indicators to blank-4. In this case, both indicators are being changed.

440=BDFMPSU 100:1=2 F <18:100,100:1=1>

If the first indicator in a 100 field is ‘2’, change the indicator to ‘1’.

439=BDFMPSU 100/q F <18:100/q,100/e>

If the 100 field in a record contains subfield $q, change the subfield code to $e.

2.2.11.19. Exception 21: Inspect the wrapper characters on a field or subfield, and perhaps remove them

If this exception is included in a test rule, or in the second segment in a force rule, the routine inspects a field or subfield for given characters that may appear at the beginning and the end. If the indicated characters surround the text of the field or subfield, the routine returns Found; if the indicated characters do not surround the field or subfield, the routine returns Not Found.

If this exception is included in the fourth segment of a force rule, ValidIt removes the wrapper characters from the beginning and end of a field or subfield.

The exception definition consists of the exception number, a colon, a definition of the field or subfield of interest, a comma, and the opening and closing characters to be removed from the field or subfield.

Examples

143=BDFMPSU 050/a T <21:050/a,[]>

Check subfield $a of the 050 field for the presence of square brackets

132=BDFMPSU 050/a F <21:050/a,[]>

Remove square brackets if they surround the text of 050 subfield $a

192=BDFMPSU 400 F <21:400,()>

Remove parentheses if they surround a 400 field.

Unicode note: the characters to be removed must be single-octet characters.

2.2.11.20. Exception 22: Supply wrapper characters if not present

If this exception is included in a test rule, or in the second segment in a force rule, the routine performs work similar to that described for Exception 21. The routine returns Found if the characters are present, Not Found if the characters are not present.

If this exception is included in the fourth segment of a force rule, the routine adds wrapper characters if they are not already present at the beginning and end of a given piece of text. The outcome of this force exception is the reverse of Exception 21.

The exception definition consists of the exception number, a colon, a definition of the field or subfield of interest, a comma, and the opening and closing characters to be added to the field or subfield.

Example

135=BDFMPSU 050/u T <22:050/u,()>

Test subfield $u of the 050 field for parentheses

133=DFM 050/u F <22:050/u,<>>

Add angle brackets to 050 subfield $u if not already present

If this routine is used on subfield $h of the 245 field, ValidIt will allow for any trailing punctuation and spaces when inserting the wrapper characters.

Given this validation rule, to add brackets around 245 subfield $h if not already present:

482=BDFMKPSU 245/h F <22:245/h,[]>

ValidIt will change this 245 field:

$a Hamlet $h videorecording / $c presented by …

into this 245 field, with the trailing space-slash in subfield $h outside the square brackets:

$a Hamlet $h [videorecording] / $c presented by …

Unicode note: the characters to be added must be single-octet characters.

2.2.11.21. Exception 23: Test for the presence of leading character(s), and perhaps remove them

If this exception is included in a test rule, or in the second segment in a force rule, the routine inspects a field or subfield for specified leading characters. The routine returns Found if the characters are present, Not Found if the characters are not present.

If this exception is included in the fourth segment of a force rule, the routine inspects a field or subfield for specified leading characters, and removes them if they are prsent.

The exception definition consists of the exception number, a colon, an identification of the field or subfield of interest, a comma, and the characters to be removed. If the routine should test for any of a number of single leading characters, give the set of characters within braces; if the routine should test for a multi-character literal string, give the string without surrounding punctuation.

Examples

134=BDFMPSU 051/c T <23:051/c,{_-} …

Test subfield 051 subfield $c for leading blanks and hyphens

135=BDFMPSU 051/c F <23:051/c,{_-}>

Remove all spaces and hyphens that occur at the beginning of subfield $c of any 051 field

33=P 086/a F <23:086/a,Supt._of_Docs._no.:>

Remove the prefix “Supt. of Docs. no.:” from subfield $a of 086 fields in Map records

Unicode note: the characters to be removed must all be single-octet characters.

2.2.11.22. Exception 24: Force the first character in a subfield to uppercase

If this exception is included as part of a test rule, or as part of the second segment in a force rule, the routine inspects the first interesting character in a specified field or subfield.
 For Test rules, the routine returns Found if the first interesting character is an upper-case character, Not Found if the first interesting character is a lower-case character, No Answer if the first interesting character is a numeral or contains no interesting characters at all.

If this exception is included in the fourth segment of a force rule, and if the first interesting character in the subfield is a lower-case character (including a lower-case special character such as ø), the routine changes the character to upper-case. If the first interesting character in the text is not an alphabetic character, ValidIt does not change the text.

The exception definition consists of the exception number, a colon, and an identification of the field or subfield of interest.

Example

136=BDFMPSU 051/c F <24:051/c>

Upper-case the first character of subfield $c of any 051 field

Unicode note: the routine will correctly convert lowercase multi-octet characters to their uppercase equivalents.

2.2.11.23. Exception 25: Remove wrapper characters from all subfields except the first
If this exception is included in a test rule, or in the second segment of a force rule, the routine inspects the beginning and ending chracters of all subfields in a field except the first. The routine returns Found if the characters are present in any subfield, Not Found if the characters are not present in any subfield.

If this exception is included in the fourth segment of a force rule, the routine inspects all subfields in a given field except the first for the specified wrapper characters, and removes them if they are present. This force exception is the same as Exception 21, except that this exception does not inspect or modify the first subfield in a field.

The exception definition consists of the exception number, an identification of the field of interest, a comma, and the characters to be removed from any subfield except the first.

Example

145=BDFMPSU 082 F <25:082,[]>

Remove square brackets if they appear as “wrapper” characters around any subfield except the first subfield in any 082 field

Unicode note: the wrapper characters must be single-octet characters.

2.2.11.24. Exception 27: Remove a field or subfield

This force exception removes a variable field or subfield. If the subfield removed from a field is the only subfield in the field, ValidIt will remove the field. This routine should not be used in the fourth segment of a force validation rule that contains error-reporting information.

To remove an entire field, the exception definition consists of the exception number, a colon, and an identification of the field to be removed. To remove a subfield from a field, the exception definition consists of the exception number, a colon, and an identification of the subfield to be removed. To remove only a particular subfield from a field, follow the definition of the subfield with an equals sign and the text of the subfield of interest. (Include the subfield within braces if the program should use a normalized match.)

Examples

152=BDFMPSU 350 F <27:350>

Remove every occurrence of the 350 field

252=BDFMPSU 082/7 F <27:082/7>

Remove every occurrence of subfield $7 from 082 fields.

352=BDFMPSU 600:2=0 AND 600/x={BIOGRAPHY} AND 600/a!{JESUS_CHRIST} AND 600/a!{SHAKESPEARE_WILLIAM} F <27:600/x={BIOGRAPHY}>

Remove every occurrence of the topical subdivision ‘Biography’ except when it appears in headings for Jesus Christ and William Shakespeare.

Unicode note: the text to match against subfield texts (whether normalized or in raw form) may not include multi-octet characters.

2.2.11.25. Exception 32: Validate the initial part of bibliographic 4XX fields
This exception checks the initial element in 400, 410 and 411 fields against the second indicator in the same field, and against the presence of a 1XX field in the record. If this exception is included in a test rule, or in the second segment of a force rule, ValidIt will report an error if the data elements do not correspond correctly. If this exception is included in the fourth segment of a force rule, ValidIt will inspect the data elements; if the data elements correspond correctly, ValidIt will replace any “His” “Her” “Its” or “Their” element in the series statement with the contents of the 1XX field, and will change the second indicator in the 4XX field to correspond.

The exception definition consists of the exception number, a colon, and an identification of the 4XX field to be inspected.

Examples

253=BDFMPU 400 T <32:400> …

Check for correspondence between the first element in the 400 field, the second indicator, and the presence of a 1XX field.

193=BDFMPU 400 F <32:400>

Check for correspondence between the first element in the 400 field, the second indicator, and the presence of a 1XX field. If all elements, correspond, replace any initial “His” “Her” “Its” or “Their” element in the series statement with the 1XX field, and change the second indicator to correspond.

The correspondence of data elements is defined for this test in the following manner: If subfield $a of the tested field contains “His”, ”Her”, “Its” or “Their”, the second indicator must be “1” and the record must contain a 1XX field of the proper type (personal, corporate, conference); conversely, if the second indicator is “1” then subfield $a must begin with one of these texts and the record must contain a 1XX field of the proper type.

If ValidIt finds that the information in a record does not properly correspond, and if this exception is included in a force rule, it prepares one of the following messages.

Indicator 2 of 4XX should be ‘1’

Second indicator of 4XX improperly ‘1’

Need 1XX for 4XX; no 1XX present

Tag of 4XX does not match tag of 1XX

2.2.11.26. Exception 33: Convert “--”to “ -- ”

If this exception is included in a test rule, or in the second segment in a force rule, the routine scans the indicated field for double hyphens without spaces on either side. The routine returns Found if the field contains any double hyphens without surrounding spaces, Not Found if the field does not contain double hyphens, or if the double hyphens are already surrounded by spaces.

If this exception is included in the fourth segment of a force rule, the routine scans the indicated field for double hyphens without spaces on either side, and replaces them with hyphens surrounded by spaces.

The exception definition consists of the exception number, a colon, and an identification of the field to be examined and modified.

Examples

205=P 505 F <33:505>

In Map 505 fields, replace “--” with “ -- ”

2.2.11.27. Exception 37: Add a new field to the record, or add a subfield to an existing field
Use this force exception to add a new field to a record, or to append a subfield to an existing field. This routine should not be used in a force validation rule that contains error-reporting information.

To append a new field to a record, the exception definition consists of the exception number, a colon, and the tag, indicators and subfield code of the new field; these three elements are separated by commas. Be careful to use underscores in place of all blank spaces.

117=BDFMPU 040! F <37:040,__,|a%%NUC|c%%NUC>

If a non-Serial record does not contain an 040 field, add the indicated 040 field to the record.

Note that the tag, indicators and subfields are given as three separate comma-delimited elements. If three elements separated by two commas follow the colon, ValidIt adds a new field to the record. ValidIt will replace the “%%NUC” symbols with the value of the NucCode property before handing the string to the special routine.

To append a new subfield to a record, the exception definition consists of the exception number, a colon, the tag, and the new subfield; these two elements are separated by a comma. Be careful to use underscores in place of blank spaces.

99=P 017/b! F <37:017,|bU.S._Copyright_Office>

If a Map record contains an 017 field that does not already contain subfield $b, add subfield $b with contents “U.S. Copyright Office” to the 017 field.

Note that the tag and subfield are given as two separate comma-delimited elements. If two elements separated by one comma follow the colon, ValidIt adds a new subfield to the indicated field.

32=BP 082/2! AND 000/17={_458} AND 000/18=a F <37:082,|221>

If a Book or Map record contains an 082 field but that 082 field does not contain subfield $2 and if Leader/17 contains blank, 4, 5 or 8 and if Leader/18 contains a, then add subfield 2 to the 082 field consisting of the string “21”.

ValidIt distinguishes between the two forms of this exception (add field, or add subfield) by inspecting the characters after the colon. If two commas follow the colon, ValidIt adds the information as a new field; if one comma follows the colon, ValidIt adds the information as a new subfield.

ValidIt adds a new field to the end of the record, and adds a new subfield to the end of the field. ValidIt processes force rules before it considers rules for the order of fields, and for the order of subfields within fields. During the normal course of its work, ValidIt will move a new field to its proper place in the record (if Test​Field​Order is True), and will move the new subfield to its proper place within the field (if Test​Subfield​Order is True). The final placement of the new field or subfield within the record depends on the value of these two properties, and of the rules on which they draw.

If you use ValidIt to add a 500 field to a bibliographic record, and if you have defined the arrangement of bibliographic 5XX fields to be generic, and if the TestFieldOrder property is True, the new 500 field will appear as the last 5XX field in the record.

Unicode note: the text to be added may contain multi-byte characters if a way is found to add those characters to the text file that contains rule definitions.

2.2.11.28. Exception 38: Compare the values of two fixed-field positions
Use this test exception to compare the values of two elements in the fixed fields. This exception was designed to compare the relative values of Date 1 and Date 2 in the bibliographic 008 field, but it may find use in other situations.

