Program for the manipulation of MARC bibliographic and authority records for use under RDA
Gary L. Strawn, Northwestern University Library
December 5, 2014
Introduction

Adoption of Resource description & access (RDA) involves the acceptance of a number of differences with previous practice in the recording of information and the construction of heading strings.
 Fortunately, many of these differences involve the kinds of mechanical manipulations that can safely be assigned to a computer program. The use of such a program can allow data created under earlier standards to co-exist with data created under RDA, with the least amount of unhappiness. This document describes one such program that can be used to manipulate non-RDA access fields and descriptive elements into an RDA-like form. This program runs under the Microsoft™ Windows™ operating system; it should work properly under any Windows version from XP™ forward. This program was originally devised to make changes only to heading strings (or controlled access fields) in both authority and bibliographic records; the program has been expanded to make changes to descriptive elements in bibliographic records.
Most of the changes made to access fields by this program are those that are described in documentation prepared by the PCC Acceptable Headings Implementation Task Group.
 The changes to descriptive elements are those originally devised for Northwestern's Cataloger's toolkit program, and are here adapted for a different context, and somewhat expanded. By setting appropriate options, you can instruct the program to make changes to non-RDA access fields, to non-RDA descriptive elements, or to both non-RDA access fields and non-RDA descriptive elements.
This program is designed to be used at any institution that handles bibliographic and/or authority information in the MARC21 format. An institution can prepare files of records in the MARC21 format, and set this program to work on those files one at a time. One of this program's output files contains changed records in the MARC21 format; this output file can be used in whatever manner seems appropriate. This means that an institution could export bibliographic and/or authority records from the local library management system as series of files, use this program to process those files of records, and then load the changed records back into the local system.
With one important exception, the program described in this document deals only with files of records in the MARC21 format. The program does not read records from a local system, nor does it write changed records back to a local system. Interaction with a local library system is left to other programs and utilities; coordinating the updating of a database of bibliographic and authority records via this program is left to well-informed and -trained operators. The exception to this general rule applies only to institutions that use the Voyager library management system: the program is able to read a Voyager database directly to find records of interest, and the program is able to write changed records directly back to a Voyager database. (Voyager users may, if they wish, use files of records, like everyone else.) These Voyager-only features are described in Appendix B.

When evaluating the work performed by this program on access fields, it is important to understand how the program works: This program considers each MARC authority or bibliographic record in splendid isolation, on its own merits, using only the information contained in the one record. For access fields, this means that this program does not test for conflicts involving other records in the local database, other records in the LC/NACO Authority File, or anywhere else. It is entirely possible that the program will make RDA-related mechanical changes to a record without resolving a conflict between the changed field and a field in some other record. Although this important restriction may be seen as less than optimal, it is fair to say that if this program is applied to all of the authority and bibliographic records in a closed environment (such as a local library system), the program will not make conditions any worse than they already are. If this program is applied to all of the authority and bibliographic records in such a closed environment, there will (with one rare but important exception described below) be no new problems created; those bibliographic headings that previously matched authority fields will continue to match the same authority fields, and those bibliographic headings that previously matched no authority field will continue not to match any authority field.
Here are some examples that may help make this important point clear.
The following example shows a case where an existing (and correct) situation is still correct after the program has done its work.
When presented with the following fields in an authority record (not all fields in the LC/NACO record are shown):

100 0# $a Bernard, $c of Clairvaux, Saint, $d 1090 or 91-1153

400 0# $a Bernard, $c Saint, $d 1090 or 91-1153

400 0# $a Bernhard, $c av Clairvaux, Saint, $d 1090 or 91-1153

The program will change subfield $d in each field to its RDA equivalent:

100 0# $a Bernard, $c of Clairvaux, Saint, $d 1090 or 1091-1153

400 0# $a Bernard, $c Saint, $d 1090 or 1091-1153

400 0# $a Bernhard, $c av Clairvaux, Saint, $d 1090 or 1091-1153
Similarly, when presented with the following field in a bibliographic record:

100 0# $a Bernard, $c of Clairvaux, Saint, $d 1090 or 91-1153.

The program will change subfield $d to its RDA equivalent:

100 0# $a Bernard, $c of Clairvaux, Saint, $d 1090 or 1091-1153.

The bibliographic 100 field matched the 100 field of the LC/NACO authority record before the program did any work; the bibliographic 100 field still matches the authority 100 after the program has done its work on both the authority and bibliographic records.
The following examples show cases where an existing problem is not made any worse by the program's actions.

When presented with this field in an authority record:

400 0# $a Bernard, $c Saint, $d 1090 or 91-1153
The program will change subfield $d to its RDA equivalent:

400 0# $a Bernard, $c Saint, $d 1090 or 1091-1153
Similarly, when presented with the following field in a bibliographic record:

600 00 $a Bernard, $c Saint, $d 1090 or 91-1153.

The program will change subfield $d to its RDA equivalent:

600 00 $a Bernard, $c Saint, $d 1090 or 1091-1153.
The original bibliographic field matched a 4XX in the LC/NACO authority record before the program did its work; the changed bibliographic field continues to match an authority 4XX field after the program has done its work on both the authority and bibliographic records. During the conversion, the program considers the bibliographic access field in isolation, and does not compare information in it to information in other records. Detection and resolution of this problem lies outside the competency of this program.
When presented with the following field in a bibliographic record:

600 10 $a Caxton, William $d ca. 1422-1492.

The program will change subfield $d to its RDA equivalent:

600 10 $a Caxton, William $d approximately 1422-1492.

The original field does not reflect the form of name specified by the pre-conversion LC/NACO Authority File, and the changed field does not reflect the form of name specified by the post-conversion LC/NACO Authority File. The bibliographic field has been modified into an RDA-like form on its own merits, without any effect on the state of things in a broader sense: the bibliographic field was not in an authorized form before the conversion, and it remains in an unauthorized (though different) form after the conversion. Note also the comma missing from the end of subfield $a, which the program does not supply, because it did not change subfield $a.
When presented with the following field in a bibliographic record:
110 10 $a Manitoba. $b Dept. of mines and natural resources.
The program will expand the abbreviation in subfield $b:

110 10 $a Manitoba. $b Department of mines and natural resources.
The program successfully expands the abbreviation in subfield $b, but does not consider the use of uppercase letters in other parts of the subfield. The normalized form of the bibliographic 110 field matched the 110 field in the LC/NACO authority file before the conversion, and it continues to match the authority 110 field after the conversion of the authority and bibliographic records, even though the two differ in detail.
When presented with the following field in a bibliographic record:

700 12 $a Equiano, Olaudah, $d b. 1745. $t Interesting narrative of the life of Olaudah Equiano, or Gustavus Vassa, the African. Selections. 1971.

The program will change subfield $d to its RDA equivalent:

700 12 $a Equiano, Olaudah, $d 1745- $t Interesting narrative of the life of Olaudah Equiano, or Gustavus Vassa, the African. Selections. 1971.

The program successfully manipulates the data in subfield $d, but does remove the unnecessary alternate title in subfield $t, and does not insert the missing subfield codes $k and $f.

When presented with the following field in a bibliographic record:

240 10 $a Concertos, $m violoncello & string orchestra. $k Selections. $h Sound recording

The program will change "violoncello" in subfield $m to its RDA equivalent:

240 10 $a Concertos, $m cello & string orchestra. $k Selections. $h Sound recording

The program successfully substitutes the approved name for the solo instrument under RDA, but does not consider whether "cello & string orchestra" is a correct formulation for subfield $m. (If appropriately configured, the program will also remove subfield $h.)
There is one operation performed by this program—in full accordance with the scheme adopted by the Program for Cooperative Cataloging—that can result in the creation of a new conflict or problem. Under standards in effect before the adoption of RDA, the label "b." was used before a date in subfield $d if a person's birth date was known and the person was known or believed to be dead but the death date was not known. Similarly, the label "d." was used before a date in subfield $d if a person's death date was known, but not the birth date. Under RDA as adopted by the PCC, hyphens are used instead of these abbreviations or the equivalent words.
	Pre-RDA subfield $d text
	RDA equivalent

	$d b. 1821
	$d 1821-

	$d d. 1952
	$d -1952

In an extremely small number of cases (a few dozen, out of about 8.5 million LC/NACO authority records), it happens that different people with the same name share a single year: for example, one person with the name dies in a given year, and another person with the same name is born in the same year. This means that after the application of RDA two headings that were previously distinct suddenly have the same PCC comparison form; the ostensibly duplicate headings will be created by the RDA conversion process itself. The detection and resolution of this problem are matters outside the scope of this program.

	Pre-RDA headings
	RDA equivalents (with same PCC comparison form)

	$a Leggat, Claribel A. $q (Claribel Ament), $d d. 1881

$a Leggat, Claribel A. $q (Claribel Ament), $d b. 1881
	$a Leggat, Claribel A. $q (Claribel Ament), $d -1881

$a Leggat, Claribal A. $q (Claribel Ament), $d 1881-

	$a Netting, Conrad John, $d d. 1944

$a Netting, Conrad John, $d 1944-
	$a Netting, Conrad John, $d -1944

$a Netting, Conrad John, $d 1944-

Similar considerations apply to the changes made by the program to descriptive elements: the program makes changes to a bibliographic record based solely on the contents of that bibliographic record, in isolation. (Difficulties related to this point are limited, I think, to the construction of 336, 337 and 338 fields.) The program does not consider useful information that may also be present in holdings records. If the program's correct behavior when changing descriptive elements must rely on information outside the bibliographic record, you should by some means divide the program's work into segments reflecting common characteristics, vary the program's settings for each segment, and use the program to process each segment separately. For example, if a set of bibliographic records represents microforms, but the bibliographic records do not contain a microform 007 field, you should isolate the relevant records as a separate group, feed the program a file of the relevant bibliographic records (or, for Voyager users, a file of relevant bibliographic record IDs), and make appropriate configuration changes to force appropriate values for the 336, 337 and 338 fields.

Restrictions on use

The program described in this document is available for non-commercial use only. Any institution may use the program to manipulate records, and may freely distribute the program to others, as long as all of the following conditions are satisfied:

1. No charge is made for the program

2. No charge is made for the program's documentation

3. No charge is made for the work done by the program

Use of the program and its components under other conditions (such as, but not limited to, use of this program as part of a fee-based service) is subject to prior agreement with Northwestern University's Innovation and New Ventures Office (formerly known as the Technology Transfer Program; 1800 Sherman Avenue, Evanston, IL 60201; 847/467-2097).

