Configuration files for BAM
Gary L. Strawn
Northwestern University Library

July 16, 2013

Outline

1.
Introduction

1.1

General remarks

1.2

Summary of files and stanzas

2.
The validation rule files

2.1

General remarks

2.2

The ForceRules and TestRules stanzas

2.2.1

General remarks

2.2.2

Rule segments

2.2.3

Kinds of tests

2.2.4

Negation of tests

2.2.5

Test results

2.2.6

Combining tests

2.2.7

Reflexive rules

2.2.8

Rules designed for efficiency

2.2.9

Triggering a rule

2.2.10

Rules with only one test

2.2.11

Exceptional conditions

2.3

The BuiltInErrors stanza

2.4

The BuiltInChanges stanza

2.5

The InitialArticlesToTest stanza

2.6

The OperatorCorrections and OperatorCorrectionsForBuiltInErrors stanzas

3.
The obsolete content designation files

4.
The supplementary information files

4.1

General remarks

4.2

Files used with the Vger system

4.2.1

The file bibsup.cfg

4.2.2

The file holdsup.cfg

4.2.3

The file authsup.cfg

5.
The file of codes for coded subfields

6.
The file of geographic area codes

7.
Sample files

1. Introduction

1.1. General remarks

The BAM operation that is contained within the cataloger's toolkit consists of two parts: a validation step (inspecting a record's MARC content designation in great detail), and a verification step (comparing the access fields in a record against the access fields in other records). The configuration files that are part of the setup for the Vger cataloging client define all of the MARC tags, indicators and subfield codes that are to be considered valid, but the proper inspection of a MARC record requires far more information than that, and information at a rather more sophisticated level. The cataloger's toolkit draws on the configuration files described in this document during the validation portion of its BAM operation to determine whether or not a MARC record meets your most exacting standards. (These files augment, but do not replace, the information in the Vger MARC configuration files.) If these files are configured properly and if you resolve all of the toolkit's messages about a Vger record, you should have no surprises when you upload a record from Vger into OCLC, or other systems.

Other programs beyond the cataloger's toolkit also perform a verification operation, and draw on this same suite of files—either the very same files, or a parallel set optimized for a particular context.
There are three sets of three configuration files for each of the three basic formats that the toolkit recognizes (authority, bibliographic and holdings), making a total of nine format-based configuration files.
· One configuration file for each format contains validation rules for modifying and inspecting records (the “valid” file, described in Section 2 of this Appendix)
· One configuration file for each format describes obsolete content designation (the “obs” file; Section 3)
· One configuration file for each format supplements information in the system tag tables (the “supp” file; Section 4).
The validation component of BAM draws on are yet other other configuration files, which are not format-specific:
· One configuration file for codes that may appear in coded subfields (codes.cfg; Section 5),
· One configuration file for geographic area codes (gacs.cfg; Section 6).
All of these configuration files must reside in the same folder; this is the directory identified by the Files of validation rules box on the Files tab of the configuration for the BAM button. (Programs other than the toolkit that use these files have a similar box somewhere on their options panel.)
The configuration files are plain text files,
 and have the general appearance of Windows initialization files.
 Information is arranged into stanzas whose headings are enclosed within brackets. The heading is followed by one or more lines of text; each text line typically begins with some kind of label, followed by an equals sign and a value associated with the label.

Here is part of a typical stanza from a configuration file.

[GACsByCountry]

ABU_DHABY_UNITED_ARAB_EMIRATES_EMIRATE=a-ts---

ABU_ZABY_UNITED_ARAB_EMIRATES_EMIRATE=a-ts---

ABYSSINIA=f-et---

ACORES=lnaz---

ADAMAWA_EMIRATE=f-cm---|af-nr---

ADEN=a-ye---

ADEN_GULF_OF=mr-----

In addition to all of the tests and checks that you can identify in these files, the validation component of the BAM operation also contains some built-in tests. In some cases you can turn these off by making the appropriate selections on the toolkit's options panel, in other cases you can specify the severity level with which problems detected by these tests are to be assigned. (For example—although it's not likely you would want to—you can tell the toolkit not to check a record's fixed fields.) These tests are generally (but not entirely) based only on the information in the Vger MARC configuration files.

The following sections of this Appendix describe each of these configuration files. Follow these instructions to allow the toolkit to check your records in the manner you prefer.

Unless it is necessary at a given point to distinguish between the cataloger's toolkit program as narrowly defined and the validation component that is contained within the cataloger's toolkit, this documentation will refer simply to the program that uses these configuration files as "the toolkit".

1.2. Summary of files and stanzas

The following table lists each of the toolkit configuration files, and names the stanzas in each that bear on the toolkit's behavior. Not all of these stanaza are likely to be used in all of the indicated files.
	Table name
	Stanzas

	authobs.cfg
	Leader

008A

Fields

Indicators

Subfields

	authsup.cfg
	ExtendedFieldOrder or FieldOrder
SubfieldOrder

	authvalid.cfg
	ForceRules

TestRules

InitialArticlesToTest

OperatorCorrections

OperatorCorrectionsForBuiltInErrors

	bibobs.cfg
	Leader

007a [007c, 007d, etc.]

008

008B, 008D, 008F, 008M, 008P, 008S, 008U

041RepeatabilitySwitch

Fields

Indicators

Subfields

LanguageObsolete

CountryObsolete

	bibsup.cfg
	FixedFieldLengths

SfdRepeatableBefore

SfdNotRequiredBefore

MotionPicInspection

ExtendedFieldOrder or FieldOrder
SubfieldOrder

	bibvalid.cfg
	ForceRules

TestRules

BuiltInErrors

BuiltInChanges

OperatorCorrections

OperatorCorrectionsForBuiltInErrors

InitialArticlesToTest

	codes.cfg
	CodedSubfields

CodesForCodedSubfields

InitialArticles

Authority4xxW

Authority7xxW

Bibliographic7xx7

LanguagesByCode

LanguagesByName

LccnPrefix

SubfieldHCodes

	gacs.cfg
	GACs

GACsByCountry

	holdobs.cfg
	Leader

008H

Fields

Indicators

Subfields

	holdsup.cfg
	FixedFieldLengths

ExtendedFieldOrder or FieldOrder
SubfieldOrder

	holdvalid.cfdg
	ForceRules

TestRules

OperatorCorrections

OperatorCorrectionsForBuiltInErrors

2. The validation rule files

2.1. General remarks

Three files contain the rules you define for the validation and modification of authority, bibliographic and holdings records. All validation tests to be made on records—other than the built-in tests alluded to in Section 1—must be defined in these files. These files (named authvalid.cfg, bibvalid.cfg and holdvalid.cfg, respectively) all have essentially the same form. Each file contains several stanzas,
 each of which is (at least, technically) optional.

· Statements in the ForceRules stanza are highly-structured rules that describe modifications or transformations that the toolkit should make to a record, and the conditions under which it should make them. These statements are called force rules in this Appendix.

· Statements in the TestRules stanza are highly-structured rules that describe tests or validity checks that the toolkit should make against the data in a record. These statements are called test rules in this Appendix.

· Statements in the BuiltInErrors stanza assign severity levels to the validity tests built into the toolkit's validation component. This stanza only appears in the file bibvalid.cfg.

· Statements in the BuiltInChanges stanza assign severity levels to the modification methods built into the toolkit's validation component. This stanza only appears in the file bibvalid.cfg.

· Statements in the InitialArticlesToTest stanza identify subfields that the toolkit should test for initial articles. This stanza only appears in the file bibvalid.cfg.

· Statements in the OperatorCorrections stanza give the validation component information it should hand back to the toolkit when something in a record violates one of the validation rules defined elsewhere in the configuration file. The toolkit can use this information to make additional changes to the record, or may present the possibility of a change to the operator for approval.

· Statements in the OperatorCorrectionsForBuiltInErrors stanza supply information to be handed back to the toolkit when something in a record violates one of the validation component's built-in errors. The toolkit can use this information to make additional changes to the record, or may present the possibility of a change to the operator for approval.
Here are examples of things the toolkit can do, if you define the appropriate test rules:

· Judge whether the “date type” fixed-field code in a bibliographic record corresponds to the fixed-field dates. The toolkit can find the date type code and the two dates in the 008 field of a bibliographic record, and it can determine that they all contain legal values; this is part of its set of built-in tests. But if you want the toolkit to compare the values in the date type code against the dates—i.e., if you want to find out if the date type code and the dates when taken together appear to be right—you’ll have to define one or more rules that tell the toolkit how to go about the task.

· Determine whether the “reference tracing evaluation” fixed-field code in an authority record is assigned correctly. The toolkit can find the reference tracing evaluation code in the 008 field of an authority record, and can determine that the code is a valid one. The toolkit can also find any 4XX or 5XX fields in the record. If you want the toolkit to judge the correctness of the reference tracing evaluation code in relation to any 4XX or 5XX fields, you will have to define one or more rules to tell the toolkit how to do this.

Here are examples of things the toolkit can do, given the appropriate force rules:

· Set the language code in the bibliographic fixed fields to match the first language code in subfield $a of any 041 field

· Change the first indicator in the bibliographic 245 field to ‘0’ if it is set to ‘1’ and if the record contains no 1XX field

· Set both indicators of the bibliographic 260 field to blanks

· Set the reference evaluation code in an authority record’s fixed fields to ‘b’ if the code is currently ‘n’ and the authority record contains a 4XX or 5XX field

The toolkit performs its work in several steps. The toolkit makes one pass through the record, using rules defined in the ForceRules stanza; the toolkit changes the record as instructed. The toolkit makes another pass through the record, testing the record as modified against the MARC format definition.
 The toolkit makes yet another pass through the record, using the rules defined in the appropriate TestRules stanza. As additional features have been added to the validation component over the years, there are now additional passes through the record beyond these basic three; but the primary point remains that the toolkit makes changes to a record before it makes tests of the information in a record.
Although the ForceRules stanza is designed to contain force rules, you can do things a bit differently, if you want; you can put both force and test rules into the ForceRules Stanza.
 If you do this, in its pass through the ForceRules stanza the toolkit will make some changes to a record and will perform some tests on the record. By way of contrast, you can only put test rules into the TestRules stanza; in its pass through the TestRules stanza, the toolkit will only test the record. The toolkit prepares the finished version of the record after it handles rules in the ForceRules stanza but before it handles rules in the TestRules stanza, so a force rule in the TestRules stanza would have no effect.

2.2. The ForceRules and TestRules stanzas

2.2.1. General remarks

The ForceRules and TestRules stanzas contain the locally-defined rules the toolkit should follow when modifying or inspecting authority, bibliographic and holdings records. The rules in these two stanzas (in each of the three format-specific configuration files) are stated in essentially the same manner. These rules are expressed in a rigid and artificial “grammar.”

Most of the test rules you will want to define can be expressed as if-then statements.
 The “if” portion is a condition that may or may not apply to a record; the “then” portion is a test that must succeed if the condition applies. If the test does not succeed, the toolkit prepares an error message. Here are examples of test rules, expressed in words:

· If the 245 field in a bibliographic record contains subfield $h with “microform”, then the record should also contain an 007 field whose first character is ‘h’.

· If an authority record contains at least one 4XX or 5XX field, then its reference tracing evaluation code cannot be ‘n’.

Most rules that call for changes to a record can also be expressed as if-then statements. The “then” portion of the rule describes a change to be made when the condition in the “if” portion applies to a record:

· If an indicator of a bibliographic 260 field is not blank, then change it to blank.

· If a bibliographic 510 field contains subfield $c, then change the first indicator to ‘4’.

Some rules are limited in application to one or more of the bibliographic formats:

· If, in a Map record, the type of record code is ‘e’, then neither position in the special format characteristics fixed-field element (008/33-34) can be ‘e’.

· If, in a Books record, the form of contents codes do not contain ‘b’ or ‘q’, then the record should not contain a 504 field.

· If, in a Map record, either position of the special format characteristics fixed-field element (008/33-34) contains ‘e’, then change the type of record code to ‘f’.

The if and then statements, and the formats to which a rule applies, are presented in separate parts, or segments, of each validation rule in the validation rule files. In fact, each rule contains up to six segments. (The segments are described in more detail in Section 2.2.2 of this Appendix.) These six segments identify:

· the format or formats to which the rule applies

· the condition under which the rule should be applied; this is the “if” portion of a rule. The toolkit only applies the remainder of a rule if a record satisfies this condition.

· an indication of whether the rule identifies a test or a change to be made

· the actual test to make (or the change to make); this is the “then” portion of a rule

· information to use in error reporting (this portion is essential for test rules, and may be used for certain force rules), presented in two segments: severity codes, and the error message text itself.

The first four of these segments are required in all cases; the fifth and sixth segments are optional, although they’re nonetheless critical in test rules if the rules are to be useful. Each segment is separated from its neighbors by one or more spaces. Because spaces are used to delimit segments, none of these segments except the last segment may contain internal spaces.
Here is a fragment of a TestRules stanza from a typical bibvalid.cfg file. (Exactly what this all means should become clear eventually; don’t worry if you don’t understand the codes yet.) This example shows only the first four segments of each rule.

[TestRules]

3=P 000/6=e T 008/33!e AND 008/34!e

168=M 000/06={ij} T 245/h

16=DP 000/07={abd} T 773

15=FMD 000/07={ad} T 773

4=DP 000/07={acdm} T 008/06={bceikmnpqrst|}

20=P 000/17-18=_a T 255

Here’s the same fragment, with extra spaces between segments to create the appearance of columns.
 You may find that including extra spaces in this manner makes reading and maintaining validation rules easier.

[TestRules]

3=P 000/6=e T 008/33!e AND 008/34!e

168=M 000/06={ij} T 245/h

16=DP 000/07={abd} T 773

15=FMD 000/07={ad} T 773

4=DP 000/07={acdm} T 008/06={bceikmnpqrst|}

20=P 000/17-18=_a T 255

Each rule is assigned an arbitrary number, ranging from 1 to 32767.
 The rule number is the first piece of information in each rule definition, and is followed by an equals sign. It is not necessary that the sequence of rule numbers be continuous; there may be gaps. The rules need not be presented in any particular order. Unless a test rule is tied to information in the OperatorCorrections stanza, numbers may even be duplicated. These “rule numbers” do not mean anything to the toolkit; they are included as part of the error message the toolkit prepares if a record does not match a rule, and the change message the toolkit prepares if it modifies a record.

When the toolkit starts up, it reads the TestRules and ForceRules stanzas from top to bottom. (In other words, it reads the rules in the order you present them in each stanza, regardless of the rule number.) The toolkit skips over any lines in these stanzas (such as comments) that don’t appear to be rules.
 As the toolkit reads your definitions, it places together in its work area all those rules whose initial test involves the same tag; it further groups together those rules whose initial test operates on the same indicator, subfield code or fixed-field position (even if these rules appear at different places in the stanza), so that the work it performs later will be as efficient as possible. If more than one rule operates on the same piece of information, the toolkit performs the rules in the order the rules appear in the configuration file.

Here is a complete rule from a TestRules segment, showing all six segments. Because of the length of this rule, it is presented on more than one line; in the configuration file, this rule must appear on a single line.

303=M 000/06=j T 008/30-31=__ 0:5 ‘Literary text’ must be blank for ‘musical’ sound recordings

Here's what this rule means: If, in a Music record, Leader/06 contains code ‘j’, then 008/30-31 must contain blanks. If in such a record 008/30-31 do not contain blanks, the toolkit prepares an error message with severity levels of 0 and 5, and the message text “’Literary text’ must be blank for ‘musical’sound recordings”.

2.2.2. Rule segments

The first segment in a rule identifies the format of record to which the rule applies. (The toolkit actually uses this information only when inspecting a bibliographic record; it is included as part of the rule definition for authority and holdings records solely for consistency.) Use one or more of the single upper-case alphabetic letters in the following table.

	Format code:
	Used for:

	A
	Authority record (Leader/06=z)

	B
	Book (Leader/06=a and Leader/07=a,c,d or m; or Leader/06=t)

	D
	Computer file (Leader/06=m)

	F
	Visual materials (Leader/06=g,k,o or r)

	H
	Holdings record (Leader/06=x or y)

	M
	Music (sound recordings and scores) (Leader /06=c,d,i or j)

	P
	Maps (Leader/06=e or f)

	S
	Serials (Leader/06=a and Leader/07=b or s)

	U
	Mixed materials (archival materials) (Leader/06=b
 or p)

Examples

7=P …

The rule applies only to Map records

Note that here and elsewhere in this Appendix, three closely-spaced dots (…) indicate that the rule definition may condition additional information; these three closely-spaced dots are not part of the rule definition itself.

93=F …

The rule applies only to Visual material records

83=A …

The rule applies only to Authority records

If the rule applies to more than one bibliographic format, include all the applicable codes in a single string, with no intervening spaces. The order of these codes is immaterial.

Examples

16=DP …

The rule applies only to Computer file and Map records

57=BDFMPU …

The rule applies to Book, Computer file, Visual material, Music, Map and Mixed material records (i.e., to all types of bibliographic records except Serials)

The second segment in a rule identifies the condition(s) that must be met in order for the toolkit to apply the test to the record. The result of a comparison of a condition against a record will be Found, Not Found or No Answer. (For information about the results returned by tests, see Section 2.2.4 of this Appendix.) If the result is Found, the toolkit applies the remainder of the rule to the record; otherwise, the toolkit ignores the remainder of the rule.

For variable fields (all fields other than the Leader, and the 006, 007 and 008 fields), you supply a tag, optional indicator(s) and optional subfield code(s). (Section 2.2.3 of this Appendix describes the forms that tests may take.)

Examples

102=BDFMPSU 020 …

The rule will be applied when a bibliographic record contains an 020 field.

94=BDFMPSU 010/a …

The rule will be applied when a bibliographic record contains an 010 field that contains subfield $a.

159=BDFMPSU 411:2=1 …

The rule will be applied when a bibliographic record contains a 411 field whose second indicator has the value of “1”

Note that the literal value (the indicator value) appears without quotation marks.

117=BDFMPU 040! …

The rule will be applied when a bibliographic record does not contain an 040 field.

127=BDFMPU 040/c! …

The rule will be applied when a bibliographic record contains an 040 field that does not contain subfield $c.

360=BDFMPSU 400/b AND 000/18=a …

The rule will be applied when a bibliographic record contains a 400 field that contains subfield $b and when Leader/18 contains code ‘a’

Note that the literal value (the fixed-field value) appears without quotation marks.

49=DP 008 …

The rule will be applied when a map or computer file record contains an 008 field.

57=BDFMPU 008/06=e …

The rule will be applied when 008/06 in a bibliographic record contains code ‘e’.

17=P 000/17={17} …

The rule will be applied when Leader/17 of a map record contains either code ‘1’ or code ‘7’.

Note the use of braces to enclose a list of alternative fixed-field values.
173=P 000/17-18=_a …

The rule will be applied when Leader/17 of a map record contains a blank and Leader/18 contains code ‘a’.

Note that in this case, the literal value is more than one character long, and that the underscore represents a blank space.

89=M 008/24-29!______ …

The rule will be applied when 008/24-27 of a music record does not contain blanks.

6=P 000/07={acdm}

The rule will be applied when Leader/07 of a map record contains code ‘a,’ ‘c’, ‘d’ or ‘m’.

53=BDFMPU 008/07-10=|||| …

The rule will be applied when 008 positions 07 through 10 in a bibliographic record contain four fill characters.

Note that the vertical bar represents the “fill” character.

63=BDFMPU 008/15-17!||| …

The rule will be applied when 008/15-17 in a bibliographic record does not contain fill characters

342=BDFMPSU 041/d AND 008/35-37!|||…

The rule will be applied when a bibliographic record contains an 041 field that contains subfield $d and when 008/35-37 does not contain fill characters

A single uppercase alphabetic code in the third segment in a rule identifies the rule as a test (code ‘T’) or a force (code ‘F’). A test rule defines a condition to which a record must conform; if the record does not conform to the test, the toolkit prepares an error report. A force rule defines a change the toolkit will make to a record.

Examples

14=P 000/07=a T …

The rule identifies a test that applied to a map record whenever Leader/07 contains code ‘a’.

87=U 008/06={bp} F …

The rule identifies a change made to a mixed material record whenever its 008/06 contains code ‘b’ or code ‘p’.

127=BDFMPU 040/c! F …

The rule identifies a change made to a non-serial bibliographic record whenever its 040 field does not contain subfield $c.

The fourth segment (the condition segment) identifies an action that the toolkit should take if the tests in the second segment (the test segment) evaluate to Found.

For test rules, the fourth segment of the rule identifies the final test or tests to be made. The result of the test in every case will be Found, Not Found or No Answer. (For an explanation of the results of tests, see Section 2.2.4.) If the answer is Found the record satisfies the rule, and the toolkit produces no error report; if the answer is Not Found or No Answer the record does not satisfy the rule, and the toolkit produces an error report.

The definition of the test in the test segment of a rule is similar to the definition of the test in the condition segment. (See Section 2.2.3 for descriptions of the tests you can define.)

Examples

24=P 000/17={17} T 034 …

If a map record has value ‘1’ or ‘7’ in Leader/17, then the record must also contain an 034 field.

160=M 000/06={ij} T 245/h …

If a music record has value ‘i’ or ‘j’ in Leader/06, then the 245 field must contain subfield $h.

19=P 000/17-18!_a T 042! …

If a map record does not have the value “blank-a” in Leader/17-18, then the record may not contain an 042 field.

200=B 411/b T 000/18!a …

If a book record contains a 411 field which contains subfield $b, then Leader/18 may not contain value ‘a’.

43=BDFMPU 008/06=b T 008/07-14=________ …

If a non-serial record has value ‘b’ in 008/06, then positions 07 through 14 of the 008 field must contain all blanks.

44=BDFMPU 008/06=n T 008/07-14=uuuuuuuu OR 008/07-14=________ …

If a non-serial record has value ‘n’ in 008/06, then 008/17-14 must contain either eight ‘u’s or eight blanks

130=M 047 T 008/18-19=mu …

If a music record contains an 047 field, then 008/18-19 must contain the code “mu”.

