Configuration files for conversion between vernacular and romanized forms of languages

Gary L. Strawn

January 11, 2007
[image: image1.png]C e L e [s [e [oo

Fied | Nemaoy | Wakechmesrii | Wakeohmespi2 | Wakechmwespi3

PathtoVger tag table fes: [C:\DYAGERCataloghTagl able\LOCALY Browse.

The Cuter/GAL table MARC32 MDB) [C:\Program Fies'ctk\marc32 mdb. Browse.

Files of validation tles: [L\Catalog\CATMAN walidi Browse.

Introduction
The ‘Я’ button on the cataloger’s toolkit makes possible the conversion of MARC data presented in vernacular script into its Romanized form, and the conversion of MARC data presented in its Romanized form into vernacular script. The toolkit’s ‘Я’ button can also be used for at least one related purpose: the conversion of text Romanized according to Wade-Giles conventions into text Romanized according to Pinyin conventions. Additional uses for this conversion capability may be discovered as we gain experience in the use of the button.

Although the cataloger’s toolkit makes these conversions possible, it does not actually define any such conversions. Decisions about languages and scripts that are amenable to such conversions, whether the conversion is possible in both directions or in one direction only, and (when converting a whole record at a single stroke) which fields and subfields may participate in the conversion, are left to individual institutions. The present document describes the configuration files that you build, to define for the cataloger’s toolkit the conversions it is be allowed to make with the ‘Я’ button. Individual institutions may define whatever conversions they think proper, and may then use the ‘Я’ button in whatever way they deem appropriate. All such matters of detail and policy are under local control.
Sample configuration files for a small number of scripts and languages are available from Northwestern Unviersity’s download site, as the file called RomanizationTables.ZIP. Individual institutions should assume that these files represent a useful starting point, but no more than that; individual institutions are responsible for any conversions they perform with the ‘Я’ button. If institutions wish to share their conversion tables with others, they may do so freely; if they are shared with Northwestern University, they can become part of the ZIP file available to all.
The instructions in this document assume that an institution has decided that the conversions being defined are in fact valid ones to make. For example, these instructions will show the definition of round-trip conversion for contemporary Russian in the Cyrillic script, and for the one-way conversion of Chinese script into Pinyin Romanized form. Institutions that do not believe that such conversions are possible or are otherwise inappropriate will not define them for their toolkit users.

Master Romanization configuration file
All of the configuration files described in this document reside in the folder identified in the ‘Files of validation rules’ box on the ‘Files’ tab of the BAM button configuration in the toolkit’s options panel. If an institution wishes to share configuration files (including Romanization configuration) among all users, this will be a shared folder; if individual catalogers are to have access to different sets of Romanization configurations, then there will need to be separate configuration folders, one for each different Romanization configuration. (In these separate folders, the other configuration files, such as bibvalid.cfg, will probably be identical.)

The configuration files described in this document are plain text files. You can use the Windows™ Notepad application to create and modify these files.

The following illustration shows where the folder that contains validation files is identified in the configuration for the cataloger’s toolkit.

[image: image3.bmp]
One file in this folder, called RomanizationMaster.cfg, simply names all of the other configuration files. This file contains only one stanza, called ‘Files.’ The Files stanza lists in sequential order the files that define the individual Romanization configurations. If these individual configuration files exist in the same folder as the other configuration files, you can give just the file name; if one or more files live in some other folder, give the complete path to the exceptional files.

The following example of a possible RomanizationMaster.cfg file defines three Romanization tables: two live in the same folder as other configuration files, the third lives in a different folder. The names of the files themselves are useful for those who have to maintain them, but the toolkit doesn’t actually care what the names are, and they don’t actually have to have the “cfg”extension. These files might just as well be ‘File5.txt’, ‘FileB.cfg’ and ‘SusansSpecialFile’.
[Files]

1=RussianRomanization.cfg

2=ChineseRomanization.cfg

3=G:\WadeGiles\ChineseWadeGilesToPinyin.cfg

In the ‘Files’ stanza, number the files in the order they should be presented to the operator in the drop-down list at the top of the toolkit’s ‘romanization’ panel; the toolkit does not alphabetize this list, but presents it in the order that you set. The preceding stanza produces the list shown in the following illustration. (The language/script names in this list come from the individual configuration files, which we’ll come to in a moment.)