The exception definition consists of the exception number, a colon, an identification of the first fixed-field position of interest, a comma, an identification of the second fixed-field position of interest, another comma, and a comparison operator. Use the following for comparison operators:

=
The number of occurrences of the condition must match the supplied value

>
The number of occurrences of the condition must be greater than the supplied value

>=
The number of occurrences of the condition must be greater than or equal to the supplied value

<
The number of occurrences of the condition must be less than the supplied value

<=
The number of occurrences of the condition must be less than or equal to the supplied value

<>
The number of occurrences of the condition must not be the same as the supplied value

914=BDFMPSU 008/06=r T <38:008/07-10,008/11-14,>=> …

If the date-type code in a bibliographic record is ‘r’, the value of Date 1 (the date of reproduction) should be greater than or equal to the value of Date 2 (the original date of publication).

2.2.11.29. Exception 39: Compare the value of a fixed-field position to a constant
Use this test exception to compare the values of an element in the fixed fields to some constant value. This exception was designed to compare the value of Date 1 in the bibliographic 008 field to some value, but it may find use in other situations.

The exception definition consists of the exception number, a colon, an identification of the first fixed-field position of interest, a comma, a comparison operator, another comma, and the constant value. Use the following for comparison operators:

=
The number of occurrences of the condition must match the supplied value

>
The number of occurrences of the condition must be greater than the supplied value

>=
The number of occurrences of the condition must be greater than or equal to the supplied value

<
The number of occurrences of the condition must be less than the supplied value

<=
The number of occurrences of the condition must be less than or equal to the supplied value

<>
The number of occurrences of the condition must not be the same as the supplied value

914=BDFMPSU <39:008/07-10,>,1995> T <7> …

If the date in Date 1 is higher than 1995, then compare the illustration fixed-field codes against information in the 300 field.

2.2.11.30. Exception 40: Substitute one subfield for another
Use this force routine to remove a subfield from a variable field and replace it with another subfield. If the indicated subfield is preset in the field, the routine removes it and adds the new subfield in its place; if the indicated is not present in the field, the routine adds the new subfield to the end of the field.

The exception definition consists of the exception number, a colon, an identification of the subfield to remove, a comma, and a definition of the subfield to insert.

14=BDFMPSU 906/a=e T <40:906,|a,|a7> …

If subfield $a of a 906 field contains the text ‘e’, replace it with subfield $a containing ‘7’…

Unicode note: the text to be added may contain multi-byte characters if a way is found to add those characters to the text file that contains rule definitions.

2.2.11.31. Exception 41: Scan the entire record for some text
Use this test exception to scan the variable fields in a record for aigven piece of text.

The exception definition consists of the exception number, a colon, a specification for the tags of the fields to be searched (expressed either as a range, or as a group with “XX” for the final 2 characters), and the text for which you wish the program to search. If the program should search for normalized text, place this text within braces.

917=BDFMPSU 245 T <41:100-799,{HANDBOOK}> …

If a record contains text in fields 100-799 that normalizes to “HANDBOOK”...

918=BDFMPSU 245 T <41:4XX,Oekonomie> …

If a record contains a 4XX field that contains the text “Oekonomie” …

Unicode note: the text to found (in either its native or normalized form) may contain multi-octet characters if the program used to create the file of rules allows input of multi-octet characters.

2.2.11.32. Exception 42: Compare the dates in 008 and 260/c
Use this test exception to compare the values of Date 1 in the 008 field (bytes 07-10) to the date in subfield $c of the 260 field.

The exception definition consists solely of the exception number

916=BDFMPSU 260/c T <42> …

If the record contains subfield $c in a 260 field, compare the date in that subfield to Date 1 in the 008 field.

2.2.11.33. Exception 43: Replace one piece of text with another
Use this force exception to search a field for occurrences of a subfield. For each occurrence of the subfield, the program searches repeatedly for a given piece of text. The program replaces each occurrence of that piece of text with a second piece of text.

The exception definition consists of the tag, a slash, the subfield code, a comma, the text for which to search, another comma, and the replacement text. (The replacement text may be an empty string; in this case, the program will remove from the subfield each occurrence of the search text.)

917=BDFMPSU 856/u T <43:856/u,www.netLibrary.com,www.XXX.com> …

If the record contains subfield $u in an 856 field, replace each occurrence of ‘www.netLibrary.com’ in each subfield $u with the text ‘www.XXX.com”.

Unicode note: the pieces of text may contain multi-byte characters if a way is found to add those characters to the text file that contains rule definitions.

2.2.11.34. Exception 44: See which of two subfield codes comes first in a variable field
Use this test exception to determine which of two subfields comes first in a variable field.

The exception definition consists of the tag, a comma, one subfield code, a comma, and the other subfield code.

917=BDFMPSU 041/d AND 041/h T <44:041,d,h> …

If the record contains an 041 field that contains subfields $d and $h, determine which subfield comes first.

The routine returns ‘found’ if the field contains the two subfield codes in the order given; it returns ‘not found’ if the field contains the two subfield codes in reverse order; it returns ‘no answer’ if the field is not present, or if both subfields are not present.

2.2.11.35. Exception 45: Test date format
A subfield may contain a formatted date—i.e., a date intended to follow a rigid pattern. Test 45 allows the container program to examine such a subfield and determine whether or not it follows the desired pattern.
The exception definition consists of the tag and subfield code separated by a slash, a comma, and the expected date pattern.

918=BDFMPSU 948/c T <45:948/c,yyyymmdd> …

If the record contains a 948 field with subfield $c, test 948/c against the pattery ‘yyyymmdd.’
ValidIt recognizes the following date patterns, which may be given in any mixture of uppercase and lowercase characters:

yyyymmdd

yyyymm

yyyy

yymmdd

yymm

yy

ValidIt performs the following tests:

· The subfield must be the same length as the pattern

· The subfield must contain only numerals

· If the year is given as two digits it may contain anything; if the year is given as four digits it must be in the range 1500-2100. (A two-digit year less than 60 is given the prefix “20” when ValidIt inspects any day segment in the date; other two-digit years are given the prefix “19”.)

· The month must be in the range 01 through 12.

· The day must be in a range that corresponds to the month. (For exmple, the day segment must be in the range 01 through 31 if the month segment is 01, but must be in the range 01 through 30 if the month segment is 09. Proper allowance is made for February, including leap years and exceptions to leap years.)

The routine returns ‘found’ if it is able to find the indicated tag and subfield code in the record being examined, and if that subfield conforms to the indicated pattern.
2.2.11.36. Exception 46: Compare two formatted dates
Use this test exception to compare two formatted dates occurring in the same bibliographic record. (A formatted date is a date presented in a prescribed pattern, such as ‘yyyymmdd’.)
The exception definition consists of the tag and subfield code of the first date, a comma, the tag and subfield code of second date, a comma, the starting position of the comparison, a comma, the length of the comparison, a comma, the comparison operator, and (optionally) a comma and an indication of the amount of variation allowed.

918=BDFMPSU 948/c AND 949/c T <46:948/c,949/c,1,4,>=> …

If the record contains a 948 field with subfield $c and a 949 field with subfield $c, compare the first four characters of both subfields. The second subfield must be greater than or equal to the first subfield.

It only makes sense to compare two dates if they share the same format.

ValidIt recognizes the following comparison operators:

=
The compared texts must match
<>
The compared texts must not match
<
The first text must be lower than the second
>
The first text must be greater than the second
<=
The first text must be lower than or equal to the second
>=
The first text must be greater than or equal to the second
If the comparison operator is not “=” or “<>” the exception definition may include an optional final numeral, giving the maximum amount of variation allowed.

918=BDFMPSU 948/c AND 949/c T <46:948/c,949/c,1,4,>=,5> …

If the record contains a 948 field with subfield $c and a 949 field with subfield $c, compare the first four characters of both subfields. The second subfield must equal to or no more than 5 greater than the first subfield.

2.2.11.37. Exception 47: Test subfield against list
Use this test exception to test the contents of a subfield against an authorized closed list. Use this exception to test the content of subfields that are not considered to be under authority control (these will often be locally-defined fields).

The exception definition consists of the tag and subfield code of the target subfield, a comma, and the name of the configuration file that contains the list of authorized content. (If the file name does not contain a drive and path specification, ValidIt will look for it in the folder identified by the ConfigurationFilePath property.)

918=BDFMPSU 659/a T <47:659/a,localterms.txt> …

If the record contains a 659 field with subfield $a, ValidIt will compare the contents of that subfield against the list of terms found in the file ‘localterms.txt’, which may be found in the default folder for configuration files.

The exception definition may contain an optional final flag consisting of a comma plus any additional text. (ValidIt does not actually inspect the text that follows the comma.) This flag instructs ValidIt to perform a normalized comparison, rather than an exact comparison.

918=BDFMPSU 659/a T <47:659/a,localterms.txt,Y> …

If the record contains a 659 field with subfield $a, ValidIt will compare the contents of that subfield against the list of terms found in the file ‘localterms.txt’, which may be found in the default folder for configuration files. ValidIt will compare the normalized form of the subfield against the normalized form of the terms found in the configuration file.

The configuration file containing the authorized terms contains one term per line, with no stanza header or other extraneous information. If ValidIt is to perform an exact comparison, the terms should be given exactly as they are expected to appear in the subfield (including any terminal punctuation). If ValidIt is to perform a normalized comparison, the terms may be given in any suitable manner. (ValidIt will perform its own normalization of the terms found in the file.) ValidIt maintains internally the list of terms both as given in the file and in normalized form; so the same file of terms can be used in different contexts in both exact and normalized comparisons. The list of terms can be in any order that enhances maintenance; the order of terms in the configuration file has no effect on the speed with which ValidIt does its work.
Here is an example of a configuration file of authorized terms. (Obviously, this is a very short and unusual list of authorized terms!)

Agriculture

Costume jewelry

Crushed ice

Xylophones

2.3. The BuiltInErrors stanza

ValidIt contains a number of pre-defined tests. These tests are in addition to the user-defined tests in the TestRules stanza. (You can modify the behavior of some of these built-in tests with the appropriate property settings.) In the BuiltInErrors stanza, you assign severity levels for each of these tests. (The requirements for the two severity levels are identical to those given for the corresponding information in the TestRules stanza.) If a record fails one of these tests, ValidIt prepares an error message and presents information from this stanza as the ErrorMessage​Severity​Level1 and Error​Message​Severity​Level2 properties.
 If you do not supply a severity code for an error, ValidIt will assume some arbitrary value (which may or may not mean something to the container program).

[BuiltInErrors]

FfdUndefined=1:3

FfdObsolete=0:0

TagObsolete=0:0

<etc.>

ValidIt uses the BuiltInErrors stanza in the file bibvalid.cfg for all information pertaining to error messages it generates on its own; the files authvalid.cfg and holdvalid.cfg do not contain this stanza.

See the description of the ErrorMessage property for a list of the members in the BuiltInErrors stanza, and the errors with which they are associated.

2.4. The BuiltInChanges stanza

ValidIt is able to make a number of “standard” changes to records. (These changes are in addition to the “special” changes described in Section 2.2.11.) In the BuiltInChanges stanza, you assign levels of severity for each of these changes. (The requirements for the two severity levels are identical to those given for the corresponding information in the TestRules stanza.) If ValidIt changes a record, ValidIt prepares a change message and presents information from this stanza as the ChangeMessageSeverityLevel1 and Change​Message​Severity​Level2 properties.
 If you do not supply a severity code for a change, ValidIt will assume the value “0:0”.

[BuiltInChanges]

MarcRecordTranslated=1:2

FieldOrderAltered=3:4

PccModelConverted=5:6

<etc.>

ValidIt uses the BuiltInChanges stanza in the file bibvalid.cfg for all information pertaining to changes it makes; the files authvalid.cfg and holdvalid.cfg do not contain this stanza.

See the description of the ChangeMessage property for a list of the members in the BuiltInChanger stanza, and the changes with which they are associated.