In all cases, use of the program is entirely at the risk of the user. Use of the program constitutes agreement with this condition. Those not willing to take this risk upon themselves must not use this program.
Installation

Installation packages for this program are contained in a series of ZIP files available at the Northwestern University Library download site (http://files.library.northwestern.edu/public/RdaConversion/). The name of the ZIP file begin with some numbers and end "RdaConversion.ZIP". (For example, file names might be "2007.22.416​.RdaConversion​.ZIP" and "2008.11.523.RdaConversion.ZIP".) Only users of the Voyager library system who are interested in using the program's Voyager-specific features need to worry about the numbers in the ZIP file names;
 others should simply take the installation package with the most recent date. (The numbers in the file name do not represent the date the installation package was produced; for the date the installation package was created see the separate column in the display on the download page.)
While you are at this download site, also download the ZIP file whose name begins "RdaConfiguration"; you will need this when you set the program's configuration (see below).
The ZIP file for each installation package contains the following three files:

· setup.exe
· setup.lst

· RdaConversion.CAB

To install the program, unzip the file to some convenient folder and then run setup.exe.
 During the installation, if you are told that a given module (DLL, OCX, or other) in the installation package has an earlier date than a module currently installed on the workstation, always select the choice in the dialog box that means "retain the module with the later date already installed on this workstation".

After you install the RDA conversion program, it will be available from the Windows Start menu in the listing of all programs; look in the "Northwestern University Library" folder. You can copy the shortcut for this program to your desktop, or to any other location that seems convenient to you.
Configuration

Before you begin to consider the program's configuration—before you even start the program the first time--download the ZIP file whose name begins "RdaConfiguration" from the same folder at the download site that contained the installation package. Create a folder to contain your RDA configuration (the name of this configuration folder can be anything you can remember), and un- ZIP this file into that folder. You'll need to supply the name of this folder as one of the program's options.

You must configure the program before you can use it for either testing or production. (As described in Appendix B, Voyager users must supply information beyond that described here if they wish to use the program's Voyager-specific features.) Configuring the program consists in the definition of one or more profiles. Each profile represents a different conversion scenario. You might, for example, wish to create different scenarios for the handling of files of bibliographic and authority records; you may wish to create a number of different profiles for the descriptive elements in bibliographic records. The amount of complexity reflected in the scenarios is entirely of your devising: you must define at least one profile, but you can define as many profiles as you feel you need.

Note that if you are using the program only to change descriptive elements, and are not using the program to change access fields, you need only concern yourself with the configuration file RdaSubfieldH.txt; all of the other configuration files control the program's handling of access fields. If you are using the program only to change descriptive elements, you can ignore the contents of all of the other configuration files.
When you start the program the first time, it looks like this:

[image: image1.png]Exit Options for Voyager users only

- Define and select ADA conversion pofles

Rensme

Delete

Fist

Next

Erevious

Lest

Perfom

The big empty window is where you will see a list of your profiles, once you've defined them.

To create a profile, click the "New" button. The program asks you for a name for the profile. The name you give the profile can be anything that means something to you; the program just uses this name for display, and imposes no restrictions on the content of the name. After you supply a name, the program adds it to the list. In the following illustration, the name of the new profile is "Standard RDA conversion profile". The program's caption (the bar at the top of the program's window) shows the name of the currently-selected profile.
[image: image2.png]Exit Options for Voyager users only

- Define and select ADA conversion pofles

anard DA

Rensme

Delete

You can change the name of the profile at any time (by clicking the "Rename" button), and you can delete the profile at any time (by clicking the "Delete" button).

If you define several profiles, select the profile of interest for a given operation from this opening screen; the choices on the following screens of the profile definition reflect the values you have set for the selected profile.

Every time you create a new profile when an existing profile's name is highlighted, the program sets all of the values in the new profile to match the highlighted profile; the new profile is a "clone" of the existing profile, differing only in the name. Having created the profile clone, you need only attend to those values that differentiate the new profile from the original one.

Once you have created a profile, you need to page through several screens, to set all of the options that together constitute the profile. Navigate from one page of options to the next by clicking "Next", "Previous", "First" and "Last" buttons. The following sections of this document describe each of the screens that together constitute an RDA conversion profile.
Identify the source of records to convert
Use this frame to tell the program where to find the records with which it is to work. Unless you are using the Voyager library system and have previously set appropriate configuration values, the only choice available to you will be the choice "File of MARC records." Use the "Browse" button to find the file of records with which you wish the program to work.

[image: image3.png][-Identiy source ofrecords to convert

 File of MAR records (any minture of biblographic and authoriy)
Browse.

. Fil of oyageruthorty ecord D Voyagerusers orl)
Biowse.

€ Fange of Voyager uthorty record D Voyageruses orl)

From: o inclusive

€ Begin it authorty esord 1 and proced o the st resord]

Nesrecadtozomie, [

€ File of oyane bibiomaphic resord s (Voyeger users o)

S

€ ange of Voyages bibloarephic record D Voyagerusers orl)

From: o inclusive

€ Beginith biboaraphic esord 1 and proceedta the st resord]

Nesrecadtozomie, [

General conversion options
These very important options define some of the RDA-related changes made to access fields.

[image: image4.png]General conversion optons

7 Make changes to acosss fields

2

W U e e o o U U

Conference names: possibilly of ‘ongaing’ nature mst be considered
Fersonalnames: ' t start of $d becomes bor
Personalnames: d at stat of §d becores ded
Sublield $m, etc: use cello’ not ioloncell'
Bibl: omit Apociypha’

Bibl: ‘Selestions' s authorized

0K to change dates in 50 sublield $a

0K to change dates in X5 subfild 3y

0K to change ioloncelo!in 50 sublield $a
0K to change icloncel in 55 sublield $a
Make Depattment changes

Create hefore' archiv fle of changed recards
Creat review i of notchanged recards

Punctuaton witin a changed fild

©

Alow comma afte hyphen before subield $=

‘Add o fl stop preceding subfield $t folowing

©

o2 e s

Include space aher hyphen, before fullstop or comma

Folder for reports:

[@\musi medium,

Folder for configurationfles

i\ida acceptable Ziconfiguaton’.

ronge o tan 56352 e

Recads pr e and el [{T0 2

The "Make changes to access fields" box overrides everything else on this page; if this box is not checked, the program will not make changes to access fields.

If you are using the program to change access points, you should set the check-boxes immediately below the "Make changes to access fields" box to appropriate values. (The values shown above are those that were used to manipulate the LC/NACO Authority File. Unless and until the Library of Congress decides to align the practice for dates in subject headings with the practice for dates in other kinds of access points, you should use the values shown here for all of your work with this program.)
· Conference names: possibility of 'ongoing' nature must be considered: This box should always be checked.

· Personal names: 'b.' at start of $d becomes 'born': This box should always be not checked.
· Personal names: 'd.' at start of $d becomes 'died': This box should always be not checked.
· Subfield $m: use 'cello' not 'violoncello': This box should always be checked.
· Bible: omit 'Apocrypha': This box should always be not checked.
· Bible: 'Selections' is authorized: As originally written, RDA does not provide for the use of the form subdivision 'Selections' for parts of the Bible and other sacred scriptures. At the time this document is being written, there was a proposal before JSC to again allow 'Selections' in headings for sacred scriptures. While 'Selections' is not authorized, this box should be not checked; if 'Selections' is at some future time authorized, this box should be checked.
· OK to change dates in X50 subfield $a: This box should always be not checked.
· OK to change dates in X5X subfield $y: This box should always be not checked.
· OK to change' violoncello' in X50 subfield $a: This box should always be checked.
The remaining options can be whatever values work in your environment.

· Create 'before' archive file of changed records: If you check this box, the program will create a MARC output file containing each record that was changed, but showing the state of each record before the change. If you create this file, you could use it to restore records to their previous state if you discover that something has gone terribly wrong.

· Create review file of not-changed records: If you check this box, the program will create a text file showing each record that the program inspected but did not change. You can review this file to find things that you think the program ought to have changed, but didn't.

· Allow comma after hyphen before subfield $e: The value of this check-box controls the toolkit's behavior when it changes a subfield (probably subfield $d in a personal name heading) that is followed by subfield $e. If you leave this box un-checked (the default value) the program will not add a comma before subfield $e of an X00 or X10 field, if subfield $e is preceded by a subfield ending in a hyphen. If you check this box (not the default value) the program will add a space and a comma at the end of the subfield that precedes subfield $e if that preceding subfield ends in a hyphen.

Example. Starting in both cases from this source field:

700 1# $a Strawn, Gary L., $d b. 1952, $e collaborator.

If this box is not checked (the default value) the program will adjust subfield $d and not add a comma to the finished field:

700 1# $a Strawn, Gary L., $d 1952- $e collaborator.

If this box is checked (not the default value) the program will adjust subfield $d and add a comma to the finished field:

700 1# $a Strawn, Gary L., $d 1952- , $e collaborator.

If you opt to include the comma, the behavior of this option is further controlled by the Include space after hyphen, before full stop or comma check-box.

· Add no full stop preceding subfield $t following: The contents of this text box control the toolkit's behavior when it changes a subfield (probably subfield $d, but there are other possibilities) that is followed by subfield $t; that is, this option controls the toolkit's behavior when the toolkit has changed the last subfield in the name portion of a name/title heading. The toolkit needs to settle the question of punctuation at the end of the changed subfield, before subfield $t. The text box contains marks of punctuation which, if present, cause the program not to add a full stop at the end of the changed subfield. If the changed subfield ends with any character not given in this box, the toolkit will add a full stop at the end of the changed subfield. If the changed subfield ends in a hyphen and the option box does not contain a hyphen, the program will add a space before the full stop.
Example. Starting in both cases from this source field:

700 12 $a Strawn, Gary L., $d b. 1952. $t Some silly title.

If this box contains a hyphen (the default value) the program will not add a full stop at the end of changed subfield $d ending in a hyphen:

700 12 $a Strawn, Gary L., $d 1952- $t Some silly title.

If this box contains a hyphen (not the default value) the program will add a full stop at the end of changed subfield $d ending in a hyphen. In the case of a changed subfield ending in a hyphen, the program also includes a space before the full stop.