131=M 008/18-19=mu T 047 …

If 008/18-19 in a music record contain the code “mu”, then the record must contain an 047 field.

23=P 000/17=1 T 010/a=um* …

If a map record has value ‘1’ in Leader/17, then the record must contain an 010 field with subfield $a, and that subfield $a must begin with the characters “um”.

Note the use of the asterisk to indicate the presence of zero or more additional characters to the right of the text in the subfield; the asterisk at the right makes this a left-anchored comparison. You can also use an asterisk at the left end of the text to define a right-anchored comparison, and asterisks at both ends of the text to define a “floating” comparison.

98=U 010/a T 010/a!ms* …

If a mixed-material record contains an 010 field with subfield $a, then that subfield $a must not begin with the characters “ms”.

Note that the tag and subfield code must be explicitly identified in the test segment, even if they are identical with the tag and/or subfield code in the condition segment. If the tag in the test segment is the same as the tag in the condition segment, the toolkit will use the same field that satisfied the condition, even if the field is repeated elsewhere in the record.

104=B 022 T 022/a OR 022/y OR 022/z …

If a book record contains an 022 field, then that field must contain subfield $a, subfield $y or subfield $z.

Use tests in this form to perform “required subfield” tests that cannot be performed correctly through a tag-table definition. (If subfield $a by itself were always required, you would indicate that in the tag table; but if any one of two or more subfields is required, you must use a rule in the form shown here.)

154=BDFMPSU 240 T <14:1XX,=,1> …

If any bibliographic record contains a 240 field, then the record must contain a 1XX field.

For force rules, the fourth segment of the rule identifies the change the toolkit should make to the record.
 The definition of the change is similar to the definition of the fourth segment in a test rule.

Examples

87=U 008/06={bp} F 008/18-22=_____

If a mixed-material record contains code ‘b’ or ‘p’ in 008/06, then set 008/18-22 to blanks.

410=BDFMPSU 100:2=0 F 100:2=_

If the second indicator in a bibliographic 100 field is ‘0’, change it to blank.

For test rules, the fifth segment in the rule definition consists of a code that assigns a level of severity to the rule; the sixth segment contains an error message. (If a test rule does not contain a severity code, the toolkit uses “0:0” for the severity code; if it does not contain an error message, the toolkit uses “No error message” plus the rule number for the error message.) Separate the severity-level code and the message with one or more spaces. If a record does not satisfy the condition in the rule (i.e., if the result of the test is Not Found or No Answer), the toolkit prepares an error report; part of the report is the level-of-severity code from this segment, and part is the error message text.

The severity-level code actually consists of two separate codes, separated by a colon. These two numbers must be integers in the range 1-32767. (If the severity-level code is present but does not contain two numerals separated by a colon, the toolkit uses the single number given for both codes.) These numbers have no particular meaning to the toolkit; the toolkit uses part of its configuration to remove lower-priority messages from reports for individual users. You should treat these two numbers as representing hierarchical information: consider code 0 to represent the most innocuous type of condition, and progressively higher numbers to represent progressively more serious problems. To make matters as simple as they can be, you may prefer to limit severity levels to some small number, such as five; but the final choice is yours.

The two numbers represent the level of severity of a problem detected by the toolkit, as defined in a rule. There are two codes, so that different levels of severity can be assigned to different contexts. For example, if you run batch programs that draw on these configuration files (such as the location changer and correcton receiver programs), you might define one code for the use of the cataloger's toolkit and one code for the use of batch programs.
The two severity-level codes are followed by an error message that describes the condition.

Examples

The following rule is presented here on two lines because of its length; in the configuration file, this rule must appear as a single line.

168=M 000/06={ij} T 245/h 0:1 Subfield $h in 245 required for sound recordings

If the 245 field in a bibliographic record for a sound recording does not contain subfield $h (i.e., if the answer to the test in the condition segment is Found and the answer to the test in the test segment is Not Found), the toolkit reports an error, with 0 as the ErrorMessageSeverityLevel1 property, 1 as the ErrorMessageSeverityLevel2 property, and “Subfield $h in 245 required for sound recordings” as the ErrorMessageText property.

The following rule is presented here on two lines because of its length; in the configuration file, this rule must appear as a single line.

71=B <6:008/18-21,|> T 008/18-21!|||| 0:5 Illus. fixed field may not contain mixture of fill character and valid codes

If any position in 008/18-21 in a book record contains a fill character and if 008/18-21 contains anything but all fill characters, the toolkit reports an error, with 0 as the Error​Message​Severity​Level1 property, 5 as the Error​Message​Severity​Level2 property and “Illus. fixed field may not contain mixture of fill character and valid codes” as the ErrorMessageText property.

Force rules may optionally contain severity-level codes and error message texts. If the toolkit is configured not to make any changes during BAM, the toolkit performs those force rules that contain error-reporting information as if they were defined as test rules; it ignores altogether those force rules that do not contain error-reporting information. (If the toolkit is configured to make changes during BAM, the toolkit performs force rules as force rules, and ignores any error-reporting information included in them.)

Examples

The following rule is presented here on two lines because of its length; in the configuration file, this rule must appear as a single line.

208=BDFMPSU 510/c F 510:1=4 3:5 510 subfield $c means 1st indicator should be 4

If the toolkit is configured to make changes during BAM and if a bibliograhpic 510 field contains subfield $c, the toolkit changes the first indiator to ‘4’ if it does not already contain that value. If the toolkit is not configured to make changes during BAM and if the value of the first indicator in a 510 field that contains subfield $c is not already ‘4’, the toolkit prepares the error message “510 subfield $c means 1st indicator should be 4”, with severity levels of 3 and 5.

412=BDFMPSU 130:2=0 F 130:2=_

If the toolkit is configured to make changes during BAM and if the second indicator in a bibliographic 130 field is ‘0’, the toolkit changes the value of the indicator to ‘blank’. If the toolkit is not configured to make changes during BAM the toolkit ignores this rule, because it contains no error-reporting information.

In addition to the levels of severity that may be associated with force rules performed as if they were test rules, force rule definitions may also contain two severity codes to indicate the seriousness of the change made to the record. The cataloger's toolkit does not use this information, but it may be of interest to other programs that use the same toolkit's component. Unless you know that you need this information, omit it. Enclose severity level codes for force rules performed as force rules within braces; these codes may either precede or follow any error codes and message text for force rules performed as tests. There is no message associated with severity levels for changes.

Example

The following rule is presented here on two lines because of its length; in the configuration file, this rule must appear as a single line.

70=B 008/18-21!____ F <5:008/18-21> 1:2 Check order of Illustration codes {3:5}
If the Illustration codes in a books record are not all blanks, send them through special routine number 5. If this rule is performed as a force rule, and if the special routine has changed the order of the Illustration codes, the validation component will prepare a change report, with the severity codes of 3 and 5; the routine will prepare its own change message text. If this rule is performed as a test rule and if the special routine determines that the Illustration codes are not in the proper order, it will prepare an error report, with severity codes of 1 and 2, and the message text “Check order of Illustration codes”.

This rule could also be presented with the change severity codes in before the error severity codes:

70=B 008/18-21!____ F <5:008/18-21> {3:5} 1:2 Check order of Illustration codes
For error messages associated with special routines, see Section 2.2.11. For tests built into the toolkit, see the Section 2.6.

2.2.3. Kinds of tests

The definitions of the tests to be performed, and the conditions which the records that pass those tests must meet in the second and fourth segments of a validation rule, take a limited number of forms. These forms are described in the following paragraphs.

In all cases, a definition begins with the tag that identifies the field of interest. Use the tag “000” to represent the Leader.

Test for the presence of a field

To test for the presence of a field, give the three-digit tag by itself, accompanied by no other information.

Example

… 041 …

If the record contains an 041 field …

Test a fixed-field code
To test the value in a particular fixed-field code (Leader, 006, 007 or 008 field), follow the field’s tag with a slash and the starting position of the data element. (Use the zero-based starting positions found in the MARC documentation.) If the data element is more than one character long, follow the starting position with a hyphen and the ending position. Complete the fixed-field element definition with an equals sign and a single value, or a string of alternative values within braces. Use the vertical bar (“|”) to represent the fill character.

Examples

… 000/06=e …

If byte 06 in the Leader contains code ‘e’ …

… 008/07-14=uuuuuuuu …

If 008 bytes 07-14 all contain the letter ‘u’ …

… 008/18-21=____ …

If bytes 18-21 in the 008 field are all blanks …

Note that the underscore character (_) represents the “blank” or “space” character. Except as noted, rules may not contain spaces; use the underscore character instead.

… 000/06={ij} …

If byte 06 in the Leader contains either code ‘i’ or code ‘j’ …

… 008/06=| …

If byte 06 in the 008 field contains the fill character …

… 008/07-10=|||| …

If bytes 7-10 in the 008 field all contain fill characters …

… 008/35-37={eng*fre*spa*ita} …

If bytes 35-37 in the 008 field contain ‘eng’ or ‘fre’ or ‘spa’ or ‘ita’ …

To test for any of a set of multi-character fixed-field codes, separate each with an asterisk or other non-space character that will not occur within the codes themselves.

Test an indicator

To test an indicator value in a variable field, follow the field’s tag with a colon, a numeral to represent the indicator position (1 or 2), an equals sign and the indicator value of interest (or a list of indicator values of interest within braces).

Examples

… 082:1=_ …

If the first indicator in an 082 field is a blank …

… 700:2={_2} …

If the second indicator in a 700 field is a blank or ‘2’ …

Test for the presence of a subfield code
To test for the presence of a subfield code within a variable field, follow the field’s tag with a slash and the subfield code of interest.

Example

… 086/a …

If the record contains an 086 field that contains subfield $a …

Test for a piece of text in a subfield

The tag/subfield combination by itself tests for the simple presence of the subfield code within the field. To test for a particular value in a subfield, follow a tag/subfield identifier with an equals sign and the text of interest.

Use the asterisk (*) as a “wildcard” character to indicate zero or more additional characters of any kind. If you are looking for a subfield that begins with a particular piece of text, and if that text may be followed by any additional information, follow the text with an asterisk. If you are looking for a subfield that ends with a particular piece of text, and if that text may be preceded by any other text, precede the text with an asterisk. If you are looking for a subfield that contains a particular piece of text, and if that text may be preceded or followed by other text, place an asterisk both before and after the text.

Examples

… 082/2=21 …

If the record contains an 082 field whose subfield $2 contains exactly the value “21” …

… 010/a=ms* …

If the record contains an 010 field whose subfield $a begins “ms” …

… 600/x=*ograp* …

If the record contains an 600 field whose subfield $x contains “ograp” anywhere …

Unless otherwise specified, the toolkit performs this test literally. If instead you wish the toolkit to normalize text before making the comparison, place the search text within braces. The toolkit will compare a normalized version of the supplied text against a normalized version of the variable field text.

Examples

… 245/h={microform} …

If the record contains a 245 field whose subfield $h contains exactly the text “MICROFORM” (after normalization) …

… 245/h={microform}* …

If the record contains a 245 field whose subfield $h begins “MICROFORM” (after normalization) …

All of these tests may be reversed to check for the absence of a condition. (For example, to test for the absence of a tag, or the absence of a subfield code.) See Section 2.2.5.

2.2.4. Test results
The toolkit defines three possible outcomes for each test: Found, Not found and No Answer.
 A test produces the result Found if all of the test’s conditions are met; a test produces the result Not Found when it is possible for the toolkit to test all of the conditions, but not all of the conditions are met; a test produces the result No Answer if it is not possible to evaluate all of the conditions in the test.

Examples

If the test asks for the value of “blank” as the second indicator in a 246 field, the result of the test is:

· Found if the record contains a 246 field whose second indicator is “blank”

· Not Found if the record contains a 246 field whose second indicator is anything other than “blank”

· No Answer if the record contains no 246 field, because in this case it is not possible to judge the value of the 246 second indicator

If the test asks for the value “21” in subfield $2 of an 082 field, the result of the test is:

· Found if the record contains an 082 field whose subfield $2 has the value “21”

· Not Found if the record contains an 082 field whose subfield $2 has some value other than “21”

· No Answer if the record contains no 082 field, or if no 082 field in the record contains subfield $2, because in these cases it is not possible to examine the contents of 082 subfield $2

If the test asks for the presence of the 047 field,
 the result of the test is:

· Found if the record contains an 047 field

· Not Found if the record contains no 047 field

In a test rule, if the tests in the second segment (the if part of the rule) produce the value Found, the toolkit applies the tests in the fourth segment (the then part of the rule). If the tests in the fourth segment do not produce the value Found, the toolkit prepares an error message.

130=M 047 T 008/18-19=mu …

The toolkit will test the record for the presence of an 047 field. If the result of this test is Not Found (the result of a test for a tag alone can never be No Answer), the toolkit ignores the rest of the rule. If the result of the test for the 047 is Found, the toolkit will test bytes 18-19 of the 008 field for the code ‘mu’. If the result of the test on the 008 is Found, the toolkit does nothing; if the result of the test is Not Found or No Answer (the result can only be No Answer if the record does not contain an 008 field), the toolkit prepares an error message.

In a force rule, if the tests in the second segment produce the value Found, the toolkit will make the change to the record described in the fourth segment.

410=BDFMPSU 100:2=0 F 100:2=_

The toolkit will test the record for the presence of a 100 field, and will see if the second indicator in that field is zero. If the record does not contain a 100 field (result: No Answer) or if the second indicator is not zero (result: Not Found), the toolkit does nothing. If the result of the test is Found (record contains a 100 field with second indicator zero), the toolkit changes the second indicator to blank.

2.2.5. Negation of tests

Sometimes, you will want to test for the absence of a condition instead of the presence of a condition. Examples of such tests are:

· If the record does not contain a 504 field …

· If the second indicator of the bibliographic 100 field is not blank …

To reverse or negate any of the test types described in Section 2.2.3, include an exclamation mark with the test. If the test normally contains an equals sign, replace the equals sign with an exclamation mark. If the test doesn’t contain an equals sign, follow the test with an exclamation mark.

Examples

… 260:1!_ …

If the first indicator in the 260 field is not ‘blank’ …

Note: To find a blank first indicator, the test would be stated as “260:1=_”; substituting the exclamation mark for the equals sign reverses the test result.
… 041! …

If the record does not contain an 041 field …

Note: To test for the presence of the 041 field, the test would be stated as “041”; following the test (which does not contain an equals sign) with an exclamation mark reverses the test result.

… 000/18!{ia} …

If position 18 of the Leader does not contain ‘a’ or ‘i’ …

… 000/17-18!_a …

If positions 17-18 of the Leader do not contain ‘blank-a’ …

… 020/b! …

If the record contains an 020 field and if that field does not contain subfield $b …

… 010/a!ms* …

If the record contains an 010 field and if that field contains subfield $a and if that subfield $a does not begin “ms” …

The toolkit performs a test containing the exclamation mark as if it did not contain the exclamation mark, and reverses the result of the test afterwards. If a test containing an exclamation mark produces the Found answer, the answer becomes Not Found; if such a test produces the Not Found answer, it becomes Found. If a test containing an exclamation mark produces the result No Answer, the toolkit does not adjust the result; it remains No Answer. (For an important exception to this rule, see below.)

Examples

This test:

… 041! …

is performed as if were written like this:

… 041 …

The record is tested for the presence of an 041 field.

· If the record contains an 041 field, the test returns Found, which is then reversed to Not Found.

· If the record does not contain an 041 field, the test returns Not Found, which is then reversed to Found.

In this manner, only records of interest—those records that do not contain 041 fields—will pass the test.

This test:

… 010/a!um* …

is performed as if were written like this:

… 010/a=um* …

If a record being examined contains an 010 field, then the field is scanned for subfield $a. If the field contains subfield $a, then its contents are examined for the indicated characters.

· If an 010 field is present and contains subfield $a and if that subfield $a begins with the indicated characters, this test returns Found, which is then reversed to Not Found.

· If an 010 field is present and contains subfield $a but that subfield does not begin with the indicated characters, this test returns Not Found, which is then reversed to Found.

· If the record does not contain an 010 field or if its 010 field does not contain subfield $a, this test returns No Answer; this response is not affected by the exclamation mark.

In this manner, only records of interest—those records that contain 010 fields whose subfield $a does not begin with the indicated characters—will pass the test.

Important exception: The result No Answer (see Section 2.2.4) is usually not affected by the exclamation mark. However, if a test in the fourth (test) segment of a test rule is negated with the exclamation mark and produces the result No Answer, the toolkit changes the result to Found.

An example may help clarify the need for this behavior. Here is a validation rule to be enforced:

338=BDFMPSU 008/39=d T 040/a!DLC* …

Interpretation of the rule: If the cataloging rules code is ‘d’, subfield $a of the 040 field may not begin with the letters “DLC”.
The toolkit will only consider the fourth segment of this rule if position 39 in the 008 field of a bibliographic record contains code ‘d’. The toolkit scans the record for an 040 field with subfield $a, and examines the contents of that subfield.

· If an 040 field is present and contains subfield $a and if that subfield $a begins ‘DLC’ the test returns Found, which is then reversed to Not Found, and the toolkit prepares an error message.

· If an 040 field is present and contains subfield $a and if that subfield $a does not begin ‘DLC’ the test returns Not Found, which is then reversed to Found. Since the record satisfies the rule, the toolkit does nothing.

· If the record does not contain an 040 field or if the record’s 040 field does not contain subfield $a the test returns No Answer. The No Answer response is not the same as Found, so this test would normally cause the toolkit to prepare an error message whenever a record contained no 040 $a at all. Since this is not the desired behavior (the presence of subfield $a in the 040 field may be required by a different rule, or a definition in a system tag table, but this requirement has no part in this rule), the toolkit converts the No Answer response for a negated test in the fourth segment of a test rule to Found (in the same way that it converts the Not Found response to Found), thereby avoiding an unnecessary error message for this rule.

Here are additional examples of rules that include exclamation marks.

861=BDFMPSU 008/39!_ T 040/a!DLC …

If the cataloging source code in a bibliographic record is not blank, subfield $a of the 040 field cannot be “DLC”.

9=A 008/09=f T 664!

If the kind-of-record code in an authority record is ‘f’, the record cannot contain a 664 field.

30=A 008/32=b T 100:1!3

If the unique personal name code in an authority record is ‘b’, the first indicator in the record’s 100 field cannot be ‘3’.

2.2.6. Combining tests

You can create complex statements in the second (condition) and fourth (test) segments of a rule by combining simple tests. To do this, join the tests with a logical operator. Use “OR” when any one of a number of conditions is sufficient; use “AND” when all of a set of conditions must be satisfied. A rule segment containing tests joined by “AND” produces the aggregate response of Found only if all of the individual tests in the segment produce the result Found. A rule segment containing tests joined by “OR” produces the aggregate response of Found if any of the individual tests in the segment produces the result Found.

Any compound expression in the second (condition) segment of a rule may contain either “AND” or “OR” operators, but it may not contain both. A compound expression in the test (fourth) segment of a rule may contain only the “OR” operator. (You can achieve the effect of the “AND” operator in the fourth segment by defining two or more rules, each identical up to the fourth segment.)

Examples of combined tests:

… 247 OR 550 …

If the record contains either a 247 or a 550 field …

… 008/33=e OR 008/34=e …

If either byte 33 or 34 of the 008 field contains code ‘e’ …

… 000/17=_ AND 000/18!a …

If Leader/17 contains “blank” and Leader 18 contains any code but ‘a’ …

… 008/07-14=uuuuuuuu OR 008/07-14=________ …

If 008/07-14 contains either eight ‘u’s or eight blanks …

… 246/i AND 246:2!_

If a bibliographic 246 field contains subfield $i and the second indicator is not blank …

Note: In any one rule, multiple references to any tag are all applied against the field matching the first test in the rule. In this example, each 246 in a record will be inspected in turn for the presence of subfield $i; if a 246 field contains subfield $i, the toolkit will test the second indicator of the very same field. The value of the second indicator in any other 246 fields (without subfield $i) that may be present in the record does not affect the outcome of this test on this field.
… 045/b! AND 045/c! …

If a bibliographic 045 field contains neither subfield $b nor subfield $c …

… 100! AND 110! AND 111! AND 130! …

If the record contains no 1XX field …

Examples of complete rules containing combined tests:

852=S 007/00=h T 008/22={abc} OR 008/23={abc} …

If a serial record contains an 007 field whose first character is ‘h’, then either byte 22 or 23 of the 008 field must contain code ‘a’, ‘b’ or ‘c’

420=BDFMPU 008/06=e T <1:008/13-14,0123456789u> OR 008/13-14=__ …

If byte 06 of a non-serial 008 field contains code ‘e’, then bytes 13-14 of the 008 field must either contain a numeral or the letter ‘u’, or they must contain two blanks.

146=BDFMPSU 082/2! AND 000/17={_458} AND 000/18=a F <37:082,|221>

If a bibliographic record contains an 082 field that does not contain subfield $2 and if byte 17 of the Leader contains blank, ‘4’, ‘5’ or ‘8’ and if byte 18 of the leader contains code ‘a’, then add subfield $2 to the 082 field.

20=P 000/06=e AND 000/17-18=_a T 255 …

If byte 06 of the Leader in a Map record contains code ‘e’ and if bytes 17-18 of the Leader contain ‘blank-a’ then the record must contain a 255 field.

2.2.7. Reflexive rules

Some rules you will wish to enforce are reflexive: the test and condition in one rule switch places and become the condition and test in another rule. Performing only one of these two rules is not adequate; both of the rules must be performed to ensure that the record is coded correctly.

Example of a rule that is reflexive.

Basic rule: Bibliographic 600 second indicator value ‘7’ and subfield $2 are a unit; if one appears in a field, both must appear.

This two-part rule can be stated more simply as two separate rules, which attack the problem from both ends. Note in this restatement that the “if” and “then” portions of the first rule reverse their positions in the second rule.