[image: image2.png]Convert translated text to vernacular

Soipt/language:

Chinese. "
Y T —

Cont GPub: LIF: 0 Indx: 0: 1 lls: 041 Fest 0 Dt

001 ansszs
005 20081130080352.0

026:42: Fa 184563-2 o C-SPAN Archives
040: - 4a IENFc [EN

Configuration files for each language/script conversion
Each language or script that you decide can be converted either from vernacular to romanized form or from romanized form to vernacular (or both) is represented by a separate configuration file. (These are the files identified in the file RomanizationMaster.cfg.) Each of these configuration files has either two or three stanzas.
· The General stanza provides information about the language/script

· The RomanToScript stanza tells the toolkit how to convert Romanized text into vernacular script (if such a conversion is possible)

· The ScriptToRoman stanza tells the toolkit how to convert text in vernacular script into its Romanized form (if such a conversion is possible)

The General stanza is required. The file must contain at least one of the other two stanzas. (It may contain both.)
General stanza
The General stanza should contain the Name element. This element contains the name for the language/script displayed to the operator by the cataloger’s toolkit. The name can be anything you want, but obviously it should be something that will succinctly convey to the operator what the use of the translation table will accomplish.

In special cases, the General stanza may contain additional elements. At present, these elements are known only to be of use in a configuration file that converts text in Wade-Giles Romanization to Pinyin, but they may in the future find application in other contexts.

· DoNotUse880Field: If this element is True the toolkit will not create parallel vernacular/Romanized fields, but will instead always convert the text in place. (This means that the toolkit will replace Wade-Giles Romanization with Pinyin Romanization in place in the Romanized fields, without interfering in any way with any vernacular text in 880 fields.)

· AllowCaseVariation: If this element is True the toolkit will ignore case when matching the Wade-Giles forms you define to text in a bibliographic record. (The toolkit will attempt to preserve the uppercase letters that it finds when it converts text to Pinyin Romanization.) If this element is True you should input all of the Wade-Giles and Pinyin forms using only lowercase letters; if this element is False (or you omit this element altogether) you must supply both lowercase and uppercase forms for each translation (even if the uppercasing involves only the first character of a syllable).

· ApostropheCharacters: In Chinese Romanized according to Wade-Giles conventions, a character that looks rather like an apostrophe was used with a certain meaning. Unfortunately, this character was not always input as the ‘approved’ character. You may list here (using the same conventions you use to define text in the other stanzas in this file) all of the characters that kind-of look like a apostrophes, and may have been used by operators. If you supply this stanza, you should in your Wade-Giles Romanized forms use an apostrophe to represent this character. If you do not supply this stanza, you should in your Wade-Giles Romanized forms use whatever character you please to represent this character; and if different characters may have been used, you must supply all possible variant forms.

· AllowDefineButton: This optional addition probably only applies to Chinese. The Chinese script contains thousands of characters, and it’s likely that no configuration file you create will contain them all. If the configuration file contains the line ‘AllowDefineButton=True’, the toolkit will make available the ‘Define’ button on its Romanization form. This button allows you not only to supply a romanized equivalent for one Chinese character, but also to add that mapping automatically to your configuration file, so it’ll be there the next time the character comes up.

· BySyllables: When performing most romanizations, the toolkit handles each character (or, occasionally, a group of characters) independent of its context. When converting Wade-Giles text to Pinyin, the toolkit should instead transform only whole syllables. To tell the toolkit this, include the line ‘BySyllable=True’ in the General stanza of the configuration file.

In some cases, a conversion only applies to a character (or small group of characters) when it occurs in the initial position of a word, in the terminal position of a word, or in a medial position of a word. You will indicate that a character must be followed, preceded, or both preceded and followed by additional characters within a word by supplying a special character, the truncation character, as part of your definition. This character is by default the percent sign (%), but you can change it to any other character you wish by including the ‘Truncation’ member in the General stanza with your preferrred truncation symbol.