2.5. The InitialArticlesToTest stanza

ValidIt can inspect the first word (or, sometimes, words) in a subfield in a bibliographic record to determine whether it represents an article, and can compare this word to the value of any indicator for nonfiling characters that may be present in the field. (The TestInitialArticles property determines whether ValidIt performs this work.) Unless the configuration file directs otherwise, ValidIt tests initial articles in the following subfields, in all seven bibliographic formats:

100/t 110/t 111/t 130/a

222/a 240/a 242/a 243/a 245/a 246/a 247/a

400/t 410/t 411/t 440/a

600/t 610/t 611/t 630/a

700/t 710/t 711/t 730/a 740/a

800/t 810/t 811/t 830/a

The InitialArticlesToTest stanza allows you to specify exactly which subfields are subject to ValidIt’s initial article test. If you wish to test articles in all of the subfields listed above in all seven formats, you do not need to include the InitialArticlesToTest stanza in your configuration file at all; ValidIt will use its default definition. If you do not wish ValidIt to test all of these fields in all formats, you need to include the InitialArticlesToTest stanza in the file bibvalid.cfg. You only need to include elements in this stanza for those bibliographic formats whose definition varies from that given above.

In the InitialArticlesToTest stanza, identify each format by its single-letter abbreviation, as defined for the MarcRecordFormat property. If you don’t want ValidIt to test initial articles at all in a particular format, give some text that doesn’t look anything at all like a tag (such as the word “NONE”) instead of a list of tags and subfields. If you want ValidIt to test some subfields, identify each subfield by its tag and subfield code, with a slash between them. Separate each tab/subfield combination from its neighbors by a space or a mark of punctuation. If you want ValidIt to test the entire default list of, either carefully list them all, or omit the member for the format from the stanza.

[InitialArticlesToTest]

B=100/t 400/t 600/t 800/t

D=100/t

F=NONE

P=NONE

S=100/t 400/t 600/t 800/t

U=NONE

ValidIt will test only the following subfields in the Books and Series formats: subfield $t in the 100, 400, 600 and 800 fields. It will test only subfield $t in the 100 field in the Computer files format. ValidIt will not test any initial articles in the Visual materials, Maps and Mixed materials formats. Because there is no “M” line in this stanza, ValidIt will test the default set of subfields in the Music format.

If one of the indicators in a field in a bibliographic record identifies the number of nonfiling characters present in the field, follow the tag/subfield identifier with a second slash, and the number of the indicator (“1” or “2”). Failure to include an identification of the nonfiling indicator for those fields that have a nonfiling indicator will cause ValidIt to produce spurious reports.

B=100/t 245/a/2 400/t 440/a/2 600/t 630/a/1 800/t 830/a/2

In the Books format, ValidIt will test only 100 $t, 245 $a (second indicator contains the number of nonfiling characters), 400 $t, 440 $a (second indicator contains the number of nonfiling characters), 600 $t, 630 $a (first indicator contains the number of nonfiling characters), 800 $t and 830 $a (second indicator contains the number of nonfiling characters).

2.6. The OperatorCorrections and OperatorCorrectionsForBuiltInErrors stanzas

Many of the errors that ValidIt detects may be corrected by the program. For example, if the program finds variable fields out of order in a record, it can rearrange the fields to match your requirements; if you define a force rule to change a record in some way, it can follow your instructions. ValidIt is capable of making stereotyped changes of this sort to records reliably and safely.

Other problems spotted by ValidIt may often, but not always, lead to changes to a record; the change should only be performed after an operator has given approval. For example, ValidIt can detect problems with initial articles in title fields, but because of circumstances described elsewhere it can’t do this with 100% reliably. However, ValidIt can report this problem, and, with operator approval, a container program could change the nonfiling characters indicator. Or, given an appropriate rule the program can detect that an 082 field likely needs to have subfield $2 added to it; with operator approval, a container program could add that subfield to the record. Small actions like this can save the operator from much tedium.

Performing this kind of work requires coordinated action. First, the appropriate configuration file must describe the action needed to correct a problem. ValidIt reads the information from the configuration file; if it generates an error report, it passes this information as part of its error report to the container program. Finally, the container program must be able to recognize and act on this information provided by ValidIt.

Two stanzas in validation rules files supply ValidIt the instructions it can read, and pass along to the container program when it detects an error. The OperatorCorrections stanza contains information about errors defined in validation rules elsewhere in the file. The OperatorCorrectionForBuiltInErrors stanza contains information about errors built into ValidIt. The two stanzas have some features in common, and also reflect important differences.

To define a correction pursuant to a rule defined in a validation file that the container program can make after operator approval, follow the rule number in the TestRules stanza with an asterisk. In the OperatorCorrections stanza, give this same rule number, an equals sign, and a description of the change the container program should make.

[TestRules]

243*=…

552=…

971*=…

[OperatorCorrections]

243=…

971=…

To define a correction pursuant to an error built into validit, give in the Operator​Corrections​For​BuiltIn​Errors stanza the name for the error (the same name as used in the BuiltInErrors stanza), an equals sign, and a description of the change the container program should make.

[OperatorCorrectionsForBuiltInErrors]

PccElAndSrcCallFor042=…

New043Codes=…

InitialArticle=…

The description of the change that the container program should make can be anything the container program will understand; the description may be anything that a progammer’s cleverness can devise. It is the responsibility of the container program to understand and act on this data; all ValidIt does is find it in the configuration file and hand it back to the container program. The following conventions are used by the ValidIt module within the ‘cataloger’s toolkit’ program distributed by Northwestern University library.

· To add a variable field to a record, give the tag, a comma, the indicators, another comma, and the field text itself. Use the vertical bar instead of the delimiter character; use underscores instead of blanks.

…=042,__,|apcc

Add an 042 field to the record, with blank indicators, and the text “pcc” in subfield $a.

…=007,,he_bfb---baca

Add the 007 field to the record.

· To add a subfield to a field, give the tag, a comma, and the subfield text.

…=082,|221

Add subfield $2 to an 082 field, with the text “21”.

· To change an indicator, give the tag, a colon, a number to indicate the position of the indicator (1 or 2), an equals sign, and the new indicator value.

…=245:2=4

Change the second indicator in the 245 field to ‘4’.

· To change a code in the record leader, give the tag “000”, a slash, the starting position of the code (using the zero-based values given in the MARC documentation), an equals sign, and the replacement code. Use underscores instead of blanks.

…=000/17=_

Change Leader byte 17 to ‘blank’.

· To change a code in the 008 field, give the tag “008”, a slash, the starting position of the code (using the zero-based values given in the MARC documentation), an equals sign, and the replacement code. Use underscores instead of blanks.

…=008/15=ita

Change 008 bytes 35-37 to ‘ita’.

You can also use the following special change definitions for selected items in the Operator​Corrections​For​BuiltIn​Errors stanza:

New043Codes=%%

ValidIt will insert the 043 codes into the string it supplies to the container program; from the container program’s point of view, this instruction will appear as a normal “add subfields” instruction. Example of string supplied by ValidIt:

043,|an-us---

InitialArticle=%%

ValidIt will construct a “change the indicator” instruction (as defined above). Example of string supplied by ValidIt:

245:2=4
ValidIt will not supply any instruction if it appears that an initial article needs to be removed from subfield $t of a name/title field; it will also not supply an instruction if there is more than one occurrence of a tag in the record.

3. The obsolete content designation files

ValidIt assumes that your library system’s tag tables contain definitions for every item of MARC content designation that has ever been defined, even if it is now considered obsolete. A separate set of configuration files (named authobs.cfg, bibobs.cfg and holdobs.cfg for authority, bibliographic and holdings records, respectively) identify for ValidIt those elements of content designation defined in the system tag tables that are no longer valid. These files are stored in the folder identified by the ConfigurationFilePath property.

Most items in these files can contain a year to indicate the date on which the element became obsolete. ValidIt compares this date to the date of creation in bytes 00-01 of a record’s 008 field to determine whether or not the content designation is acceptable. You may ask ValidIt to allow for a certain amount of “play” between the date of creation of a record and the year in which a piece of content designation became obsolete by giving the AdjustmentFor​Obsolete​Data property an appropriate value; see the description of that property for details.

In extremely rare cases, an item of content designation is obsolete for a time, and is later restored for use. The formats in which the content designation is valid may be different in the various periods in which the item was valid. In this exceptional case, information in one of the “obsolete” configuration files can’t adequately describe the use of the content designation; you must define validation rules instead.

For example, the value ‘blank’ for the second indicator in the bibliographic 082 field was valid for Books, Data Files, Visual Materials, Music and Serials until it was declared invalid in 1989. The indicator value was declared valid in all formats in 2000. The indicator was not valid for Maps and Serials until 2000. In order to describe this properly, define the blank second indicator as valid in the system tag table, and define validation rules to enforce the correct usage:

13=BDFMS 082:2=_ AND <11:1989,>> AND <11:2000,<> T 082:2!_ …

14=PU 082:2=_ AND <11:2000,<> T 082:2!_ …

The first rule says that the blank indicator cannot appear in Book, Data File, Visual Materials, Music or Serial records if the date of publication is between 1990 and 1999 inclusive. The second rule says that the blank indicator cannot appear in Map and Mixed Material records if the date of publication is earlier than 2000. If the 082 second indicator is blank and the date of publication is 2000 or later, or if it is 1989 or earlier in certain formats, it’s OK; otherwise, it’s reported as a problem.

Obsolete content designation for bibliographic records
The file bibobs.cfg describes obsolete content designation that may appear in bibliographic records. The file contains the following stanzas (described just below): Leader, Fields, Indicators and Subfields. The file also contains stanzas that describe obsolete content designation in the 007 and 008 fields,
 and stanzas listing obsolete codes used in various parts of bibliographic records.

When the following instructions ask for an indication of format, use the codes defined for the MarcRecordFormat property.

The Leader stanza describes obsolete data elements in the record Leader. Each line consists of the following elements, each separated from its neighbors by one or more spaces: starting position, length, obsolete codes, format in which formerly valid, and year in which the codes became invalid.

1=06 1 b U 1995

Code ‘b’ in Leader/06 (a one-character element) is valid in the Mixed materials format for records created in or before 1995.
 The code is obsolete in the Mixed materials format for materials created after 1995, and is invalid in other formats.

4=18 1 r FMP 1981

Code ‘r’ in Leader/18 (a one-character element) is valid in the Visual materials, Music and Map formats for records created in or before 1981. The code is obsolete for Visual materials, Music and Map records created after 1981, and is invalid in other formats.

The Fields stanza lists variable fields that are no longer valid. The structure of this stanza differs from the structure of most other stanzas in the file. Instead of a line number, use the obsolete field’s tag; to the right of the equals sign, give the format(s) in which the field was formerly valid, and the year in which the field became invalid.

011=BFPMS 1993

The 011 field is valid only in the Books, Visual materials, Maps, Music and Serial formats for records created in or before 1993 The field is obsolete in these formats for records created after 1993. The field is invalid in other formats.

512=S 1990

The 512 field is valid only in the Serials format for records created in or before 1990. The field is obsolete in the Serials format for records created after 1990. The field is invalid in other formats.

If a field became obsolete in different formats at different times, separate each definition from its neighbors with two slashes.

265=U 1983//BDFMPS 1993

The 265 field is invalid in the Mixed material format for records created after 1983; it is invalid in other formats for records after 1993.

The Indicators stanza describes obsolete indicators. Each line consists of the following elements, separated by one or more spaces: the tag, the indicator position (“1” or “2”), the obsolete codes, the formats in which the indicator codes were formerly defined, and the year in which the indicator codes became obsolete.

1=071 1 01 BFPM 1980

Values ‘0 and ‘1’ in the first indicator of the 071 field are valid in the Books, Visual materials, Music and Map formats for records created in or before 1980. The values are obsolete in those formats for records created after 1980, and are invalid in other formats.

37=700 2 3 F 1993

Value ‘3’ in the second indicator of the 700 field is valid in the Visual materials format for records created in or before 1993. The value is obsolete in that format for records created after 199, and is invalid in other formats.

The Subfields stanza describes obsolete subfield codes. The line begins with the tag; the remainder of the line consists of the following elements, separated by one or more spaces: the obsolete subfield codes, the formats in which the subfields were formerly defined, and the year in which the subfield codes became invalid.

024=b M 1983

Subfield $b in the 024 field is valid in the Music format for records created in or before 1983. The subfield is obsolete in the Music format for records created after 1983; it is invalid in other formats.

246=de S 1979

Subfields $d and $e in the 246 field are valid in the Serials format for records created in or before 1979. The subfields are obsolete in the Serials format for records created after 1979; they are invalid in other formats.