1. If the second indicator in a bibliographic 600 field contains code ‘7’, then the field must also contain subfield $2.

2. If a bibliographic 600 field contains subfield $2, then its second indicator must be ‘7’.

There is no technique available in the toolkit’s rule definition grammar for indicating that a given rule is reflexive. You must include two separate definitions for reflexive rules.

Examples

216=BDFMPSU 600/2 T 600:2=7 …

In a bibliographic record, if a 600 field contains subfield $2, then the second indicator of the field must be ‘7’.

215=BDFMPSU 600:2=7 T 600/2 …

If a bibliographic record contains a 600 field whose second indicator is ‘7’, then the 600 field must contain subfield $2.

If only the first of these tests were performed it would be possible to have a 600 field with second indicator ‘7’ which did not contain subfield $2. If only the second of these tests were performed it would be possible to have a 600 field with subfield $2 whose second indicator was not ‘7’.

88=M 008/18-19=mu T 047 …
130=M 047 T 008/18-19=mu …
In a music record, if positions 18-19 of the 008 field contain “mu”, then the record must also contain an 047 field. Similarly, if a music record contains an 047 field, then positions 18-19 of the 008 field must contain “mu”.

If only the first of these tests were performed it would be possible to have an 047 field in a music record whose 008/18-19 contained some value other than “mu”. If only the second of these tests were performed it would be possible to have the value “mu” in 08/18-19 without a corresponding 047 field.

Of course, most rules are not reflexive, and care must be taken to construct them so that the desired result is achieved.

Example

159=BDFMPSU 411:2=1 T 111 …
In a bibliographic record, if the second indicator of a 411 field is ‘1’, the record must contain a 111 field.

There is no reflexive rule definition, because the reflex rule is not true: in a bibliographic record, the presence of a 111 field does not mean that the second indicator of any 411 field must be ‘1’.

2.2.8. Rules defined for efficiency

Many rules can be stated in more than one way. The question of which of the possible versions to define should be made by considering the efficiency with which each test can be made (to the extent you can understand this), and the corresponding amount of time each test will take. In general, when presented with alternative ways to state a given rule, you should structure the validation rule so that situations that occur less frequently appear as far to the left in the rule as possible.

Example

The rule to be enforced may be stated as follows:

In a bibliographic record, if subfield $b is present in a 611 field, then Leader/18 cannot be ‘a’.

This rule could be expressed in two different ways, either of which by itself would enforce the proper coding:

121=BDFMPSU 000/18=a T 611/b! …
122=BDFMPSU 611/b T 000/18!a …
The first version means: In a bibliographic record, if Leader/18 is ‘a’, then no 611 field may contain subfield $b. The second version means: In a bibliographic record, if a 611 field contains subfield $b, then Leader/18 may not be ‘a’.

Only one of these two rules need be defined in order to ensure that records are correct; the decision of which rule to use should be based on the perceived efficiency of the two rules.

If the first rule were defined, then every AACR2 record would have to be scanned for 611 fields; every 611 field in every AACR2 record would have to be scanned for subfield $b. If the second rule were defined, then only records that contain 611 fields (a very small number of records in any typical file will contain a 611) will pass under the rule, and among those only records whose 611 field contains subfield $b would have their Leader code checked. In other words, the fourth segment of the first rule would be applied against almost every record in a typical file, but the fourth segment of the second rule against very few records. Since both rules eventually produce the same result, the second rule is the one that should be defined.

2.2.9. Triggering a rule

The toolkit uses the first tag referred to in the second segment of a rule (the condition or if segment) as the rule’s principal tag. The toolkit compares the tag of each variable field in the record being examined against this tag. The toolkit only attempts to apply the rest of the rule if these tags match; a rule may be said to be “triggered” by the appearance of its principal tag in the record being examined.

860=BDFMPSU 040/a=DLC T 008/39=_ …

Rule: If a bibliographic record contains an 040 field whose subfield $a contains the code ‘DLC’, byte 39 of the record’s 008 field most contain a blank

 This rule is triggered only if a bibliographic record contains an 040 field.

353=BDFMPSU 305 T 000/18!a …

Rule: If a bibliographic record contains a 305 field, then byte 18 of its Leader cannot contain code ‘a’.

This rule is triggered only if a bibliographic record contains a 305 field.

Although you may construct elaborate condition segments with the “AND” and “OR” operators, you should keep in mind that condition segments that refer to multiple fields, or multiple subfields within the same field, may not properly cause the rule to be triggered. In such cases, you must either construct separate rules, or recast the rule altogether.

Rule to be enforced:

If a bibliographic record contains a 400, 410 or 411 field, then Leader/18 may not be ‘a’.

Incorrect formulation of this rule:

492=BDFMPSU 400 OR 410 OR 411 T 000/18!a …

This rule will properly be triggered, and will work correctly, if a bibliographic record contains a 400 field; but it will not be triggered if the record contains only a 410 or a 411 field. To enforce a rule such as this, you must construct a series of rules:

492=BDFMPSU 400 T 000/18!a …

493=BDFMPSU 410 T 000/18!a …

494=BDFMPSU 411 T 000/18!a …

Rule to be enforced:

If a bibliographic record does not contain a 1XX field, then the first indicator in the 245 field must be ‘0’.

Incorrect formulation of this rule:
5=BDFMPSU 100! AND 110! AND 111! AND 130! T 245:1=0

This rule will be properly triggered, and will work correctly, when the record does not contain a 100 field, as the test for the absence of the 100 field activates the rule. This rule will not be activated if the record does not contain any other 1XX field. This rule could be reformulated as a series of rules:

5=BDFMPSU 100! AND 110! AND 111! AND 130! T 245:1=0

6=BDFMPSU 110! AND 100! AND 111! AND 130! T 245:1=0

7=BDFMPSU 111! AND 100! AND 110! AND 130! T 245:1=0

8=BDFMPSU 130! AND 100! AND 110! AND 111! T 245:1=0

However, the rule would be more efficient if completely recast:

5=BDFMPSU 245:1=1 T 100 OR 110 OR 111 OR 130 …

Similarly, tests that involve tag specifications containing “X” should not appear as the first element in any rule.

Rule to be enforced:

If the second indicator in a bibliographic 1XX field is not blank, then change the indicator to blank.

Incorrect formulation of this rule:
341=BDFMPSU 1XX:2!_ F 1XX:2=_

This rule will not examine the second indicator in any 1XX field. Use a series of tests to achieve the same work:
341=BDFMPSU 100:2!_ F 100:2=_

342=BDFMPSU 110:2!_ F 110:2=_

343=BDFMPSU 111:2!_ F 111:2=_

344=BDFMPSU 130:2!_ F 130:2=_

2.2.10. Rules with only one test

A few rules can be stated as a single test, which makes it appear difficult to express them as “if-then” statements, and consequently to have something useful in both the second and fourth segments of a rule.
 For such rules, give a statement of the test in the second segment, and give the negation of the very same test in the fourth segment. Records that satisfy the first version of the test will be trapped by the second version of the test. As shown in the following example, some rules of this type are best expressed by giving the negation of the test in the second segment, and the positive version in the fourth; but the principle remains the same.

72=P 300! T 300 …

A map record must contain a 300 field. (Literal translation: If a map record does not contain a 300 field, then that record must contain a 300 field.)

2.2.11. Exceptional conditions

Outline

2.2.11.1
General remarks

2.2.11.2
Severity levels and associated messages

2.2.11.3
Exception 1: Test multiple single-character positions

2.2.11.4
Exception 2: Compare fixed field and variable field texts, and perhaps change

2.2.11.5
Exception 4: Test the length of a variable field

2.2.11.6
Exception 5: Test the order of codes in a fixed-field element, and perhaps change

2.2.11.7
Exception 6: Test a series of single-character fixed-field positions

2.2.11.8
Exception 7: Compare 008 “illustration” codes to the 300 field

2.2.11.9
Exception 9: Test fixed-field codes for redundancy, and perhaps change

2.2.11.10
Exception 10: Test the format of certain subfields, and perhaps change

2.2.11.11
Exception 11: Test the date a record was created

2.2.11.12
Exception 12: Scan for the occurrence of any of a group of variable fields

2.2.11.13
Exception 13: Inspect a field or subfield for the presence of wrapper characters

2.2.11.14
Exception 14: Test the number of occurrences of a condition

2.2.11.15
Exception 15: Test the correspondence of the number of appearances of two tags

2.2.11.16
Exception 16: Create a missing 034 field from a 255 field

2.2.11.17
Exception 17: Compare language code to first language name in a uniform title

2.2.11.18
Exception 18: Change tag, one or both indicators, tag and one or both indicators, or subfield code

2.2.11.19
Exception 21: Inspect the wrapper characters in a field or subfield, and perhaps remove them

2.2.11.20
Exception 22: Supply wrapper characters if not present

2.2.11.21
Exception 23: Test for the presence of leading character(s), and perhaps remove them

2.2.11.22
Exception 24: Force the first character in a subfield to upper-case

2.2.11.23
Exception 25: Remove wrapper characters from all subfields except the first

2.2.11.24
Exception 27: Remove a field or subfield

2.2.11.25
Exception 32: Validate the initial part of bibliographic 4XX fields

2.2.11.26
Exception 33: Convert “--” to “ -- ”

2.2.11.27
Exception 37: Add a new field to the record, or add a subfield to an existing field

2.2.11.28
Exception 38: Compare values of two fixed-field positions

2.2.11.29
Exception 39: Compare the value of a fixed-field position to a constant

2.2.11.30
Exception 40: Substitute one subfield for another

2.2.11.31
Exception 41: Scan the record for some text

2.2.11.32
Exception 42: Compare the dates in 008 and 260/c

2.2.11.33
Exception 43: Replace one piece of text with another

2.2.11.34
Exception 44: See which of two subfield codes comes first in a bibliographic record
2.2.11.35
Exception 45: Test date format

2.2.11.36
Exception 46: Compare two formatted dates

2.2.11.37
Exception 47: Test subfield against list

2.2.11.38
Exception 48: Adjust subfield codes

2.2.11.39
Exception 49: Test for non-roman characters

2.2.11.40
Exception 50: Swap form/genere subdivisions

2.2.11.41
Exception 51: Capitalization

2.2.11.42
Exception 52: Test for citation redundancy

2.2.11.43
Exception 53: Test authority 675 fields for possible recoding as 670 fields

2.2.11.1 General remarks

Elaborate though it may be, the syntax for validation rules described here does not cover every possible situation. This syntax does not provide for every kind of inspection you might wish to make to a record, and it does not provide for every kind of modification you might wish to make to a record. However, the toolkit's validation component does provide a mechanism that allows programmers define tests and modifications beyond those that are part of the toolkit’s standard set of features, and to use those special tests and modifications as part of the toolkit’s normal handling of bibliographic and authority records. (This mechanism has already been used to define over 50 extensions to the initial scheme.)
To gain an understanding of how the exception mechanism works, it may be easiest to consider a typical situation in which the capabilities built into the validation component are inadequate. Assume that you wish the toolkit to perform the following work:

If the second indicator in a bibliographic 1XX field is ‘1’, compare the 1XX field against the record’s 6XX fields. If it does not appear that the 1XX is represented among the record’s 6XX fields, copy the 1XX into a 6XX field. In any case, set the 1XX field’s second indicator to “blank”.

The first and last parts of this activity are simple, and could be covered by a rule drawing on standard features of the toolkit:

341=BDFMPSU 100:2=1 F 100:2=_

If the second indicator in a bibliographic 100 field is ‘1’, change the indicator to blank.

However, this rule wouldn’t perform the difficult work of comparing the 100 to the 600 fields, and of copying the 1XX to 6XX when necessary; in fact, nothing in the toolkit allows for this kind of work. You need have an exception defined in the tool if you wish to do this work.

As the need for new routines becomes evident, exceptional tests get coded into the validation tool, and then they’re available to everyone who uses the tool. It remains for individual the toolkit users only to refer to the exceptional routines in their validation rules. (If you have programmers available at your institution, and they are building their own programs that include the validation component, they can add their own exceptional routines.)
Each of the exceptional test and change routines is assigned an exception number, which is just an arbitrary integer. You include this integer as part of your rule definition. All references in validation rules to exceptional routines are enclosed within angle brackets.

72=B 008/18-21=____ F <7>

If bytes 18 through 21 of a ‘books’ 008 field contain blanks, then perform special routine number 7.

In many cases, the reference to an exceptional routine must include additional information, such as the tag/subfield of interest. The needs of each special test for additional information are described below.
94 BDFMPSU 010/a F <10:010/a,010/z>

If a bibliographic record contains an 010 field that contains subfield $a, perform special routine number 10. Pass to that routine the following information: “010/a,010/z”.

In general, if the call to the exception routine in a validation rule identifies fixed or variable fields, then some portion of the validation rule that precedes the reference to an exception routine should refer to these same fields. In the preceding rule, the call to special routine 10 (within the angle brackets) in the fourth segment of the rule includes a mention of the 010 field; this field is also referred to in the second segment of the rule.

The following sections describe the exceptions that have already been added to the toolkit, and show the syntax to use when invoking them. Note that although these exceptions all occupy the same general range of numbers, not all numbers in the range are used. (Some tests have been defined for a while, only to be removed.)
2.2.11.2 Severity levels and associated messages

NEED A PARAGRAPH ON THE SUBJECT OF SEVERITY CODES AND MESSAGES FOR SPECIALS. As part of this, you’ll also mention the “%%” technique in exception 10 for inserting the offending number into the message.

2.2.11.3. Exception 1: Test multiple single-character positions for any one of a set of single-character values

This exception routine tests a series of fixed-field positions for any one of a number of possible values. If all of the defined fixed-field positions contains any of the indicated values, the routine returns Found; if any one of the defined positions does not contain one of the indicated values, the routine returns Not Found. This exception should not be included in the fourth segment of a force rule.

The exception definition consists of the exception number, a colon, a definition of the relevant fixed-field position, a comma, and a list of the values that must appear in each position of that fixed-field area.

Examples

50=BDFMPU 008/06={eqs} T <1:008/07-10,0123456789u> …

If a non-serial record contains code ‘e’, ‘q’ or ‘s’ in 008/06, then 008 positions 07 through 10 must each contain a numeral or the letter ‘u’.

The following rule is presented here on two lines because of its length; in the configuration file, this rule must appear as a single line.

45=BDFMPU 008/06={mr} T <1:008/07-10,0123456789u> OR

<1:008/11-14,0123456789u> …

If a non-serial record contains code ‘m’ or ‘r’ in 008/06, then either 008 positions 07 through 10 must each contain a numeral or the letter ‘u’; or 008 positions 11 through 14 must each contain a numeral or the letter ‘u’.

Unicode note: fixed fields (Leader, and the 006, 007 and 008 fields) can only contain single-byte characters, so there is no problem.

2.2.11.4. Exception 2: Compare fixed field and variable field texts, and perhaps change the fixed field value

This exception routine compares a code appearing in a variable field with a code appearing in the 008 field. If the exception is part of a test rule, the routine returns Not Found if the codes are not the same, Found if they are the same. If the exception is part of a force rule, the routine changes the code in the fixed field to match the code in the variable field. (The toolkit only makes a change if the fixed field does not already contain the code from the variable field.)

The exception definition consists of the exception number, a colon, an identification of the fixed-field code, a comma, and an identification of the variable field against which the 008 code should be compared.

Examples

63=BDFMPU 044/a AND 008/15-17!||| T <2:008/15-17,044/a> …

If a non-serial record contains an 044 field with subfield $a and also contains any code other than fill characters in 008 positions 15-17, perform test 2; in this test, compare 008/15-17 with the first three characters of subfield $a of the 044 field.

64=BDFMPU 041/a AND 008/35-37!||| T <2:008/35-37,041/a> …

If a non-serial record contains an 041 field with subfield $a and also contains any code other than fill characters in 008 positions 35-37, perform test 2; in this test, compare 008/35-37 with the first three characters of subfield $a of the 041 field.

65=BDFMPU 041/a AND 008 F <2:008/35-37,041/a> …

If a non-serial record contains an 041 with subfield $a and an 008 field, the toolkit will copy the first three characters in 041 subfield $a to positions 35-37 of the 008 field.

2.2.11.5. Exception 4: Test the length of a variable field
This exception routine tests the data portion of a variable field or subfield in some specified manner against some specified length. The routine returns Found if the comparison succeeds, Not Found if the comparison fails. This exception routine should not appear in the fourth segment of a force rule.

The exception definition consists of the exception number, a colon, the tag of the field to test (or a tag/subfield combination), a comma, a comparison operator, another comma, and a number representing the length of interest. When determining the length of a field, the routine does not consider the first subfield code, or the MARC end-of-field character. (The routine does consider any subfield codes internal to the field.)

Use the following codes for the comparison operators:

=
The length of the field should match the specified length

<
The length of the field should be less than the specified length

>
The length of the field should be greater than the specified length

<=
The length of the field should be less than or equal to the specified length

>=
The length of the field should be greater than or equal to the specified length

<>
The length of the field should be something other than the specified length

Example

66=BDFMPSU <4:041,<,4> F <27:041>

If a bibliographic 041 field has fewer than 4 data characters, perform special routine 27 (delete the field).

2.2.11.6. Exception 5: Test the order of codes in a fixed-field element; and perhaps change the element
This exception routine determines whether or not the codes in a multi-character fixed-field element (in an 006 or 008 field) are in alphabetical order. If the codes are not in alphabetical order, the routine either returns the value Not Found (for test rules) or rearranges the codes (for force rules).

The exception definition consists of the exception number, a colon, and an identification of the fixed-field codes to inspect. (In most cases, the codes to inspect will be the same as those that are defined in the condition segment of the rule.)

Examples

75=B 008/18-21!____ T <5:008/18-21> 1:3 Check illustration codes

If a book record contains an 008 field whose positions 18-21 are not all blanks, the toolkit will test the order of codes. Because this is a test rule, if the codes are not already in the proper order, the toolkit will prepare an error message.

70=B 008/18-21!____ F <5:008/18-21>

If a book record contains an 008 field whose positions 18-21 are not all blanks, the toolkit will arrange the codes into ascending alphabetic order

71=BDFMPSU 006/00=a AND 006/01-04!____ F <5:006/01-04>

If a book record contains an 006 field beginning 'a' and if bytes 01-04 of that field are not blanks, then sort the characters in bytes 01-04 of that field into ascending alphabetic order. This test applies the principle underlying the previous rule to the 006 field. The toolkit does not automatically map tests of elements in bibliographic 008 fields to the corresponding elements of 006 fields. If you want to test elements in 006 fields, you must define such tests explicitly.

74=B 008/24-27!____ F <5:008/24-27>

If a book record contains an 008 field whose positions 24-27 are not all blanks, the toolkit will arrange the codes into ascending alphabetic order

2.2.11.7. Exception 6: Test a series of single-character fixed-field positions for a given value
This exception routine tests a series of fixed-field positions for a given code or codes. If the indicated code or codes appears in any of the indicated positions, the routine returns Found; if none of the indicated codes appears in any of the indicated positions, the routine returns Not Found.

This test differs from Exception 1. In Exception 6, the presence of any of the specified code or codes in any position produces the result of Found; in Exception 1, all positions must contain one of the specified codes to produce the result of Found.

The exception definition consists of the exception number, a colon, the fixed-field element to test, and the desired code(s).

Examples

71=B <6:008/18-21,|> T 008/18-21=|||| …

If any position in 008/18-21 of a Book record contains a fill character, then all of those positions must contain a fill character.

375=B <6:008/24-27,bq>! T 504! …

If no position in 008/24-27 of a Book record contains a ‘b’ or ‘q’, then the record should not contain a 504 field.

Unicode note: fixed-field positions may only contain single-octet values, so no problem.

2.2.11.8. Exception 7: Compare 008 “illustration” codes to information in the 300 field, and perhaps change the 008 codes

This exception routine derives codes for illustrations, using words that appear in a bibliographic 300 field, and compares these codes to the illustration codes in the record’s fixed field. If this exception appears in either the second or fourth segment of a test rule or the second segment of a force rule and the two sets of codes are the same, the routine returns Found; if the two sets of codes are not the same, the routine returns Not Found. If this exception appears in the fourth segment of a force rule, the toolkit changes the illustration codes to match the codes derived from the 300 field.

Exception routine 7 should only be applied against bibliographic records for “books.” The exception should not be applied to records that already have cataloger-assigned codes in 008/18-21.

The exception definition consists solely of the exception number.

Example

72=B 008/18-21=____ OR 008/18-21=|||| F <7>

If a book record contains blanks or fill characters in 008/18-21, supply codes based on the 300 field.

73=B 008/18-21!____ AND 008/18-21!|||| T <7> …

If a book record does not contain blanks or fill characters in 008/18-21, compare the codes in 008/18-21 against information in the 300 field.

The following table shows the 008/18-21 codes that the toolkit supplies when the indicated words or abbreviations appear in the 300 field. These tests are all normalized and left-truncated (so the test for "ill" finds "ill", "illus", "illustrations" and other variants; "plan" finds both "plan" and "plans"; etc.).
	Code
	Corresponding words in 300 field

	a
	ill, diagr, photo, tab, graph, illumination

	b
	map

	c
	port

	d
	chart

	e
	plan

	f
	plate, plates, pl

	g
	music

	h
	facsim

	i
	coat of arms, coats of arms

	j
	geneal. table, geneal. tables

	k
	form, forms

	l
	sample, samples

	m
	cassette, cassettes, phonodisc, phonodiscs, phonotape, sound

The toolkit will select up to 4 codes, and will place them in alphabetic order, with blank fill on the right.

2.2.11.9. Exception 9: Test fixed-field codes for redundancy, and perhaps change the codes

This exception routine examines a multi-character fixed field element, removing codes that appear more than once. If the exception is included in either the second or fourth segment of a test rule or the second segment of a force rule, and if the original and modified codes are the same, the routine returns Found; if the original and modified codes are not the same, the routine returns Not Found. If this exception is included in the fourth segment of a force rule and the original and modified codes are not the same, the routine changes the fixed field codes.