[General]

Name=Chinese Wade-Giles to Pinyin

DoNotUse880Field=True

AllowCaseVariation=True

ApostropheCharacters=&H02BB&H02BC&H02BD&H02BE&H02BF&H0313&H0314
AllowDefineButton=True

BySyllables=True
· This conversion will not use 880 fields; the conversion takes place within the existing fields
· This conversion ignores case

· This conversion treates the specified characters as if they were the apostrophe character; the apostrophe character in the following definitions may appear in a bibliographic record as any of these characters

· The toolkit will make the ‘Define’ button available during the conversion of a record
· The toolkit will only convert whole syllables.
[General]

Name=Greek classical
Truncation=%

· Because there is no indication to the contrary, the conversion will use the 880 field, will be restricted to upper- and lower-case as defined for each translation, will not do anything special with characters that might look like an apostrophe, and will proceed one character at a time.

· The conversion uses ‘%’ as the truncation symbol

Restriction of whole-record conversion to individual fields and subfields
The cataloger’s toolkit provides two basic scenarios for the conversion of a record: field-by-field, and whole-record-at-once. In the field-by-field conversion, the operator identifies one piece of text that needs to be converted by highlighting it, and asks the toolkit to convert that one piece; the operator then proceeds with the next piece. In whole-record conversion, the toolkit does everything it can find with a single click, without other assistance from the operator. A quick examination of any record that might be subjected to conversion will produce examples of fields and subfields that should not be converted automatically when the toolkit is doing a whole-record conversion. (For example, subfield $x of a subject heading will not contain Romanized text that needs to be converted to vernacular.) The fields and subfields that should participate in whole-record conversion will probably also vary depending on whether the conversion is from vernacular to Romanized, or Romanized to vernacular. (In general, it is safe to convert vernacular text wherever it appears into Romanized form; but it is not safe always to do the reverse because Romanized text can look very much like other roman-alphabet text that should be left alone.)
The ScriptToRoman and RomanToScript stanzas both allow for the introduction of elements (in addition to those described in the separate stanzas below) that specify which fields and subfields will be examined if you ask the toolkit to convert an entire record at one stroke. These elements only apply to full-record conversion; if an operator is converting a record one field or piece of a field at a time, the toolkit assumes that the operator knows best. These stanzas are:
· FieldsIncluded: a list of the variable fields that the toolkit will inspect when doing whole-record conversion. The toolkit will skip variable fields not in this list, even if they contain characters identified in the configuration file. Separate tags from each other with spaces. Default value if you don’t supply this element: every tag in the range 100 through 840 inclusive.

· SubfieldsAlwaysExcluded: a list of the subfields that are excluded in all cases, regardless of the field’s tag. This list of subfields only applies to fields that are listed in the FieldsIncluded element. Default value: uvxy0123456789

· OtherSubfieldsExcludedByTag: a list of additional subfields that the toolkit should not transform. Identify each as a tag/subfield pair (as in: 650/a 710/n). Default value: <empty>
These elements can appear at any convenient point in the stanza, although for ease of maintenance it may seem best to put them at the beginning.

The following extracts from a configuration file show possible values for these elements.

[RomanToScript]

FieldsIncluded=100 245 246 260 600 610 611 630 650 651 700

OtherSubfieldsExcludedByTag=650/a

This stanza supplies a replacement for the default list of fields to consider, accepts the default list of subfields always excluded, and excludes 650 subfield $a from any translation.

[ScriptToRoman]

OtherSubfieldsExcludedByTag=650/a

This stanza accepts the default list of fields to consider and accepts the default list of subfields always excluded, but excludes 650 subfield $a from any translation.

The examples in the following sections do not show these tag- and subfield-related elements.

ScriptToRoman stanza
The ScriptToRoman stanza tells the toolkit how to translate vernacular data into its Romanized form. Each line in this stanza defines one vernacular element (single character or group of characters) and its Romanized equivalent; the two pieces of information are separated by an equals sign character.
 Represent Unicode characters as their UTF-16 notation, preceded by the notation “&H”, “U+” or “&x”.
 Use “normal” characters to represent themselves.

In addition to the FieldsIncluded, SubfieldsAlwaysExcluded and OtherSubfieldsExcludedByTag elements, the ScriptToRoman stanza can include the following elements:

· UppercaseFirstCharacterInSubfield: Only applies to Chinese. By default the toolkit will uppercase the first word in the field. This element contains additional field/subfield combinations that should also have an initial uppercase letter. (Example: 260/b)
· PersonalNameHandling: Only applies to Chinese. If this is True, the toolkit will uppercase each word in the name, and will add a comma after the first syllable.
You can indicate terminal spaces (probably only applies to Chinese) either by giving a literal space at the end of the vernacular text, or use the underscore character. (The latter having the advantage of being visible.)