700 12 $a Strawn, Gary L., $d 1952- . $t Some silly title.

If you opt to include the full stop after a hyphen, the behavior of this option is further controlled by the Include space after hyphen, before full stop or comma check-box.

· Include space after hyphen, before full stop or comma: This check-box controls the program's behavior when a changed subfield ends with a hyphen, and the program is adding a comma before subfield $e, or a full stop before subfield $t. (The program's addition of the comma and full stop following a hyphen is controlled by other options.) If you check this box (the default value) the program includes a space before the hyphen or full stop; if you do not check this box the program does not include a space.

Example. Starting in both cases from these source fields:

700 12 $a Strawn, Gary L., $d b. 1952. $t Some silly title.

700 1# $a Strawn, Gary L., $d b. 1952, $e collaborator.

If this box is checked and if you have told the program to include a comma and/or full stop after a hyphen, the program will include a space after the hyphen:

700 12 $a Strawn, Gary L., $d 1952- . $t Some silly title.

700 1# $a Strawn, Gary L., $d 1952- , $e collaborator.

If this box is not checked and if you have told the program to include a comma and/or full stop after a hyphen, the program will not include a space after the hyphen:

700 12 $a Strawn, Gary L., $d 1952-. $t Some silly title.

700 1# $a Strawn, Gary L., $d 1952-, $e collaborator.

If you have not told the program to include a comma or a full stop after a hyphen, the value of this check-box is immaterial:

700 12 $a Strawn, Gary L., $d 1952- $t Some silly title.

700 1# $a Strawn, Gary L., $d 1952- $e collaborator.

· Folder for reports: The name of a folder into which the program can write its reports and output files. You will want to define a special folder to contain just this program's report files. There are going to be a lot of report files, and you're going to want to keep them separate from other files. The folder name you give here should end with a reverse slash. The folder you name must exist before you start the program; the program will not create this folder for you. The default value of "c:\" for this folder will not be acceptable under current versions of Windows, because programs are no longer allowed to write to the root directory of the main hard drive.

· Change no more than … records: This sets the maximum number of records of any type that the program will modify during any one run. This number is the combined number of authority and bibliographic records that the program will change. The program's current limit is 10,000,000 changed records.

· Folder for configuration files: the name of the folder that contains the program's configuration files. These are the files contained in the configuration ZIP file you downloaded when you downloaded the program's installation package. (See elsewhere for a description of the ZIP file that contains the default configuration information, and what you should do with it.) This folder name should end with a reverse slash. The default value of "c:\" won't cause the program to blow up, but it is an unacceptable value for ongoing work.

The program creates files that show the 'before' and 'after' versions of each record it changes. These files are extremely important during your testing of the program, as they allow you to identify every change made by the program. Because there are probably going to be a lot of records changed, a single file containing all of the records is probably not a good idea. With the number you supply in the Records per 'before and after' file area, you can tell the program how many records (by hundreds) to include in each file. You will find that a value of 1,000 or 2,000 probably strikes the best balance between the number of files generated, and the number of records in each file.
Options for authority records

These options further control the program's behavior when it's considering an authority record.

[image: image5.png]‘Options for authority records-

Inclusion: 368 field (other attributes)

Consider orly LC-ype records with these 010 prefves: 7 Conference (subfild $3)

. 7. Geogaphic sublield $b)

(Blark' means: include ther al)

Conversion mads. 382 ield (mecium of perfarmance]

[Phase 34 (shange 112 fields, etc] < @ Use orly subfeld $2.

€ Use al pssible sublieds
Handiing of 4 created from 13X selasts e

[Suppress al such £X =

7. attemptto convert 678 fieds into 048 and 670 felds
Generale 510 filds for Hitarchical superir”

¥ Attempt to generate 510 ields for Hierarchical superior

1£ALL ofthe proposed 510 feds cannot be verfc:
C Addalofthemanyway C Addthe verfiedones (& Addnone ofthem

Pty MARC aulhorty utp e
(& Dutput fle corains only chenged records - 377 languagek.ncude
" Dutput file contains all records fom input e Letislcailenblee)
OutputonlLCype ecords witthese 010 pefves: [

I Leaderf03to s

Rieset the 005 fld in
™ Create secondary MARC authory output e changed records
& Dutput e cortains only changed records
 Dutput f contains all records from input fle
Output orly LCtype records with these 010 prefves:

The "Inclusion" frame tells the program whether to consider locally-created authority records, or LC-type records, or both. You can check either box, or you can check both boxes, but you must check at least one of the boxes. To this program, an "LC-type" record is an authority record containing 010 subfield $a; "local" record is an authority record that not only does not contain 010 subfield $a, but also does not contain any markings that indicate that it plays a part in a non-LCSH subject heading scheme. (For example, a MeSH authority record is neither an "LC-type" record nor a "local" record; the program will refuse to do anything with a MeSH authority record.) If you check the "LC-type" box, you can supply in the following text box a list of the 010 $a prefixes you wish to consider. If you supply multiple codes, separate them with spaces. If this box is empty, the program will include all LC-type authority records in its work.
For example, if you check the "LC-type" box and then supply "n sh" in the text box, the program will consider all records in the LC/NACO Authority File (records with 010 prefixes beginning with the letter "n", such as "n", "no", "nr", "nb" and "ns"); the program will accept LCSH records (with prefix "sh") but will not consider LC form/genre records (with prefix "sg").

The "Conversion mode" drop-down box tells the program what kind of changes to make to authority records. The choices available here correspond exactly to the two-phased implementation scheme devised by the PCC task group. (Note that this choice appears on a frame that relates specifically to authority records; the notion of "phases" does not apply to bibliographic records.)
· Phase 1: The program finds authority records that a) contain characteristics that prevent the use of the 1XX field under RDA without review and b) do not call for any mechanical changes; the program adds a 667 field to such records. This mode applies only to authority records.
· Phase 2: The program makes mechanical changes to records; the program adds a 667 field if the 1XX field bears characteristics that prevent its use under RDA without review. This mode applies to both bibliographic and authority records.
· Phase 3A: The program makes all of the changes defined for Phase 3A of the conversion of the LC/NACO Authority File for use under RDA. (See the appropriate documentation.) This includes all of the above changes, plus changes to music medium of performance in subfield $m. This mode applies to both bibliographic and authority records.

· Phase 3B: The program makes changes defined for Phase 3B of the conversion of the LC/NACO Authority File for use under RDA. This mode applies only to authority records.

· Work ONLY with RDA 7XX fields: The program deals with RDA 7XX fields in authority records; the program performs neither Phase 1 nor Phase 2 operations. It is likely that you will not need to process authority records with this option, as RDA 7XX fields probably only occur in records originating the LC/NACO Authority File. If you do find that you need to perform this step, perform it between Phase 1 and Phase 2.

The "Handling of 4XX created from 1XX" drop-down box allows you to control the suppression/display of 4XX fields that the program creates when it makes a mechanical change to the authority record's 1XX field.

· Display all such 4XX: The program-supplied subfield $w does not contain byte 3; the 4XX field is not marked for suppression.
· Suppress all such 4XX: The program uses code "a" for 4XX subfield $w/3. This is the value used during work performed under direction of the PCC task group.

· Display only if change is in last subfield: The program-supplied subfield $w does not contain byte 03 if the only change to the former 1XX field is in the last subfield; $w/3 contains code "a" in all other cases

The "Attempt to convert 678 fields into 046 and 670 fields" check-box directs the program to inspect 678 fields and in certain cases re-code the 678 as 670 and also create an 046 field.

The choices in the "Primary MARC authority output file" control the authority records that the program writes to its output file.
· Output file contains only changed records: The output file only contains records that the program changed.
· Output file contains all records from input file: The output file contains all records present in the input file, whether changed or not

· Output only LC-type records with these 010 prefixes: This applies only to authority records. If you wish to limit the output file to only records with certain LCCN prefixes include those prefixes here.

The choices in the frame that begins with the check-box "Create secondary MARC authority output file" applies only to authority records, and may be of interest only to the Library of Congress. If the check-box is checked, the program will create a second output file whose contents can be defined using the same radio buttons and text box for LCCN prefixes as are available in the "Primary Marc authority output file" frame.

Options for bibliographic records
These options further control the program's behavior when it's considering a bibliographic record. There are so many options for bibliographic records that they are distributed over three tabs:
· The Changes, pt. 1 and Changes, pt. 2 tabs control how the program changes bibliographic records
· The Output and reports tab controls the program's generation of report files

Use the options on the Changes, pt. 1 and Changes, pt. 2 tabs to control the program's handling of access and descriptive elements in bibliographic records. In general, the choices are presented in ascending tag order, but there is also some grouping of choices for convenience. You will use a check-box to indicate whether or not you want the program to make a certain category of change. For most of the changes, additional elements allow for finer control of how the program makes the change.

Most importantly, most of the changes offer the ability to limit the change to records that contain one of a set of language codes in 040 subfield $b, and/or one of a set of descriptive convention codes in 040 $e.

· If you believe that a particular kind of change should be limited to records that are expressed in a particular language, place the 3-character MARC code for that language in the appropriate box. (If a bibliographic record does not contain 040 $b, the program assumes "eng".) For example, it is almost certainly appropriate to restrict the program's various features that spell out abbreviations, to records constructed according to English-language conventions. If you need to supply more than one language code, use spaces to separate the codes.

· If you believe that a particular kind of change should be limited to records created using the conventions of a particular descriptive convention, place the MARC code for that descriptive convention (used in 040 $e) in the appropriate box. (If a bibliographic record does not contain 040 $e, the program assumes that it cannot apply this restriction. Regardless of what you put into this box, the program will process all records that do not contain 040 $e.) For example, you may wish to place the code "rda" into this box, so that the program does not make changes to records created under rare-book descriptive conventions; if you do this, the program will make changes to records with no 040 $e, and to records with "rda" in 040 $e, but will not make changes to records with other codes in 040 $e.