The exception definition consists of the exception number, a colon, and an identification of the fixed-field element on which the exception should operate.

Examples

76=B 008/18-21!____ AND 008/18-21!|||| F <9:008/18-21>

If a book record does not contains blanks or fill in 008/18-21, remove any redundant codes in this fixed-field element.

89=M 008/24-29!______ AND 008/24-29!|||||| F <9:008/24-29>

If a music record does not contains blanks or fill in 008/24-29, remove any redundant codes in this fixed-field element.

2.2.11.10. Exception 10: Test the format of certain subfields, and perhaps change their format

This exception routine inspects the contents of subfields whose correct construction can be determined by reference to a rule.
 This exception can be defined as a test; under certain circumstances it can be defined as a force.
If this exception routine is included in either the second or fourth segment of a test rule, or the second segment of a force rule, the exception definition consists of the exception number, a colon, and an identification of the subfield on which the routine should operate. (Inspection of the 010 field may contain one additional piece of information; see below.) The routine will indicate Found if the contents of the subfield are satisfactory, and will indicate Not Found if the contents are not satisfactory.

Examples

94=BDFMPSU 010/a T <10:010/a> …

Inspect 010 subfield $a.

96=BDFMPSU 440/x T <10:440/x> …

Inspect 440 subfield $x.

This exception routine may be included in the fourth segment of a force rule under certain conditions.

· For a few subfields (identified below), if the contents of the subfield are not satisfactory but the toolkit can adjust the subfield to make the contents satisfactory, it will do so.

95=BDFMPSU 010/a F <10:010/a>

Inspect and adjust the layout of 010 subfield $a. If the subfield is not properly formatted and the routine can adjust the contents of the subfield to make it proper, it will do so.

· If the contents of the subfield are not satisfactory and the toolkit cannot make them satisfactory, and if the subfield code is $a (and then only for certain fields), the toolkit can move the contents of the subfield to another subfield in the same field. To tell the toolkit that it can move the contents of one subfield to another if the subfield is not acceptable, include in the exception definition an identification of the new subfield into which unsatisfactory subfield should be moved.

95=BDFMPSU 010/a F <10:010/a,010/z>

Inspect and adjust the layout of 010 subfield $a; if the subfield cannot be rendered satisfactory, move the contents of 010 $a to 010 $z.
· If the contents of the subfield are not satisfactory and cannot be rendered satisfactory or moved to another subfield, the routine will prepare an error message.

The following sections describe the fields and subfields handled by the cataloger's toolkit by routine 10.
010 subfields $a and $z

The exception routine can process subfields $a and $z of the 010 field. If the contents of 010 $a cannot be rendered satisfactory during performance of a force rule, the routine can move the contents of $a to $z.
Examples

96=BDFMPSU 010/a T <10:010/a>

Inspect 010 subfield $a. If the subfield is not satisfactory, prepare an error message.

97=BDFMPSU 010/a F <10:010/a>

Inspect and adjust 010 subfield $a. If the subfield is not satisfactory and cannot be made so, prepare an error message.

95=BDFMPSU 010/a F <10:010/a,010/z>

Inspect and adjust 010 subfield $a; if the subfield is not satisfactory and cannot be made so, move the contents of $a to $z.

In its migration to Vger from its previous system, the Library of Congress stripped suffixes of all kinds from its 010 fields. The Library of Congress now considers the appearance of suffixes in 010 fields to be an error. However, bibliographic records in non-LC databases (including your local Vger database) will probably continue to bear 010 fields with suffixes for some time to come.
 If the records to be validated may contain suffixes in bibliographic LCCNs, you need take no special action; the toolkit will not complain about text formatted as an LCCN suffix. If you wish to enforce LC’s rule for the format of bibliographic 010 fields (i.e., the rule stating that suffixes are not allowed), place the flag “;LC” at the end of the text within angle brackets in the reference to exception routine number 10.

94=BDFMPSU 010/a T <10:010/a;LC> …

Inspect 010 subfield $a following the LC model. The toolkit will create an error message if the 010 $a contains any suffixes.
95=BDFMPSU 010/a F <10:010/a,010/z;LC>

Inspect and modify 010 subfield $a following the LC model. The toolkit will remove any suffixes that may be present.
Regardless of your practice for bibliographic records, you should probably include this flag in rules that inspect authority 010 fields, as suffixes were never defined for use in authority 010 fields.

83=A 010/a T <10:010/a;LC>

The routine recognizes two different formats for 010 subfields $a and $z. The routine does not attempt to determine whether the “right” format has been used for a given number, only that the number is formatted properly.

If a number otherwise corresponds to one of the two recognized schemes but lacks the leading or trailing spaces and if the reference to special routine 10 is contained in a force rule, the routine will add the spaces. Likewise, if a number contains a hyphen between the second and third (or fourth and fifth) digits, the routine will remove the hyphen; if the numeric portion following the hyphen contains fewer than six digits, the routine will add leading zeroes.

For both 010 formats, the toolkit validates any prefix contained in the LCCN against the list of valid prefixes defined in the configuration file codes.cfg. If the prefix is not defined, the toolkit produces an error message.

Format 1: valid for numbers assigned before January 2, 2001

The LC control number consists of three alphabetic characters (or blanks), 8 digits, and a space. These 12 characters may be followed by additional information, which is not inspected or tested in any way.

Examples of valid 010 fields (“#” represents a space)

###95156543#

###94014580#/AC/r95

###79310919#//r86

gm#71005810#

Examples of 010 fields that can be converted into valid form (“#” represents a space)

95156543 becomes ###95156543#

94-14580/AC/r95 becomes ###94014580#/AC/r95

gm71005810 becomes gm#71005810#

Examples of 010 fields that cannot be converted into valid form

956543

agr71-1258123

Format 2: Valid for numbers assigned after January 1, 2001

The LC control number consists of two alphabetic characters (or blanks) and 10 digits. The use of suffixes and other trailing information in the 010 is discontinued; if suffixes appear, they will not be inspected or tested in any way.

Examples of valid 010 fields (“#” represents a space)

##2005256543

gm2005005810

Error messages

The routine for the validation of 010 subfields behaves differently from many other routines. This routine does not stop when it encounters the first problem with an 010 field, but continues its inspection of the field, and reports all problems it finds. Here are the messages that may be produced by this routine. In all of these messages, the string “###” represents the LCCN being tested, or a relevant portion of it.

010 (###) length incorrect; must be 12 characters (including spaces)

The routine only produces this message if the validation rule contains the “;LC” flag. LCCN subfields prepared according to LC’s current practice must always contain exactly 12 characters.
010 (###) contains suffix; all suffixes now invalid

The routine only produces this message if the validation rule contains the “;LC” flag. LCCN subfields prepared according to LC’s current practice may not contain suffixes.
010 (###) should not have any suffix

Suffixes are not used in format-2 010s.
010 prefix (###) begins with space(s)

The LCCN prefix begins with a space (and it does not consist solely of spaces).
010 prefix (###) not defined

The LCCN prefix is not defined in the file codes.cfg.

Bad prefix length in 010 (###); should be 3, including spaces

Bad prefix length in 010 (###); should be 2, including spaces

The length of the LCCN prefix is incorrect (the correct length depends on the format of the numeric portion).
Improper suffix in 010 (###); slash needed

The suffix contains more than a single blank, the validation rule does not contain the “;LC” flag, and the first character after the blank is not a slash.
Prefix required in 010 (###)

All 010s in authority records must have prefixes.
Serial portion of 010 (###) contains invalid character(s)

The numeric portion of the LCCN contains characters other than numerals.
Serial portion of 010 (###) contains invalid hyphen

The routine only produces this message if the validation rule contains the “;LC” flag. The numeric portion of the LCCN contains a hyphen.
Serial portion of 010 (###) has invalid length

The numeric portion of the LCCN contains either too many or too few characters.
Suffix in 010 (###) missing; should be space

All format-1 010s should contain a suffix consisting at least of a blank space.
Suffix in 010 (###) should be single space

If the validation rule contains the “;LC” flag, the suffix in a format-1 010 may be only a single blank space.
Suffix in 010 (###) should start with a space

The suffix in all format-1 010s (if the validation rule does not contain the “;LC” flag) should begin with a blank space.
016 subfields $a and $z

The routine can inspect subfields $a and $z of the 016 field; the routine should only be asked to do this if the first indicator of the 016 field is blank (indicating that the field contains the National Library of Canada control number). If the contents of $a cannot be rendered satisfactory during performance of a force rule, the toolkit can move the contents of $a to $z.

Examples

196=BDFMPSU 016:1=_ AND 016/a T <10:016/a>

Inspect 016 subfield $a.

197=BDFMPSU 016:1=_ AND 016/a F <10:016/a>

Inspect and adjust 016 subfield $a; if the subfield is not satisfactory and cannot be made so, prepare an error message.

195=BDFMPSU 016:1=_ AND 016/a F <10:016/a,016/z>

Inspect and adjust 016 subfield $a; if the subfield is not satisfactory and cannot be made so, move the contents of $a to $z.

The routine recognizes two different formats for 016 subfields $a and $z. The routine does not attempt to determine whether the “right” format has been used for a given number, only that the number is formatted properly.

Format 1: valid for numbers assigned until 2001

The NLC control number consists of a prefix character (which may be absent), 8 digits and a check digit.
 This information may be followed by a language code and/or revision information.

Examples of valid 016 fields (“#” represents a space)

#721234569##

#721234569E#

Format 2: valid for numbers assigned after 2000

The NLC control number consists of 10 digits and a check digit. (The first four digits represent the year, and must have a value higher than 2000.) This information may be followed by a language code and/or revision information.

Examples of valid 016 fields (“#” represents a space)

#20011234569##

#20011234569E#

020 subfields $a and $z

The routine can inspect subfields $a and $z of the 020 field. If the contents of $a cannot be rendered satisfactory during performance of a force rule, the toolkit can move the contents of $a to $z.

The routine attempts to distinguish between the “numeric” portion of the subfield and any information (such as “(pbk.)”) included with the number. The routine discards any “ISBN” string and associated punctuation at the start of the subfield, removes any spaces or hyphens that may appear in the number, and upper-cases the check digit if it is ‘x’. If the ISBN contains only 9 digits, the routine adds a zero to the left end of the number. Using the standard modulus 11 algorithm, the routine compares the distinctive part of the number against its check digit.

101=BDFMPSU 020/a T <10:020/a>

Inspect 020 subfield $a.

97=BDFMPSU 020/a F <10:020/a>

Inspect and adjust 020 subfield $a; if the subfield is not satisfactory and cannot be made so, prepare an error message.

100=BDFMPSU 020/a F <10:020/a,020/z>

Inspect and adjust 020 subfield $a; if the subfield is not satisfactory and cannot be rendered so, move the contents of $a to $z.

the toolkit can test an ISBN in subfield $z of certain bibliographic fields in the same manner.

105=BDFMPSU 785/z T <10:785/z>

Inspect 785 subfield $z.

022 subfields $a, $y and $z

The routine can inspect subfields $a, $y and $z of the 022 field. If the contents of $a cannot be rendered satisfactory during performance of a force rule, the routine can move the contents of $a to $y.

A valid ISSN consists of 9 characters. The first four characters must be numerals, the fifth must be a hyphen, the sixth through eight characters must be numerals, and the check digit must be a numeral or “X”. Using the standard modulus 11 algorithm, the routine compares the distinctive part of the number against its check digit.

104=BDFMPSU 022/a T <10:022/a>

Inspect 022 subfield $a.

104=BDFMPSU 022/a F <10:022/a>

Inspect and adjust 022 subfield $a; if the subfield is not satisfactory and cannot be rendered so, prepare an error message.

103=BDFMPSU 022/a F <10:022/a,022/y>

Inspect and adjust 022 subfield $a; if the subfield is not satisfactory and cannot be rendered so, move the contents of $a to $y.

The toolkit can test an ISSN appearing in subfield $x of certain bibliographic fields in the same manner.

318=BDFMPSU 490/x T <10:490/x>

Inspect 785 subfield $x.

105=BDFMPSU 785/x T <10:785/x>

Inspect 785 subfield $x.

024 field
The program inspects a subfield in the 024 field if the first indicator is 2 (international standard music number). The error messages that the toolkit presents are modeled on those it prepares for 020 subfield $a.

045 subfields $a, $b and $c
the toolkit cannot move one subfield of this field to another; a test of the 045 field has no place in the fourth segment of a force rule.

Subfield $a must contain 4 characters. The first and third characters must be lower-case letters, and the second and fourth must be a numeral or a hyphen. (Only zero or hyphen are used after “a”; “z” is not used at all.)

Subfield $b must begin ‘b’ or ‘c’ and contain a string of numerals in the form yyyymmddhh.
 Subfield $c must contain only numerals.

124=BDFMPSU 045/b T <10:045/b>

Inspect 045 subfield $b.

125=BDFMPSU 045/c T <10:045/c>

Inspect 045 subfield $c.

046 subfields $b, $c, $d and $e

Each of these subfields may contain any mixture of numerals, the letter ‘u’, and hyphens. Examination of the 046 field has no place in the fourth segment of a force rule.

125=BDFMPSU 046/d T <10:046/d>

Inspect 046 subfield $d.

126=BDFMPSU 046/e T <10:046/e>

Inspect 046 subfield $e.

263 subfield $a

There are two possible formats for the contents of the 263 field. The toolkit does not attempt to determine whether the “right” format has been used in a 263 field.

141=BDFMPSU 263/a T <10:263/a>

Inspect 263 subfield $a.

Format 1: in use at least into the year 2000

The field must either contain four digits, the first two of which must be in the range 00-99, and the last two in the range 01-12; or the field must contain two digits in the range 00-99, and two hyphens.

Format 2: in use no earlier than the year 2000

The field must either contain six digits, the first four of which must be equal to or greater than 1999, and the last two in the range 01-12; or the field must contain four digits equal to or greater than 1999, and two hyphens.

Unicode note: special routine 10 does not recognize multi-byte characters; the routine will report as invalid any standard number that contains multi-byte characters in the number part of the subfield. (The routine does not, for example, inspect characters in a 020/a subfield following the ISBN; this extra text may contain multi-byte characters.)

2.2.11.11. Exception 11: Test the date a record was created

This test exception compares the date (year) in which a record was created against some target year. The exception routine extracts the two-digit year of record creation from bytes 00-01 of the 008 field, and converts it into four digits by adding the appropriate century. The routine then compares this date with the date supplied in the exception definition, using the comparison type also supplied in the exception definition. If the dates satisfy the comparison conditions, the routine returns Found; if dates do not satisfy the conditions, the comparison returns Not Found. This exception does not belong in the fourth segment of a force rule.

The exception definition consists of the exception number, a colon, a 4-digit year, a comma, and the comparison type. Use the following symbols for the comparison type:

=
The date of record creation must match the supplied value

>
The date of record creation must be greater than the supplied value

>=
The date of record creation must be greater than or equal to the supplied value

<
The date of record creation must be less than the supplied value

<=
The date of record creation must be less than or equal to the supplied value

<>
The date of record creation must not be the same as the supplied value

Example

375=B 041:1=1 AND <11:1989,>> T 041/h …

If the first indicator in the 041 field in a books record is ‘1’ and the record was created after 1989, then the 041 field must contain subfield $h.

The exception definition may contain an optional comma plus “005” at the end. If this flag is present, the toolkit uses the date in the 005 field instead of the date in the 008 field for the comparison.
376=B 041:1=1 AND <11:1989,>,005> T 041/h …

If the first indicator in the 041 field in a books record is ‘1’ and the record was modified after 1989, then the 041 field must contain subfield $h.

2.2.11.12. Exception 12: Scan for the occurrence of any of a group of variable fields
This test exception scans the entire record to see if it contains any one of several variable fields. The routine returns Found if the record contains any of the indicated fields, and returns Not Found if the record contains none of the fields. This routine does not return the value No Answer. This exception does not belong in the fourth segment of a force rule.

The exception definition consists of the exception number, a colon, and a specification of the fields to be tested. The fields to be tested may be given in any of these forms:

· A list of individual tags, separated by commas. The routine returns Found if the record contains any of these fields.

Examples

7=A 008/09=a T <12:260,664,666>! …

An authority record with type of record code ‘a’ may not contain a 260, 664 or 666 field.

· A “tag mask” with the upper-case letter “X” indicating the acceptance of any numeral in that position. Recognized formats are “NXX”, “NNX” and “XNN”, where “X” is the letter “X” and “N” is any numeral in the range 0-9. The use of the form “XNN” entails a substantial increase in the amount of time needed to perform the test.

Examples

5=A 008 T <12:1XX>
 …

An authority record must contain a 1XX field.

5=A 008/09=a T <12:18X>! …

An authority record with type of record code ‘a’ may not contain a 18X field.

· A range of fields. The routine returns Found if the record contains a field with a tag falling within the specified range. Unless the supplied range of tags is narrow, this test will take a lot of time to perform; this form of test should not be used unless the test cannot be expressed in any other manner.

Example

5=A <6:008/29,ab> T <12:400-599>
 …

If authority 008/29 contains ‘a’ or ‘b’, the record must contain a 4XX or 5XX field.

2.2.11.13. Exception 13: Inspect a field or subfield for the presence of wrapper characters
This test exception inspects a field or subfield to see if it begins and ends with a given set of “wrapper” characters, i.e., if it is enclosed by a given pair of characters. This routine returns Found if the indicated field or subfield is surrounded by the supplied characters; the routine returns Not Found if the indicated field or subfield exists but does not contain the wrapper characters; it returns No Answer if the indicated field or subfield does not exist. This exception does not belong in the fourth segment of a force rule.

The exception definition consists of the exception number, a colon, an identification of the field or subfield of interest, a comma, and the characters that may appear at the beginning or ending of the field or subfield.

Example

47=BDFMPSU 245/h T <13:245/h,[]>
 …

Subfield $h in the 245 field of a bibliographic record must be enclosed within square brackets.

This routine can also be used to scan an entire record for the occurrence of any field or subfield that contains the wrapper characters. To instruct the routine to behave in this manner, place a comma and the upper-case letter “A” after the definition. In this case, the routine returns only Found or Not Found. This form of the exception should never be the first test in any rule.

Example

47=A 008/29=b T <13:670,[],A> …

An authority record for a non-unique personal name must contain at least one 670 field enclosed within square brackets.

Unicode note: the wrapper characters must all be single-octet characters.

2.2.11.14. Exception 14: Test the number of occurrences of a condition

This test exception counts the number of occurrences of a given condition in the variable fields of a record and compares this number to a supplied constant. The routine returns Not Found (which can trigger the preparation of an error message) if the number of occurrences of the condition does not agree with the specified number.

The available tests are:

· How often does a given field appear in the record?

· How often does a given field/indicator combination appear in the record?

· How often does a given subfield or set of subfields appear in a field?

Some of these tests (field and subfield repeatability) are already available in some form as standard MARC validation tests. This exceptional test may be used to enforce different patterns of field or subfield repeatability in different formats, or to ensure that a field with a given indicator appears only once in a record. A test for a field or indicator causes the routine to scan the entire record. A test for a subfield causes the record to inspect a single variable field.

The exception definition consists of the exception number, a colon, an identification of the tag, indicator or subfield of interest, a comma, a comparison operator, another comma, and the number to use in the comparison. Use the following for comparison operators:

=
The number of occurrences of the condition must match the supplied value

>
The number of occurrences of the condition must be greater than the supplied value

>=
The number of occurrences of the condition must be greater than or equal to the supplied value

<
The number of occurrences of the condition must be less than the supplied value

<=
The number of occurrences of the condition must be less than or equal to the supplied value

<>
The number of occurrences of the condition must not be the same as the supplied value

Examples

354=BDFMPSU 100 T <14:1XX,<=,1>
 …

A bibliographic record may contain at most one 1XX field.

355=BDFMPSU 041/a T <14:041/a,<=,3> …

The 041 field in a bibliographic record may contain no more than three repeats of subfield $a.

356=A 151/a AND <14:151/vxyz,=,0> T …

If the 151 field in an authority record contains only subfield $a …

357=BDFMPSU 362:1=0 T <14:362:1=0,<=,1> …

A bibliographic record may contain no more than one 362 field whose first indicator is ‘0’.

358=BDFMPSU 045:1=1 OR 045:1=2 T <14:045/b,>,1> OR <14:045/c,>,1> …

If the first indicator in a bibliographic 045 field is ‘1’ or ‘2’, the field must contain more than one subfield $b or more than one subfield $c.

2.2.11.15. Exception 15: Test the correspondence of the number of appearances of two tags

This test exception counts the number of occurrences of two different fields in a record, and reports a problem if the numbers do not match. Note that since such a test is called for if either of the tags is present, in most cases the condition should be represented by two rule definitions. This exception does not belong in the fourth segment of a force rule.

The exception definition consists of the exception number, a colon, and the two tags of interest separated by a comma.

Examples

113=P 034 T <15:034,255> …

If a map record contains an 034 field, then there must be an equal number of 034 and 255 fields.

114=P 255 T <15:034,255> …

If a map record contains a 255 field, then there must be an equal number of 034 and 255 fields.

2.2.11.17. Exception 17: Compare a language code to first language name appearing in a uniform title field

This test exception compares the first language code in an 041 field (or, lacking an 041 field, the 008 field) with the first language named in subfield $l of a given uniform title field.
 This exception should not appear in the fourth segment of a force rule.

The exception definition consists of the exception number and the tag of the uniform title field of interest. The toolkit will scan the record for an 041 field, and use the first language code in that field; finding none, it will scan the record for the 008 field and use its language code.

Example

435=BDFMPSU 130/l T <17:130> …

The first language named in 130 subfield $l should match a language code elsewhere in the record.
2.2.11.18. Exception 18: Change tag, one or both indicators, tag and one or both indicators, or subfield code

This exception causes the toolkit to change the tag, the indicators, or the tag and indicators of a variable field, or the subfield code of a subfield within a variable field. This exception should only be used in the fourth segment of a force rule, and only in force rules that do not include error-reporting information.