For the bibliographic format, the “008” stanza in the bibobs.cfg file describes obsolete values in the parts of the 008 field common to all formats: 07-17 and 35-39. There are additional stanzas for obsolete values in the parts of the 008 field particular to each format (008/18-34); these stanzas are named “008” plus the one-letter code (B, D, F, M, P, S, U) for the format. In these stanzas, each line consists of the following elements, separated from each other by one or more blanks: starting position of the data element in the 008 field, the length of the element, the obsolete codes, and the year in which the codes became obsolete.

[008]

1=39 1 abn 1997

Codes ‘a’ ‘b’ and ‘n’ in 008/39 (a 1-character position) are valid in records created in or before 1983. The codes are invalid in records created after 1983.

[008B]

1=23 1 ghiz 1987

In Books records , codes ‘g’ ‘h’ ‘i’ and ‘z’ in 008/23 (a 1-character position) are valid in records created in or before 1983. The codes are obsolete in Books records created after 1987.

[008D]

3=27 1 az 1989

In Computer files records, codes ‘a’ and ‘z’ in 008/27 (a 1-character position) are valid in records created in or before 1989. The codes are obsolete in Computer files records created after 1989.

There are separate stanzas for each different kind of 007 field; the stanzas are named “007” plus the character used in the first position (byte 00) in the field. (For example, stanza “007h” contains obsolete content designation for the 007 field for microforms.) In all of these stanzas, each line consists of the following elements, separated from each other by one or more blanks: starting position of the data element, the length of the element, the obsolete codes, and the year in which the codes became obsolete.

[007c]

1=02 1 foru 1997

In 007 fields whose first character is ‘c’ (computer file), codes ‘f’ ‘o’ ‘r’ and ‘u’ are valid in position 02 (a 1-character position) in records created in or before 1997. The codes are obsolete in records created after 1997.

[007s]

4=07 1 abc 1981

In 007 fields whose first character is ‘s’ (sound recording), codes ‘a’ ‘b’ and ‘c’ are valid in position 07 (a 1-character position) in records created in or before 1981. The codes are obsolete in records created after 1981.

[LanguageObsolete]

This stanza lists language codes that are no longer valid. Each line consists of the obsolete language code, the year in which the code became obsolete, and (if wanted) the name of the language that the code represents. (The name of the language is for your own use; ValidIt ignores everything after the date in each line.)

[LanguageObsolete]

1=cam 2000 Khmer

2=esp 2000 Esperanto

[etc.]

[CountryObsolete]

This stanza lists country codes that are no longer valid. Each line consists of the obsolete country code plus the name that the code represents. (The dates at which these codes became obsolete are not available.) ValidIt ignores everything after the first space in each line.

[CountryObsolete]

1=ac Ashmore and Cartier Islands

2=ai Anguilla

[etc.]

[041RepeatabilitySwitch]

This stanza identifies the date on which the change in pattern of use for 041 fields was adopted. (Default value: 2002.) The original practice was that the 041 field was not repeatable, and a subfield in that field could contain multiple codes; the revised practice is that the 041 field is repeatable, and no subfield may contain more than one code. The unique value provided by this stanza (following the constant label “BDFMPSU”, indicating that this value applies to all formats) is the year in which an institution adopted the change. Records created after this year must employ multiple 041 fields (with one code each); records created in or before this year may contain either a single 041 field with multiple codes per subfield, or multiple 041 fields with a single code per subfield.

Obsolete content designation for authority records
The file authobs.cfg contains Fields, Indicators and Subfields stanzas, which are constructed exactly the same as the corresponding stanzas in the file bibobs.cfg. The file also contains an 008A stanza which lists all obsolete 008 values in a single sequence. (There is only one 008 field format for all authority records.)

Obsolete content designation for holdings records
The file holdobs.cfg contains Fields, Indicators and Subfields stanzas, which are constructed exactly the same as the corresponding stanzas in the file bibobs.cfg. The file also contains an 008H stanza which lists all obsolete 008 values in a single sequence. (There is only one 008 field format for all holdings records.)

4. The supplementary information files

4.1. General remarks

Three files contain information about MARC content designation that isn’t part of your system’s MARC tag tables for authority, bibliographic and holdings records. These files (named authsup.cfg, bibsup.cfg and holdsup.cfg, respectively) all have the same basic form. The exact form these files take depends on the information in your system’s tag tables.

4.2. Files used with the Vger system

The stanzas described here are used with versions of Vger beginning with the 2000 version. For information in the supplementary files used with earlier versions of Vger, contact the author of ValidIt.

4.2.1. The file bibsup.cfg

Several stanzas define positions for fixed fields not part of the Vger tag tables. These stanzas have the same structure as stanzas in the Vger tag file bmarcfix.cfg.

[000LinkedRecordRequirement]

This stanza defines codes used in Leader/19.

[000LinkedRecordRequirement]

Name=Linked record requirement

0=_ Related record not required

1=r Related record required

[Date1] [Date2]

These dummy stanzas serve only to identify 008/07-10 and 008/11-14 as defined positions.

[Date1]

0=0

[FixedFieldLengths]

This stanza gives the length for 007 and 008 fields. Each 007 field is identified by its tag and the character used in byte 00; each 008 field is identified by its tag and the upper-case format character used in validation rule definitions. The entry for bibliographic 007m (motion pictures) has two numbers, representing the minimum and maximum lengths for this field; all other fields have only one number (their minimum and maximum lengths are the same).

[FixedFieldLengths]

007a=8

007c=6

007d=6

007m=8,23

[etc.]

008B=40

008D=40

[etc.]

[SfdRepeatableBefore]

This stanza identifies subfields that are not now repeatable, but were at one time repeatable. Each line consists of the tag and indicator in question, the formats for which the field was at one time repeatable, and the year in which the subfield was redefined to be non-repeatable.

[SfdRepeatableBefore]

020a=BDFMPSU 1977

[etc.]

Subfield $a of the 020 field is repeatable in all bibliographic formats for records created in or before 1977. The subfield is not repeatable in records created after 1977.

[SfdNotRequiredBefore]

This stanza identifies subfields that are now defined as required, but were once not so defined. Each line consists of the tag and indicator in question, the formats for which the subfield was at one time not required, and the date at which the subfield was redefined to be required.

[SfdNotRequiredBefore]

051a=BDFMPSU 1980

Subfield $a is not required in the 051 field for all bibliographic formats in records created in or before 1980. The subfield is required in records created after 1980.

[FieldOrder] stanza

The MARC formats specify the following order for entries in a record’s Directory:

Fields 001-009, in tag order, followed by

Fields 010-9XX, in order by the first character of the tag

You may wish the fields in your records to be in some order that, while conforming to the order specified for all MARC records, is easier to use. For example, you may wish bibliographic fields to be sorted so that any uniform title (240) comes before the title proper (245), and that both of these fields come before the edition statement (250) and imprint (260). (If you wish to sort fields into an order other than the order possible with the FieldOrder stanza, use the ExtendedFieldOrder stanza instead.)

The FieldOrder stanzas in the authority, bibliographic and holdings configuration files describe the order into which ValidIt should place variable fields when it is preparing the final version of a record. Use this stanza to define a sort order that is more refined than—but yet conforming with—the order prescribed in the MARC formats.

There are 10 optional members in this stanza, numbered 0 through 9. The ‘0’ member represents the 0XX fields, the ‘1’ member represents the 1XX fields, and so on. Each member in this stanza can have one of these two values:

· “Generic” means that all fields in the group are kept together, in the same order as they were in the original record

· “Tag” means that fields in the group are kept together, and sorted in strict tag order

The members for some tag groups may have additional values.

The ‘2’ member for bibliographic 2XX fields can have this value:

· “246” means that fields in the group are sorted by tag. 246 fields with first indicator ‘0’ are arranged before 246 fields with first indicator ‘1’; these precede all other 246 fields.

The ‘4’ and ‘5’ members for authority 4XX and 5XX fields can have this value:

· “Authority” means that fields in the group are sorted by the first character in subfield $w (“n” if subfield $w is not present); fields with the same first character in subfield $w are sorted in alphabetical order by the reference heading.

The ‘6’ member for bibliographic 6XX fields can have this value:

· “Indicator2” means that fields in the group are kept together, sorted in order by their second indicator. (This puts all LCSH headings in a group before all MeSH headings, for example.)

The ‘7’ member for bibliographic 7XX fields can have this value:

· “7” means that 700 fields file before 710 and 711 fields, which file before 730 fields, which file before 740 fields; these fields are followed by all other 7XX fields, in the same order as they were in the original record. Within the groups for 700 and 710/711 fields, fields that do not contain subfield $t appear before fields that contain subfield $t.

If the stanza does not contain a member for a particular tag group, ValidIt assumes the value is “Generic”.

Here is a typical FieldOrder stanza for bibliographic records:

[FieldOrder]

0=Tag

1=Tag

2=2

3=Tag

4=Generic

6=Indicator2

7=7

8=Generic

9=Tag

ValidIt will sort fields 010-399 in ascending order (except for 246 fields, which are subarranged by second indicator as described above), fields 700-799 in the order specified by LCRI 21.29, and fields 900-999 in ascending tag order; it will sort fields 400-599 and 800-899 only by the first character of the tag; it will sort 6XX fields by the second indicator.

The routine that produces the final sort of variable fields has a special test to keep a 533 field together with any associated 539 field.
 In order for this test to work properly, the 539 field must immediately follow the 533 field in the original record.

[ExtendedFieldOrder] stanza

As described just above, the MARC formats specify a particular order for the fields in a record, and the FieldOrder stanza allows you to produce records that implement that order in its most essential form. Under certain local circumstances, you may wish to put the fields into some order other. The more elaborate conventions supported in the ExtendedFieldOrder stanza provide more flexibility in the ordering of variable fields than is provided in the FieldOrder stanza. If a configuration file contains the ExtendedFieldOrder stanza, ValidIt ignores any FieldOrder stanza that may also be present.

Each member in the ExtendedFieldOrder stanza represents a tag or tag group. Each member is assigned a consecutive number indicating its position within the finished record; the first member has number 0 (zero); the highest available number is 32767.
 Each member consists of a specification for the tag or tag group, and an instruction for the handling of the tags within that group.

If you decide to use the ExtendedFieldOrder stanza, you must take care to account in your specifications for all tags that may appear in your records. Any tags not included in the specification will sort after all other tags.

The specification for a tag group can take one of these two forms:

1. An individual tag or range of individual tags (examples: 902; 001-009; 700-740)

2. A tag group (the character “X” as the third and possibly also second character; examples: 5XX; 64X)

The instruction for handling fields in a group is one of the following words (only the first character is significant):

· “Generic” (all fields in the group are kept together, in the same order as they were in the original record; this is the default value if no other value is specified)

· “Tag” (all fields in the group are kept together, and sorted in strict tag order

· “Authority (fields in this group are sorted by the first character in subfield $w, and then alphabetically by the reference heading; authority 4XX and 5XX fields only)

· “Indicator2” (fields in the group are sorted by second indicator; bibliographic 6XX fields only)

· “7” (fields that contain subfield $t appear after fields without subfield $t; bibliographic 7XX fields only)

· “2” (only for the 2XX block)

The specification for the tag group and the code for handling tags in the group are separated from each other by one or more spaces.

Here is a typical ExtendedFieldOrder stanza for bibliographic records:

[ExtendedFieldOrder]

0=000-009 Tag

1=902

2=904

3=905

4=010-099 Tag

5=1XX Tag

6=2XX 246

7=4XX Generic

8=5XX Generic

9=600-655 Indicator2

10=656-699

11=700 7

12=710-711 7

13=730 Tag

14=740 Tag

15=7XX Tag

16=8XX Generic

17=9XX Tag

ValidIt will sort fields into groups in this order: 000-009 in ascending tag order; the 902, 904 and 905 fields; fields 010-399 in ascending tag order except for the 246 fields, which are subarranged by second indicator as described above; 4XX and 5XX fields arranged by the first character of the tag; fields 600-655 arranged by the second indicator; 656-699 arranged by the first character of the tag; 700 and then 710-711 in “LCRI” order; 730 and 740 fields; other 7XX fields; 8XX fields; 9XX fields in ascending tag order. Because there is no defined group that includes them, any fields with tags 701-709, or 712-729 will come at the very end of the record.

The routine that produces the final sort of variable fields has a special test to keep a 533 field together with any associated 539 field. In order for this to work, the 539 field must immediately follow the 533 field in the original record.