The program's default values for the 040 $b and 040 $e codes that you see on this screen should not be taken to have any importance beyond your initial convenience. You are responsible for configuring the program in the manner in which you wish it to behave.
Here are the categories of change you can request on these two tabs:

· Force 'blank' in bibliographic Leader/09 to 'a': If you check this box, the program change the encoding scheme of a bibliographic record from MARC-to UCS/UTF-8.
· Regularize OCLC numbers in 035 fields: If you check this box, the program will regularize OCLC numbers present in 035 fields. The check-boxes under this box tell the program what you want your record to look like: you can include, or exclude, alphabetic prefixes ('ocm', 'ocn'), and you can include, or exclude, leading zeroes in the numeric portion of the number.
· Delete 245 $h: If you ask the program to supply the 33X fields (controlled by an independent option), you may also wish to ask the program to remove 245 subfield $h.
 Because the program uses 245 $h when constructing the 33X fields, you should not delete 245 $h unless you also ask the program to generate 33X fields, or unless you know that records already contain 33X fields. The program does not on its own enforce this best practice.

· Delete $h in other access fields: Many older bibliographic records contain subfield $h in access fields other than the 245 field. All such occurrences of subfield $h should be removed.

· Expand abbreviations in 245, Expand abbreviations in 255, Expand abbreviations in 260, Expand abbreviations in 300, Expand abbreviations in 5XX: If you check one of these boxes, the toolkit will attempt to expand non-RDA abbreviations that it finds in the indicated fields.
 If you ask the program to expand abbreviations in the 300 field, there are additional options related to bracketed numbers in 300 subfield $a. You can ask the program to replaced bracketed numbers with RDA-style expressions including the term "unnumbered"; and if the program does this, you can ask it to combine adjacent unnumbered designations of the same type into a single expression.

· 300 $a for electronic resources: If you check this box: if the program believes that the bibliographic record represents an online resource, it will put parentheses around the contents of 300 subfield $a, preceded by a text constant, and adjust the punctuation accordingly. You can choose whether the text constant should be "1 online resource" or "online resource".

· Generate 336, 337, 338 fields: If you check this box, the program will attempt to supply 336, 337 and 338 fields for records that do not already have them. The program will supply the subfield $b code that corresponds with the subfield $a text, if you ask for both $a and $b. By default, the program uses its own scheme for constructing these 33X fields;
 you can if you wish select constant values from drop-down lists for the program to use as the 336, 337 and/or 338 fields; if you do this, the program will supply these fields, regardless of other clues that may be present in the bibliographic records.
 With a few exceptions for accompanying material, the program only generates one 336 field, one 337 field and one 338 field. If you have bibliographic records that represent more than one format (print and online, for example) you should not submit them to this program; or you should not use this program to generate the 33X fields. If you use this program to generate 33X fields for records that represent multiple formats, you can expect to do substantial manual cleanup afterwards.

· Re-cast 502 field: If you check this box, the toolkit will attempt to parse a non-RDA 502 field (consisting solely of subfield $a) into its constituent RDA elements.

· Treat all 600-651 fields same as LCSH: By default, the program will only make changes to bibliographic subject fields that have second indicator '0' (zero). If you check this box, the program will extend its changes to all subject fields, regardless of the second indicator value.

The choices on the Output and reports tab control the records that the program writes to its output file.

Choices in the "Reports of non-RDA elements in bibliographic records" frame allow you to receive reports concerning elements in headings (whether changed by the program, or not) that are not suitable for use under RDA without review. You may not care about any of these, you may only care about some of these, or you may care passionately about all of these. There are no changes to bibliographic records directly associated with any of these reports.
· Musical ensembles in subfield $m: The program reports subfield $m if it contains "brasses," "plucked instruments," "keyboard instruments" or "instrumental ensemble;" and it reports subfield $m if it contains "strings," "winds" or "woodwinds" unless subfield $t also contains "trio," "quartet" or "quintet"

· 'Polyglot' and '&' in subfield $l: The program reports subfield $l if it contains "Polyglot", an ampersand, or the word 'and'

· Treaties: The program reports bibliographic X10 fields with $t that contains "treaties", 240 fields with $a that contains "treaties", and X30 fields that contain subfield $d

· Librettos and texts: The program reports subfield $s that contains "libretto" or "text"

· Conferences: The program reports bibliographic X10 fields with $b containing text in the configuration file of conference terms; and all bibliographic X11 fields.

· X00 subfield $c: The program reports bibliographic X00 subfield $c texts that are not defined in the appropriate configuration file.

· 'Selections' in Bible headings: The program reports bibliographic X30 fields with 'Bible' in subfield $a that contain 'Selections' in subfield $k.

· 'and' in X1X subfield $c: The program reports bibliographic X10 and X11 fields whose subfield $c contains 'and'. Now that subfield $c is repeatable in corporate headings, you may wish to consider changes to your data that cannot easily be made by program.

· Output file contains only changed records: The output file only contains records that the program changed.
· Output file contains all records from input file: The output file contains all records present in the input file, whether changed or not

The program prepares a "before and after" report, showing each changed record in its original state, and as modified by the program. As described elsewhere, this file can be an important adjunct to the testing of the RDA conversion program. A bibliographic record can contain many fields that are not subject to the RDA-focused operations of this program; these fields can make it more cumbersome during testing to find and evaluate the changes made by the program. Choices available in the "Fields not wanted in bibliographic 'before and after' report" frame tell the program to exclude certain groups of variable fields from the report. Note that choices made here only affect the contents of this report; the program does not omit these fields from the changed bibliographic records themselves.

The radio buttons in the "Bibliographic MARC output file" frame tell the program whether the output file should contain all of the records in the input file, or just those that the program has changed.

Options for Voyager users only
If you are a user of the Voyager library system and you have supplied appropriate configuration options elsewhere, you will see one more frame after the "Options for bibliographic records" frame. If you're not a use of the Voyager library system or if you haven't supplied appropriate configuration information, you won't see this frame. The contents of this frame are described in Appendix B.
Configuration files
The program uses a series of text files to direct certain parts of its work. Being text files, they can be edited with the Windows Notepad or other suitable program for editing ASCII text.

· authsup.cfg: This file provides certain technical information about the contents of MARC authority records
· bibsup.cfg: This file provides certain technical information about the contents of MARC bibliographic records

· codes.cfg: This file contains information about codes that can occur in MARC records. For the purposes of this program, the critical part shows correspondences between the names of languages and MARC language codes

· RDA.ChangedRelatorTerms.txt: This file lists relator terms that have changed, where there is a one-for-one equivalence between the former term and the current term
· ConferenceWords.txt: This is a list of subfield $b texts that mean, or may mean, something like "conference." This list was generated by finding every distinct subfield $b text in authority 110 fields that is immediately followed by subfield $n, $d or $c.

· RdaSubfieldCConfig.NoParensAllTypes.txt: This file lists texts that may appear in subfield $c of RDA personal name headings, and for which no parentheses are used.
· RdaSubfieldCConfig.NoParensForename.txt: This file lists texts that may appear in subfield $c of RDA personal names that begin with a forename, and for which no parentheses are used.

· RdaSubfieldCConfig.ParensAllTypes.txt: This file lists texts that may appear in subfield $c of RDA personal name headings, for which parentheses are used.

· RdaSubfieldC.AsIsAllTypes.txt: This file lists subfield $c texts that can either in subfield $c either enclosed by parentheses, or without parentheses.

· RdaSubfieldC.Comma.Part2.txt: This file identifies additional subfield $c texts that can be used under RDA when preceded by a comma.

· RdaSubfieldC.Parens.Part2.txt: This file identifies additional subfield $c texts that can be used undfer RDA when enclosed within parentheses.

· RDACONVERSION.<date/time information>.Rda7xxExtendedHeadingConsideration.txt: This file is prepared by the RDA conversion program when it is inspecting RDA 7XX fields. This file allows the program to understand that certain headings are valid under RDA even though they appear to contain elements contrary to RDA practice. Under no circumstances should you attempt to modify this file.
A ZIP file containing default configuration files is available for your use. It is the file with the name beginning "RdaConfiguration" in this folder: http://files.library.northwestern.edu/public/RdaConversion/ The file's name includes the date of its creation. (For example, the version of this ZIP file available as this document is being written is RdaConversion.20120717.ZIP.) The configuration files contained in this ZIP file are the same as the configuration files used for the conversion of the LC/NACO Authority File at the Library of Congress. Define a separate folder for these files, unzip these files into that folder, and give this folder name in the Folder containing configuration files box in the configuration for the associated profiles.
 In general, you should use the generic configuration files without modification, as this will ensure that changes made locally are in harmony with changes made elsewhere. Appendix A describes these files.
Running the program
Before you use the program to modify records, the program's configuration files must be in place, and you must have defined at least one conversion profile, as described above.

Unless you are a Voyager user and have decided to make use of the features available only to Voyager users (see Appendix B), you need to prepare a file of MARC records on which the program is to work. (You might, for example, export records within a range of system control numbers to an output file, using some system-provided utility. Just how you create this file is a matter outside the bounds of this document.) The input file of MARC records should consist solely of authority and bibliographic records: all authority records, all bibliographic records, or any mixture of these two. (The program will switch without complain from bibliographic to authority, and it will skip over any MARC holdings, community information or classification records also present in the file.)
When you have a file of MARC records on which you wish the program to operate, start this program. Select the profile you wish to use. Review the values you have established for this profile. When you see the "Identify source of records to convert" frame, click the "Browse …" button to find the file you wish the program to use as input. Continue to page through the additional frames that constitute the profile, to make sure that all of the values are suitable.
When you have configured the program as you wish, click the Perform button. The program replaces its main panel with a smaller panel showing its progress through your file.
After the program finishes the last record in the input file, it cancels itself. When the program has finished its work, you should carefully inspect its report and other output files. If everything seems correct to you, use the program's file of changed records for any appropriate follow-on work.
Output files

The program generates a large number of output files. The specific output files the program produces will vary, chiefly depending on the kind of records in the input file and the conditions they present, but also depending on choices you defined in the current profile. Most of these output files are text report files that call for your inspection to some extent;
 a few files contain MARC records, ready for whatever needs to happen next.
The program writes all of its output files to the folder you named in the "Folder for reports" part of the configuration for the profile that does the work. The report files all have names beginning "RDACONVERSION". This text is followed by the date and time the program started (in the form yyyymmdd.hhmmss); after this comes a name that describes the contents of the file, and an extension to identify the kind of file. In some cases, the file name may also include a sequential number. Here are typical examples of report files produced by this program; in this case, the program was started at 10:01:44 on August 27, 2012:

[image: image6.png](=] RDACONVERSION.20120827.100144.BeforeAndAfter Bibliographic.0001.bna
|5]ROACONVERSION.20120527.1001 44 SeforeAndafer Sblographic o002 b
5] RDACONVERSION 2012062710014, Chenged £t
) RDACONVERSION. 2012062710014 BbNorRGaElments.bx:
) RDACONVERSION 20120627, 10014.DacbfisBacif.txt
5] RDACONVERSION. 20120627, 10014.DepotChanged ot
) RDACONVERSION 20120627, 10014.NonEnglshRecords. ot
|5]ROACONYERSION.20120827.1001 4. Output Bblographic mrc
5] RDACONVERSION.20120827.100144,0utpt Blographic. ot

Ao aONE e e T oA

Most of the report files are plain text files (with the ".txt" extension) and can be viewed by any competent text editor. (Some of these will be very large, so Notepad may not be the best choice.) The ".bna" files are intended to be viewed with a special viewer. (This viewer program is described in a separate document.) The ".mrc" files contain data in the MARC21 communication format; these records can be loaded into a local library system, or handled in some other appropriate manner.