The exception definition consists of the exception number, a colon, a definition of the tag or tag/subfield to be changed, a comma, and a definition of the desired tag, tag/indicators or subfield code.

Examples

438=BDFMPSU 504 F <18:504,500>

If the record contains a 504 field, change the tag to 500.

437=BDFMPSU 069 F <18:069,060:_4>

If the record contains an 069 field, change the tag to 060 and change the indicators to blank-4. In this case, both indicators are being changed.

440=BDFMPSU 100:1=2 F <18:100,100:1=1>

If the first indicator in a 100 field is ‘2’, change the first indicator to ‘1’.

439=BDFMPSU 100/q F <18:100/q,100/e>

If the 100 field in a record contains subfield $q, change the subfield code to $e.

2.2.11.19. Exception 21: Inspect the wrapper characters on a field or subfield, and perhaps remove them

If this exception is included in a test rule, or in the second segment in a force rule, the routine inspects a field or subfield for given characters that may appear at the beginning and the end. If the indicated characters surround the text of the field or subfield, the routine returns Found; if the indicated characters do not surround the field or subfield, the routine returns Not Found.

If this exception is included in the fourth segment of a force rule, the toolkit removes the wrapper characters from the beginning and end of a field or subfield.

The exception definition consists of the exception number, a colon, a definition of the field or subfield of interest, a comma, and the opening and closing characters to be removed from the field or subfield.

Examples

143=BDFMPSU 050/a T <21:050/a,[]> …
Check subfield $a of the 050 field for the presence of square brackets

132=BDFMPSU 050/a F <21:050/a,[]>

Remove square brackets if they surround the text of 050 subfield $a

192=BDFMPSU 400 F <21:400,()>

Remove parentheses if they surround a 400 field.

Unicode note: the specified characters must be single-octet characters.

2.2.11.20. Exception 22: Supply wrapper characters if not present

If this exception is included in a test rule, or in the second segment in a force rule, the routine performs work similar to that described for Exception 21. The routine returns Found if the characters are present, Not Found if the characters are not present.

If this exception is included in the fourth segment of a force rule, the routine adds wrapper characters if they are not already present at the beginning and end of a given piece of text. The outcome of this force exception is the reverse of Exception 21.

The exception definition consists of the exception number, a colon, a definition of the field or subfield of interest, a comma, and the opening and closing characters to be added to the field or subfield.

Example

135=BDFMPSU 050/u T <22:050/u,()>

Test subfield $u of the 050 field for parentheses

133=DFM 050/u F <22:050/u,<>>

Add angle brackets to 050 subfield $u if not already present

If this routine is used on subfield $h of the 245 field, the toolkit will allow for any trailing punctuation and spaces when inserting the wrapper characters.

Given this validation rule, to add brackets around 245 subfield $h if not already present:

482=BDFMKPSU 245/h F <22:245/h,[]>

the toolkit will change this 245 field:

$a Hamlet $h videorecording / $c presented by …

into this 245 field, with the trailing space-slash in subfield $h outside the square brackets:

$a Hamlet $h [videorecording] / $c presented by …

Unicode note: the specified characters must be single-octet characters.

2.2.11.21. Exception 23: Test for the presence of leading character(s), and perhaps remove them

If this exception is included in a test rule, or in the second segment in a force rule, the routine inspects a field or subfield for specified leading characters. The routine returns Found if the characters are present, Not Found if the characters are not present.

If this exception is included in the fourth segment of a force rule, the routine inspects a field or subfield for specified leading characters, and removes them if they are prsent.

The exception definition consists of the exception number, a colon, an identification of the field or subfield of interest, a comma, and the characters to be removed. If the routine should test for any of a number of single leading characters, give the set of characters within braces; if the routine should test for a multi-character literal string, give the string without surrounding punctuation.

Examples

134=BDFMPSU 051/c T <23:051/c,{_-}> …

Test subfield 051 subfield $c for leading blanks and hyphens

135=BDFMPSU 051/c F <23:051/c,{_-}>

Remove all spaces and hyphens that occur at the beginning of subfield $c of any 051 field

33=P 086/a F <23:086/a,Supt._of_Docs._no.:>

Remove the prefix “Supt. of Docs. no.:” from subfield $a of 086 fields in Map records

Unicode note: the characters to be removed must all be single-octet characters.

2.2.11.22. Exception 24: Force the first character in a subfield to uppercase

If this exception is included as part of a test rule, or as part of the second segment in a force rule, the routine inspects the first interesting character in a specified field or subfield.
 For Test rules, the routine returns Found if the first interesting character is an upper-case character, Not Found if the first interesting character is a lower-case character, No Answer if the first interesting character is a numeral or contains no interesting characters at all.

If this exception is included in the fourth segment of a force rule, and if the first interesting character in the subfield is a lower-case character (including a lower-case special character such as ø), the routine changes the character to upper-case. If the first interesting character in the text is not an alphabetic character, the toolkit does not change the text.

The exception definition consists of the exception number, a colon, and an identification of the field or subfield of interest.

Example

136=BDFMPSU 051/c F <24:051/c>

Upper-case the first character of subfield $c of any 051 field

Unicode note: the routine will correctly convert lowercase multi-octet lowercase characters to their uppercase equivalents.

2.2.11.23. Exception 25: Remove wrapper characters from all subfields except the first
If this exception is included in a test rule, or in the second segment of a force rule, the routine inspects the beginning and ending chracters of all subfields in a field except the first. The routine returns Found if the characters are present in any subfield, Not Found if the characters are not present in any subfield.

If this exception is included in the fourth segment of a force rule, the routine inspects all subfields in a given field except the first for the specified wrapper characters, and removes them if they are present. This force exception is the same as Exception 21, except that this exception does not inspect or modify the first subfield in a field.

The exception definition consists of the exception number, an identification of the field of interest, a comma, and the characters to be removed from any subfield except the first.

Example

145=BDFMPSU 082 F <25:082,[]>

Remove square brackets if they appear as “wrapper” characters around any subfield except the first subfield in any 082 field

Unicode note: the wrapper characters must be single-octet characters.

2.2.11.24. Exception 27: Remove a field or subfield

This force routine removes a variable field or subfield. If the subfield removed from a field is the only subfield in the field, the toolkit will remove the field. This routine should not be used in the fourth segment of a force validation rule that contains error-reporting information.

To remove an entire field, the exception definition consists of the exception number, a colon, and an identification of the field to be removed. To remove a subfield from a field, the exception definition consists of the exception number, a colon, and an identification of the subfield to be removed. To remove only a particular subfield from a field, follow the definition of the subfield with an equals sign and the text of the subfield of interest. (Include the subfield within braces if the program should use a normalized match.)

Examples

152=BDFMPSU 350 F <27:350>

Remove every occurrence of the 350 field

252=BDFMPSU 082/7 F <27:082/7>

Remove every occurrence of subfield $7 from 082 fields.

352=BDFMPSU 600:2=0 AND 600/x={BIOGRAPHY} AND 600/a!{JESUS_CHRIST} AND 600/a!{SHAKESPEARE_WILLIAM} F <27:600/x={BIOGRAPHY}>

Remove every occurrence of the topical subdivision ‘Biography’ except when it appears in headings for Jesus Christ and William Shakespeare.

Unicode note: the text to match against subfield texts (whether normalized or in raw form) may not include multi-octet characters.

2.2.11.25. Exception 32: Validate the initial part of bibliographic 4XX fields
This exception checks the initial element in 400, 410 and 411 fields against the second indicator in the same field, and against the presence of a 1XX field in the record. If this exception is included in a test rule, or in the second segment of a force rule, the toolkit will report an error if the data elements do not correspond correctly. If this exception is included in the fourth segment of a force rule, the toolkit will inspect the data elements; if the data elements correspond correctly, the toolkit will replace any “His” “Her” “Its” or “Their” element in the series statement with the contents of the 1XX field, and will change the second indicator in the 4XX field to correspond.

The exception definition consists of the exception number, a colon, and an identification of the 4XX field to be inspected.

Examples

253=BDFMPU 400 T <32:400> …

Check for correspondence between the first element in the 400 field, the second indicator, and the presence of a 1XX field.

193=BDFMPU 400 F <32:400>

Check for correspondence between the first element in the 400 field, the second indicator, and the presence of a 1XX field. If all elements correspond, replace any initial “His” “Her” “Its” or “Their” element in the series statement with the 1XX field, and change the second indicator to correspond.

The correspondence of data elements is defined for this test in the following manner: If subfield $a of the tested field contains “His”, ”Her”, “Its” or “Their”, the second indicator must be “1” and the record must contain a 1XX field of the proper type (personal, corporate, conference); conversely, if the second indicator is “1” then subfield $a must begin with one of these texts and the record must contain a 1XX field of the proper type.

If the toolkit finds that the information in a record does not properly correspond, and if this exception is included in a force rule, it prepares one of the following messages.

Indicator 2 of 4XX should be ‘1’

Second indicator of 4XX improperly ‘1’

Need 1XX for 4XX; no 1XX present

Tag of 4XX does not match tag of 1XX

2.2.11.26. Exception 33: Convert “--”to “ -- ”

If this exception is included in a test rule, or in the second segment in a force rule, the routine scans the indicated field for double hyphens without spaces on either side. The routine returns Found if the field contains any double hyphens without surrounding spaces, Not Found if the field does not contain double hyphens, or if the double hyphens are already surrounded by spaces.

If this exception is included in the fourth segment of a force rule, the routine scans the indicated field for double hyphens without spaces on either side, and replaces them with hyphens surrounded by spaces.

The exception definition consists of the exception number, a colon, and an identification of the field to be examined and modified.

Examples

205=P 505 F <33:505>

In Map 505 fields, replace “--” with “ -- ”

2.2.11.27. Exception 37: Add a new field to the record, or add a subfield to an existing field
Use this force exception to add a new field to a record, or to append a subfield to an existing field. This routine should not be used in a force validation rule that contains error-reporting information.

To append a new field to a record, the exception definition consists of the exception number, a colon, and the tag, indicators and subfield code of the new field; these three elements are separated by commas. Be careful to use underscores in place of all blank spaces.

117=BDFMPU 040! F <37:040,__,|a%%NUC|c%%NUC>

If a non-serial record does not contain an 040 field, add the indicated 040 field to the record.

Note that the tag, indicators and subfields are given as three separate comma-delimited elements. If three elements separated by two commas follow the colon, the toolkit adds a new field to the record. The toolkit will replace the “%%NUC” symbols with the bibliographic institution code defined on the toolkit's options panel.

To append a new subfield to a record, the exception definition consists of the exception number, a colon, the tag, and the new subfield; these two elements are separated by a comma. Be careful to use underscores in place of blank spaces.

99=P 017/b! F <37:017,|bU.S._Copyright_Office>

If a map record contains an 017 field that does not already contain subfield $b, add subfield $b with the text “U.S. Copyright Office” to the 017 field.

Note that the tag and subfield are given as two separate comma-delimited elements. If two elements separated by one comma follow the colon, the toolkit adds a new subfield to the indicated field.

32=BP 082/2! AND 000/17={_458} AND 000/18=a F <37:082,|221>

If a book or map record contains an 082 field but that 082 field does not contain subfield $2 and if Leader/17 contains blank, 4, 5 or 8 and if Leader/18 contains a, then add subfield 2 to the 082 field with the text “21”.

The toolkit distinguishes between the two forms of this exception (add field, or add subfield) by inspecting the characters after the colon. If two commas follow the colon, the toolkit adds the information as a new field; if one comma follows the colon, the toolkit adds the information as a new subfield.

The toolkit adds a new field to the end of the record, and adds a new subfield to the end of the field. The toolkit processes force rules before it considers rules for the order of fields, and for the order of subfields within fields. During the normal course of its work, the toolkit will move a new field to its proper place in the record (if Test​Field​Order is True), and will move the new subfield to its proper place within the field (if Test​Subfield​Order is True). The final placement of the new field or subfield within the record depends on the value of these two properties, and of the rules on which they draw.

If you use the toolkit to add a 500 field to a bibliographic record, and if you have defined the arrangement of bibliographic 5XX fields to be generic, and if the TestFieldOrder property is True, the new 500 field will appear as the last 5XX field in the record.

Unicode note: the text to be added may contain multi-byte characters if a way is found to add those characters to the text file that contains rule definitions.

2.2.11.28. Exception 38: Compare the values of two fixed-field positions
Use this test exception to compare the values of two elements in the fixed fields. This exception was designed to compare the relative values of Date 1 and Date 2 in the bibliographic 008 field, but it may find use in other situations.

The exception definition consists of the exception number, a colon, an identification of the first fixed-field position of interest, a comma, an identification of the second fixed-field position of interest, another comma, and a comparison operator. Use the following for comparison operators:

=
The number of occurrences of the condition must match the supplied value

>
The number of occurrences of the condition must be greater than the supplied value

>=
The number of occurrences of the condition must be greater than or equal to the supplied value

<
The number of occurrences of the condition must be less than the supplied value

<=
The number of occurrences of the condition must be less than or equal to the supplied value

<>
The number of occurrences of the condition must not be the same as the supplied value

914=BDFMPSU 008/06=r T <38:008/07-10,008/11-14,>=> …

If the date-type code in a bibliographic record is ‘r’, the value of Date 1 (the date of reproduction) should be greater than or equal to the value of Date 2 (the original date of publication).

2.2.11.29. Exception 39: Compare the value of a fixed-field position to a constant
Use this test exception to compare the values of an element in the fixed fields to some constant value. This exception was designed to compare the value of Date 1 in the bibliographic 008 field to some value, but it may find use in other situations.

The exception definition consists of the exception number, a colon, an identification of the first fixed-field position of interest, a comma, a comparison operator, another comma, and the constant value. Use the following for comparison operators:

=
The number of occurrences of the condition must match the supplied value

>
The number of occurrences of the condition must be greater than the supplied value

>=
The number of occurrences of the condition must be greater than or equal to the supplied value

<
The number of occurrences of the condition must be less than the supplied value

<=
The number of occurrences of the condition must be less than or equal to the supplied value

<>
The number of occurrences of the condition must not be the same as the supplied value

914=BDFMPSU <39:008/07-10,>,1995> T <7> …

If the date in Date 1 is higher than 1995, then compare the illustration fixed-field codes against information in the 300 field.

2.2.11.30. Exception 40: Substitute one subfield for another
Use this force routine to remove a subfield from a variable field and replace it with another subfield. If the indicated subfield is preset in the field, the routine removes it and adds the new subfield in its place; if the indicated is not present in the field, the routine adds the new subfield to the end of the field.

The exception definition consists of the exception number, a colon, an identification of the subfield to remove, a comma, and a definition of the subfield to insert.

14=BDFMPSU 906/a=e T <40:906,|a,|a7> …

If subfield $a of a 906 field contains the text ‘e’, replace it with subfield $a containing ‘7’…

Unicode note: the text to be added may contain multi-byte characters if a way is found to add those characters to the text file that contains rule definitions.

2.2.11.31. Exception 41: Scan the entire record for some text
Use this test exception to scan the variable fields in a record for a gven piece of text.

The exception definition consists of the exception number, a colon, a specification for the tags of the fields to be searched (expressed either as a range, or as a group with “XX” for the final 2 characters), and the text for which you wish the program to search. If the program should search for normalized text, place this text within braces.

917=BDFMPSU 245 T <41:100-799,{HANDBOOK}> …

If a record contains text in fields 100-799 that normalizes to “HANDBOOK”...

918=BDFMPSU 245 T <41:4XX,Oekonomie> …

If a record contains a 4XX field that contains the text “Oekonomie” …

Unicode note: the text to found (in either its native or normalized form) may contain multi-octet characters if the program used to create the file of rules allows input of multi-octet characters.

2.2.11.32. Exception 42: Compare the dates in 008 and 260/c
Use this test exception to compare the values of Date 1 in the 008 field (bytes 07-10) to the date in subfield $c of the 260 field.

The exception definition consists solely of the exception number

916=BDFMPSU 260/c T <42> …

If the record contains subfield $c in a 260 field, compare the date in that subfield to Date 1 in the 008 field.

2.2.11.33. Exception 43: Replace one piece of text with another
Use this force exception to search a field for occurrences of a subfield. For each occurrence of the subfield, the program searches repeatedly for a given piece of text. The program replaces each occurrence of that piece of text with a second piece of text.

The exception definition consists of the tag, a slash, the subfield code, a comma, the text for which to search, another comma, and the replacement text. (The replacement text may be an empty string; in this case, the program will remove each occurrence of the search text from the subfield.)

917=BDFMPSU 856/u T <43:856/u,www.netLibrary.com,www.XXX.com> …

If the record contains subfield $u in an 856 field, replace each occurrence of ‘www.netLibrary.com’ in each subfield $u with the text ‘www.XXX.com”.

Unicode note: the pieces of text may contain multi-byte characters if a way is found to add those characters to the text file that contains rule definitions.

2.2.11.34. Exception 44: See which of two subfield codes comes first in a variable field
Use this test exception to determine which of two subfields comes first in a variable field.

The exception definition consists of the tag, a comma, one subfield code, a comma, and the other subfield code.

917=BDFMPSU 041/d AND 041/h T <44:041,d,h> …

If the record contains an 041 field that contains subfields $d and $h, determine which subfield comes first.

The routine returns ‘found’ if the field contains the two subfield codes in the order given; it returns ‘not found’ if the field contains the two subfield codes in reverse order; it returns ‘no answer’ if the field is not present, or if both subfields are not present.

2.2.11.35. Exception 45: Test date format
A subfield may contain a formatted date—i.e., a date intended to follow a rigid pattern. Test 45 tells the toolkit to examine such a subfield and determine whether or not it follows the desired pattern.
The exception definition consists of the tag and subfield code separated by a slash, a comma, and the expected date pattern.

918=BDFMPSU 948/c T <45:948/c,yyyymmdd> …

If the record contains a 948 field with subfield $c, test 948/c against the pattery ‘yyyymmdd.’
The toolkit recognizes the following date patterns, which may be given in any mixture of uppercase and lowercase characters:

yyyymmdd

yyyymm

yyyy

yymmdd

yymm

yy

The toolkit performs the following tests:

· The subfield must be the same length as the pattern

· The subfield must contain only numerals

· If the year is given as two digits it may contain anything; if the year is given as four digits it must be in the range 1500-2100. (A two-digit year less than 60 is given the prefix “20” when the toolkit inspects any day segment in the date; other two-digit years are given the prefix “19”.)

· The month must be in the range 01 through 12.

· The day must be in a range that corresponds to the month. (For exmple, the day segment must be in the range 01 through 31 if the month segment is 01, but must be in the range 01 through 30 if the month segment is 09. Proper allowance is made for February, including leap years and exceptions to leap years.)

The routine returns ‘found’ if it is able to find the indicated tag and subfield code in the record being examined, and if that subfield conforms to the indicated pattern.
2.2.11.36. Exception 46: Compare two formatted dates
Use this test exception to compare two formatted dates occurring in the same bibliographic record. (A formatted date is a date presented in a prescribed pattern, such as ‘yyyymmdd’.)
The exception definition consists of the tag and subfield code of the first date, a comma, the tag and subfield code of second date, a comma, the starting position of the comparison, a comma, the length of the comparison, a comma, the comparison operator, and (optionally) a comma and an indication of the amount of variation allowed.

918=BDFMPSU 948/c AND 949/c T <46:948/c,949/c,1,4,>=> …

If the record contains a 948 field with subfield $c and a 949 field with subfield $c, compare the first four characters of both subfields. The second subfield must be greater than or equal to the first subfield.

It only makes sense to compare two dates if they share the same format.

The toolkit recognizes the following comparison operators:

=
The compared texts must match
<>
The compared texts must not match
<
The first text must be lower than the second
>
The first text must be greater than the second
<=
The first text must be lower than or equal to the second
>=
The first text must be greater than or equal to the second
If the comparison operator is not “=” or “<>” the exception definition may include an optional final numeral, giving the maximum amount of variation allowed.

918=BDFMPSU 948/c AND 949/c T <46:948/c,949/c,1,4,>=,5> …

If the record contains a 948 field with subfield $c and a 949 field with subfield $c, compare the first four characters of both subfields. The second subfield must equal to or no more than 5 greater than the first subfield.

2.2.11.37. Exception 47: Test subfield against list
Use this test exception to test the contents of a subfield against an authorized closed list. Use this exception to test the content of subfields that are not considered to be under authority control (these will often be locally-defined fields).

The exception definition consists of the tag and subfield code of the target subfield, a comma, and the name of the configuration file that contains the list of authorized content. (If the file name does not contain a drive and path specification, the toolkit will look for it in the folder identified by the ConfigurationFilePath property.)

918=BDFMPSU 659/a T <47:659/a,localterms.txt> …

If the record contains a 659 field with subfield $a, the toolkit will compare the contents of that subfield against the list of terms found in the file ‘localterms.txt’, which may be found in the default folder for configuration files.

The exception definition may contain an optional final flag consisting of a comma plus any additional text. (The toolkit does not actually inspect the text that follows the comma.) This flag instructs the toolkit to perform a normalized comparison, rather than an exact comparison.

918=BDFMPSU 659/a T <47:659/a,localterms.txt,Y> …

If the record contains a 659 field with subfield $a, the toolkit will compare the contents of that subfield against the list of terms found in the file ‘localterms.txt’, which may be found in the default folder for configuration files. The toolkit will compare the normalized form of the subfield against the normalized form of the terms found in the configuration file.

The configuration file containing the authorized terms contains one term per line, with no stanza header or other extraneous information. If the toolkit is to perform an exact comparison, the terms should be given exactly as they are expected to appear in the subfield (including any terminal punctuation). If the toolkit is to perform a normalized comparison, the terms may be given in any suitable manner. (the toolkit will perform its own normalization of the terms found in the file.) the toolkit maintains internally the list of terms both as given in the file and in normalized form; so the same file of terms can be used in different contexts in both exact and normalized comparisons. The list of terms can be in any order that enhances maintenance; the order of terms in the configuration file has no effect on the speed with which the toolkit does its work.
Here is an example of a configuration file of authorized terms. (Obviously, this is a very short and unusual list of authorized terms!)