A special instruction in this stanza tells ValidIt to place 880 fields immediately following the field with which they are paired (as indicated by the contents of subfield $6) rather than where they would otherwise appear (typically near the end of the record). This instruction has the general appearance of other instructions in the ExtendedFieldOrder stanza, using the instruction “Paired:”

[ExtendedFieldOrder]

0=000-399 Tag

1=400-599 Generic

2=600-655 Indicator2

3=656=699 Tag

4=700 7

5=710-711 7

6=730

7=740

8=700-999 Generic

9=880 Paired

ValidIt will sort fields into groups in this order: 000-399 in ascending tag order; 4XX and 5XX fields arranged by the first character of the tag; fields 600-655 arranged by the second indicator; 656-699 arranged by the first character of the tag; 700 and then 710-711 in “LCRI” order; 730 and then 740 fields; other 7XX fields; 8XX fields; 9XX fields.Any 880 fields will appear immediately following the field to which they are linked via subfield $6 instead of with the other 8XX fields.

The following illustration shows a fragment of a bibliographic record with fields sorted in the manner required by the preceding definition. Note that the 880 fields are now interspersed among other fields, as directed by information in subfield $6.
[image: image1.png]25
a0
28
a0
260
ea0
300

6 88001 £a "Bolshai"s™ semi'a™ Nursultana Nazarbaeva : £ polficheskai‘a” elta sov
1624501 12 "Bonbwas cembs HypCyTaHa HasapOaess - b noneckas 3nwTa cos
£5.880-02 4 Polficheskel"a” éita sowemennago Kazakhstana

£6.245-02 10 Mammiseckan arTa cospeneroro KasaxeTana

£6.880-03 32 Moskva : £ I aktusiyk poltcheskikh issledovar, 3o 1995,

£6.260-03 12 MockBa - # Uik aKTYaHbIX IOTMTHMECHX CCRE 3B, 10 1995,
12111 p.; 4o 21 om.

[SubfieldOrder] stanza

The SubfieldOrder stanza contains rules that allow ValidIt to inspect and rearrange the subfields within variable fields. Each subfield order rule consists of two elements: a three-digit tag, and a list of subfields in the order in which they are to appear in the field. If there is no definition for a given tag, ValidIt will not attempt to evaluate or adjust the subfields in that field.

If you present subfields in a list, ValidIt will sort the subfields in a variable field into exactly the order indicated.

Examples

034=abcdefgsthjkmnp

If a “Map” record contains an 034 field, the subfields will be arranged in the order specified: all occurrences of subfield $a will appear ahead of all occurrences of subfield $b, which will appear ahead of all occurrences of subfield $c, and so on. Because they are not part of this definition, any other subfields that may appear in the 034 (such as subfield $6) will appear after all other subfields.

040=abcdef

If any bibliographic record contains an 040 field, the subfields will be arranged in the order specified: subfield $a, then subfield $b, then $c, then $d, then $e, then $f.

The subfields in a few variable fields (notably, access fields) can be organized into segments (called portions in the MARC 21 documentation). In general, all of the subfields in a segment must occur together. In some cases, the order of subfields within a segment is important, in other cases the subfields in a segment may occur in any order. For example, in a bibliographic subject heading, subfields $v, $x, $y and $z must all occur together (and not between subfields $a and $d in a 600 field, for example), but it is not possible to specify the order of subfields $v, $x, $y and $z within their segment; these four subfields may precede and/or follow each other.

To define the order of fields that are organized into “segments,” place the subfield codes of which each segment is composed within braces.

If the subfields must occur within the segment in a particular order, include no special prefix character within the braces.

651={63a} …

The first segment in a 651 field consists of subfields $6, $3 and $a, in that order.

If the order of subfields within the segment is not important, place a hash mark (“#”) as the first character within the braces.

651=63a{#vxyz}2

The first segment in a 651 field consists of subfields $6, $3 and $a, in that order. The second segment consists of subfields $v, $x, $y and $z, which may appear in any order. The final segment consists solely of subfield $2.

If all occurrences of a subfield (whether repeatable or not) must occur at the beginning of a segment, but the order of the remaining subfields is not critical, place an exclamation mark (“!”) as the first character within the braces. (The subfield identified by the “!” is the “lead subfield” in the segment.)

600=63{!abcqdk}{eu4}{!tfgklnp} …

The first segment in a 600 field consists of subfields $6 and $3, in that order. The second segment begins with the first subfield $a; this initial subfield $a may be followed by subfields $b, $c, $q, $d and/or $k, in any order. This segment is followed by subfields $e, $u and $4 in that order, which is in turn followed by a segment beginning with subfield $t and containing subfields $f, $g, $k, $l, $n and $p in any order.

If the first occurrence of a repeatable subfield must occur at the beginning of a segment, but additional appearances of the subfield may appear interspersed with other subfields in the segment, use a circumflex (“^”) as the first character within the braces. (The subfield identified by the “^” is the “lead subfield” in the segment.)

490=63{^alvx}

The first segment in a 490 field consists of subfields $6 and $3, in that order. The second segment begins with the first subfield $a; this initial subfield $a may be followed by any other subfield $a and by subfields $l, $v and/or $x, in any order.

Some subfields may appear within more than one segment. List such subfields in each segment to which they may belong.

Example

600=63{!abcqdk}{!tkfghlmnoprs}{#vxyz}2

In a 600 field, any subfield $6 must appear before any subfield $3. Subfield $a must be the first subfield in the next segment, and may be followed by subfields $b, $c, $q, $d and $k in any order. These subfields may be followed by subfield $t (marking the start of the next segment),
 which may be followed by subfields $k, $f, $g, $h, $l, $m, $n, $o, $p, $r or $s in any order. (Subfield $k may appear in either this segment, or the preceding segment.) These may in turn be followed by a segment containing subfields $v, $x, $y and $z, in any order. When present, subfield $2 is the last subfield in the field.

However, if such a subfield may occur in more than one segment, precede the subfield code with the “at” sign (“@”). A subfield identified with the “at” sign may appear in any number of different segments.

Example

300=68{@3}{#abcefg}{@3}

Subfields $6 and $8 must occur at the beginning of the field, in that order. These subfields may be followed by subfield $3; subfield $3 may also occur at the end of the field. Other subfields in the 300 field may appear either before or after subfield $3, in any order.

When ValidIt encounters a segment prefixed with the “at” sign, it retains at that point any of the subfields in the segment that it finds in the field being inspected at that point, or in the field at some point in the field following a previously-encountered instruction for the same subfield. This has the effect of moving improperly-placed subfields to the next following correct location.

Given this subfield-order instruction (same as in previous example)

300=68{@3}{#abcefg}{@3}

These two fields:

300 $3diaries $a3$fv.

300 $areel 1 of 1 (37 ft.) :$bsi., b&w ;$c35 mm.$3dupe neg.

remain unchanged. Subfield $3 in this field:

300 $areel 1 of 1 (37 ft.).$3Dupe neg.$bSilent, b&w.$c35 mm.

gets moved to the occurrence of the “@3” instruction that follows the incorrect appearance of the subfield:

300 $areel 1 of 1 (37 ft.).$bSilent, b&w.$c35 mm.$3Dupe neg.

If a segment is defined as having a “lead subfield” (through the use of “!” or “^”), and if a subfield that is defined exclusively for that segment appears but the lead subfield does not appear (i.e., it is not possible to tell exactly where the segment belongs), ValidIt moves the subfield to the end of the field. (In the above example, if a field did not include subfield $t, ValidIt would move any occurrence of subfields $f, $g, $h, $l, $m, $n, $o, $p, $r and $s to the end of the field.)

If the subfields in a field constitute only one segment, but you need to specify some order for the subfields other than the rigid order implied by the lack of braces, use braces and an appropriate lead character (pound sign, exclamation sign or circumflex).

Example

051={#abc}

In an 051 field, subfields $a, $b and $c may appear in any order

4.2.2. The file holdsup.cfg

The stanza 008ItemInformationInRecord lists codes defined for use in Leader/18 of the holdings record.

[000ItemInformationInRecord]

0=i

1=n

4.2.3. The file authsup.cfg

For Vger version 2000, this file is empty.

5. The file of codes for coded subfields

The file codes.cfg lists codes used in coded subfields of authority, bibliographic and holdings records; there is only one instance of this file, and it stands for all formats. This file also contains a list of initial articles used in various languages, codes used in control subfields, names of languages, prefixes for LCCNs and similar codes.

[CodedSubfields]

This stanza identifies the subfields in authority, bibliographic and holdings variable fields that may contain codes drawn from a list. Examples of these subfields, and the sources of the codes, are:

Bibliographic records:

034/a: category of scale (the codes are given in the definition of the 034 field)

040/b: language of cataloging (USMARC code list for languages; http://lcweb.loc.gov/marc/languages/)

040/e: description conventions (USMARC code list for relators, sources, description conventions; http://www.loc.gov/marc/relators/re9808de.html)

041/a, 041/b, 041/d, 041/e, 041/f, 041/g, 041/h: each subfield may contain no more than 6 of the codes defined for 008/15-17; codes in 041/b may not also be present in 041/a)

042/a: authentication code (the list is given in the definition of the 042 field)

043/a: geographic area code (USMARC codes for geographic areas; http://lcweb.loc.gov/marc/geoareas/; there may be no more than 3 occurrences of 043/a)

Authority records:

040/b: language of cataloging (USMARC code list for languages; http://lcweb.loc.gov/marc/languages/)

040/e: description conventions (USMARC code list for relators, sources, description conventions; http://www.loc.gov/marc/relators/re9808de.html)

040/f: subject heading/thesaurus conventions (USMARC code list for relators, sources, description conventions; http://www.loc.gov/marc/relators/re9806su.html)

Identify each coded subfield with a letter for the format (‘A’ for authority, ‘B’ for all bibliographic formats, ‘H’ for holdings), the tag, a slash, and the subfield code. You may identify a different subfield in each line, or you may group the subfields in any manner that seems convenient to you. If you include multiple subfield identifications in a single line, separate them with commas.

[CodedSubfields]

1=B100/4,B110/4,B111/4

2=B400/4,B410/4,B411/4

3=A072/2,A073/z,B072/2

4=B055/2,B084/2,B086/2

[etc.]

Subfield $4 in bibliographic 100, 110, 111, 400, 410 and 411 fields contains a code; as do subfield $2 in authority 072 and bibliographic 072, 055, 084 and 086 fields and subfield $z in authority 073 fields.

ValidIt knows that some subfields draw on codes defined for use elsewhere in the record. You identify these subfields in the CodedSubfields stanza, but you do not include the codes themselves in this file. (You must define codes for all other coded subfields in the CodesForCodedSubfields stanza in this file.)

· ValidIt will verify the bibliographic or authority 040 $b subfield (language of the record) against the codes defined for 008/35-37 in bibliographic records

· ValidIt will verify a code in any subfield of the 041 field (language of the text) against codes defined for 008/35-37 in bibliographic records

· ValidIt will verify each 044/a against the country of publication codes defined for 008/15-17

[CodesForCodedSubfields]

In this stanza, list each code that may appear in any coded subfield. On the same line, indicate the subfields in which the code may appear. There is one and only one one line in this stanza for each different code. If the code is now obsolete, follow the identification of each subfield in which it is obsolete with a circumflex (“^”).

[CodesForCodedSubfields]

aas=A040/f,B600/2,B610/2,B611/2,B630/2,B650/2,B651/2

aacssd=B658/2

agrissc=A072/a,B072/2,A073/z

amim=B040/e

ftamc=B655/2^

grt=B100/4^,B110/4^,B111/4^

[etc.]

Code “aas” may be used in authority 040 $f and bibliographic 600 $2, 610 $2, 611 $2, 630 $2, 650 $2 and 651 $2. Code “aacssd” may be used in bibliographic 658 $2. Code “agrissc” may be used in authority 072 $a and 073 $z, and bibliographic 072 $2. Code “amim” may be used in bibliographic 040 $e. Code “ftamc” in subfield $2 of the bibliographic 655 field is obsolete. Code “grt” in subfield $4 of the bibliographic 100, 110 and 111 fields is obsolete.

[InitialArticles]

This stanza identifies each word that may be used as a non-filing article. Each line consists of the initial article itself, an underscore, the MARC code for the language, an equals sign, and one of the following characters:

N
This word is not part of a multi-word article; or, if it is part of a multi-word article, it is the last word in that article. (You will use this code for most initial articles.)