The following list describes the various output files the program can produce.
 The names used in the following descriptions are the distinctive parts of the file names, following the date and time the program was started. Not all of these output files will be produced in response to any one input file.
· 046Created.txt: The 046 fields created from subfield $d of authority 100 fields. You may wish to inspect the contents of this file carefully when you are testing the program's work; but you may wish to ignore this file once the program is in production.
· CouldNotCreate046.txt: The program attempted to create an 046 field from authority 100 subfield $d, but could not. Review the contents of this file for cases where subfield $d is not correctly formulated. You may wish to add the 046 field yourself.
· 1xxChanged.txt: Each authority 1XX field changed by the program. This file can be used to direct mass changes to headings in bibliographic records.
· 1xxChangedWith681.txt: Cases where the program changed the 1XX field in an authority record that also contains a 681 field. You may wish to inspect the records identified in the 681 field, as they may require a corresponding change.
· 368Created.txt: Each 368 field created by the program from information in the authority 1XX field
· CouldNotCreate370.txt: The program would have liked to have created a 370 field, but could not
· 370Created.txt: Each 370 field created by the program from authority 111 subfield $c
· 376Created.txt: Each 376 field created by the program from an authority 100 field with first indicator "3"
· 377Created.txt: Each 377 field created by the program from authority 1XX subfield $l
· 378Created.txt: Each 378 field created by the program from subfield $q of authority 100 fields. Because creation of the 378 involves only the removal of punctuation, there may not be much value gained from a review of the contents of this field, either during testing or production use of the program.
· CouldNotCreate378.txt: The program attempted to create a 378 field from authority 100 subfield $q, but could not. Review the contents of this file for cases where subfield $q is not correctly formulated. You may wish to add the 378 field yourself.
· 380Created.txt: Each 380 field created by the program from information in the authority 1XX field
· 381Created.txt: Each 381 field created by the program from information in the authority 1XX field
· 382NotCreated.txt, 383NotCreated.txt, 384NotCreated.txt: Cases where the program attempted to create a 382, 383 or 384 field for an authority record, but could not. Carefully review the contents of this file, for records in which a 382, 383 or 384 field is appropriate. After using the program for production, you may wish to add the missing fields yourself.
· 4xxAdded.txt: 4XX fields added to authority records by the program. The program creates authority 4XX fields under these circumstances: a) the program has changed the original 1XX, and the changed 1XX field has a different comparison form from the original 1XX field; b) the program has modified a record for one of the books of the Old or New Testament of the Bible, and has found the need for additional 4XX fields; c) an authority 11X or 41X consisting only of no more than $a, $n, $d and $c contains the abbreviation "Dept." in subfield $a (and not as part of a parenthetical qualifier), the program generates a 4XX field with the abbreviation expanded to its full form.
· 4xxFromOldHeading4XX: 4XX fields added to authority records by manipulating unsuppressed "old heading" 4XX fields. Review the contents of this file carefully; although the new 4XX fields do not duplicate existing 4XX fields, some of them may nonetheless not be wanted. After using the program for production, remove any unwanted fields.
· 4xxFromOldHeading4xx.NOT.txt: Cases where the program might have created a new 4XX from an unsuppressed "old heading 4XX field in an authority record, but did not.
· 4xxNotAddedBecauseRedundant.txt: 4XX fields that the program started to add to authority records, but did not eventually add because the 4XX had the same comparison form as another 4XX field in the record. It is likely that this file contains no information on which you need to act.
· 4xxSuppressed.txt: Authority 4XX fields for former headings that the program suppressed (with code "a" in subfield $w byte 3) because the 4XX fields contain elements not in harmony with RDA; in many cases, the program will also have created an RDA analogue of the suppressed 4XX field.
· 510Created.txt: 510 fields for a hierarchically superior body created from information in authority 4XX fields.
· 667Added.txt: 667 fields added to authority records, because the 1XX field in the record cannot be used under RDA without review and updating.
· 667AlreadyPresentInPhase1.txt: Cases where the program would have added a 667 field to a record, but discovered that the 667 was already present, and so the program did nothing. If everything goes according to plan, the program will never create this file.
· 678HandlingProducesMessage.txt: A matter arose during the program's attempt to convert an old-style 678 field into a 670 field; adjustments to the 670 field may be required.
· ArrAccUnaccNotChanged.txt: Fields that appear to contain the abbreviations for arranged, accompaniment or unaccompanied, but which the program did not change. The program's expansion of these abbreviations is carefully restricted, so some of the fields that it inspects do not end up with a change. Review the contents of this file carefully, as the reason for the program's failure to change a field may be improper MARC content designation.
· BeforeAndAfter.Authority.nnnn.bna and BeforeAndAfter.Bibliographic.nnnn.bna: Files containing "before" and "after" images of each record that the program changes. (In the file names, "nnnn" is a sequential number; each file contains no more than a specified number of pairs of record images.) Use a separate program (described in another document) to review and evaluate changes made by the program.
· BibleNotChanged.txt: Fields that begin "Bible" that the program did not change. If the "Bible" headings in your database are all in good shape, this file will only contain information that can safely be ignored. In most cases, however, you will need to review the contents of this file very carefully, and adjust headings manually.
· BibNonRdaElements.txt: Non-RDA elements present in access fields in bibliographic records. You control the conditions included in this file by making selections on the program's options panel.
· CommaAddedToBible.txt: The program added a comma to subfield $p consisting of the name of a book of the Bible plus a roman-numeral designation for a chapter. Review the contents of this file; there may be no action for you to take.
· CorporateSubfieldC.txt: Corporate/conference access fields with $c that contains "and". The program generates this report because subfield $c is now repeatable, and subfield $c text representing two names may be split into separate subfields. The program makes no attempt to verify the text of subfield $c (some of subfield $c texts containing "and", such as "Newcastle upon Tyne, Tyne and Wear" will turn out not to require any change).
· DateSubfieldBadStuff.txt and DateSubfieldBadStuff.RTL.txt: Cases where subfield $d contains information that the program does not recognize. The "RTL" file shows occurrences of $d with unrecognized information, where the $d also contains one or more right-to-left characters. You may wish carefully to review the contents of the first file, and adjust records accordingly; until standards for vernacular data in the 4XX fields of authority records are established, you may wish to ignore the "RTL" file altogether.
· DateSubfieldBecomesNothing.txt: Fields whose subfield $d appears to be empty, after modification and/or normalization. You should make appropriate adjustments to each field listed.
· DeptNotChanged.txt: Fields that appear to contain an abbreviation for "Department" that the program did not change. The program's expansion of the various abbreviations for "Department" is carefully restricted, so some of the fields that it inspects do not end up with a change. Review the contents of this file carefully, as the reason for the program's failure to change a field may be improper MARC content designation; change fields as appropriate.
· DeptReplacedIn665.txt: Authority 665 fields where the program replaced the abbreviation "Dept." with the spelled-out form.
· EncounteredRda7xxFields.txt: Every RDA 7XX field that the program encountered, whether or not it did anything with it.
· FieldWithSubfield6Changed.txt: The program made a change to a field that contains subfield $6; the field to which this field is linked via subfield $6 may require a parallel change. (In some cases, the program will already have made the parallel change itself.)
· FullStopPlusHyphenReview.txt: Subfields that contain a full stop followed by a hyphen. Carefully review this file for fields that require manual intervention.
· KoranNotChanged.txt: Fields that begin or contain "Koran" that the program did not change. If the headings in your database are all in good shape, this file will only contain information that can safely be ignored. In most cases, however, you will need to review the contents of this file very carefully, and adjust headings manually.
· LinkingFieldContainsAbbreviation.txt: Fields in the range 760-788 that appear to contain one of the abbreviations of interest to the program; the linking text may need a change.
· MusicMedium.txt: This file contains reports of two conditions: cases where subfield $m might require replacement, and cases where subfield $m appears to present some other problem. This file is described in more detail in the separate document that describes the handling of music medium of performance during Phase 3.
· NonAccessMessages.txt: The program generates these messages during the handling of elements other than access fields in bibliographic records. The messages signal the program's inability to add 336, 337 or 338 fields, to expand an abbreviation, or to parse a 502 field.
· NonEnglishRecords.txt: Records that have a code other than "eng" in 040 $b. The program skips authority records that have some code other than "eng" in 040 $b; the program modifies, but reports, bibliographic records that have some code other than "eng" in 040 $b. (If a record does not have an 040 field, or if a record's 040 field does not contain $b, the program assumes "eng.")
· Output.Authority.mrc, Output.Authority.txt, Output.Bibliographic.mrc, Output.Bibliographic.txt: Records changed by the program, in MARC21 and text form. Depending on your choice, the files will contain all records from the input file, or just records changed by the program.
· ParenthesesInCPlusQ.txt: Fields that contain subfield $q (in parentheses) followed by subfield $c in parentheses. Although these fields appear to be formulated correctly, you may wish to cast an eye over them, anyway.
· Rda7xxFields.txt: Each RDA 7XX field found in authority records that the program handles during phase 1 or phase 2 work. Because the program contains special routines for handling RDA fields (with a separate set of report files), this file may serve as no more than an archival record of RDA fields.
· RecordTypeNotHandled.txt: Authority records having characteristics that the program has been told not to process.
· RecordTypeUnknown.txt: The program was presented with an authority record whose construction falls outside the defined parameters. (Most commonly, these are records that appear to be LC/NACO authority records but which have code 'n' in the cataloging rules code, 008 byte 10.)
· Redundant4xx.txt: Authority 4XX fields that the program removed because they have the same comparison form as the 1XX field or another 4XX field.
· Report.txt: A statistical summary of the program's activity.
· RightToLeftNotChanged.txt: Fields that contain right-to-left data that the program might have changed, but did not change.
· SemiRedundant4xx.txt: Authority records whose 4XX fields appear to be effectively, though not literally, redundant. (For example: one 400 field consists of just $a, while another consists of exactly the same $a text, plus subfield $d.) Many of these fields can be removed.
· Serial1xxChanged.txt: Serial bibliographic records whose 1XX fields were changed by the program. Parallel changes may be called for to linking fields in other records.
· SubfieldHProblem.txt: This file identifies bibliographic records that contain at least one instance of text in subfield $h (GMD) that the program does not recognize. (The program may have made other changes to the bibliographic record.) Reports in this file call either for changes to the bibliographic record, or to the program's configuration file for subfield $h texts.
· SubfieldKMoved.txt: The program adjusted the location of subfield $k "Selections" in the heading string
· SubfieldKProblem.txt: The program detected a problem with the location of subfield $k "Selections" in the heading string, but was unable to resolve the problem
· SubfieldNAddedToBible.txt: This is part of an (experimental, at this point) addition to the program: insert subfield code $n into Bible headings that contain citations to chapter and verse.
· Transactions.txt: Changes made to variable fields that are not listed in other report files.
· VioloncelloNotChanged.txt: Fields that appear to contain "violoncello" that the program was not able to change to "cello." The program's change of this text is carefully restricted, so some of the fields that it inspects do not end up with a change. Review the contents of this file carefully, as the reason for the program's failure to change a field may be improper MARC content designation; but most of the reported titles properly contain "violoncello" and call for no intervention.
Viewing before-and-after files
When the program changes a bibliographic or authority record, it writes the "before" and "after" images of each record to a file in a special format. These files have names containing "BeforeAndAfter" and the extension "bna" (for "before and after"). A special viewer program for this set of report files allows you to inspect the changes and make sure that everything is as it should be before you do something permanent with the program's MARC output, such as load it back into your local system. This viewer program is described in a separate document.