Agriculture

Costume jewelry

Crushed ice

Xylophones

2.2.11.38. Exception 48: Adjust subfield codes
Use this force exception to replace one subfield code with another. You can replace all occurrences of one subfield code with another, or you can replace only a specified number of occurrences of one subfield code with another. The routine returns found if changes at least one subfield code; otherwise, it returns no answer.
The exception definition consists of the tag, a comma, the subfield code to be sought, a comma, the maximum number of occurrences of the subfield to change, and the replacement subfield code. (If the number of repeats is 9 or higher, the toolkit assumes a very large number.)
205=F 041/b F <48:041,b,9,j>
In a 'film' record that contains at least one occurrence of 041 subfield $b, replace the first 9 occurrences of the subfield $b code with the subfield $j code. (Bbecause the specified number of occurrences is at least 9, this, the toolkit will actually change all occurrences of $b into $j.)

2.2.11.39. Exception 49: Test for non-roman characters
Use this test rule to examine a variable field for non-roman characters. The routine returns found if the specified field contains at least one non-roman character; otherwise, it returns not found. The routine stops when it finds the first non-roman character in the first field in any field of interest.
The exception definition consists of a comma-delimited string of tags to test.
59 A <49:400,410,411,430,450,451> F 008/29=b

In an authority record, if any 4XX field contains a non-roman character, the reference evaluation code must be 'b'.

2.2.11.40. Exception 50: Swap form/genere subdivisions
This force rule finds a specified LCSH form/genre subdivision. Depending on instructions in the rule, the toolkit can do either or both the following things:
· replace the text of the subfield with a different text (or replace it with nothing—i.e., remove it)
· create a form/genre 655 field
The exception definition consists of a subfield code to inspect,
 a semicolon, an existing LCSH form/genre subdivision, a semicolon, a replacement subdivision (which may be empty if the toolkit should delete the original subfield), a semicolon, and the text of a replacement 655 field (only needed if the toolkit is to create a 655 field).
717 BDFMPSU 650:2=0 F <50:x;bibliography;;Bibliographies> F 008/29=b

In a bibliographic 650 LCSH field, remove the form/genre subdivision "bibliography" and add a 655 field with the text "Bibliographies".
The toolkit normalizes the supplied existing LCSH subdivision text ("bibliography" in the above example) and compares it to the normalized form of 650 subfield $v and $v.
Note that this routine at present assumes that the new 655 field is an LCSH field. Provision for additional subject heading schemes may be added in the future.
Unicode note: the texts of the new subdivision and new 655 field may contain multi-byte characters if a way is found to add those characters to the text file that contains rule definitions.
2.2.11.41. Exception 51: Capitalization
This force rule inspects the first character of interest in a specified subfield, and ensures that it is either uppercase or lowercase, as desired.

The exception definition consists of a tag, a slash, one or more subfield codes to inspect, a comma, and either a plus sign (if the first character should be forced to uppercase) or a minus sign (if the first charcter should be forced to lowercase).

83=A 368 F <51:368/abcd,+>

The first significant alphabetic charcter in subfields $a, $b, $c and $d in authority file d 368 must be an uppercase character.

84=A 375 F <51:375/a,->

The first significant alphabetic character in subfield $a of an authority 375 field must be a lowercase character.

The toolkit examines the indicated subfield one character (which, for Unicode, may be one or more bytes long) at a time. If the MARC record uses Unicode conventions the toolit uses the Unicode character category to direct its work.

· If the character category is "alphabetic letter lowercase": if the instruction is to change to uppercase, the toolkit replaces the character with its uppercase equivalent and stops work on the subfield; if the instruction is to change to lowercase, the toolkit stops work on the subfield (because the first character of interest is already lowercase)

· If the character category is "alphabetic letter uppercase": if the instruction is to change to uppercase, the toolkit stops work on the subfield (because the first character of interest is already uppercase); if the instruction is to change to lowercase, the toolkit replaces the character with its lowercase equivalent and stops work on the subfield.

· If the character category is "alphabetic letter titlecase": the toolkit stops work on the subfield, and makes no attempt to change the case of the first significant alphabetic character

· If the character category is "number decimal", "number letter", "number other", "symbol currency" or "symbol math" the toolkit stops work on the subfield.

· Otherwise (probably punctuation) the toolkit moves to the next character in the subfield.

If the MARC record does not use Unicode conventions, the toolkit uses similar tests, which make no allowance for non-roman data.

For the authority 372 and 374 fields, the toolkit also uppercases the first alphabetic character following a double hyphen in each occurrence of subfield $a.

2.2.11.42. Exception 52: Test for redundancy
This test routine compares the texts of two variable fields, and creates a report if they contain more than a specified number of words in common.
The exception definition consists of two tag/subfield specifications separated by commas, and a number to indicate the minimum number of matching words that constitute a problem.
84=A 368/u T <52:368/u,670/a,2> …
Test the contents of each authority 368 subfield $u against each occurrence of 670 subfield $a,and report cases where the two subfields share two or more words in common.
2.2.11.43. Exception 53: Test authority 675 fields for possible recoding as 670 fields
This test routine examines the text of authority field 675, and reports if it appears that any subfield $a in the field could be re-coded as a 670 field.

Because this routine works only on the authority 675 field, the exception definition consists simply of the routine number.
382=A 675 T <53> 5:9 675 subfield(s) may become 670(s)
Test the contents of authority field 675, and report if any subfield $a might be re-coded as a 670 field.

2.3. The BuiltInErrors stanza

The toolkit contains a number of pre-defined tests. These tests are in addition to the user-defined tests in the TestRules stanza. (You can modify the behavior of some of these built-in tests with the appropriate property settings.) In the BuiltInErrors stanza, you assign severity levels for each of these tests. (The requirements for the two severity levels are identical to those given for the corresponding information in the TestRules stanza.) If a record fails one of these tests, the toolkit prepares an error message and uses these values as the test's severity levels. If you do not supply a severity code for an error, the toolkit will assume some arbitrary value (which may or may not mean something to the container program).

[BuiltInErrors]

FfdUndefined=1:3

FfdObsolete=0:0

TagObsolete=0:0

<etc.>

The toolkit uses the BuiltInErrors stanza in the file bibvalid.cfg for all information pertaining to error messages it generates on its own; the files authvalid.cfg and holdvalid.cfg do not contain this stanza.

Each element in the stanza defines the two severity levels for each condition. Use the element names given in the following table:
	Element name
	Condition

	FfdUndefined
	The record contains an undefined element in the Leader, 006, 007 or 008 field

	FfdObsolete
	The record contains an obsolete element in the Leader, 006, 007 or 008 field

	TagObsolete
	The record contains an obsolete tag

	IndicatorObsolete
	The record contains an obsolete indicator

	SubfieldCodeObsolete
	The record contains an obsolete subfield code

	TagUndefined
	The record contains an undefined variable field tag

	IndicatorUndefined
	The record contains an undefined variable field indicator

	SubfieldUndefined
	The record contains an undefined subfield code

	SubfieldRepeated
	The record contains a repeated subfield that is not defined as repeatable

	MandatorySubfield
	The record does not contain a required subfield

	FieldNotRepeatable
	The record contains a repeated field that is not defined as repeatable

	SubjectsDontMatch043
	The geographic information in the subject headings does not match information in the 043 field

	MandatoryField
	The record does not contain a mandatory field

	SubfieldIn041NotMultipleOf3
	A subfield in the 041 field has a length that is not a multiple of 3

	CodeInCodedFieldNotDefined
	A subfield defined as containing a code contains a value that is not defined in the codes.cfg file

	SubfieldIn041HasOver6Codes
	A single subfield in the 041 field has a length of more than 18 characters

	CodeIn041BAppearsIn041A
	The same language code appears in both 041 $a and 041 $b

	CodeObsolete
	A subfield defined as containing a code contains a code that is now obsolete

	New043Codes
	Based on information in the subject field, the 043 field can have one or more codes added to it

	Move010AToZ
	Subfield $a of the 010 field is invalid and should be recoded as $z

	PccElAnd042Disagree
	Following PCC conventions, the encoding level does not agree with information in the 042 field

	PccSrcAnd042Disagree
	Following PCC conventions, the cataloging source code does not agree with information in the 042 field

	PccElAndSrcCallFor042
	Following PCC conventions, the record should have an 042 field in it

	SeriesVXOutOfOrder
	Subfields $v and $x in a series field appear to be in the wrong order

	InitialArticle
	A subfield that should not contain an intial article appears to begin with an initial article

	InitialArticleOrNumeral
	A subfield that should not contain an initial article appears to begin with an initial article; but in this language, the same word can also be used for the numeral "one"

	ImproperControlSubfield
	A control subfield (example: authority 400 subfield $w) is not constructed according to the applicable rules

	EmptySubfield
	A subfield does not contain any text

	SubfieldsOutOfOrder
	The subfields in a field are not in the specified order

	FieldsOutOfOrder
	The variable fields are not in the specified order

	UrlNotFound
	The URL in a subfield defined to contain a URL does not appear to be constructed properly.

	SubfieldBlank
	

	CharactersNotWanted
	A variable field contains characters that are defined as not wanted

	Improper005
	The 005 field in the record does not have the proper format

	UnbalancedParenthesesEtc
	A variable field contains unmatched parentheses, square brackets, braces, or angle brackets

	UnbalancedNonfiling
	A variable field contains unmatched non-filing zone markers

	SubfieldHUndefined
	The text of subfield $h is not defined

	SubfieldHCodeMissing
	A variable field does not contain the subfield $h code, but the field appears to contain text suitable for use in subfield $h

	041RepeatabilityPattern
	Repeats of subfields in the 041 field do not follow the defined pattern

	SeriesDuplication
	The record contains an 830 field that appears to duplicate a 490:0 field

	BibliographicTerminalPunctuation
	A field in a bibliographic record contains improper terminal punctuation (or fails to contain proper terminal punctuation)

	BibDuplicateDetecton
	A standard number in a bibliographic record is also present in another bibliographic record

	DiacriticError
	A diacritic is used on an undefined base character, or as part of an undefined combination of diacritics

	Subfield6Error
	The information in subfield $6 does not correspond to information elsewhere in the record

	LinkingFieldLinks
	A standard number in a bibliographic linking field matches information in another bibliographic record

	LeadingSubfield
	The first subfield in a variable field is other than the expected first subfield

	BlankSubfieldCode
	A variable field contains a subfield delimiter followed by a blank space.

	AuthorityPunctuation
	An authority variable field does not contain expected marks of punctuation

	Authority670NeedsB
	Subfield $a of n authority 670 field contains information that might need to be in subfield $b instead

	UrlHasParens
	A subfield defined as containing a URL also contains parentheses

	RedundantAuthorityFields
	An authority record contains a 4XX field that matches the 1XX field, or another 4XX field

	AuthorityLacks4xx
	An authority record appears to lack a standard 4XX field

	UnrecognizedAbbreviation
	A variable field contains an abbreviation that is not recognized

	PersonalDHasNoNumeral
	Subfield $d of a persona name heading does not contain any numerals

	CannotParse502
	The record contains a 502 field with subfield $a text that can not be teased apart into its constituent subfields

2.4. The BuiltInChanges stanza

The toolkit is able to make a number of standard changes to records. (These changes are in addition to the special changes described in Section 2.2.11.) In the BuiltInChanges stanza, you assign levels of severity for each of these changes. (The requirements for the two severity levels are identical to those given for the corresponding information in the TestRules stanza.) If the toolkit changes a record, the toolkit prepares a change message and uses the values given in this table as the associated severity levels. If you do not supply a severity code for a change, the toolkit will assume the value “0:0”.

[BuiltInChanges]

MarcRecordTranslated=1:2

FieldOrderAltered=3:4

PccModelConverted=5:6

<etc.>

The toolkit uses the BuiltInChanges stanza in the file bibvalid.cfg for all information pertaining to changes it makes; the files authvalid.cfg and holdvalid.cfg do not contain this stanza.

Each element in the stanza defines the two severity levels for each condition. Use only the element names given in the following table:

	Element name
	Condition

	MarcRecordTranslated
	The toolkit translated the record from one character set to another (not likely for the toolkit, but may be used by other programs)

	FieldOrderAltered
	The toolkit changed the order of variable fields

	PccCodeConverted
	The toolkit changed the values of the encoding level, the cataloging source code, and/or the 042 field to match PCC conventions

	CharactersNotWanted
	The toolkit removed characters defined as unwanted

	UndefinedFixedFieldToBlank
	The toolkit set an undefined fixed field element to blank

	SubfieldOrder
	The toolkit changed the order of subfields in a variable field

	Changed005
	The toolkit changed the 005 field into the proper format

	FieldOrderShiftedDuringCleanup
	The toolkit changed the order of variable fields during final cleanup

	SeriesDuplication
	The toolkit resolved issues with duplicate series fields

2.5. The InitialArticlesToTest stanza

The toolkit can inspect the first word (or, sometimes, words) in a subfield in a bibliographic record to determine whether it represents an article, and can compare this word to the value of any indicator for nonfiling characters that may be present in the field. (The TestInitialArticles property determines whether the toolkit performs this work.) Unless the configuration file directs otherwise, the toolkit tests initial articles in the following subfields, in all seven bibliographic formats:

100/t 110/t 111/t 130/a

222/a 240/a 242/a 243/a 245/a 246/a 247/a

400/t 410/t 411/t 440/a

600/t 610/t 611/t 630/a

700/t 710/t 711/t 730/a 740/a

800/t 810/t 811/t 830/a

The InitialArticlesToTest stanza allows you to specify exactly which subfields are subject to the toolkit’s initial article test. If you wish to test articles in all of the subfields listed above in all seven formats, you do not need to include the InitialArticlesToTest stanza in your configuration file at all; the toolkit will use its default definition. If you do not wish the toolkit to test all of these fields in all formats, you need to include the InitialArticlesToTest stanza in the file bibvalid.cfg. You only need to include elements in this stanza for those bibliographic formats whose definition varies from that given above.

In the InitialArticlesToTest stanza, identify each format by its single-letter abbreviation, as defined for the MarcRecordFormat property. If you don’t want the toolkit to test initial articles at all in a particular format, give some text that doesn’t look anything at all like a tag (such as the word “NONE”) instead of a list of tags and subfields. If you want the toolkit to test some subfields, identify each subfield by its tag and subfield code, with a slash between them. Separate each tab/subfield combination from its neighbors by a space or a mark of punctuation. If you want the toolkit to test the entire default list of, either carefully list them all, or omit the member for the format from the stanza.

[InitialArticlesToTest]

B=100/t 400/t 600/t 800/t

D=100/t

F=NONE

P=NONE

S=100/t 400/t 600/t 800/t

U=NONE

The toolkit will test only the following subfields in the Books and Series formats: subfield $t in the 100, 400, 600 and 800 fields. It will test only subfield $t in the 100 field in the Computer files format. The toolkit will not test any initial articles in the Visual materials, Maps and Mixed materials formats. Because there is no “M” line in this stanza, the toolkit will test the default set of subfields in the Music format.

If one of the indicators in a field in a bibliographic record identifies the number of nonfiling characters present in the field, follow the tag/subfield identifier with a second slash, and the number of the indicator (“1” or “2”). Failure to include an identification of the nonfiling indicator for those fields that have a nonfiling indicator will cause the toolkit to produce spurious reports.

B=100/t 245/a/2 400/t 440/a/2 600/t 630/a/1 800/t 830/a/2

In the Books format, the toolkit will test only 100 $t, 245 $a (second indicator contains the number of nonfiling characters), 400 $t, 440 $a (second indicator contains the number of nonfiling characters), 600 $t, 630 $a (first indicator contains the number of nonfiling characters), 800 $t and 830 $a (second indicator contains the number of nonfiling characters).

This stanza is also defined for the authority format, if you do not wish the toolkit to use its standard definition.

[InitialArticlesToTest]

A=100/t 110/t 111/t 130/a 130/p

The toolkit will test only the following subfields in the authority format: 100, 110, 111 subfield $t, and subfields $a and $p of the 130 field.

2.6. The OperatorCorrections and OperatorCorrectionsForBuiltInErrors stanzas

Many of the errors that the toolkit detects may be corrected by the program. For example, if the program finds variable fields out of order in a record, it can rearrange the fields to match your requirements; if you define a force rule to change a record in some way, it can follow your instructions. The toolkit is capable of making stereotyped changes of this sort to records reliably and safely.

Other problems spotted by the toolkit may often, but not always, lead to changes to a record; the change should only be performed after an operator has given approval. For example, the toolkit can detect problems with initial articles in title fields, but because of circumstances described elsewhere it can’t do this with 100% reliably. However, the toolkit can report this problem, and, with operator approval, a container program could change the nonfiling characters indicator. Or, given an appropriate rule the program can detect that an 082 field likely needs to have subfield $2 added to it; with operator approval, a container program could add that subfield to the record. Small actions like this can save the operator from much tedium.

Performing this kind of work requires coordinated action. First, the appropriate configuration file must describe the action needed to correct a problem. The validation tool reads the information from the configuration file; if the test generates an error report, the validation tool passes this information as part of its error report to the toolkit. The toolkit must be able to recognize and act on the information provided by the validation tool.

Two stanzas in validation rules files supply the instructions the validation tool can read, and pass along to the toolkit when it detects an error. The OperatorCorrections stanza contains information about errors defined in validation rules elsewhere in the file. The OperatorCorrectionForBuiltInErrors stanza contains information about errors built into the toolkit. The two stanzas have some features in common, and also reflect important differences.

To define a correction pursuant to a rule defined in a validation file that the container program can make after operator approval, follow the rule number in the TestRules stanza with an asterisk. In the OperatorCorrections stanza, give this same rule number, an equals sign, and a description of the change the container program should make.

[TestRules]

243*=…

552=…

971*=…

[OperatorCorrections]

243=…

971=…

To define a correction pursuant to an error built into the validation tool, give in the Operator​Corrections​For​BuiltIn​Errors stanza the name for the error (the same name as used in the BuiltInErrors stanza), an equals sign, and a description of the change the container program should make.

[OperatorCorrectionsForBuiltInErrors]

PccElAndSrcCallFor042=…

New043Codes=…

InitialArticle=…

The description of the change that the toolkit may make must of course be something that's previously been programmed into the validation tool, or the toolkit. The following are the current possibilities?
· To add a variable field to a record, give the tag, a comma, the indicators, another comma, and the field text itself. Use the vertical bar instead of the delimiter character; use underscores instead of blanks.

…=042,__,|apcc

Add an 042 field to the record, with blank indicators, and the text “pcc” in subfield $a.

…=007,,he_bfb---baca

Add the 007 field to the record.

· To add a subfield to a field, give the tag, a comma, and the subfield text.

…=082,|221

Add subfield $2 to an 082 field, with the text “21”.

· To change an indicator, give the tag, a colon, a number to indicate the position of the indicator (1 or 2), an equals sign, and the new indicator value.

…=245:2=4

Change the second indicator in the 245 field to ‘4’.

· To change a code in the record leader, give the tag “000”, a slash, the starting position of the code (using the zero-based values given in the MARC documentation), an equals sign, and the replacement code. Use underscores instead of blanks.

…=000/17=_

Change Leader byte 17 to ‘blank’.

· To change a code in the 008 field, give the tag “008”, a slash, the starting position of the code (using the zero-based values given in the MARC documentation), an equals sign, and the replacement code. Use underscores instead of blanks.

…=008/15=ita

Change 008 bytes 35-37 to ‘ita’.

You can also use the following special change definitions for selected items in the Operator​Corrections​For​BuiltIn​Errors stanza:

New043Codes=%%

The toolkit will insert the 043 codes into the string it supplies to the container program; from the container program’s point of view, this instruction will appear as a normal “add subfields” instruction. Example of string supplied by the toolkit:

043,|an-us---

InitialArticle=%%

The toolkit will construct a “change the indicator” instruction (as defined above). Example of string supplied by the toolkit:

245:2=4
The toolkit will not supply any instruction if it appears that an initial article needs to be removed from subfield $t of a name/title field; it will also not supply an instruction if there is more than one occurrence of a tag in the record.

3. The obsolete content designation files

The toolkit assumes that your Vger MARC configuration files contain definitions for every item of MARC content designation that has ever been defined, even if it is now considered obsolete. A separate set of configuration files (named authobs.cfg, bibobs.cfg and holdobs.cfg for authority, bibliographic and holdings records, respectively) identify for the toolkit those elements of content designation defined in the Vger tag tables that are no longer valid.
Most items in these files can contain a year to indicate the date on which a MARC element became obsolete. The toolkit compares this date to the date of creation in bytes 00-01 of a record’s 008 field to determine whether or not the content designation is acceptable for that particular record. (The toolkit contains an option that allows you to specify a number of years beyond the defined date before there's a problem.)
In extremely rare cases, an item of content designation is obsolete for a time, and is later restored for use. The formats in which the content designation is valid may be different in the various periods in which the item was valid. In this exceptional case, information in one of the “obsolete” configuration files can’t adequately describe the use of the content designation; if you feel compelled to limit the use of such a piece of MARC content designation, you must define validation rules instead.

For example, the value ‘blank’ for the second indicator in the bibliographic 082 field was valid for Books, Data Files, Visual Materials, Music and Serials formats until it was declared invalid in 1989. The indicator value was declared valid in all formats in 2000. The indicator was not valid for Maps and Serials until 2000. In order to describe this properly, define the blank second indicator as valid in the system tag table, and define validation rules to enforce the correct usage:

13=BDFMS 082:2=_ AND <11:1989,>> AND <11:2000,<> T 082:2!_ …

14=PU 082:2=_ AND <11:2000,<> T 082:2!_ …

The first rule says that the blank indicator cannot appear in Book, Data File, Visual Materials, Music or Serial records if the date of publication is between 1990 and 1999 inclusive. The second rule says that the blank indicator cannot appear in Map and Mixed Material records if the date of publication is earlier than 2000. If the 082 second indicator is blank and the date of publication is 2000 or later, or if it is 1989 or earlier in certain formats, it’s OK; otherwise, it’s reported as a problem.