B
This word is part of a multi-word article, and is not the last word in that article.

If the word may function in the language as either a numeral or an article, place an asterisk (*) after the letter.

[Initial articles]

A_ENG=N

A_GAG=N

A_HUN=N

A_IRI=N

AL_ARA=N

AL_BAL=N

[etc.]

MGA_TAG=N

SA_TAG=B

UN_FRE=N*

‘A’ is an article in English, Galician, Hungarian and Irish. “AL” is an article in Arabic and Baluchi. “SA MGA” is an article in Tagalog. “UN” may function in French as either an article or a numeral.

[Authority4xxW] [Authority7xxW] [Bibliographic7xx7]

These stanzas identify the codes that may appear in Bytes 0-3 of control subfield $w in authority 4XX and 5XX fields, in Byte 0 of control subfield $w in authority 7XX fields, and in Bytes 0-1 of control subfield $7 in bibliographic 7XX fields.

[Authority4xxW]

0=abdfghint

1=abcdefgn

2=aeon

3=abcdn

Byte 0 may contain ‘a’, ‘b’, ‘d’, ‘f’, ‘g’, ‘h’, ‘i’, ‘n’ or ‘t’; Byte 1 may contain ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’ or ‘n’; Byte 2 may contain ‘a’, ‘e’, ‘o’ or ‘n’; Byte 3 may contain ‘a’, ‘b’, ‘c’, ‘d’, ‘n’. ValidIt has a set of built-in rules to tell it which codes in each position may be used in which fields.

[Authority7xxW]

0=abcn

Byte 0 may contain ‘a’, ‘b’, ‘c’, ‘n’

[Bibliographic7xx7]

0=pcmun

1=0123

Byte 0 may contain ‘p’, ‘c’, ‘m’, ‘u’, ‘n’; Byte 1 may contain ‘0’, ‘1’, ‘2’, ‘3’. ValidIt takes the values for Bytes 2-3 of bibliographic control subfield $7 from the definitions for Leader/06 and Leader/07. ValidIt has a set of built-in rules to tell it which codes in Byte 1 may be used with which codes in Byte 0.

[LanguagesByCode]

This stanza pairs each valid language code with the “official” name for the language. This stanza is only used if a validation rule calls on Exception 17.

[LangaugesByCode]

ace=Achinese

ach=Acoli

ada=Adangme

[etc.]

[LanguagesByName]

This stanza pairs a normalized version of the “official” name for a language (as it would appear in subfield $l of a 130 field, for example) with the language code. If the name of a language may appear in subfield $l in more than one form, create a separate entry for each form. ValidIt uses this information as part of its testing of initial articles in fields that contain subfield $l. If there is more than one code for a language, list all of the codes in one entry, separating them with asterisks or other puncutation.

[LangaugesByName]

ACHINESE=ace

ACOLI=ach

GREEK=grc*gle

IRISH=gae*iri

[etc.]

[LccnPrefix]

This stanza lists the prefixes that may appear in LC control numbers (010 field). Each line consists of the letter “A” (for a prefix valid in authority records) or “B” (for a prefix valid in bibliographic records), the code itself, an equals sign, and an explanation of the code. This stanza is only used if a rule calls on Exception 10.

[LccnPrefix]

An=Authority record from LC

Anb=Authority record from BL

Ano=Authority record via OCLC

Anr=Authority record via RLIN

Ba=Cataloging provided to LC, 1909-

Bafl=No explanation available

[etc.]

[SubfieldHCodes]

The SubfieldHCodes stanza lists the text that are allowed to appear in subfield $h (medium qualifier or GMD) of various fields. Each line in this stanza consists of an arbitrary number or code, an equals sign, and a code allowed in subfield $h. (ValidIt doesn’t actually care what comes to the left of the equals sign.) If there is an alternate formulation of the text that ValidIt can replace with the preferred text, follow the preferred text with a double slash and the alternate text; if there are additional alternates, supply them after additional double slashes.

[SubfieldHCodes]

1=realia

2=electronic resource//computer file

3=microform//microfilm//microfiche

[etc.]

6. The file of geographic area codes

The file gacs.cfg lists information that allows ValidIt to validate codes used in the 043 field, and to draw a correspondence between geographic information in subject headings and the 043 field. This information would be included in the file codes.cfg, were it not that the GAC information is so extensive it would make the file codes.cfg too large for some text editors.

[GACs]

This stanza lists geographic area codes, giving the equivalent geographic name for each. The only part of this stanza that is important is the GAC itself; the name after the equals sign is irrelevant. ValidIt uses information in this stanza to validate information in subfield $a of the 043 field. Give Each GAC as the full 7-character code; represent hyphens with the uppercase letter ‘H’.

[GACs]

aHHHHHHH=Asia

aHafHHH=Afghanistan

aHaiHHH=Armenia (Republic)

[etc.]

[GACsByCountry]

This stanza lists the catalog entry form for each geographic area assigned a geographic area code (as well as alternative forms of name), together with the geographic area code itself. Give the geographic name in normalized form, with underscores instead of spaces. If a geographic area has a string of codes associated with it, give all codes, separating each from its neighbors with “|a”.

[GACsByCountry]

ADAMAWA_EMIRATE=f-cm---|af-nr---

ADEN=a-ye---

ADEN_GULF_OF=mr-----

[etc.]

[GACsObsolete]

This stanza lists obsolete geographic area codes, in the same format as the GACs stanza. ValidIt uses information in this stanza to validate information in subfield $a of the 043 field.

[GACsObsolete]

aHhkHHH=Hong King

aHptHHH=Portuguese Timor

[etc.]

7. Sample files

A set of configuration files for ValidIt (intended for use with the Vger system) is available from Northwestern University Library. The files are located in the “validitfiles” folder on the Library’s FTP server. You may find it easier to modify these files to match local needs than to create the files from scratch.

Appendix B: Error codes and messages

This appendix lists in numerical order by error code the error conditions that may be raised by ValidIt. For further information about the handling of error codes, see the description of the method or property that may raise the error. The built-in Visual Basic constant “vbObjectError” is a large negative number; consequently, all of the errors that are offsets of this constant are also negative numbers.

vbObjectError + 1. Could not open your compressed tag table file: … For some reason, Windows will not allow ValidIt to open the file into which needs to save a new version of its compressed tag table.

vbObjectError + 2. No TagTableFormat property. The TagTableFormat property does not contain a recognized value.

vbObjectError + 3. No TagTablePath property. The TagTablePath property is empty.

vbObjectError + 4. TagTablePath doesn’t point to recognized files. The location indicated by the TagTablePath property doesn’t appear to contain a recognizable set of system tag table files.

vbObjectError + 5. No MarcRecordIn supplied. There is no record to validate.

vbObjectError + 6. No NucCode supplied. The NucCode property is empty, and a rule definition contains the string “%%NUC”.

vbObjectError + 7. Invalid value for MarcRecordIn property: directory not a multiple of 12 in length. The record Directory consists of one or more repeated units, each of which are expected to be 12 characters long.

vbObjectError + 8. Invalid value for MarcRecordIn property: does not end with MARC end-of-record character. The last character in the supplied record is not the MARC end-of-record character (hex ‘1D’).

vbObjectError + 9. Invalid value for MarcRecordIn property: does not have a recognizable directory. ValidIt cannot find the end-of-field character that should be present at the end of the record’s Directory.

vbObjectError + 10. Invalid value for MarcRecordIn property: field … contains delimiter. This message is only generated for fields in the 001-009 range. The indicated fixed field contains the MARC subfield delimiter character (hex ‘1F’); fields 001-009 do not have subfields, and so may not contain this character.

vbObjectError + 11. Invalid value for MarcRecordIn property: field … does not contain delimiter at correct location. This message can only be generated for fields in the 010-999 range. The indicated field either does not contain a subfield delimiter at all, or its first subfield delimiter does not occur at the proper location (between the two indicators and the first piece of text).

vbObjectError + 12. Invalid value for MarcRecordIn property: field … does not end with end-of-field marker. The indicated field ends with some character other than the MARC end-of-field character (hex ‘1E’).

vbObjectError + 13. Invalid value for MarcRecordIn property: leader does not have proper ‘base address of data’ (12-16). Bytes 12 through 16 of the Leader (the 13th through the 17th characters) are not all numerals.

vbObjectError + 14. Invalid value for MarcRecordIn property: leader does not have proper indicator and subfield code counts (10-11). Bytes 10 and 11 in the Leader (the 11th and 12th characters) contain some value other than “22”.

vbObjectError + 15. Invalid value for MarcRecordIn property: leader does not have proper length information (20-21). Bytes 20 and 21 in the Leader (the 21st and 22nd characters) contain some value other than “45”.

vbObjectError + 16. Invalid value for MarcRecordIn property: leader does not have proper record length. The first five characters in the supplied record are not all numerals.

vbObjectError + 17. No CompressedTagTablePath property. The CompressedTagTablePath property is empty.

vbObjectError + 18. No ConfigurationFilePath supplied. The ConfigurationFile​Path property is empty.

vbObjectError + 19. Invalid value for MarcRecordIn property: unrecognized record type (…) The record type code in Leader/06 does not identify the record as one of the record types ValidIt can handle. At present, ValidIt supports only authority, bibliographic and holdings records.

vbObjectError + 20. Invalid value for MarcRecordIn property: record’s stated length (…) does not match actual length (…) The record length specified in the first 5 bytes of the Leader is different from the length of the received record.

vbObjectError + 21. Invalid value for MarcRecordIn property: leader’s base address of data incorrect. The numerals in Leader/12-16 do not correspond to the proper value. (The proper value for the base address of data should correspond to the location of the first end-of-field character in the record.)

vbObjectError + 22. Invalid value for MarcRecordIn property: directory contains characters other than numerals. The record Directory may only contain numerals.

380. Invalid value for ... The container program has attempted to set some property to an unacceptable value. For example, if the container program tries to supply as the AdjustmentForObsoleteData property something other than an integer whose value is zero or higher, ValidIt raises this error. The error message contains the name of the property.

� The expression MARC is used in this document to identify the current version of the authority, bibliographic and holdings formats now known as MARC 21, formerly called USMARC. (ValidIt rejects records in other formats such as classification and community information. The capability to handle records in other formats may be added in the future.) Throughout this document, it is assumed that the reader is already familiar with the MARC formats, terms commonly used in libraries, and the concepts behind those terms.

� The expression fixed fields in this document refers to the operator-modifiable parts of the record Leader, and to the 005, 006, 007 and 008 fields.

� ValidIt can judge whether a MARC record has been constructed correctly; it cannot judge whether a record contains correct information. For example, it can determine that the country of publication code in a bibliographic record is valid, but it cannot decide that the code is the correct one; it can determine that a bibliographic 600 field is constructed properly, but it cannot determine that the 600 field matches an authority record, conforms to the rules of a particular subject heading system, or belongs in the bibliographic record at all.

� UTF-8 capabilities begin with version 5. ValidIt can work with records in any of three recognized flavors of MARC-8 encoding: as defined in the MARC standard iself, OCLC, and RLIN/Vger.

� ValidIt is at the time of writing only able to read tag tables used by the clients of the Vger library system. The capability to gather tag-related information defined for use by other library systems can be added as the need arises.

� ValidIt will of course be incorporated into container programs that do know about individual systems. The recently-acquired capability to detect duplicate ISBNs and other standard numbers requires ValidIt to know how to connect to, and search, various library systems; before this capability was added ValidIt knew nothing about other systems.

� The default values listed in the descriptions of each property show the default values if the container program does not invoke the ReadSettings method, and (when different) the default values if the container does invoke that method.

� The errors described in this section represent severe problems with information provided by the container program, and should not be confused with the error messages pertaining to unacceptable MARC content designation that ValidIt prepares and makes available (via the ErrorMessage and related properties) as a normal part of its work.

� Take similar steps to use ValidIt in projects written in other languages. While you’ve got the Project|References dialog open, check the “Microsoft Scripting Host” line, too. ValidIt uses several instances of the “Dictionary” object included in this module to store simple tabular information.

� Here and in the following instructions, the name you choose in your project for an instance of ValidIt is of course entirely up to you.

� That is, Leader byte 18 contains either ‘a’ or ‘i’.