Note on character encoding
The central part of this program is a generic conversion engine that knows how to do all of the RDA-related work. This generic conversion engine is contained within a wrapper program that knows how to deal with the larger world. For example, the wrapper program knows how to read and write files of MARC records; it passes each record in turn to the generic conversion engine, and deals with the results reported by the generic conversion engine. The conversion engine knows nothing of where records come from, or where they are going
The generic conversion engine operates solely on records encoded as UTF-8 ("Unicode"). If this engine is fed a record encoded as MARC-8,
 the engine will translate the MARC-8 record into UTF-8, perform its operations on the record, and then translate the finished UTF-8 record back into MARC-8 for output. This means that the inspection by this program of records encoded as MARC-8 entails additional processing time: translations into and out of UTF-8 gobble up precious milliseconds. Inspection by this program of records encoded as MARC-8 also entails the danger (however slight) that the round-tripping of data (especially non-Roman data) will be imperfect. If at all possible, supply the program with files of MARC records encoded as UTF-8.
Most of the reports prepared by the conversion engine show records (and parts of records) encoded as UTF-8, because most of the reports are prepared within the generic conversion engine. (The "before and after" reports are created by the wrapper program and not by the conversion engine, and so reflect the encoding present in the source records.) The records in the MARC output file of changed records are encoded according to the same scheme as records in the MARC input file.

	Encoding in MARC input file
	Encoding in most reports
	Encoding in MARC output file

	MARC-8
	UTF-8
	MARC-8

	UTF-8
	UTF-8
	UTF-8

Appendix A: Configuration files
The program uses a set of configuration files to direct several important parts of its work. As described in the main part of this document, the version of these files made available for your use is the same as that used at the Library of Congress to manipulate records in the LC/NACO Authority File. Although you are of course free to make whatever modifications to these files seem appropriate to you, using the same configuration files used to convert records in the LC/NACO Authority File will ensure that changes you make locally will be fully in harmony with changes made elsewhere.
All of these configuration files are plain-text files, and can be reviewed and modified with the Windows Notepad program, or other suitable text editor.

authsup.cfg, bibsup.cfg, codes.cfg
These files provide technical information about the contents of MARC bibliographic records. In another context these are some of the configuration files used by the Cataloger's toolkit program; they contain quite a bit of information not used by the RDA conversion program. The program uses information in the authsup.cfg and bibsup.cfg files to determine the order or fields in MARC authority and bibliographic records, and the order of subfields within those fields. The program uses information in the codes.cfg file to draw an equivalence between the names of languages used in subfield $l, and the equivalent 3-character MARC codes.
ConferenceWords.txt
This file lists each term that might be found in subfield $b of a corporate heading (tag group X10, first indicator not "1") that means, or might possibly mean, something conference-y in some fashion. The initial list was generated by finding every distinct subfield $b text in candidate authority records that was followed immediately by conference-specific subfields ($n, $d or $c). The configuration file consists of one line per term; a term may consist of as many words as it needs to contain.
RdaSubfieldCConfig.NoParensForename.txt
RdaSubfieldCConfig.NoParensAllTypes.txt
RdaSubfieldCConfig.ParensAllTypes.txt
These three files define texts used in subfield $c of personal names that have been deemed acceptable for use under RDA. Each file contains subfield $c texts, one per line. The three files define subfield $c texts that are appropriate in various contexts.

· NoParensForename: These subfield $c texts are valid in names that begin with a forename, and are not to be enclosed within parentheses

· NoParensAllTypes: These subfield $c texts are valid in names that begin either with a forename or surname, and are not to be enclosed within parentheses

· ParensAllTypes: These subfield $c texts are valid in names that begin either with a forename or surname, and are to be enclosed within parentheses

RdaSubfieldH.txt

This optional configuration file lists each valid GMD text that may appear in subfield $h. The program uses the contents of this file to determine whether the contents of subfield $h is valid or not. (The program uses a normalized comparison to make this determination. Because of the likelihood of miscoding, the program will not delete subfield $h if the subfield does not contain a recognized text.) If the configuration folder does not contain this file, the program uses as its default all of the GMDs listed in both List 1 and List 2 in AACR2 1.1C1, or subsequently defined. (See also the LCRI for AACR2 1.1C1.) If you wish to accept the program's default values, you don't need to supply this file; if you wish to override the program's default values, your RdaSubfieldH.txt file must list all of the valid values for subfield $h, not just the ones that differ from the default values.
Here is the default list of GMDs that the program uses if you do not supply your own list in this configuration file. Note that this list does not include extensions such as "(braille)" that are allowed for some GMDs.

activity card

art original

art reproduction

braille

cartographic material

chart

computer file

diorama

electronic resource

filmstrip

flash card

game

globe

graphic

kit

manuscript

map

microform

microscope slide

model

motion picture

multimedia

music

music

object

picture

realia

slide

sound recording

technical drawing

text

toy

transparency

videorecording

RDACONVERSION…Rda7xxExtendedHeadingConsideration.txt
The "…" in the file name is the date and time on which the file was generated. This file is created during the handling of 7XX fields by this program during a pass through the LC/NACO Authority File at the Library of Congress. The contents of this file provide important information during phase 2. This file has a peculiar format; you should not attempt to modify this file.

Appendix B: Voyager-specific features

Introduction
Users of the Voyager library system from ExLibris can use the program in the manner described in the main part of this document for users of other library systems: they can export files of MARC records from Voyager, use this program to change records in those files, and then re-import the files of changed records produced by the program back into Voyager. This document does not describe processes that can be used with the Voyager system to export and import files of records.
Users of the Voyager system have additional options available to them, if they properly configure the program.

· This program can pull bibliographic or authority records directly from your Voyager system, without the use of an intermediate MARC file exported from Voyager.

· Regardless of source (file of records, or records retrieved directly from your Voyager database) the program can write changed records directly back to your Voyager database.

These options are independent of each other. You can have the program read your Voyager database directly and update it directly; you can have the program read a file of records you prepare and then update your Voyager database directly; you can have the program read your Voyager database directly and prepare an output file of changed records. You control the program's behavior in these matters by supplying additional configuration options, and making appropriate choices when you run the program.

Installation
Because the program can be configured to update your Voyager database directly, you must take care to use the installation package that matches your version of Voyager. The file name of each installation package contains the name of the corresponding Voyager build. For example, the installation package with the name "RdaConversion.2007.22.416.ZIP" is the correct package to use with version 2007.2.2.416 of Voyager. For help in this matter, see the instructions in the middle of this page: http://www.library.northwestern.edu/public It is critical that you use the installation package that that corresponds to your Voyager version; this will not necessarily be the installation package with the most recent date/time stamp. If you try to use the wrong build of the program to update your Voyager database, the program will explode in an unpleasant manner at the critical moment. (No harm to your database—there will be no change of any kind.) If you do not find an installation package that matches your Voyager version, ask Gary to cook one up for you.
Select and download the correct installation package. Unzip and install the program as described in the main part of this document.

If you wish to use any of the program's Voyager-specific features, the Oracle ODBC drivers must be installed and configured on the workstation. This document does not describe the installation and configuration of ODBC drivers. After the ODBC configuration is complete, you need to modify the program's configuration to match.
Configuration
After you start the program, select "Options for Voyager users only" from the program's menu.

[image: image7.png]RDA conversion - Yoyager options.
Voyager uers only

|- Optionsfor reacing your Voyager database.

Data set name [Y0YTEST

Table name pref [Ni/DB.

Readionly ODBC signon [orude

Readonly ODBC password

[+ Optionsfor updating your Vopager database

Voyager cataloging sigron |5

Voyager cataloging password

Voyager happening location [rcat ncat/NU Catalging Desk.