Obsolete content designation for bibliographic records
The file bibobs.cfg describes obsolete content designation that may appear in bibliographic records. The file contains the following stanzas (described just below): Leader, Fields, Indicators and Subfields. The file also contains stanzas that describe obsolete content designation in the 007 and 008 fields,
 and stanzas listing obsolete codes used in various parts of bibliographic records.

When the following instructions ask for an indication of format, use the single-character uppercase codes defined elsewhere in this document.
The Leader stanza describes obsolete data elements in the record Leader. Each line consists of the following elements, each separated from its neighbors by one or more spaces: starting position, length, obsolete codes, format in which formerly valid, and year in which the codes became invalid.

1=06 1 b U 1995

Code ‘b’ in Leader/06 (a one-character element) is valid in the Mixed materials format for records created in or before 1995.
 The code is obsolete in the Mixed materials format for materials created after 1995, and is invalid in other formats.

4=18 1 r FMP 1981

Code ‘r’ in Leader/18 (a one-character element) is valid in the Visual materials, Music and Map formats for records created in or before 1981. The code is obsolete for Visual materials, Music and Map records created after 1981, and is invalid in other formats.

The Fields stanza lists variable fields that are no longer valid. The structure of this stanza differs from the structure of most other stanzas in the file. Instead of a line number, use the obsolete field’s tag; to the right of the equals sign, give the format(s) in which the field was formerly valid, and the year in which the field became invalid.

011=BFPMS 1993

The 011 field is valid only in the Books, Visual materials, Maps, Music and Serial formats for records created in or before 1993 The field is obsolete in these formats for records created after 1993. The field is invalid in other formats.

512=S 1990

The 512 field is valid only in the Serials format for records created in or before 1990. The field is obsolete in the Serials format for records created after 1990. The field is invalid in other formats.

If a field became obsolete in different formats at different times, separate each definition from its neighbors with two slashes.

265=U 1983//BDFMPS 1993

The 265 field is invalid in the Mixed material format for records created after 1983; it is invalid in other formats for records after 1993.

The Indicators stanza describes obsolete indicators. Each line consists of the following elements, separated by one or more spaces: the tag, the indicator position (“1” or “2”), the obsolete codes, the formats in which the indicator codes were formerly defined, and the year in which the indicator codes became obsolete.

1=071 1 01 BFPM 1980

Values ‘0 and ‘1’ in the first indicator of the 071 field are valid in the Books, Visual materials, Music and Map formats for records created in or before 1980. The values are obsolete in those formats for records created after 1980, and are invalid in other formats.

37=700 2 3 F 1993

Value ‘3’ in the second indicator of the 700 field is valid in the Visual materials format for records created in or before 1993. The value is obsolete in that format for records created after 199, and is invalid in other formats.

The Subfields stanza describes obsolete subfield codes. The line begins with the tag; the remainder of the line consists of the following elements, separated by one or more spaces: the obsolete subfield codes, the formats in which the subfields were formerly defined, and the year in which the subfield codes became invalid.

024=b M 1983

Subfield $b in the 024 field is valid in the Music format for records created in or before 1983. The subfield is obsolete in the Music format for records created after 1983; it is invalid in other formats.

246=de S 1979

Subfields $d and $e in the 246 field are valid in the Serials format for records created in or before 1979. The subfields are obsolete in the Serials format for records created after 1979; they are invalid in other formats.

For the bibliographic format, the “008” stanza in the bibobs.cfg file describes obsolete values in the parts of the 008 field common to all formats: 07-17 and 35-39. There are additional stanzas for obsolete values in the parts of the 008 field particular to each format (008/18-34); these stanzas are named “008” plus the one-letter code (B, D, F, M, P, S, U) for the format. In these stanzas, each line consists of the following elements, separated from each other by one or more blanks: starting position of the data element in the 008 field, the length of the element, the obsolete codes, and the year in which the codes became obsolete.

[008]

1=39 1 abn 1997

Codes ‘a’ ‘b’ and ‘n’ in 008/39 (a 1-character position) are valid in records created in or before 1983. The codes are invalid in records created after 1983.

[008B]

1=23 1 ghiz 1987

In Books records , codes ‘g’ ‘h’ ‘i’ and ‘z’ in 008/23 (a 1-character position) are valid in records created in or before 1983. The codes are obsolete in Books records created after 1987.

[008D]

3=27 1 az 1989

In Computer files records, codes ‘a’ and ‘z’ in 008/27 (a 1-character position) are valid in records created in or before 1989. The codes are obsolete in Computer files records created after 1989.

There are separate stanzas for each different kind of 007 field; the stanzas are named “007” plus the character used in the first position (byte 00) in the field. (For example, stanza “007h” contains obsolete content designation for the 007 field for microforms.) In all of these stanzas, each line consists of the following elements, separated from each other by one or more blanks: starting position of the data element, the length of the element, the obsolete codes, and the year in which the codes became obsolete.

[007c]

1=02 1 foru 1997

In 007 fields whose first character is ‘c’ (computer file), codes ‘f’ ‘o’ ‘r’ and ‘u’ are valid in position 02 (a 1-character position) in records created in or before 1997. The codes are obsolete in records created after 1997.

[007s]

4=07 1 abc 1981

In 007 fields whose first character is ‘s’ (sound recording), codes ‘a’ ‘b’ and ‘c’ are valid in position 07 (a 1-character position) in records created in or before 1981. The codes are obsolete in records created after 1981.

[LanguageObsolete]

This stanza lists language codes that are no longer valid. Each line consists of the obsolete language code, the year in which the code became obsolete, and (if wanted) the name of the language that the code represents. (The name of the language is for your own use; the toolkit ignores everything after the date in each line.)

[LanguageObsolete]

1=cam 2000 Khmer

2=esp 2000 Esperanto

[etc.]

[CountryObsolete]

This stanza lists country codes that are no longer valid. Each line consists of the obsolete country code plus the name that the code represents. (The dates at which these codes became obsolete are not available.) the toolkit ignores everything after the first space in each line.

[CountryObsolete]

1=ac Ashmore and Cartier Islands

2=ai Anguilla

[etc.]

[041RepeatabilitySwitch]

This stanza identifies the date on which the change in pattern of use for 041 fields was adopted. (Default value: 2002.) The original practice was that the 041 field was not repeatable, and a subfield in that field could contain multiple codes; the revised practice is that the 041 field is repeatable, and no subfield may contain more than one code. The unique value provided by this stanza (following the constant label “BDFMPSU”, indicating that this value applies to all formats) is the year in which an institution adopted the change. Records created after this year must employ multiple 041 fields (with one code each); records created in or before this year may contain either a single 041 field with multiple codes per subfield, or multiple 041 fields with a single code per subfield.

Obsolete content designation for authority records
The file authobs.cfg contains Fields, Indicators and Subfields stanzas, which are constructed exactly the same as the corresponding stanzas in the file bibobs.cfg. The file also contains an 008A stanza which lists all obsolete 008 values in a single sequence. (There is only one 008 field format for all authority records.)

Obsolete content designation for holdings records
The file holdobs.cfg contains Fields, Indicators and Subfields stanzas, which are constructed exactly the same as the corresponding stanzas in the file bibobs.cfg. The file also contains an 008H stanza which lists all obsolete 008 values in a single sequence. (There is only one 008 field format for all holdings records.)

4. The supplementary information files

4.1. General remarks

Three files contain information about MARC content designation that isn’t part of your system’s MARC tag tables for authority, bibliographic and holdings records. These files (named authsup.cfg, bibsup.cfg and holdsup.cfg, respectively) all have the same basic form. The exact form these files take depends on the information in your system’s tag tables.

4.2. Files used with the Vger system

The stanzas described here are used with versions of Vger beginning with the 2000 version. For information in the supplementary files used with earlier versions of Vger, contact the author of the toolkit.

4.2.1. The file bibsup.cfg

Several stanzas define positions for fixed fields not part of the Vger tag tables. These stanzas have the same structure as stanzas in the Vger tag file bmarcfix.cfg.

[000LinkedRecordRequirement] stanza
This stanza defines codes used in Leader/19.

[000LinkedRecordRequirement]

Name=Linked record requirement

0=_ Related record not required

1=r Related record required

[Date1] [Date2] stanzas
These dummy stanzas serve only to identify 008/07-10 and 008/11-14 as defined positions.

[Date1]

0=0

[FixedFieldLengths] stanza
This stanza gives the length for 007 and 008 fields. Each 007 field is identified by its tag and the character used in byte 00; each 008 field is identified by its tag and the upper-case format character used in validation rule definitions. The entry for bibliographic 007m (motion pictures) has two numbers, representing the minimum and maximum lengths for this field; all other fields have only one number (their minimum and maximum lengths are the same).

[FixedFieldLengths]

007a=8

007c=6

007d=6

007m=8,23

[etc.]

008B=40

008D=40

[etc.]

[SfdRepeatableBefore] stanza
This stanza identifies subfields that are not now repeatable, but were at one time repeatable. Each line consists of the tag and indicator in question, the formats for which the field was at one time repeatable, and the year in which the subfield was redefined to be non-repeatable.

[SfdRepeatableBefore]

020a=BDFMPSU 1977

[etc.]

Subfield $a of the 020 field is repeatable in all bibliographic formats for records created in or before 1977. The subfield is not repeatable in records created after 1977.

[SfdNotRequiredBefore] stanza
This stanza identifies subfields that are now defined as required, but were once not so defined. Each line consists of the tag and indicator in question, the formats for which the subfield was at one time not required, and the date at which the subfield was redefined to be required.

[SfdNotRequiredBefore]

051a=BDFMPSU 1980

Subfield $a is not required in the 051 field for all bibliographic formats in records created in or before 1980. The subfield is required in records created after 1980.

[FieldOrder] stanza
The MARC formats specify the following order for entries in a record’s Directory:

Fields 001-009, in tag order, followed by

Fields 010-9XX, in order by the first character of the tag

You may wish the fields in your records to be in some order that, while conforming to the order specified for all MARC records, is easier to use. For example, you may wish bibliographic fields to be sorted so that any uniform title (240) comes before the title proper (245), and that both of these fields come before the edition statement (250) and imprint (260). (If you wish to sort fields into an order other than the order possible with the FieldOrder stanza, use the ExtendedFieldOrder stanza instead.)

The FieldOrder stanzas in the authority, bibliographic and holdings configuration files describe the order into which the toolkit should place variable fields when it is preparing the final version of a record. Use this stanza to define a sort order that is more refined than—but yet conforming with—the order prescribed in the MARC formats.

There are 10 optional members in this stanza, numbered 0 through 9. The ‘0’ member represents the 0XX fields, the ‘1’ member represents the 1XX fields, and so on. Each member in this stanza can have one of these two values:

· “Generic” means that all fields in the group are kept together, in the same order as they were in the original record

· “Tag” means that fields in the group are kept together, and sorted in strict tag order

The members for some tag groups may have additional values.

The ‘2’ member for bibliographic 2XX fields can have this value:

· “246” means that fields in the group are sorted by tag. 246 fields with first indicator ‘0’ are arranged before 246 fields with first indicator ‘1’; these precede all other 246 fields.

The ‘4’ and ‘5’ members for authority 4XX and 5XX fields can have this value:

· “Authority” means that fields in the group are sorted by the first character in subfield $w (“n” if subfield $w is not present); fields with the same first character in subfield $w are sorted in alphabetical order by the reference heading.

The ‘6’ member for bibliographic 6XX fields can have this value:

· “Indicator2” means that fields in the group are kept together, sorted in order by their second indicator. (This puts all LCSH headings in a group before all MeSH headings, for example.)

The ‘7’ member for bibliographic 7XX fields can have this value:

· “7” means that 700 fields file before 710 and 711 fields, which file before 730 fields, which file before 740 fields; these fields are followed by all other 7XX fields, in the same order as they were in the original record. Within the groups for 700 and 710/711 fields, fields that do not contain subfield $t appear before fields that contain subfield $t.

If the stanza does not contain a member for a particular tag group, the toolkit assumes the value is “Generic”.

Here is a typical FieldOrder stanza for bibliographic records:

[FieldOrder]

0=Tag

1=Tag

2=2

3=Tag

4=Generic

6=Indicator2

7=7

8=Generic

9=Tag

the toolkit will sort fields 010-399 in ascending order (except for 246 fields, which are subarranged by second indicator as described above), fields 700-799 in the order specified by LCRI 21.29, and fields 900-999 in ascending tag order; it will sort fields 400-599 and 800-899 only by the first character of the tag; it will sort 6XX fields by the second indicator.

The routine that produces the final sort of variable fields has a special test to keep a 533 field together with any associated 539 field.
 In order for this test to work properly, the 539 field must immediately follow the 533 field in the original record.

[ExtendedFieldOrder] stanza
As described just above, the MARC formats specify a particular order for the fields in a record, and the FieldOrder stanza allows you to produce records that implement that order in its most essential form. Under certain local circumstances, you may wish to put the fields into some order other. The more elaborate conventions supported in the ExtendedFieldOrder stanza provide more flexibility in the ordering of variable fields than is provided in the FieldOrder stanza. If a configuration file contains the ExtendedFieldOrder stanza, the toolkit ignores any FieldOrder stanza that may also be present.

Each member in the ExtendedFieldOrder stanza represents a tag or tag group. Each member is assigned a consecutive number indicating its position within the finished record; the first member has number 0 (zero); the highest available number is 32767.
 Each member consists of a specification for the tag or tag group, and an instruction for the handling of the tags within that group.

If you decide to use the ExtendedFieldOrder stanza, you must take care to account in your specifications for all tags that may appear in your records. Any tags not included in the specification will sort after all other tags.

The specification for a tag group can take one of these two forms:

1. An individual tag or range of individual tags (examples: 902; 001-009; 700-740)

2. A tag group (the character “X” as the third and possibly also second character; examples: 5XX; 64X)

The instruction for handling fields in a group is one of the following words (only the first character is significant):

· “Generic” (all fields in the group are kept together, in the same order as they were in the original record; this is the default value if no other value is specified)

· “Tag” (all fields in the group are kept together, and sorted in strict tag order

· “Authority (fields in this group are sorted by the first character in subfield $w, and then alphabetically by the reference heading; authority 4XX and 5XX fields only)

· “Indicator2” (fields in the group are sorted by second indicator; bibliographic 6XX fields only)

· “7” (fields that contain subfield $t appear after fields without subfield $t; bibliographic 7XX fields only)

· “2” (only for the 2XX block)

The specification for the tag group and the code for handling tags in the group are separated from each other by one or more spaces.

Here is a typical ExtendedFieldOrder stanza for bibliographic records:

[ExtendedFieldOrder]

0=000-009 Tag

1=902

2=904

3=905

4=010-099 Tag

5=1XX Tag

6=2XX 246

7=4XX Generic

8=5XX Generic

9=600-655 Indicator2

10=656-699

11=700 7

12=710-711 7

13=730 Tag

14=740 Tag

15=7XX Tag

16=8XX Generic

17=9XX Tag

the toolkit will sort fields into groups in this order: 000-009 in ascending tag order; the 902, 904 and 905 fields; fields 010-399 in ascending tag order except for the 246 fields, which are subarranged by second indicator as described above; 4XX and 5XX fields arranged by the first character of the tag; fields 600-655 arranged by the second indicator; 656-699 arranged by the first character of the tag; 700 and then 710-711 in “LCRI” order; 730 and 740 fields; other 7XX fields; 8XX fields; 9XX fields in ascending tag order. Because there is no defined group that includes them, any fields with tags 701-709, or 712-729 will come at the very end of the record.

The routine that produces the final sort of variable fields has a special test to keep a 533 field together with any associated 539 field. In order for this to work, the 539 field must immediately follow the 533 field in the original record.

A special instruction in this stanza tells the toolkit to place 880 fields immediately following the field with which they are paired (as indicated by the contents of subfield $6) rather than where they would otherwise appear (typically near the end of the record). This instruction has the general appearance of other instructions in the ExtendedFieldOrder stanza, using the instruction “Paired:”

[ExtendedFieldOrder]

0=000-399 Tag

1=400-599 Generic

2=600-655 Indicator2

3=656=699 Tag

4=700 7

5=710-711 7

6=730

7=740

8=700-999 Generic

9=880 Paired

the toolkit will sort fields into groups in this order: 000-399 in ascending tag order; 4XX and 5XX fields arranged by the first character of the tag; fields 600-655 arranged by the second indicator; 656-699 arranged by the first character of the tag; 700 and then 710-711 in “LCRI” order; 730 and then 740 fields; other 7XX fields; 8XX fields; 9XX fields.Any 880 fields will appear immediately following the field to which they are linked via subfield $6 instead of with the other 8XX fields.

The following illustration shows a fragment of a bibliographic record with fields sorted in the manner required by the preceding definition. Note that the 880 fields are now interspersed among other fields, as directed by information in subfield $6.
[image: image1.png]25
a0
28
a0
260
ea0
300

6 88001 £a "Bolshai"s™ semi'a™ Nursultana Nazarbaeva : £ polficheskai‘a” elta sov
1624501 12 "Bonbwas cembs HypCyTaHa HasapOaess - b noneckas 3nwTa cos
£5.880-02 4 Polficheskel"a” éita sowemennago Kazakhstana

£6.245-02 10 Mammiseckan arTa cospeneroro KasaxeTana

£6.880-03 32 Moskva : £ I aktusiyk poltcheskikh issledovar, 3o 1995,

£6.260-03 12 MockBa - # Uik aKTYaHbIX IOTMTHMECHX CCRE 3B, 10 1995,
12111 p.; 4o 21 om.

[SubfieldOrder] stanza
The SubfieldOrder stanza contains rules that allow the toolkit to inspect and rearrange the subfields within variable fields. Each subfield order rule consists of two elements: a three-digit tag, and a list of subfields in the order in which they are to appear in the field. If there is no definition for a given tag, the toolkit will not attempt to evaluate or adjust the subfields in that field.

If you present subfields in a list, the toolkit will sort the subfields in a variable field into exactly the order indicated.

Examples

034=abcdefgsthjkmnp

If a “Map” record contains an 034 field, the subfields will be arranged in the order specified: all occurrences of subfield $a will appear ahead of all occurrences of subfield $b, which will appear ahead of all occurrences of subfield $c, and so on. Because they are not part of this definition, any other subfields that may appear in the 034 (such as subfield $6) will appear after all other subfields.

040=abcdef

If any bibliographic record contains an 040 field, the subfields will be arranged in the order specified: subfield $a, then subfield $b, then $c, then $d, then $e, then $f.

The subfields in a few variable fields (notably, access fields) can be organized into segments (called portions in the MARC 21 documentation). In general, all of the subfields in a segment must occur together. In some cases, the order of subfields within a segment is important, in other cases the subfields in a segment may occur in any order. For example, in a bibliographic subject heading, subfields $v, $x, $y and $z must all occur together (and not between subfields $a and $d in a 600 field, for example), but it is not possible to specify the order of subfields $v, $x, $y and $z within their segment; these four subfields may precede and/or follow each other.

To define the order of fields that are organized into “segments,” place the subfield codes of which each segment is composed within braces.

If the subfields must occur within the segment in a particular order, include no special prefix character within the braces.

651={63a} …

The first segment in a 651 field consists of subfields $6, $3 and $a, in that order.

If the order of subfields within the segment is not important, place a hash mark (“#”) as the first character within the braces.

651=63a{#vxyz}2

The first segment in a 651 field consists of subfields $6, $3 and $a, in that order. The second segment consists of subfields $v, $x, $y and $z, which may appear in any order. The final segment consists solely of subfield $2.

If all occurrences of a subfield (whether repeatable or not) must occur at the beginning of a segment, but the order of the remaining subfields is not critical, place an exclamation mark (“!”) as the first character within the braces. (The subfield identified by the “!” is the “lead subfield” in the segment.)

600=63{!abcqdk}{eu4}{!tfgklnp} …

The first segment in a 600 field consists of subfields $6 and $3, in that order. The second segment begins with the first subfield $a; this initial subfield $a may be followed by subfields $b, $c, $q, $d and/or $k, in any order. This segment is followed by subfields $e, $u and $4 in that order, which is in turn followed by a segment beginning with subfield $t and containing subfields $f, $g, $k, $l, $n and $p in any order.

If the first occurrence of a repeatable subfield must occur at the beginning of a segment, but additional appearances of the subfield may appear interspersed with other subfields in the segment, use a circumflex (“^”) as the first character within the braces. (The subfield identified by the “^” is the “lead subfield” in the segment.)

490=63{^alvx}

The first segment in a 490 field consists of subfields $6 and $3, in that order. The second segment begins with the first subfield $a; this initial subfield $a may be followed by any other subfield $a and by subfields $l, $v and/or $x, in any order.

Some subfields may appear within more than one segment. List such subfields in each segment to which they may belong.

Example

600=63{!abcqdk}{!tkfghlmnoprs}{#vxyz}2

In a 600 field, any subfield $6 must appear before any subfield $3. Subfield $a must be the first subfield in the next segment, and may be followed by subfields $b, $c, $q, $d and $k in any order. These subfields may be followed by subfield $t (marking the start of the next segment),
 which may be followed by subfields $k, $f, $g, $h, $l, $m, $n, $o, $p, $r or $s in any order. (Subfield $k may appear in either this segment, or the preceding segment.) These may in turn be followed by a segment containing subfields $v, $x, $y and $z, in any order. When present, subfield $2 is the last subfield in the field.

However, if such a subfield may occur in more than one segment, precede the subfield code with the “at” sign (“@”). A subfield identified with the “at” sign may appear in any number of different segments.

Example

300=68{@3}{#abcefg}{@3}

Subfields $6 and $8 must occur at the beginning of the field, in that order. These subfields may be followed by subfield $3; subfield $3 may also occur at the end of the field. Other subfields in the 300 field may appear either before or after subfield $3, in any order.