Here is an extract from this stanza for a table defining the conversion of Russian-language material in the Cyrillic script into Romanized form:

[ScriptToRoman]

U+0401=EU+0308

U+0410=A

U+0431=b

U+044E=iU+FE20uU+FE21
U+0416=Zh

The toolkit interprets these entries in this manner:

· Character U+0401 (Ё) becomes ‘E’ with an umlaut

· Character U+0410 (А) becomes ‘A’

· Character U+0431 (б) becomes ‘b’

· Character U+044E (ю) becomes ‘iu’ with joining ligatures (this glyph isn’t available in Microsoft Word)

· Character U+0416 (Ж) becomes ‘Zh’

If more than one vernacular element begins with the same character, input them with the ‘less inclusive’ or ‘more specific’ (normally this is the same as ‘longer’) ones preceding the more inclusive or less specific (normally the same as ‘shorter’) ones. The following is an extract of a configuration file for converting Chinese characters to Pinyin Romanized form.

[ScriptToRoman]

U+4E2DU+56FD=Zhongguo

U+4E2D=zhong
· Character U+4E2D followed by character U+56FD is Romanized as ‘Zhongguo’

· Other occurrences of character U+4E2D are Romanized as ‘zhong’

If (as is the case with a configuration file for converting Chinese characters to Pinyin Romanization) a space should follow the Romanized syllable, include the terminal space in the configuration file. In the following extract, the underscore represents a terminal space; this is exactly how a terminal space should be indicated in a configuration file. (You could instead use a plain space, but it’s harder to see.)
[ScriptToRoman]

U+4E2DU+56FD=Zhongguo_
U+4E2D=zhong_
If a character to be converted must be followed, preceded, or both preceded and followed by additional characters, use the truncation symbol (by default the percent sign, but redefined by the Truncation member in the General stanza) to indicate the position of the converted characters relative to other characters in a word. (If you do not include the truncation symbol, the toolkit will apply the transformation to the character or combination of characters without considering its position within the text. Most characters in many alphabetic languages will not need the truncation symbol.)
[ScriptToRoman]

U+03BDU+03C4%=d&H0332

If Greek character ‘nu’ followed by Greek character ‘tau’ appears at the beginning of a word, it is romanized as ‘d’ with an underscore.
To cause the toolkit to omit a character in the converted form, include nothing after the equals sign.

[ScriptToRoman]

U+0308=
When converting vernacular text to romanized form, omit the umlaut.
RomanToScript stanza
The RomanToScript stanza tells the toolkit how to convert Romanized data into vernacular script. The contents of this stanza (if it is included at all) will in many cases be identical or nearly identical with the contents of the ScriptToRoman stanza, except that the positions of the elements will be reversed. For some scripts, there will be additional elements in this stanza. The following is an extract of a configuration file for converting Romanized Russian text into Cyrillic characters. Note that the rule given above for defining less inclusive elements before more inclusive elements that begin with the same character applies to this stanza as well.
 [RomanToScript]

EU+0307=U+042D

EU+0308=U+0401

EU+0328=U+0466

E=U+0415

· Convert the character ‘E’ followed by a superior dot to U+042D (Э)

· Convert the character ‘E’ followed by an umlaut to U+0401 (Ё)

· Convert the character ‘E’ followed by a right hook to U+0466 (this Cyrillic character doesn’t appear to be available in Microsoft Word)

· Convert the character ‘E’ not followed by superior dot, umlaut or right hook to U+0415 (Е)
The following is an extract of a configuration file for converting Romanized Greek text into Greek characters. Note again that the rule given above for defining less inclusive elements before more inclusive elements that begin with the same character applies to this stanza as well.

[RomanToScript]

DU+0332%=U+039DU+03C4
D=U+0394
· Convert the character ‘D’ followed by an underscore when appearing as the first characters in a word to U+039D (Ν) followed by U+03C4 (τ).

· Convert the character ‘D’ to U+0394(Δ)

� Before version 1.5.569, the two pieces were separated with the ‘tab’ character. Versions 1.5.569 actually allows the use of either the tab or the equals sign. The equals sign, being visible, is probably to be preferred, and is used in the examples.

� “U+” and “&x” available with toolkit version 1.5.569 and later.