Folder that cartains Voyager NI [vopager tost

Concel oK

You must supply information for all of the areas in the "Options for reading your Voyager database" frame if you wish the program either to read your Voyager database directly or to update your Voyager database directly.
· Data set name: The data set name you defined for ODBC. This DSN should point to the Voyager database from which you wish the program to read records. (If you supply the program with a file of MARC records and wish the program to update your Voyager database directly, this must be the Voyager database from which the records came originally. Mayhem will result if you read records out of one database and write them to another.)
· Table name prefix: The identifier for your database. This is typically some arbitrary (ExLibris-selected) text followed by "DB.", such as "BIGDB." or "OSUDB." Include the full stop at the end.

· Read-only ODBC signon: The Oracle signon used for a read-only connection to your Voyager database.

· Read-only ODBC password: The password that corresponds to the signon.

You need only supply values in the Options for updating your Voyager database frame if you wish the program to update your Voyager database directly.

· Voyager cataloging signon: The cataloging signon the program will use to identify itself to your Voyager system

· Voyager cataloging password: The password that corresponds to the Voyager cataloging signon.

· Voyager 'happening' location: The cataloging happening location the program will use as it updates records in your Voyager system. This drop-down box will not contain any information until after you supply the program with the ODBC connection, and the Voyager cataloging signon; see below.

· Folder that contains 'Voyager.INI': The name of the folder that contains the Voyager.INI configuration file for the Voyager clients. The folder name should end with a reverse slash.

The contents of the Voyager 'happening' location drop-down box will vary, depending on the Voyager user identified in the Voyager cataloging signon location. The program can't fill in this box until you tell it who will be changing records. This means that if you wish to use this program to update your Voyager database, you must use the following elaborate (sorry!) series of steps to supply all of the information in this frame.

1. Supply information for all of the boxes on this tab, except for the happening location box.

2. Click the 'OK' button.

3. If the ODBC configuration is correct, the program will fill in the Voyager 'happening' location box with the locations defined for the Voyager cataloging signon, and invite you to make an appropriate choice. Select a suitable happening location, and click the 'OK' button again.

4. If the ODBC configuration is not correct, the program will invite you to adjust the configuration and try again.

Using the program
Because the program knows quite a bit about the structure of Voyager databases, you can identify records for the program to inspect in ways other than via an extracted file of MARC records. This means that if you supply appropriate Voyager configuration information, you have more choices in the "Identify source of records to convert" frame for each profile.
[image: image8.png]Identity the source of records to convert

%

File of MARC records (any misture of bibliographic and authoriy)

e

Fileof Voyager authory record Ds (Voyager users orb)

Rlange of Voyager authory record IDs (Voyager users o)

fom [e [ek

Begin with autharly recard #1 and procesdto the last recard

L

Fileof authory 010

—

Fileof Voyager biblographic record IDs [Voyager users onl)

—

Rlange of Voyager bibiograpic record Ds (Voyager users o)

fom [e [ek

Begin with biblographic tecard #1 and procesd ta the lastrecard

L

Browse.

Browse.

Browse.

Browse.

· File of MARC records: as is always the case, you can feed the program with a file of MARC records. If you are going to ask the program to update your Voyager database with changed records, the 001 field in these records must be the Voyager record ID; take care that this file of records is extracted from the database identified by the Voyager configuration options: you don't want to extract records from one database and write them to another.
· File of Voyager authority record IDs: You can create a text file of Voyager authority record IDs of interest using any technique available to you. The file must use a carriage return/linefeed pair to separate each record number. (The linefeed character by itself is not good enough.) Use the Browse button next to the "File of Voyager authority record IDs" box to find the file. The program will retrieve each authority record identified in the file, and perform RDA-related operations on it.
· Range of Voyager authority record IDs: Place suitable beginning and ending numbers into the boxes below the "Range of Voyager authority record IDs" label. (If you put the same number into both boxes, the program inspects just the one record.) The program will start with the first authority record and proceed sequentially up to and including the last authority record. (What really happens, is that the program generates a file of sequential authority record IDs for the designated range, then pretends that you gave it a file of record IDs.)
· Begin with authority record #1 and proceed to the last record: Use this choice to perform a scan of your entire authority file, one record at a time. (Choices you make elsewhere can limit the number of records examined, or changed, during a given run of the program.) When you select this for the first time, place "1" in the "Next record to examine" box; the program will start with authority record number 1, and call up additional records sequentially. (What really happens, is that the program generates a file of sequential authority record IDs, then pretends that you gave it a file of record IDs.) The program keeps track of the last record it examines during a run, and will automatically adjust this value for the next run; so after the first run you don't need to keep updating this box. The program queries Voyager directly at the start of each run, to find the current highest-numbered authority record in your database.
· File of authority 010s: You can create a text file containing authority LCCNs, and supply it to the program in this box. The program will search each LCCN in Voyager and create a file containing the corresponding Voyager authority record IDs. The program then opens this file of record IDs, and proceeds as if you had supplied such a file yourself.

· File of Voyager bibliographic record IDs: You can create a text file of Voyager bibliographic record IDs of interest using any technique available to you. The file should use a carriage return/linefeed pair to separate each record number. (The linefeed character by itself is not good enough.) Use the Browse button next to the "File of Voyager bibliographic record IDs" box to find the file. The program will retrieve each authority record listed in the file, and perform RDA-related operations on it.
· Range of Voyager bibliographic record IDs: Place suitable beginning and ending numbers into the boxes below the "Range of Voyager bibliographic record IDs" label. (If you put the same number into both boxes, the program inspects just the one record.) (What really happens, is that the program generates a file of sequential bibliographic record IDs, then pretends that you gave it a file of record IDs.)
· Begin with bibliographic record #1 and proceed to the last record: Use this choice to perform a scan of your entire bibliographic file, one record at a time. (Choices you make elsewhere can limit the number of records examined, or changed, during a given run of the program.) When you select this for the first time, place "1" in the "Next record to examine" box; the program will start with bibliographic record number 1, and call up additional records sequentially. (What really happens, is that the program generates a file of sequential bibliographic record IDs, then pretends that you gave it a file of record IDs.) The program keeps track of the last record it examines during a run, and will automatically adjust this value for the next run; so after the first run you don't need to keep updating this box. The program queries Voyager directly at the start of each run, to find the current highest-numbered bibliographic record in your database.
When you are paging through the definition of a profile, you will see a frame with the title "For Voyager users only" after the "Options for bibliographic records" frame.

[image: image9.png]For Voyager users oriy
™ Wite changed records diectl back to Voyager

ctranoetn 5030 2 recods

This limit orl applies the prgramis reading a
ange of Voyager record IDs.

· Write changed records directly back to Voyager: If you wish the program to update your Voyager database directly, check this box; if you do not wish the program to update your Voyager database directly, leave this box unchecked. If you check this box, the program will write each changed record back to Voyager; if you leave this box unchecked, the program will write changed records only to its output file of MARC records. You should test the program very carefully (by leaving this box unchecked, and examining the "before and after" files of changed records) before you allow the program to update your Voyager database directly. This check-box is by design not "sticky": if you wish to use the program to update your Voyager database directly, you must deliberately check this box each time you use the program.
· Inspect no more than … records: This limits the number of records the program will inspect during a single run. This is an important value to consider if you are asking the program to run sequentially through your entire bibliographic or authority file—it's probably not a good idea to assume that the program will run without a hitch for the entire time required to examine 5,000,000 records. If you're asking the program to inspect a file of MARC records (or to base its work on a file of record IDs) you should set this to a very large number, and instead control the program's behavior through the size of the input file you create.

Appendix C: Unnumbered sequences in 300 $a
Under cataloging rules used before RDA, unnumbered sequences of pages were recorded (on cards, and later in 300 subfield $a) without square brackets. Under RDA, unnumbered sequences of pages are described as such, without the use of brackets. The following table gives some typical examples of the pre-RDA practice, and the putative RDA equivalent:

	Pre-RDA description
	RDA-like equivalent

	[57] leaves ;
	57 unnumbered leaves ;

	vi, 183, [112] pages ;
	vi, 183 pages, 112 unnumbered pages ;

	xiv, 246 pages, [50] leaves of plates ;
	xiv, 246 pages, 50 unnumbered leaves of plates ;

	27, 7, [20] p. ;
	27, 7 pages, 20 unnumbered pages ;

	16, 4, [9], 41 leaves :
	16, 4 leaves, 9 unnumbered leaves, 41 leaves :

	iii leaves, 162, [28], 10 p. ;
	iii leaves, 162 pages, 28 unnumbered pages, 10 pages ;

	1 folded sheet ([5] p.) ;
	1 folded sheet (5 unnumbered pages) ;

	[xxiii], 171 p., [1] leave of plates, map, plan ;
	[xxiii], 171 pages, 1 unnumbered leave of plates, map, plan ;

	[11] leaves, 147, xxvi, [x] p. :
	11 unnumbered leaves, 147, xvii, [x] pages :

The program described in this document can replace most bracketed numbers in 300 subfield $a with the RDA equivalent.
 To turn on this feature, check the Replace bracketed numbers box on the Changes, pt. 2 tab of the program's options for bibliographic records. This instructs the program to attempt to replace bracketed expressions with RDA-like equivalents. (If the program is not able to make the replacement, it will not generate any message.)
There is a related option, represented by the check-box with the caption Combine adjacent unnumbered sequences. If you check this box, the program will combine adjacent unnumbered sequences of the same type into a single statement; if you do not check this box, the finished 300 $a will contain the same number of sequences as the initial 300 $a. (The option represented by this check-box only takes effect if the Replace bracketed numbers box is also checked.) Although RDA appears to favor the result produced when this option is selected, it may be thought better to preserve the structure of the subfield as originally given. (If consecutive unnumbered sequences are combined into one, a citation in a 5XX field such as "p. 3 (third group)" may be rendered meaningless.) The following table shows the effects of this option.

	Pre-RDA description
	RDA-like equivalent, with combining option not selected
	RDA-like equivalent, with combining option selected

	[2], [1], 39 p. :
	2 unnumbered pages, 1 unnumbered page, 39 pages :
	3 unnumbered pages, 39 pages :

	75, [2], [12] leaves of plates :
	75 leaves of plates, 2 unnumbered leaves of plates, 12 unnumbered leaves of plates :
	75 leaves of plates, 14 unnumbered leaves of plates :

	viii, 981 p., [6], 12] leaves of plates :
	viii, 981 pages, 6 unnumbered leaves of plates, 12 unnumbered leaves of plates :
	viii, 981 pages, 18 unnumbered leaves of plates :

	1 portfolio ([56], [16] p., [14] leaves of plates) :
	1 portfolio (56 unnumbered pages, 16 unnumbered pages, 14 unnumbered leaves of plates) :
	1 portfolio (72 unnumbered pages, 14 unnumbered leaves of plates) :

The following paragraphs describe in more detail the method the program uses to convert 300 $a containing brackets into an RDA-like equivalent.