When the toolkit encounters a segment prefixed with the “at” sign, it retains at that point any of the subfields in the segment that it finds in the field being inspected at that point, or in the field at some point in the field following a previously-encountered instruction for the same subfield. This has the effect of moving improperly-placed subfields to the next following correct location.

Given this subfield-order instruction (same as in previous example)

300=68{@3}{#abcefg}{@3}

These two fields:

300 $3diaries $a3$fv.

300 $areel 1 of 1 (37 ft.) :$bsi., b&w ;$c35 mm.$3dupe neg.

remain unchanged. Subfield $3 in this field:

300 $areel 1 of 1 (37 ft.).$3Dupe neg.$bSilent, b&w.$c35 mm.

gets moved to the occurrence of the “@3” instruction that follows the incorrect appearance of the subfield:

300 $areel 1 of 1 (37 ft.).$bSilent, b&w.$c35 mm.$3Dupe neg.

If a segment is defined as having a “lead subfield” (through the use of “!” or “^”), and if a subfield that is defined exclusively for that segment appears but the lead subfield does not appear (i.e., it is not possible to tell exactly where the segment belongs), the toolkit moves the subfield to the end of the field. (In the above example, if a field did not include subfield $t, the toolkit would move any occurrence of subfields $f, $g, $h, $l, $m, $n, $o, $p, $r and $s to the end of the field.)

If the subfields in a field constitute only one segment, but you need to specify some order for the subfields other than the rigid order implied by the lack of braces, use braces and an appropriate lead character (pound sign, exclamation sign or circumflex).

Example

051={#abc}

In an 051 field, subfields $a, $b and $c may appear in any order

4.2.2. The file holdsup.cfg

The stanza 008ItemInformationInRecord lists codes defined for use in Leader/18 of the holdings record.

[000ItemInformationInRecord]

0=i

1=n

4.2.3. The file authsup.cfg

For Vger version 2000, this file is empty.

5. The file of codes for coded subfields

The file codes.cfg lists codes used in coded subfields of authority, bibliographic and holdings records; there is only one instance of this file, and it stands for all formats. This file also contains a list of initial articles used in various languages, codes used in control subfields, names of languages, prefixes for LCCNs and similar codes.

[CodedSubfields]

This stanza identifies the subfields in authority, bibliographic and holdings variable fields that may contain codes drawn from a list. Examples of these subfields, and the sources of the codes, are:

Bibliographic records:

034/a: category of scale (the codes are given in the definition of the 034 field)

040/b: language of cataloging (USMARC code list for languages; http://lcweb.loc.gov/marc/languages/)

040/e: description conventions (USMARC code list for relators, sources, description conventions; http://www.loc.gov/marc/relators/re9808de.html)

041/a, 041/b, 041/d, 041/e, 041/f, 041/g, 041/h: each subfield may contain no more than 6 of the codes defined for 008/15-17; codes in 041/b may not also be present in 041/a)

042/a: authentication code (the list is given in the definition of the 042 field)

043/a: geographic area code (USMARC codes for geographic areas; http://lcweb.loc.gov/marc/geoareas/; there may be no more than 3 occurrences of 043/a)

Authority records:

040/b: language of cataloging (USMARC code list for languages; http://lcweb.loc.gov/marc/languages/)

040/e: description conventions (USMARC code list for relators, sources, description conventions; http://www.loc.gov/marc/relators/re9808de.html)

040/f: subject heading/thesaurus conventions (USMARC code list for relators, sources, description conventions; http://www.loc.gov/marc/relators/re9806su.html)

Identify each coded subfield with a letter for the format (‘A’ for authority, ‘B’ for all bibliographic formats, ‘H’ for holdings), the tag, a slash, and the subfield code. You may identify a different subfield in each line, or you may group the subfields in any manner that seems convenient to you. If you include multiple subfield identifications in a single line, separate them with commas.

[CodedSubfields]

1=B100/4,B110/4,B111/4

2=B400/4,B410/4,B411/4

3=A072/2,A073/z,B072/2

4=B055/2,B084/2,B086/2

[etc.]

Subfield $4 in bibliographic 100, 110, 111, 400, 410 and 411 fields contains a code; as do subfield $2 in authority 072 and bibliographic 072, 055, 084 and 086 fields and subfield $z in authority 073 fields.

the toolkit knows that some subfields draw on codes defined for use elsewhere in the record. You identify these subfields in the CodedSubfields stanza, but you do not include the codes themselves in this file. (You must define codes for all other coded subfields in the CodesForCodedSubfields stanza in this file.)

· the toolkit will verify the bibliographic or authority 040 $b subfield (language of the record) against the codes defined for 008/35-37 in bibliographic records

· the toolkit will verify a code in any subfield of the 041 field (language of the text) against codes defined for 008/35-37 in bibliographic records

· the toolkit will verify each 044/a against the country of publication codes defined for 008/15-17

[CodesForCodedSubfields]

In this stanza, list each code that may appear in any coded subfield. On the same line, indicate the subfields in which the code may appear. There is one and only one one line in this stanza for each different code. If the code is now obsolete, follow the identification of each subfield in which it is obsolete with a circumflex (“^”).

[CodesForCodedSubfields]

aas=A040/f,B600/2,B610/2,B611/2,B630/2,B650/2,B651/2

aacssd=B658/2

agrissc=A072/a,B072/2,A073/z

amim=B040/e

ftamc=B655/2^

grt=B100/4^,B110/4^,B111/4^

[etc.]

Code “aas” may be used in authority 040 $f and bibliographic 600 $2, 610 $2, 611 $2, 630 $2, 650 $2 and 651 $2. Code “aacssd” may be used in bibliographic 658 $2. Code “agrissc” may be used in authority 072 $a and 073 $z, and bibliographic 072 $2. Code “amim” may be used in bibliographic 040 $e. Code “ftamc” in subfield $2 of the bibliographic 655 field is obsolete. Code “grt” in subfield $4 of the bibliographic 100, 110 and 111 fields is obsolete.

[InitialArticles]

This stanza identifies each word that may be used as a non-filing article. Each line consists of the initial article itself, an underscore, the MARC code for the language, an equals sign, and one of the following characters:

N
This word is not part of a multi-word article; or, if it is part of a multi-word article, it is the last word in that article. (You will use this code for most initial articles.)

B
This word is part of a multi-word article, and is not the last word in that article.

If the word may function in the language as either a numeral or an article, place an asterisk (*) after the letter.

[Initial articles]

A_ENG=N

A_GAG=N

A_HUN=N

A_IRI=N

AL_ARA=N

AL_BAL=N

[etc.]

MGA_TAG=N

SA_TAG=B

UN_FRE=N*

‘A’ is an article in English, Galician, Hungarian and Irish. “AL” is an article in Arabic and Baluchi. “SA MGA” is an article in Tagalog. “UN” may function in French as either an article or a numeral.

[Authority4xxW] [Authority7xxW] [Bibliographic7xx7]

These stanzas identify the codes that may appear in Bytes 0-3 of control subfield $w in authority 4XX and 5XX fields, in Byte 0 of control subfield $w in authority 7XX fields, and in Bytes 0-1 of control subfield $7 in bibliographic 7XX fields.

[Authority4xxW]

0=abdfghint

1=abcdefgn

2=aeon

3=abcdn

Byte 0 may contain ‘a’, ‘b’, ‘d’, ‘f’, ‘g’, ‘h’, ‘i’, ‘n’ or ‘t’; Byte 1 may contain ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’ or ‘n’; Byte 2 may contain ‘a’, ‘e’, ‘o’ or ‘n’; Byte 3 may contain ‘a’, ‘b’, ‘c’, ‘d’, ‘n’. The toolkit has a set of built-in rules to tell it which codes in each position may be used in which fields.

[Authority7xxW]

0=abcn

Byte 0 may contain ‘a’, ‘b’, ‘c’, ‘n’

[Bibliographic7xx7]

0=pcmun

1=0123

Byte 0 may contain ‘p’, ‘c’, ‘m’, ‘u’, ‘n’; Byte 1 may contain ‘0’, ‘1’, ‘2’, ‘3’. The toolkit takes the values for Bytes 2-3 of bibliographic control subfield $7 from the definitions for Leader/06 and Leader/07. The toolkit has a set of built-in rules to tell it which codes in Byte 1 may be used with which codes in Byte 0.

[LanguagesByCode]

This stanza pairs each valid language code with the “official” name for the language. This stanza is only used if a validation rule calls on Exception 17.

[LangaugesByCode]

ace=Achinese

ach=Acoli

ada=Adangme

[etc.]

[LanguagesByName]

This stanza pairs a normalized version of the “official” name for a language (as it would appear in subfield $l of a 130 field, for example) with the language code. If the name of a language may appear in subfield $l in more than one form, create a separate entry for each form. The toolkit uses this information as part of its testing of initial articles in fields that contain subfield $l. If there is more than one code for a language, list all of the codes in one entry, separating them with asterisks or other puncutation.

[LangaugesByName]

ACHINESE=ace

ACOLI=ach

GREEK=grc*gle

IRISH=gae*iri

[etc.]

[LccnPrefix]

This stanza lists the prefixes that may appear in LC control numbers (010 field). Each line consists of the letter “A” (for a prefix valid in authority records) or “B” (for a prefix valid in bibliographic records), the code itself, an equals sign, and an explanation of the code. This stanza is only used if a rule calls on Exception 10.

[LccnPrefix]

An=Authority record from LC

Anb=Authority record from BL

Ano=Authority record via OCLC

Anr=Authority record via RLIN

Ba=Cataloging provided to LC, 1909-

Bafl=No explanation available

[etc.]

[SubfieldHCodes]

The SubfieldHCodes stanza lists the text that are allowed to appear in subfield $h (medium qualifier or GMD) of various fields. Each line in this stanza consists of an arbitrary number or code, an equals sign, and a code allowed in subfield $h. (the toolkit doesn’t actually care what comes to the left of the equals sign.) If there is an alternate formulation of the text that the toolkit can replace with the preferred text, follow the preferred text with a double slash and the alternate text; if there are additional alternates, supply them after additional double slashes.

[SubfieldHCodes]

1=realia

2=electronic resource//computer file

3=microform//microfilm//microfiche

[etc.]

6. The file of geographic area codes

The file gacs.cfg lists information that allows the toolkit to validate codes used in the 043 field, and to draw a correspondence between geographic information in subject headings and the 043 field. This information would be included in the file codes.cfg, were it not that the GAC information is so extensive it would make the file codes.cfg too large for some text editors.

[GACs]

This stanza lists geographic area codes, giving the equivalent geographic name for each. The only part of this stanza that is important is the GAC itself; the name after the equals sign is irrelevant. The toolkit uses information in this stanza to validate information in subfield $a of the 043 field. Give Each GAC as the full 7-character code; represent hyphens with the uppercase letter ‘H’.

[GACs]

aHHHHHHH=Asia

aHafHHH=Afghanistan

aHaiHHH=Armenia (Republic)

[etc.]

[GACsByCountry]

This stanza lists the catalog entry form for each geographic area assigned a geographic area code (as well as alternative forms of name), together with the geographic area code itself. Give the geographic name in normalized form, with underscores instead of spaces. If a geographic area has a string of codes associated with it, give all codes, separating each from its neighbors with “|a”.

[GACsByCountry]

ADAMAWA_EMIRATE=f-cm---|af-nr---

ADEN=a-ye---

ADEN_GULF_OF=mr-----

[etc.]

[GACsObsolete]

This stanza lists obsolete geographic area codes, in the same format as the GACs stanza. The toolkit uses information in this stanza to validate information in subfield $a of the 043 field.

[GACsObsolete]

aHhkHHH=Hong King

aHptHHH=Portuguese Timor

[etc.]

7. Sample files

A set of configuration files for the toolkit (intended for use with the Vger system) is available from Northwestern University Library. The files are located in the Configuration sub-folder of the folder for the cataloger's toolkit on the Library’s FTP server. You may find it easier to modify these files to match local needs than to create the files from scratch.

� All of the configuration files are plain text files. The easiest way to work with these files is to use a text editor such as the Windows Notepad. If you use a word-processing program to modify the configuration files, you must be careful to save the files as text only. If a configuration file contains the formatting information added by most word processors, the toolkit won’t be able to understand the file. The text editor must use a carriage return plus a line feed to mark the end of each line; some editors may use only a line feed, and that won't work.

� Under some circumstances, the toolkit uses standard Windows functions to read these files randomly, as if they were normal initialization files; under other circumstances, the toolkit treats the configuration files as files, and reads them from beginning to end.

� Earlier versions of the configuration file may contain other stanzas, and may even include stanzas with the same name as stanzas now given in other files. For example, some versions of bibvalid.cfg contain a stanza called Operator�Corrections�For�Built�In�Errors; some versions of bibvalid.cfg, authvalid.cfg and holdvalid.cfg contain FieldOrder and ExtendedFieldOrder stanzas.

� Because all stanzas are optional, the files themselves are in a sense not required, either. But if you didn’t want to define any special things for the toolkit to do, then you probably wouldn’t be going to the trouble of using the toolkit at all.

� In this work, the toolkit draws on a pre-digested version of your local system’s tag tables, its own “supp” and “obs” files, and the two files of codes.

� Any test rules included in the ForceRules stanza (as opposed to those defined in the TestRules stanza) should not be sensitive to the outcome of force rules that may or may not yet have been applied.

� A few rules contain only an “if” expression; see Section 2.2.10.

� The term "format" refers primarily to the different layouts of the bibliographic 008 field, and by extension relates to the kinds of materials suitable for each.

� This segment serves the additional function of cleanly separating the “if” and “then” segments of the rule.

� These two segments are not shown in most of the examples in this Appendix, because their presence causes the printed text to wrap down into a new line, which makes reading the examples more difficult.

� Do not use the “Tab” character to create columns; use blank spaces.

� Each stanza in each file can have its own sequence of numbers, ranging from 1 to 32767, but you may find it more convenient not to duplicate rule numbers within a given validation file. If some force rules contain error-reporting information, with the intention that the force rules will be occasionally performed as test rules (this is explained later in this Appendix), then for clarity the numbers assigned those force rules should not duplicate numbers assigned to test rules in the same file.

� One of the clues the toolkit uses to distinguish comments from rules is the presence of an equals sign in the line. If you wish to include comments in a validation file, do not include any equals signs in them.

date specification of >1996 (date of ed. 21) added 20000108

� Value ‘b’ is obsolete, but is of course found in older records.

� Most rules defined for bibliographic records will apply to all bibliographic formats; most bibliographic rules will contain the seven codes “BDFMPSU” (in any order) here. Tests on bytes 18-34 of the bibliographic 008 field must in every case be restricted to the appropriate format(s).

� If the options for the BAM button indicate that the toolkit should make no change, and if a force rule also includes error-reporting information, the toolkit will perform a force rule as if it were defined as a test rule. See the description of the fifth and sixth segments, below.

� If a force rule contains error-reporting information in the fifth and sixth segments and if the MakeNoChange property has the value True, the force rule is performed as if it were defined as a test rule. In this case, the fourth segment identifies the final test or tests to be made.

� You may give the text in the rule in either non-normalized or normalized form. The toolkit will normalize the text in the rule before comparing it against a normalized version of the subfield.

� This is the case whether or not the exclamation mark is present to show that the result of a test should be reversed; see section 2.2.5.

� This test cannot produce the result No Answer, because it is always possible to determine whether or not a record contains a field with a particular tag.

� If the toolkit is configured not to change a record during BAM and if a force rule contains error-reporting information (i.e., the fifth and sixth rule segments are present—see Section 2.2.2), then the toolkit behaves as if the rule were defined as a test rule. The toolkit will produce the error message if the indicated change needs to be made to the record.

� Unless, as noted elsewhere in this section, the test occurs in the fourth segment of a test rule. In this case, the response No Answer becomes Found.

� the toolkit contains a special routine to trigger tests that begin with the negation of a tag-only search. (Example: 5=BDFMPSU 100! T …)

� The rule may also be recast (perhaps with a loss of efficiency) as follows:

492=BDFMPSU 008/18=a T 400! AND 410! AND 411!

� This particular test could be performed even more efficiently with Exception 14. See section 2.2.11.14.

� Most such single-test rules identify required fields or subfields that apply to individual bibliographic formats.

� There would be similar rules for the 110, 111 and 130 fields.

� The examples of validation rules that refer to exceptional routines included at this point are intended to serve merely as illustrations of the general method you will use to refer to special routines in validation rules. Complete instructions for constructing references to exceptional routines are given below.

� Not surprisingly, the results of these two exceptions are identical when they are used on fixed-field positions consisting of a single character.

� The contents of certain other subfields can be validated by consulting a list of codes. See the description of the TestCodedFields property.

� These suffixes seem to have disappeared from many LC records in the OCLC database.

� If the call to special routine 10 includes the flag “;LC” (as explained earlier in this section), LCCNs with suffixes are not accepted as valid. When this flag is present, LCCNs in either format must contain exactly 12 characters.

� If the call to this routine includes the flag “;LC”, LCCNs that contain hyphens will not be corrected as shown; instead, they will be reported as erroneous.

� The method for testing the check digit for validity is not known. The toolkit does not attempt to test the value of the check digit.

� The month, day and hour are optional. The month must be in the range 01-12; the day must be in the range 01-31; the hour must be in the range 00-23.

� The code in 046 subfield $a may be tested as described under the TestCodedFields property.

� Because of the effect described in the section “Triggering a rule” earlier in this Appendix, a reference to Exception 12 should in most cases not be the first item in the second (test) segment of a rule.

� A better way to perform the same test: <14:1XX,=,1>

� A far more efficient formulation of this particular test would be: … T <12:4XX> OR <12:5XX> …

� This example should be taken as an illustration only, and not necessarily an indication of a test that would be wise to make. The routine as written does not allow for punctuation that may be present in 245 subfield $h following the closing bracket.

� For tag-only searches, you may give the tag in the form “NXX” or “NNX”, where “N” is any numeral and “X” is the character “X”.

� The toolkit uses information in the LanguagesByCode stanza of the codes.cfg file to determine the correspondence between a language code and the name for the language.

� This example shows the manner in which a change of tag would be described in a validation rule; it does not necessarily show a change that would be appropriate to make.

� Normally you will not use exception routine number 18 to change an indicator; you change an indicator more directly. The following rule definition produces the same result: 440=BDFMPSU 100:1=2 F 100:1=1

� This example shows the manner in which a change of subfield code would be described in a validation rule; it does not necessarily show a change that would be appropriate to make.

� The routine inspects the indicated subfield from left to right, one character at a time. If a character is a mark of punctuation, a space or a diacritical mark, the routine continues with the next character. If a character is a numeral (either on-the-line, superscript or subscript; or a superscript or subscript mark of punctuation) the routine decides that the subfield does not require an upper-case letter, and stops work on the subfield. If a character is an upper-case letter (including an upper-case special character such as Æ), the routine decides that the subfield already begins with an upper-case letter, and stops work on the subfield. Finally, if a character is a lower-case character (including a lower-case special character such as æ), the routine converts the character to upper case, and stops work on the subfield.

� the toolkit performs this work before it inspects (and perhaps modifies) the order of subfields based on instructions in the appropriate SubfieldOrder stanza; so this initial location for the replacement subfield may not be the final location.

� This test exception could be extended into a partial or even complete replacement for the testing of coded subfields also possible via the codes.cfg file.

� The subfield code in the definition is a historical artifact. It must be either "v" or "x" but the toolkit otherwise ignores this element. The toolkit looks for the LCSH form/genre subdivision in either subfield $v or subfield $x.

� "Obsolete" means that the element is defined, but the MARC record was created after the element went out of use.

� the toolkit does not test initial articles in authority records. The toolkit uses the first indicator in the 130, 630, 730 and 740 fields as the nonfiling characters indicator; it uses the second indicator in the 222, 240, 242, 243, 245, 440 and 830 fields as the nonfiling characters indicator. The toolkit does not use either indicator as a count of nonfiling characters in the other fields; it assumes that the subfield contains no characters to be ignored.

� the toolkit maps any definitions of obsolete 008 codes to the corresponding 006 field.

� Throughout this section, remember that the toolkit adjusts the date of record creation by the value of the Adjustment�For�ObsoleteDates property.

� You may not specify in this stanza any order that does not conform to the MARC standard (see the description of the FieldOrderExtended stanza); you may not ask for a different order for fields 001-009, and you may not ask that fields with a given first character be sorted after fields whose first character has a higher value.

� This is the sort order used by the Library of Congress for subject authority records, and is extremely convenient for name authority records.

� This sort sequence implements the instructions in LCRI 21.29.

� The 539 field is an OCLC-defined field that contains information from subfield $7 of a 533 field.

� As there are fewer than 1001 tags defined in any given MARC format, it is unlikely that such a large number will be needed.

� 246 fields with second indicator ‘0’ come before 246 fields with second indicator ‘1’. These are followed by all other 246 fields.

� Alternately: 0=00X Tag.

� Alternately: 4=0XX Tag. Fields 000-009 are already excluded from this group by the first line in the stanza.

� Here and elsewhere, note that the list of subfields shows the order the toolkit will enforce if the subfields are present in the record; this list has nothing to do with any tests for required subfields.

� Here and elsewhere, note that if the initial or terminal segment does not call for a special lead character, the segment may optionally be given without its braces. All other segments must appear within braces.

� When it examines a field, the toolkit first divides the field at segment boundaries, which are marked in the rule with an exclamation mark or circumflex. The toolkit attempts to move subfields that occur in the wrong segment into the proper segment; but if a subfield is defined for use in more than one segment, it is possible that control won’t be able to do this correctly in all cases. (In order for this condition to arise, the original subfields would have to be thoroughly scrambled.)

� the toolkit contains a special test, which ensures that if subfield $t is not present in a field but subfield $k is present, the toolkit takes subfield $k as the start of any title segment.

� This stanza is only needed in this file for Vger versions through 1998. For Vger versions 1999 and higher, use the stanza with the same name in the file hmarcfix.cfg.

Configuration files for BAM. Page 2
Configuration files for BAM. Page 1