� The year in which the record was originally created is represented in a MARC record by only two digits. Since the MARC format was not in use before 1967, ValidIt assumes that years “67” and higher should be prefixed with “19”, and that years “00” through “66” should be prefixed with “20”. (Because ValidIt is using the date-of-creation from the 008 field—as opposed to the date of publication—it shouldn’t have to allow for dates that include hyphens or the letter “u”.) It is to be hoped that the format of the date in the 008 field will change before the year 2067.

� Content designation is identified as obsolete in the configuration files authobs.cfg, bibobs.cfg and holdobs.cfg. See Appendix A.

� The date of obsolescence is not available for all obsolete items of content designation. (For example, the date of obsolescence is not available for country of publication codes.) ValidIt reports such items as obsolete regardless of the MARC record’s date of creation.

� The use of a negative number for this property would have the effect of causing ValidIt to report as obsolete content designation appearing in records created before that content designation had been declared obsolete.

� Note that this is the hexadecimal representation of the UTF-16 encoding, not the variable-length UTF-8 equivalent. ValidIt translates this hexadecimal notation into the UTF-8 characters.

� Only supply single-octet characters as literal values, as decimal values or as hexadecimal values. Only supply multi-octet characters as Unicode values. If the container program reads back this property, it will find decimal values (“D”) for characters originally supplied as single-byte hexadecimal values (“X”).

� If there is neither a plus sign nor a minus sign within the braces, ValidIt assumes the plus sign.

� ValidIt uses the tag “000” for the record Leader.

� The starting position and length apply only to the fixed fields.

� This file contains information relating to all of the built-in changes, whether the tests are limited to one format or apply to all formats.

� ValidIt translates a record from one character set to another when the CharacterSetIn and Character�SetOut properties have different values.

� ValidIt changes the order of fields as directed by the FieldOrder and FieldOrderExtended stanzas of the appropriate configuration file.

� ValidIt changes the PCC coding in a record when the PccModelIn and PccModelOut properties have different values.

� ValidIt removes or changes characters when the container program sets the Auth�Characters�Not�Wanted, Bib�Characters�Not�Wanted or Hold�Characters�Not�Wanted properties to suitable values.

� ValidIt sets undefined fixed-field positions to blank when the container program sets the Force�Undefined�Fixed�Fields�To�Blank property to True.

� ValidIt changes the order of subfields as directed by the SubfieldOrder stanza of the appropriate configuration file.

� ValidIt adds or changes the 005 field in a record if it has made other changes to the record, and if the Replace005IfRecordModified property is True.

� If the CharacterSetIn property is null when ValidIt is comparing subjects against the 043 field, ValidIt assumes that the record uses the Vger character set. Unless the record contains superscript characters, subscript characters, Greek characters or the script-l (all unlikely in geographic names), there will be no problem.

� The Vger character set is the same as the pre-2001 RLIN character set. ValidIt treats the “VGER” and “RLIN” symbols as synonyms.

� In January 2001, RLIN stopped distributing MARC records using its special character set; records distributed starting in 2001 use the MARC character set. For RLIN records distributed starting in 2001, container programs should use the value MARC for this property, not RLIN.

� Until version 5 of ValidIt, code ‘U’ was a synonym for code ‘M’.

� ValidIt only needs write access to this directory if the compressed tag table is not already present there.

� If the container does not supply the terminal reverse slash, ValidIt will supply it.

� These files are described in Appendix A.

� If the container does not supply the terminal reverse slash, ValidIt will supply it.

� The numbers are also only valid within a given container program. It is not possible for a component in one container program to share an ODBC connection with a component that’s part of a different container program.

� ValidIt uses the tag “000” for the record Leader.

� The starting position and length apply only to the fixed fields.

� This file contains information relating to all of the built-in tests, whether the tests are limited to one format or apply to all formats.

� ValidIt only checks URLs if the container program supplies the InternetTransferControl property, and the AuthUrlSubfields, BibUrlSubfields or HoldUrlSubfields property (whichever applies to the record being examined record) is not null.

� This may be considered a special case of the “subfield not defined” error; but it should be assigned the highest level of severity.

� ValidIt checks for improper arrangements of these charcaters when so instructed by the Test�For�UnmatchedBraces, Test�For�Unmatched�Brackets and Test�For�Unmatched�Parentheses properties.

� ValidIt checks for improper arrangements of these charcaters when so instructed by the Test�For�Unmatched�Nonfilng poperty.

� The protocol for setting the nonfiling indicator when diacritics are present has changed slightly over the years. In the past, a diacritical mark in a non-Unicode record at the start of the word following an initial article was counted as one of the nonfiling characters; under the current instructions, such a diacritical mark in such a record is not counted. Because an inclusion of the diacritic in the nonfiling zone in such a case would probably create a problem when a non-Unicode record is converted into Unicode, this condition (which was formerly regarded as harmless) is now regarded as calling for attention.

245 13 $a L’’ep’ee et la corde …

Under current instructions, the nonfiling indicator in this non-Unicode record should be 2; 3 was the correct value under earlier instructions. If this record were converted to Unicode and careful adjustment not made, this field would index as:

PEE ET LA CORDE

� See the discussion of the date of record creation given in the description of the Adjustment�For�Obsolete�Data property.

� The AuthUrlSubfields, BibUrlSubfields and HoldUrlSubfields properties identify subfields that contain URLs.

� The simplest way to do this is to place the Microsoft control on the container program’s primary form, and pass this control to ValidIt.

� ValidIt invokes the Internet control’s OpenURL method. If the Internet control does not raise any errors, and if the returned page has a non-zero length and does not contain the texts “Not Found” or “Error 404”, ValidIt considers the page to be active. If the Internet control raises an error, or if the returned page has a length of zero or contains the texts “Not Found” or “Error 404”, ValidIt considers the page to be not active.

� ValidIt does not report fields out of order if the TestFieldOrder property has the value False. ValidIt does not report subfields out of order if the TestSubfieldOrder property has the value False.

� The definitions for the seven bibliographic “formats” given here match those found in the MARC 21 documentation; these definitions are also carried in the corresponding OCLC documentation. These seven bibliographic “formats” correspond to the seven different layouts possible for the bibliographic 008 field. ValidIt will reject records in other formats (such as classification and community information records).

� Value ‘b’ is obsolete, but is of course found in older records.

� As described in this section, ValidIt only allows the value of “45” in Leader bytes 20-21; this implies that the directory units must be 12 characters long.

� Theoretically, these two bytes may contain some other value, but “22” is the only value used by convention in records distributed by MARC 21 agencies.

� Theoretically, these two bytes may contain some other value, but “45” is the only value used by convention in records distributed by MARC 21 agencies.

� Severity levels for errors are set in ValidIt’s configuration files. For tests performed as a matter of course by ValidIt, these levels are set in the BuiltInErrors stanza. For tests defined by rules in a configuration file, these codes are set in the rule definition.

� Severity levels for changes are set in ValidIt’s configuration files. For changes made as a matter of course, these are set in the BuiltInChanges stanza. For other changes, these codes are set in the rule definition.

� Because you have changed the system tag tables, or ValidIt’s “supplementary” or “obsolete” configuration files.

� Or, delete the compressed tag table file and restart the container program. ValidIt will automatically regenerate the compressed tag table.

� For example, if the TagTablePath property contains “z:\ntapps\voyager\catalog\tagtable\local\”, ValidIt will expect to find these files in the “z:\ntapps\voyager\catalog\tagtable” folder.

� Until February 2000, the default value for this property was True.

� ValidIt only prepares this message for formats in which the element of content designation was once valid, and for those formats only when the date of creation of the record being examined is later than the date the element became obsolete, as adjusted by the AdjustmentForObsoleteData property; for other formats, ValidIt prepares a message declaring the element invalid.

� If the ReportAllObsolete property is True, ValidIt actually changes the year portion of the date of creation in the bibliographic record’s 008 field to ‘60’ which it subsequently converts into ‘2060’; this has the side-effect of causing all obsolete content designation to be well outside the allowed range. ValidIt restores the proper date of record creation before it finishes its work on the record.

� The default value for this property is True, but there are not actually any settings to restore until after the container program has invoked the WriteSettings method.

� ValidIt reads the configuration files just before it inspects the first record. This means that the container program must supply this property before it invokes the Validate�Marc�Record method. Once the container program has invoked the ValidateMarcRecord method, any change to this property will have no effect.

� The reading of system tag tables is the only part of ValidIt’s work that is system-specific; all of the validation work ValidIt performs takes place in a generic MARC environment.

� Additional tag table formats will be added to this list as the need arises.

� Thirty days for April, June, September and November; thirty-one days for other months except February. ValidIt performs a Y2K-compatible test to determine whether February should contain 28 or 29 days.

� The validity of other subfields in certain variable fields can be determined by applying a set of rules. For example, the validity of an ISBN is determined by formula, not by consulting a list of valid ISBNs. For such subfields, see the description of Exception 10 in Appendix A.

� These codes are given in MARC 21 code list for relators, sources, description conventions.

� These are given in MARC 21 code list for languages.

� These are given with the definition of the field in MARC 21 format for bibliographic data.

� These are given in the “References and tracings” section of MARC 21 format for authority data.

� These are given with the definition of the field in MARC 21 format for bibliographic data.

� It is not likely that you will use ValidIt to validate the contents of the “NUC” code in 040 subfields $a, $c and $d.

� Subfield $e is defined for authority records, but has not yet been implemented. When implemented in the authority format, the subfield can be validated by making changes to the file codes.cfg.

� This field is defined for authority records but has not yet been implemented. When implemented in the authority format, the field can be validated by making changes to the file codes.cfg.

� The codes that may appear in the 043 field are defined in the file gacs.cfg; see Appendix A. Use a separate validation rule, calling on Exception 14, to ensure that an 043 field contains no more than 3 instances of 043 subfield $a.

� It is not certain that the contents of subfield $b—when implemented—will be amenable to testing by consulting a list. Should this prove to be the case, ValidIt will be able to validate the subfield if appropriate changes are made to the file codes.cfg.

� Value ‘b’ (with the meaning “AACR1 heading”) was formerly defined for $w/2 but is no longer mentioned in the MARC documentation.

� If this byte contains code ‘b’, there should exist a separate reference record that contains a 664 field; but ValidIt cannot test for this.

� ValidIt tests the OCLC-defined 539 field as if it were subfield $7 in the 533 field.

� MARC-8 charcters 136 and 137 (hex 88 and 89); Unicode characters U+0088 and U+0089.

� ValidIt does not test initial articles in authority or holdings records.

� The fields checked are those identified in the InitialArticlesToTest stanza of the configuration file bibvalid.cfg. See Appendix A.

� Working with a file of 11,472 bibliographic records, ValidIt tested 18,687 titles, and reported 85 problems. This means, first and most importantly, that ValidIt and the catalogers who prepared this file of records agree about initial articles in the overwhelming majority of cases—over 99.5% of the time. Of the 85 problem reports prepared by ValidIt, 55 appeared after examination to call for a change to the bibliographic record, and 25 did not call for a change to the record. Five other titles having articles that also function as numerals could not be evaluated quickly, and were assumed to be correctly coded. This means that ValidIt’s error rate for nonfiling articles in the test file is about .16% (30 erroneous reports in 18,687 titles) and the catalogers’ error rate is about .29% (55 errors in 18,687 titles). While both error rates are astonishingly low, ValidIt’s error rate is lower than the cataloger’s error rate. Working with a different file of 13,133 records and testing 20,375 titles, ValidIt’s error rate was .07% (15 errors in 20,375 titles) and the catalogers’ error rate .41% (83 errors).

� This list of codes resides in a configuration file. See Appendix A.

� See Appendix A.

� For certain places named in LCSH headings (such as those in Australia and China), ValidIt examines two successive subfields $z.

� This table is contained in the configuration file gacs.cfg. See Appendix A.

� Some fields may appear in both the bibliographic and holdings formats. See the description of the ValidateAuthAsHoldings, etc. properties.

� For example, a local system may validate an 022 field in a holdings record against the definition of that field in the bibliographic format, and may validate an 852 field in a bibliographic record against the definition of the field in the holdings format.

� This includes an internal invocation of the ReadTagTables method, if ValidIt hasn’t yet read in MARC definition information and validation rules. ValidIt will raise an error if it doesn’t find everything it needs.

� The default value for this property will be reset as Northwestern University moves from one version of Vger to the next. Container programs should be written always to set this value to correspond to that of the local Vger version.