Initial selection
The program submits the 300 $a text to various tests, to determine if it's suitable for further work. The version of 300 $a that the program uses has already been subjected to routines that spell out abbreviations.

The 300 $a cannot already contain "unpag".

If 300 $a contains parentheses, the program separates off the stuff to the left of the opening parenthesis and the stuff to the right of the closing parenthesis for further testing. If the "left stuff" or "right stuff" fails any of these tests, the program does nothing with the subfield. If 300 $a contains "left stuff" and/or "right stuff" that passes all of these tests, the program temporarily removes them, and considers the remainder to be the "300 $a" that it subjects to the tests described below; the program re-adds any "left stuff" and "right stuff" at the end of its work.
· The "left stuff" may not contain opening or closing square brackets

· If the "left stuff" begins with a numeral followed by a space (as in "2 portfolios"), the program ignores the leading numeral

· If the "left stuff" ends with "in" followed by a numeral (as in "5 volumes in 3"), the program ignores the terminal "in" and its associated numeral
· The "left stuff" (minus any ignorable leading or trailing designations, as described above) may contain only lower-case alphabetic characters

· The "right stuff" must normalize to the null string (i.e., it must contain only punctuation and spaces)

· The "right stuff" must not contain either opening or closing square brackets.

The 300 $a subfield cannot contain "volume", "folio", "that is", a hyphen, " : " or "of music" at any point,, and cannot begin "page".
Finally, the 300 $a must contain at least one occurrence of square brackets.
Main procedure
The program walks through the 300 $a text, stopping at each closing square bracket. This closing square bracket must be preceded by an opening bracket. If the information within the brackets is a roman numeral, the program leaves the bracketed statement as it finds it; otherwise, the text within the brackets must be all numerals. (If the text within any set of brackets is not a roman numeral and is also not all-numeric, the program does nothing with the 300 $a subfield.)
The program creates an entry in a table for each acceptable bracketed numeral. The table contains the location of the opening and closing brackets, and additional information about the context of the bracketed expression.

If, at the end of this work, the program has found no suitable bracketed expressions, the program does nothing with the subfield. (For example, if the only bracketed expression contains a roman numeral, there is nothing for the program to do.)

The program works through its table of acceptable bracketed expressions from last to first, replacing the bracketed expression with the full equivalent. (The equivalent is determined by the context of the bracketed expression. Some information is propagated from one entry to the previous entry.)

After the program has replaced all of the bracketed expressions, and if this option was selected, the program combines adjacent expressions of the same type into a single expression.

� There is a strong tide of sentiment away from the formulation of static heading strings, which will eventually carry us to the use of identifiers and the maintenance of identities instead. However, the systems and records with which we currently work are not yet constructed to take advantage of this important shift.

� In fact, this very program is the one used at the Library of Congress to make "phase 2" changes to authority records. (An earlier version of this program was used to make the "phase 1" changes.) The documentation prepared by the PCC Task Group describing these RDA-related mechanical changes to access fields is available here: � HYPERLINK "http://files.library.northwestern.edu/public/pccahitg/" �http://files.library.northwestern.edu/public/pccahitg/� This program makes one change to access fields in bibliographic records (specifically, the removal of subfield $h) that was not considered by the PCC task group.

� This problem is created by the mismatch between the definition of the NACO comparison form and choices made for the content of RDA personal name headings; this problem does not stem from a bug in the software. It has been proposed that the rules for the NACO comparison form be adjusted to allow for the retention of the hyphen in subfield $d, thereby preventing this condition from occurring. At the time of writing, this notion is no more than a proposal. Even if this proposal were presented formally and approved, it would be some time before the software in library systems is adjusted to match the changed definition. No change to this program will be required.

� The numbers in the middle of the ZIP file names identify various versions of the Voyager library system, and are NOT an indication of the version of the conversion program itself. If you are a user of the Voyager library system and wish to use the program to update your Voyager database directly, you must choose the version of the program that corresponds to your version of Voyager, as described in Appendix B. If an installation package for your Voyager version isn't available, ask Gary to cook one up for you.

� Some versions of Windows allow setup.exe to be run successfully from the ZIP file, without explicitly unzipping the file; other versions of Windows allow setup.exe to start from the ZIP file, but then deliver an inscrutable error message.

� When deleting 245 subfield $h the program adjusts the punctuation of the remaining parts of the field; spaces and punctuation following the closing bracket in 245 $h move to the end of the preceding subfield. For example, if the 245 field starts out as "$a Title $h [GMD] / $c Author.", after deletion of $h the 245 field will be "$a Title / $c Author."; the program moves the space-slash from the end of $h to the end of $a. The program has a default list of recognized subfield $h texts, which you can override with a configuration file; see Appendix A.

� The program moves any punctuation that follows the closing bracket to the preceding subfield. The program attempts to supply a terminal full stop if the deleted $h is the last subfield in the field and contained no punctuation following the closing bracket; but in the 240 field, the program removes a terminal full stop exposed by the removal of subfield $h. The program has a default list of recognized subfield $h texts, which you can override with a configuration file; see Appendix A.

� The program uses a code module from the cataloger's toolkit to spell out abbreviations; documentation is available at � HYPERLINK "http://files.library.northwestern.edu/public/CatalogersToolkit/Documentation/Online/#Appendix_E" �http://files.library.northwestern.edu/public/CatalogersToolkit/Documentation/Online/#Appendix_E� It has not been possible for some months to update this online documentation. Although there have been a very few additions to the list of abbreviations for which substitutions are possible, almost everything that is contained in the documentation is correct: in other words, the documentation is accurate, though not quite complete. There is one exception: the expansions of permutations of the abbreviation "p.l." use the correct formulation "preliminary leaf" and "preliminary leaves", not "plain leaf" and "plain leaves" as stated in the documentation.

� This new feature uses code also used by the cataloger's toolkit. It is not possible at present to update the online documentation for the cataloger's toolkit to incorporate a description of this new feature; it is described instead in an appendix to this document.

� If you check this box and select the radio button "1 electronic resource (…)" the program will change 300 $a in the bibliographic record for an online resource consisting of "xiv, 192 p. :" to "1 online resource (xiv, 192 pages) :".

� The program uses the same code module to generate the 33X fields as does the cataloger's toolkit. The toolkit's scheme for doing this work is described in the toolkit's online documentation: � HYPERLINK "http://files.library.northwestern.edu/public/CatalogersToolkit/Documentation/Online/#Appendix_F" �http://files.library.northwestern.edu/public/CatalogersToolkit/Documentation/Online/#Appendix_F� It is not possible at present to update the toolkit's online documentation, but this description is believed to be correct in its essentials, though there have probably been various minor tweaks. Note that the toolkit is hard-wired to work only with English-language records; the present RDA-related program allows you to set this language restriction to suit your own needs. In addition, Voyager users should note that the present program does not use information in Voyager holdings records as an additional clue in the assignment of 33X fields. (The cataloger's toolkit does this.) While such a capability might possibly be added in the future to the present program, the same result can be obtained by supplying files of record IDs that are tailored to your requirements, and forcing values for these three fields accordingly. The program will attempt to generate a 336, 337 or 338 field only if the bibliographic record does not already contain a field with that tag.

� The drop-down list for each field also shows the corresponding subfield $b code. The drop-down list for the 338 field has several possibilities for "other", with various subfield $b codes; the program only uses the text "other" in subfield $a; it doesn't include the information in parentheses.

� The program uses the same code module to parse the 502 field as does the cataloger's toolkit; the toolkit's scheme for doing this work is described in the toolkit's online documentation: � HYPERLINK "http://files.library.northwestern.edu/public/CatalogersToolkit/Documentation/Online/#Appendix_G" �http://files.library.northwestern.edu/public/CatalogersToolkit/Documentation/Online/#Appendix_G� Note that the cataloger's toolkit is hard-wired to work only with English-language records; the present RDA-related program allows you to make this determination for yourself.

� The value of this box is only considered if the Bible: 'Selections' is authorized check-box on an earlier panel is not checked—if, indeed, 'Selections' is not allowed in headings for sacred scriptures. If in the future the form subdivision 'Selections' is defined as valid in this context, there will be no need to report headings that contain it.

� It is possible for a program to determine in many cases that 'and' in subfield $c separates two authorized place names (and so insertion of a second $c would be appropriate), or that 'and' is an integral part of a name (and so insertion of a second $c would not be appropriate); but making this determination requires that the program have access to an authority file containing corporate and geographic names. Since the number of corporate headings with 'and' in subfield $c is small to begin with, and because many users of this program are not Voyager users (Voyager being the only system whose authority file this program can access) this program makes no attempt to deal with 'and' in subfield $c, but simply reports its presence.

� It is theoretically possible that you will use different sets of these configuration files for different profiles; but it is much more likely that you'll use the same set of configuration files for all of the profiles you define.

� The text files are typically tab-delimited files that can be opened in your favorite spreadsheet

� This list does not contain the specialized files generated during work on the RDA 7XX fields. These files are described in a separate document.

� The program assumes that any record not encoded as UTF-8 is in generic MARC-8 encoding. The program does not recognize extensions to MARC-8 encoding that may be used by particular library systems.

� Here and elsewhere in this appendix, the examples are taken from bibliographic records in the Northwestern University Library database, which are drawn from a wide variety of sources, constructed at a variety of times, and reflect various interpretations of whatever cataloging standards may have been in effect. Whether or not these examples show "correct" practice is immaterial.

� This program was tested by handing it every occurrence of 300 $a in Northwestern's bibliographic database that contained square brackets (631,159 of them).The program made changes to about 84% of the candidate fields. (The test program did not keep track of the reasons that fields were rejected; one quick impression is that many of the texts were rejected simply because the only bracketed expression contained a roman numeral.) Northwestern's testing was performed both with and without the option that combines adjacent unnumbered sequences of the same type into a single statement. (Northwestern eventually decided not to exercise this option.)

Manipulating authority and bibliographic records for RDA. Page 21