� If you don’t want ValidIt to perform these tests for some reason, set the TestFixedFields, TestLeader, Test005, Test006, Test007 and/or Test008 properties to False. ValidIt knows how to apply values defined in the system tag table for the 008 field to corresponding elements in 006 fields; ValidIt will properly determine that each position in an 006 field, when considered in isolation, contains a valid code. However, ValidIt does not apply validation rules you define for the 008 field to the corresponding element in an 006 field. If you wish to carry out validation tests that involve 006 fields, define separate rules for them.

� This work includes tests of field and subfield repeatability. If you don’t want ValidIt to perform these tests for some reason, set the TestVariableFields, TestIndicators and TestSubfields properties to False.

� If you don’t care about obsolete content designation, set the ReportObsolete property to False.

� Only if the TestSubjectsAgainst043 property has the value True. In this work, ValidIt draws on information in the gacs.cfg configuration file. See section 6 of this Appendix.

� Only if the TestCodedFields property has the value True. You determine which subfields to test, and which codes each subfield may contain. In this work, ValidIt draws on information in the codes.cfg configuration file. See section 5 of this Appendix.

� Only if the TestInitialArticles property has the value True. In this work, ValidIt draws on information in the codes.cfg configuration file. See section 5 of this Appendix.

� Only if the TestFieldOrder property has the value True. In this work, ValidIt draws on instructions in the FieldOrder or ExtendedFieldOrder stanza of a configuration file. See section 4.2.1 of this Appendix.

� Only if the TestSubfieldOrder property has the value True. In this work, ValidIt draws on instructions in the SubfieldOrder stanza of a configuration file. See section 4.2.1 of this Appendix.

� Only if the TranslateAllValidatedRecords property has the value True and if the CharacterSetIn and CharacterSetOut properties have different, non-null values.

� Only if the PccModelIn and PccModelOut properties have different, non-null values.

� ValidIt comes with a default set of configuration files based on Northwestern University’s use of ValidIt (see section 7 of this Appendix), but it is your responsibility to make sure that the instructions in the configuration files meet your institution’s needs.

� All of the configuration files are plain text files. The easiest way to work with these files is to use a text editor such as the Windows Notepad. If you use a word-processing program to modify the configuration files, you must be careful to save the files as text only. If a configuration file contains the formatting information added by most word processors, ValidIt won’t be able to understand the file.

� Under some circumstances, ValidIt uses standard Windows functions to read these files randomly, as if they were normal initialization files; under other circumstances, ValidIt treats the configuration files as files, and reads them from beginning to end.

� Earlier versions of the configuration file may contain other stanzas, and may even include stanzas with the same name as stanzas now given in other files. For example, some versions of bibvalid.cfg contain a stanza called Operator�Corrections�For�Built�In�Errors; some versions of bibvalid.cfg, authvalid.cfg and holdvalid.cfg contain FieldOrder and ExtendedFieldOrder stanzas.

� Because all stanzas are optional, the files themselves are in a sense not required, either. But if you didn’t want to define any special things for ValidIt to do, then you probably wouldn’t be going to the trouble of using ValidIt at all.

� In this work, ValidIt draws on a pre-digested version of your local system’s tag tables, its own “supp” and “obs” files, and the two files of codes.

� Any test rules included in the ForceRules stanza (as opposed to those defined in the TestRules stanza) should not be sensitive to the outcome of force rules that may or may not yet have been applied.

� A few rules contain only an “if” expression; see Section 2.2.10.

� This segment serves the additional function of cleanly separating the “if” and “then” segments of the rule.

� These two segments are not shown in most of the examples in this Appendix, because their presence causes the printed text to wrap down into a new line, which makes reading the examples more difficult.

� Do not use the “Tab” character to create columns; use blank spaces.

� Each stanza in each file can have its own sequence of numbers, ranging from 1 to 32767, but you may find it more convenient not to duplicate rule numbers within a given validation file. If some force rules contain error-reporting information, with the intention that the force rules will be occasionally performed as test rules (this is explained later in this Appendix), then for clarity the numbers assigned those force rules should not duplicate numbers assigned to test rules in the same file.

� For example, the container program might filter error messages by the value of the Error�Message�Rule�Number property, to present a limited set of error message for some special purpose.

� One of the clues ValidIt uses to distinguish comments from rules is the presence of an equals sign in the line. If you wish to include comments in a validation file, do not include any equals signs in them.

date specification of >1996 (date of ed. 21) added 20000108

� Most rules defined for bibliographic records will apply to all bibliographic formats; most bibliographic rules will contain the seven codes “BDFMPSU” (in any order) here. Tests on bytes 18-34 of the bibliographic 008 field must in every case be restricted to the appropriate format(s).

� If the MakeNoChange property has the value True (i.e., if the container program has told ValidIt not to change any record) and if a force rule also includes error-reporting information, ValidIt will perform a force rule as if it were defined as a test rule. See the description of the fifth and sixth segments, below.

� If a force rule contains error-reporting information in the fifth and sixth segments and if the MakeNoChange property has the value True, the force rule is performed as if it were defined as a test rule. In this case, the fourth segment identifies the final test or tests to be made.

� See also the description of the MinimumSeverityLevel1 and MinimumSeverityLevel2 properties.

� See also the description of the MinimumSeverityLevel1 and MinimumSeverityLevel2 properties.

� You may give the text in the rule in either non-normalized or normalized form. ValidIt will normalize the text in the rule before comparing it against a normalized version of the subfield.

� This is the case whether or not the exclamation mark is present to show that the result of a test should be reversed; see section 2.2.5.

� This test cannot produce the result No Answer, because it is always possible to determine whether or not a record contains a field with a particular tag.

� If the value of the MakeNoChange property is True and if a force rule contains error-reporting information (i.e., the fifth and sixth rule segments are present—see Section 2.2.2), then ValidIt behaves as if the rule were defined as a test rule. ValidIt will produce the error message if the indicated change needs to be made to the record.

� Unless, as noted elsewhere in this section, the test occurs in the fourth segment of a test rule. In this case, the response No Answer becomes Found.

� ValidIt contains a special routine to trigger tests that begin with the negation of a tag-only search. (Example: 5=BDFMPSU 100! T …)

� The rule may also be recast (perhaps with a loss of efficiency) as follows:

492=BDFMPSU 008/18=a T 400! AND 410! AND 411!

� This particular test could be performed even more efficiently with Exception 14. See section 2.2.11.14.

� Most such single-test rules identify required fields or subfields that apply to individual bibliographic formats.

� There would be similar rules for the 110, 111 and 130 fields.

� Individual ValidIt users will often be the first to recognize the need for additional special routines. When you discover something in the validation line that the tool doesn’t do yet, please communicate with the author of ValidIt.

� The examples of validation rules that refer to exceptional routines included at this point are intended to serve merely as illustrations of the general method you will use to refer to special routines in validation rules. Complete instructions for constructing references to exceptional routines are given below.

� The results of these two exceptions are identical when they are used on fixed-field positions consisting of a single character.

� The contents of certain other subfields can be validated by consulting a list of codes. See the description of the TestCodedFields property.

� These suffixes seem to have disappeared from many LC records in the OCLC database.

� If the call to this routine includes the flag “;LC” (as explained earlier in this section), LCCNs with suffixes are not accepted as valid. When this flag is present, LCCNs in either format must contain exactly 12 characters.

� If the call to this routine includes the flag “;LC”, LCCNs that contain hyphens will not be corrected as shown; instead, they will be reported as erroneous.

� The method for testing the check digit for validity is not known. ValidIt does not attempt to test the value of the check digit.

� The month, day and hour are optional. The month must be in the range 01-12; the day must be in the range 01-31; the hour must be in the range 00-23.

� The code in 046 subfield $a may be tested as described under the TestCodedFields property.

� Because of the effect described in the section “Triggering a rule” earlier in this Appendix, a reference to Exception 12 should in most cases not be the first item in the second (test) segment of a rule.

� A better way to perform the same test: <14:1XX,=,1>

� A far more efficient formulation of this particular test would be: … T <12:4XX> OR <12:5XX> …

� This example should be taken as an illustration only, and not necessarily an indication of a test that would be wise to make. The routine as written does not allow for punctuation that may be present in 245 subfield $h following the closing bracket.

� For tag-only searches, you may give the tag in the form “NXX” or “NNX”, where “N” is any numeral and “X” is the character “X”.

� ValidIt uses information in the LanguagesByCode stanza of the codes.cfg file to determine the correspondence between a language code and the name for the language.

� This example shows the manner in which a change of tag would be described in a validation rule; it does not necessarily show a change that would be appropriate to make.

� Normally you will not use exception routine number 18 to change an indicator; you change an indicator more directly. The following rule definition produces the same result: 440=BDFMPSU 100:1=2 F 100:1=1

� This example show the manner in which a change of subfield code would be described in a validation rule; it does not necessarily show a change that would be appropriate to make.

� The routine inspects the indicated subfield from left to right, one character at a time. If a character is a mark of punctuation, a space or a diacritical mark, the routine continues with the next character. If a character is a numeral (either on-the-line, superscript or subscript; or a superscript or subscript mark of punctuation) the routine decides that the subfield does not require an upper-case letter, and stops work on the subfield. If a character is an upper-case letter (including an upper-case special character such as Æ), the routine decides that the subfield already begins with an upper-case letter, and stops work on the subfield. Finally, if a character is a lower-case character (including a lower-case special character such as æ), the routine converts the character to upper case, and stops work on the subfield.

� ValidIt performs this work before it inspects (and perhaps modifies) the order of subfields based on instructions in the appropriate SubfieldOrder stanza; so this initial location for the replacement subfield may not be the final location.

� This test exception could be extended into a partial or even complete replacement for the testing of coded subfields also possible via the codes.cfg file.

� Subject to the values of the MinimumSeverityLevel1 and MinimumSeverityLevel2 properties.

� Subject to the values of the MinimumSeverityLevel1 and MinimumSeverityLevel2 properties.

� ValidIt does not test initial articles in authority records. ValidIt uses the first indicator in the 130, 630, 730 and 740 fields as the nonfiling characters indicator; it uses the second indicator in the 222, 240, 242, 243, 245, 440 and 830 fields as the nonfiling characters indicator. ValidIt does not use either indicator as a count of nonfiling characters in the other fields; it assumes that the subfield contains no characters to be ignored.

� ValidIt maps any definitions of obsolete 008 codes to the corresponding 006 field.

� Throughout this section, remember that ValidIt adjusts the date of record creation by the value of the Adjustment�For�ObsoleteDates property.

� You may not specify in this stanza any order that does not conform to the MARC standard (see the description of the FieldOrderExtended stanza); you may not ask for a different order for fields 001-009, and you may not ask that fields with a given first character be sorted after fields whose first character has a higher value.

� This is the sort order used by the Library of Congress for subject authority records, and is extremely convenient for name authority records.

� This sort sequence implements the instructions in LCRI 21.29.

� The 539 field is an OCLC-defined field that contains information from subfield $7 of a 533 field.

� As there are fewer than 1001 tags defined in any given MARC format, it is unlikely that such a large number will be needed.

� 246 fields with second indicator ‘0’ come before 246 fields with second indicator ‘1’. These are followed by all other 246 fields.

� Alternately: 0=00X Tag.

� Alternately: 4=0XX Tag. Fields 000-009 are already excluded from this group by the first line in the stanza.

� Here and elsewhere, note that the list of subfields shows the order ValidIt will enforce if the subfields are present in the record; this list has nothing to do with any tests for required subfields.

� Here and elsewhere, note that if the initial or terminal segment does not call for a special lead character, the segment may optionally be given without its braces. All other segments must appear within braces.

� When it examines a field, ValidIt first divides the field at segment boundaries, which are marked in the rule with an exclamation mark or circumflex. ValidIt attempts to move subfields that occur in the wrong segment into the proper segment; but if a subfield is defined for use in more than one segment, it is possible that control won’t be able to do this correctly in all cases. (In order for this condition to arise, the original subfields would have to be thoroughly scrambled.)

� ValidIt contains a special test, which ensures that if subfield $t is not present in a field but subfield $k is present, ValidIt takes subfield $k as the start of any title segment.

� This stanza is only needed in this file for Vger versions through 1998. For Vger versions 1999 and higher, use the stanza with the same name in the file hmarcfix.cfg.

